| /* SPDX-License-Identifier: GPL-2.0-only */ |
| #ifndef __KVM_HOST_H |
| #define __KVM_HOST_H |
| |
| |
| #include <linux/types.h> |
| #include <linux/hardirq.h> |
| #include <linux/list.h> |
| #include <linux/mutex.h> |
| #include <linux/spinlock.h> |
| #include <linux/signal.h> |
| #include <linux/sched.h> |
| #include <linux/sched/stat.h> |
| #include <linux/bug.h> |
| #include <linux/minmax.h> |
| #include <linux/mm.h> |
| #include <linux/mmu_notifier.h> |
| #include <linux/preempt.h> |
| #include <linux/msi.h> |
| #include <linux/slab.h> |
| #include <linux/vmalloc.h> |
| #include <linux/rcupdate.h> |
| #include <linux/ratelimit.h> |
| #include <linux/err.h> |
| #include <linux/irqflags.h> |
| #include <linux/context_tracking.h> |
| #include <linux/irqbypass.h> |
| #include <linux/rcuwait.h> |
| #include <linux/refcount.h> |
| #include <linux/nospec.h> |
| #include <linux/notifier.h> |
| #include <linux/hashtable.h> |
| #include <linux/interval_tree.h> |
| #include <linux/rbtree.h> |
| #include <linux/xarray.h> |
| #include <asm/signal.h> |
| |
| #include <linux/kvm.h> |
| #include <linux/kvm_para.h> |
| |
| #include <linux/kvm_types.h> |
| |
| #include <asm/kvm_host.h> |
| #include <linux/kvm_dirty_ring.h> |
| |
| #ifndef KVM_MAX_VCPU_IDS |
| #define KVM_MAX_VCPU_IDS KVM_MAX_VCPUS |
| #endif |
| |
| /* |
| * The bit 16 ~ bit 31 of kvm_memory_region::flags are internally used |
| * in kvm, other bits are visible for userspace which are defined in |
| * include/linux/kvm_h. |
| */ |
| #define KVM_MEMSLOT_INVALID (1UL << 16) |
| |
| /* |
| * Bit 63 of the memslot generation number is an "update in-progress flag", |
| * e.g. is temporarily set for the duration of install_new_memslots(). |
| * This flag effectively creates a unique generation number that is used to |
| * mark cached memslot data, e.g. MMIO accesses, as potentially being stale, |
| * i.e. may (or may not) have come from the previous memslots generation. |
| * |
| * This is necessary because the actual memslots update is not atomic with |
| * respect to the generation number update. Updating the generation number |
| * first would allow a vCPU to cache a spte from the old memslots using the |
| * new generation number, and updating the generation number after switching |
| * to the new memslots would allow cache hits using the old generation number |
| * to reference the defunct memslots. |
| * |
| * This mechanism is used to prevent getting hits in KVM's caches while a |
| * memslot update is in-progress, and to prevent cache hits *after* updating |
| * the actual generation number against accesses that were inserted into the |
| * cache *before* the memslots were updated. |
| */ |
| #define KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS BIT_ULL(63) |
| |
| /* Two fragments for cross MMIO pages. */ |
| #define KVM_MAX_MMIO_FRAGMENTS 2 |
| |
| #ifndef KVM_ADDRESS_SPACE_NUM |
| #define KVM_ADDRESS_SPACE_NUM 1 |
| #endif |
| |
| /* |
| * For the normal pfn, the highest 12 bits should be zero, |
| * so we can mask bit 62 ~ bit 52 to indicate the error pfn, |
| * mask bit 63 to indicate the noslot pfn. |
| */ |
| #define KVM_PFN_ERR_MASK (0x7ffULL << 52) |
| #define KVM_PFN_ERR_NOSLOT_MASK (0xfffULL << 52) |
| #define KVM_PFN_NOSLOT (0x1ULL << 63) |
| |
| #define KVM_PFN_ERR_FAULT (KVM_PFN_ERR_MASK) |
| #define KVM_PFN_ERR_HWPOISON (KVM_PFN_ERR_MASK + 1) |
| #define KVM_PFN_ERR_RO_FAULT (KVM_PFN_ERR_MASK + 2) |
| |
| /* |
| * error pfns indicate that the gfn is in slot but faild to |
| * translate it to pfn on host. |
| */ |
| static inline bool is_error_pfn(kvm_pfn_t pfn) |
| { |
| return !!(pfn & KVM_PFN_ERR_MASK); |
| } |
| |
| /* |
| * error_noslot pfns indicate that the gfn can not be |
| * translated to pfn - it is not in slot or failed to |
| * translate it to pfn. |
| */ |
| static inline bool is_error_noslot_pfn(kvm_pfn_t pfn) |
| { |
| return !!(pfn & KVM_PFN_ERR_NOSLOT_MASK); |
| } |
| |
| /* noslot pfn indicates that the gfn is not in slot. */ |
| static inline bool is_noslot_pfn(kvm_pfn_t pfn) |
| { |
| return pfn == KVM_PFN_NOSLOT; |
| } |
| |
| /* |
| * architectures with KVM_HVA_ERR_BAD other than PAGE_OFFSET (e.g. s390) |
| * provide own defines and kvm_is_error_hva |
| */ |
| #ifndef KVM_HVA_ERR_BAD |
| |
| #define KVM_HVA_ERR_BAD (PAGE_OFFSET) |
| #define KVM_HVA_ERR_RO_BAD (PAGE_OFFSET + PAGE_SIZE) |
| |
| static inline bool kvm_is_error_hva(unsigned long addr) |
| { |
| return addr >= PAGE_OFFSET; |
| } |
| |
| #endif |
| |
| #define KVM_ERR_PTR_BAD_PAGE (ERR_PTR(-ENOENT)) |
| |
| static inline bool is_error_page(struct page *page) |
| { |
| return IS_ERR(page); |
| } |
| |
| #define KVM_REQUEST_MASK GENMASK(7,0) |
| #define KVM_REQUEST_NO_WAKEUP BIT(8) |
| #define KVM_REQUEST_WAIT BIT(9) |
| /* |
| * Architecture-independent vcpu->requests bit members |
| * Bits 4-7 are reserved for more arch-independent bits. |
| */ |
| #define KVM_REQ_TLB_FLUSH (0 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) |
| #define KVM_REQ_MMU_RELOAD (1 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) |
| #define KVM_REQ_UNBLOCK 2 |
| #define KVM_REQ_UNHALT 3 |
| #define KVM_REQ_VM_DEAD (4 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) |
| #define KVM_REQ_GPC_INVALIDATE (5 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) |
| #define KVM_REQUEST_ARCH_BASE 8 |
| |
| #define KVM_ARCH_REQ_FLAGS(nr, flags) ({ \ |
| BUILD_BUG_ON((unsigned)(nr) >= (sizeof_field(struct kvm_vcpu, requests) * 8) - KVM_REQUEST_ARCH_BASE); \ |
| (unsigned)(((nr) + KVM_REQUEST_ARCH_BASE) | (flags)); \ |
| }) |
| #define KVM_ARCH_REQ(nr) KVM_ARCH_REQ_FLAGS(nr, 0) |
| |
| bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req, |
| unsigned long *vcpu_bitmap); |
| bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req); |
| bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req, |
| struct kvm_vcpu *except); |
| bool kvm_make_cpus_request_mask(struct kvm *kvm, unsigned int req, |
| unsigned long *vcpu_bitmap); |
| |
| #define KVM_USERSPACE_IRQ_SOURCE_ID 0 |
| #define KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID 1 |
| |
| extern struct mutex kvm_lock; |
| extern struct list_head vm_list; |
| |
| struct kvm_io_range { |
| gpa_t addr; |
| int len; |
| struct kvm_io_device *dev; |
| }; |
| |
| #define NR_IOBUS_DEVS 1000 |
| |
| struct kvm_io_bus { |
| int dev_count; |
| int ioeventfd_count; |
| struct kvm_io_range range[]; |
| }; |
| |
| enum kvm_bus { |
| KVM_MMIO_BUS, |
| KVM_PIO_BUS, |
| KVM_VIRTIO_CCW_NOTIFY_BUS, |
| KVM_FAST_MMIO_BUS, |
| KVM_NR_BUSES |
| }; |
| |
| int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, |
| int len, const void *val); |
| int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, |
| gpa_t addr, int len, const void *val, long cookie); |
| int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, |
| int len, void *val); |
| int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, |
| int len, struct kvm_io_device *dev); |
| int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx, |
| struct kvm_io_device *dev); |
| struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx, |
| gpa_t addr); |
| |
| #ifdef CONFIG_KVM_ASYNC_PF |
| struct kvm_async_pf { |
| struct work_struct work; |
| struct list_head link; |
| struct list_head queue; |
| struct kvm_vcpu *vcpu; |
| struct mm_struct *mm; |
| gpa_t cr2_or_gpa; |
| unsigned long addr; |
| struct kvm_arch_async_pf arch; |
| bool wakeup_all; |
| bool notpresent_injected; |
| }; |
| |
| void kvm_clear_async_pf_completion_queue(struct kvm_vcpu *vcpu); |
| void kvm_check_async_pf_completion(struct kvm_vcpu *vcpu); |
| bool kvm_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, |
| unsigned long hva, struct kvm_arch_async_pf *arch); |
| int kvm_async_pf_wakeup_all(struct kvm_vcpu *vcpu); |
| #endif |
| |
| #ifdef KVM_ARCH_WANT_MMU_NOTIFIER |
| struct kvm_gfn_range { |
| struct kvm_memory_slot *slot; |
| gfn_t start; |
| gfn_t end; |
| pte_t pte; |
| bool may_block; |
| }; |
| bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range); |
| bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range); |
| bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range); |
| bool kvm_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range); |
| #endif |
| |
| enum { |
| OUTSIDE_GUEST_MODE, |
| IN_GUEST_MODE, |
| EXITING_GUEST_MODE, |
| READING_SHADOW_PAGE_TABLES, |
| }; |
| |
| #define KVM_UNMAPPED_PAGE ((void *) 0x500 + POISON_POINTER_DELTA) |
| |
| struct kvm_host_map { |
| /* |
| * Only valid if the 'pfn' is managed by the host kernel (i.e. There is |
| * a 'struct page' for it. When using mem= kernel parameter some memory |
| * can be used as guest memory but they are not managed by host |
| * kernel). |
| * If 'pfn' is not managed by the host kernel, this field is |
| * initialized to KVM_UNMAPPED_PAGE. |
| */ |
| struct page *page; |
| void *hva; |
| kvm_pfn_t pfn; |
| kvm_pfn_t gfn; |
| }; |
| |
| /* |
| * Used to check if the mapping is valid or not. Never use 'kvm_host_map' |
| * directly to check for that. |
| */ |
| static inline bool kvm_vcpu_mapped(struct kvm_host_map *map) |
| { |
| return !!map->hva; |
| } |
| |
| static inline bool kvm_vcpu_can_poll(ktime_t cur, ktime_t stop) |
| { |
| return single_task_running() && !need_resched() && ktime_before(cur, stop); |
| } |
| |
| /* |
| * Sometimes a large or cross-page mmio needs to be broken up into separate |
| * exits for userspace servicing. |
| */ |
| struct kvm_mmio_fragment { |
| gpa_t gpa; |
| void *data; |
| unsigned len; |
| }; |
| |
| struct kvm_vcpu { |
| struct kvm *kvm; |
| #ifdef CONFIG_PREEMPT_NOTIFIERS |
| struct preempt_notifier preempt_notifier; |
| #endif |
| int cpu; |
| int vcpu_id; /* id given by userspace at creation */ |
| int vcpu_idx; /* index in kvm->vcpus array */ |
| int srcu_idx; |
| int mode; |
| u64 requests; |
| unsigned long guest_debug; |
| |
| struct mutex mutex; |
| struct kvm_run *run; |
| |
| #ifndef __KVM_HAVE_ARCH_WQP |
| struct rcuwait wait; |
| #endif |
| struct pid __rcu *pid; |
| int sigset_active; |
| sigset_t sigset; |
| unsigned int halt_poll_ns; |
| bool valid_wakeup; |
| |
| #ifdef CONFIG_HAS_IOMEM |
| int mmio_needed; |
| int mmio_read_completed; |
| int mmio_is_write; |
| int mmio_cur_fragment; |
| int mmio_nr_fragments; |
| struct kvm_mmio_fragment mmio_fragments[KVM_MAX_MMIO_FRAGMENTS]; |
| #endif |
| |
| #ifdef CONFIG_KVM_ASYNC_PF |
| struct { |
| u32 queued; |
| struct list_head queue; |
| struct list_head done; |
| spinlock_t lock; |
| } async_pf; |
| #endif |
| |
| #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT |
| /* |
| * Cpu relax intercept or pause loop exit optimization |
| * in_spin_loop: set when a vcpu does a pause loop exit |
| * or cpu relax intercepted. |
| * dy_eligible: indicates whether vcpu is eligible for directed yield. |
| */ |
| struct { |
| bool in_spin_loop; |
| bool dy_eligible; |
| } spin_loop; |
| #endif |
| bool preempted; |
| bool ready; |
| struct kvm_vcpu_arch arch; |
| struct kvm_vcpu_stat stat; |
| char stats_id[KVM_STATS_NAME_SIZE]; |
| struct kvm_dirty_ring dirty_ring; |
| |
| /* |
| * The most recently used memslot by this vCPU and the slots generation |
| * for which it is valid. |
| * No wraparound protection is needed since generations won't overflow in |
| * thousands of years, even assuming 1M memslot operations per second. |
| */ |
| struct kvm_memory_slot *last_used_slot; |
| u64 last_used_slot_gen; |
| }; |
| |
| /* must be called with irqs disabled */ |
| static __always_inline void guest_enter_irqoff(void) |
| { |
| /* |
| * This is running in ioctl context so its safe to assume that it's the |
| * stime pending cputime to flush. |
| */ |
| instrumentation_begin(); |
| vtime_account_guest_enter(); |
| instrumentation_end(); |
| |
| /* |
| * KVM does not hold any references to rcu protected data when it |
| * switches CPU into a guest mode. In fact switching to a guest mode |
| * is very similar to exiting to userspace from rcu point of view. In |
| * addition CPU may stay in a guest mode for quite a long time (up to |
| * one time slice). Lets treat guest mode as quiescent state, just like |
| * we do with user-mode execution. |
| */ |
| if (!context_tracking_guest_enter()) { |
| instrumentation_begin(); |
| rcu_virt_note_context_switch(smp_processor_id()); |
| instrumentation_end(); |
| } |
| } |
| |
| static __always_inline void guest_exit_irqoff(void) |
| { |
| context_tracking_guest_exit(); |
| |
| instrumentation_begin(); |
| /* Flush the guest cputime we spent on the guest */ |
| vtime_account_guest_exit(); |
| instrumentation_end(); |
| } |
| |
| static inline void guest_exit(void) |
| { |
| unsigned long flags; |
| |
| local_irq_save(flags); |
| guest_exit_irqoff(); |
| local_irq_restore(flags); |
| } |
| |
| static inline int kvm_vcpu_exiting_guest_mode(struct kvm_vcpu *vcpu) |
| { |
| /* |
| * The memory barrier ensures a previous write to vcpu->requests cannot |
| * be reordered with the read of vcpu->mode. It pairs with the general |
| * memory barrier following the write of vcpu->mode in VCPU RUN. |
| */ |
| smp_mb__before_atomic(); |
| return cmpxchg(&vcpu->mode, IN_GUEST_MODE, EXITING_GUEST_MODE); |
| } |
| |
| /* |
| * Some of the bitops functions do not support too long bitmaps. |
| * This number must be determined not to exceed such limits. |
| */ |
| #define KVM_MEM_MAX_NR_PAGES ((1UL << 31) - 1) |
| |
| /* |
| * Since at idle each memslot belongs to two memslot sets it has to contain |
| * two embedded nodes for each data structure that it forms a part of. |
| * |
| * Two memslot sets (one active and one inactive) are necessary so the VM |
| * continues to run on one memslot set while the other is being modified. |
| * |
| * These two memslot sets normally point to the same set of memslots. |
| * They can, however, be desynchronized when performing a memslot management |
| * operation by replacing the memslot to be modified by its copy. |
| * After the operation is complete, both memslot sets once again point to |
| * the same, common set of memslot data. |
| * |
| * The memslots themselves are independent of each other so they can be |
| * individually added or deleted. |
| */ |
| struct kvm_memory_slot { |
| struct hlist_node id_node[2]; |
| struct interval_tree_node hva_node[2]; |
| struct rb_node gfn_node[2]; |
| gfn_t base_gfn; |
| unsigned long npages; |
| unsigned long *dirty_bitmap; |
| struct kvm_arch_memory_slot arch; |
| unsigned long userspace_addr; |
| u32 flags; |
| short id; |
| u16 as_id; |
| }; |
| |
| static inline bool kvm_slot_dirty_track_enabled(const struct kvm_memory_slot *slot) |
| { |
| return slot->flags & KVM_MEM_LOG_DIRTY_PAGES; |
| } |
| |
| static inline unsigned long kvm_dirty_bitmap_bytes(struct kvm_memory_slot *memslot) |
| { |
| return ALIGN(memslot->npages, BITS_PER_LONG) / 8; |
| } |
| |
| static inline unsigned long *kvm_second_dirty_bitmap(struct kvm_memory_slot *memslot) |
| { |
| unsigned long len = kvm_dirty_bitmap_bytes(memslot); |
| |
| return memslot->dirty_bitmap + len / sizeof(*memslot->dirty_bitmap); |
| } |
| |
| #ifndef KVM_DIRTY_LOG_MANUAL_CAPS |
| #define KVM_DIRTY_LOG_MANUAL_CAPS KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE |
| #endif |
| |
| struct kvm_s390_adapter_int { |
| u64 ind_addr; |
| u64 summary_addr; |
| u64 ind_offset; |
| u32 summary_offset; |
| u32 adapter_id; |
| }; |
| |
| struct kvm_hv_sint { |
| u32 vcpu; |
| u32 sint; |
| }; |
| |
| struct kvm_xen_evtchn { |
| u32 port; |
| u32 vcpu; |
| u32 priority; |
| }; |
| |
| struct kvm_kernel_irq_routing_entry { |
| u32 gsi; |
| u32 type; |
| int (*set)(struct kvm_kernel_irq_routing_entry *e, |
| struct kvm *kvm, int irq_source_id, int level, |
| bool line_status); |
| union { |
| struct { |
| unsigned irqchip; |
| unsigned pin; |
| } irqchip; |
| struct { |
| u32 address_lo; |
| u32 address_hi; |
| u32 data; |
| u32 flags; |
| u32 devid; |
| } msi; |
| struct kvm_s390_adapter_int adapter; |
| struct kvm_hv_sint hv_sint; |
| struct kvm_xen_evtchn xen_evtchn; |
| }; |
| struct hlist_node link; |
| }; |
| |
| #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING |
| struct kvm_irq_routing_table { |
| int chip[KVM_NR_IRQCHIPS][KVM_IRQCHIP_NUM_PINS]; |
| u32 nr_rt_entries; |
| /* |
| * Array indexed by gsi. Each entry contains list of irq chips |
| * the gsi is connected to. |
| */ |
| struct hlist_head map[]; |
| }; |
| #endif |
| |
| #ifndef KVM_PRIVATE_MEM_SLOTS |
| #define KVM_PRIVATE_MEM_SLOTS 0 |
| #endif |
| |
| #define KVM_MEM_SLOTS_NUM SHRT_MAX |
| #define KVM_USER_MEM_SLOTS (KVM_MEM_SLOTS_NUM - KVM_PRIVATE_MEM_SLOTS) |
| |
| #ifndef __KVM_VCPU_MULTIPLE_ADDRESS_SPACE |
| static inline int kvm_arch_vcpu_memslots_id(struct kvm_vcpu *vcpu) |
| { |
| return 0; |
| } |
| #endif |
| |
| struct kvm_memslots { |
| u64 generation; |
| atomic_long_t last_used_slot; |
| struct rb_root_cached hva_tree; |
| struct rb_root gfn_tree; |
| /* |
| * The mapping table from slot id to memslot. |
| * |
| * 7-bit bucket count matches the size of the old id to index array for |
| * 512 slots, while giving good performance with this slot count. |
| * Higher bucket counts bring only small performance improvements but |
| * always result in higher memory usage (even for lower memslot counts). |
| */ |
| DECLARE_HASHTABLE(id_hash, 7); |
| int node_idx; |
| }; |
| |
| struct kvm { |
| #ifdef KVM_HAVE_MMU_RWLOCK |
| rwlock_t mmu_lock; |
| #else |
| spinlock_t mmu_lock; |
| #endif /* KVM_HAVE_MMU_RWLOCK */ |
| |
| struct mutex slots_lock; |
| |
| /* |
| * Protects the arch-specific fields of struct kvm_memory_slots in |
| * use by the VM. To be used under the slots_lock (above) or in a |
| * kvm->srcu critical section where acquiring the slots_lock would |
| * lead to deadlock with the synchronize_srcu in |
| * install_new_memslots. |
| */ |
| struct mutex slots_arch_lock; |
| struct mm_struct *mm; /* userspace tied to this vm */ |
| unsigned long nr_memslot_pages; |
| /* The two memslot sets - active and inactive (per address space) */ |
| struct kvm_memslots __memslots[KVM_ADDRESS_SPACE_NUM][2]; |
| /* The current active memslot set for each address space */ |
| struct kvm_memslots __rcu *memslots[KVM_ADDRESS_SPACE_NUM]; |
| struct xarray vcpu_array; |
| |
| /* Used to wait for completion of MMU notifiers. */ |
| spinlock_t mn_invalidate_lock; |
| unsigned long mn_active_invalidate_count; |
| struct rcuwait mn_memslots_update_rcuwait; |
| |
| /* For management / invalidation of gfn_to_pfn_caches */ |
| spinlock_t gpc_lock; |
| struct list_head gpc_list; |
| |
| /* |
| * created_vcpus is protected by kvm->lock, and is incremented |
| * at the beginning of KVM_CREATE_VCPU. online_vcpus is only |
| * incremented after storing the kvm_vcpu pointer in vcpus, |
| * and is accessed atomically. |
| */ |
| atomic_t online_vcpus; |
| int created_vcpus; |
| int last_boosted_vcpu; |
| struct list_head vm_list; |
| struct mutex lock; |
| struct kvm_io_bus __rcu *buses[KVM_NR_BUSES]; |
| #ifdef CONFIG_HAVE_KVM_EVENTFD |
| struct { |
| spinlock_t lock; |
| struct list_head items; |
| struct list_head resampler_list; |
| struct mutex resampler_lock; |
| } irqfds; |
| struct list_head ioeventfds; |
| #endif |
| struct kvm_vm_stat stat; |
| struct kvm_arch arch; |
| refcount_t users_count; |
| #ifdef CONFIG_KVM_MMIO |
| struct kvm_coalesced_mmio_ring *coalesced_mmio_ring; |
| spinlock_t ring_lock; |
| struct list_head coalesced_zones; |
| #endif |
| |
| struct mutex irq_lock; |
| #ifdef CONFIG_HAVE_KVM_IRQCHIP |
| /* |
| * Update side is protected by irq_lock. |
| */ |
| struct kvm_irq_routing_table __rcu *irq_routing; |
| #endif |
| #ifdef CONFIG_HAVE_KVM_IRQFD |
| struct hlist_head irq_ack_notifier_list; |
| #endif |
| |
| #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) |
| struct mmu_notifier mmu_notifier; |
| unsigned long mmu_notifier_seq; |
| long mmu_notifier_count; |
| unsigned long mmu_notifier_range_start; |
| unsigned long mmu_notifier_range_end; |
| #endif |
| struct list_head devices; |
| u64 manual_dirty_log_protect; |
| struct dentry *debugfs_dentry; |
| struct kvm_stat_data **debugfs_stat_data; |
| struct srcu_struct srcu; |
| struct srcu_struct irq_srcu; |
| pid_t userspace_pid; |
| unsigned int max_halt_poll_ns; |
| u32 dirty_ring_size; |
| bool vm_bugged; |
| bool vm_dead; |
| |
| #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER |
| struct notifier_block pm_notifier; |
| #endif |
| char stats_id[KVM_STATS_NAME_SIZE]; |
| }; |
| |
| #define kvm_err(fmt, ...) \ |
| pr_err("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__) |
| #define kvm_info(fmt, ...) \ |
| pr_info("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__) |
| #define kvm_debug(fmt, ...) \ |
| pr_debug("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__) |
| #define kvm_debug_ratelimited(fmt, ...) \ |
| pr_debug_ratelimited("kvm [%i]: " fmt, task_pid_nr(current), \ |
| ## __VA_ARGS__) |
| #define kvm_pr_unimpl(fmt, ...) \ |
| pr_err_ratelimited("kvm [%i]: " fmt, \ |
| task_tgid_nr(current), ## __VA_ARGS__) |
| |
| /* The guest did something we don't support. */ |
| #define vcpu_unimpl(vcpu, fmt, ...) \ |
| kvm_pr_unimpl("vcpu%i, guest rIP: 0x%lx " fmt, \ |
| (vcpu)->vcpu_id, kvm_rip_read(vcpu), ## __VA_ARGS__) |
| |
| #define vcpu_debug(vcpu, fmt, ...) \ |
| kvm_debug("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__) |
| #define vcpu_debug_ratelimited(vcpu, fmt, ...) \ |
| kvm_debug_ratelimited("vcpu%i " fmt, (vcpu)->vcpu_id, \ |
| ## __VA_ARGS__) |
| #define vcpu_err(vcpu, fmt, ...) \ |
| kvm_err("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__) |
| |
| static inline void kvm_vm_dead(struct kvm *kvm) |
| { |
| kvm->vm_dead = true; |
| kvm_make_all_cpus_request(kvm, KVM_REQ_VM_DEAD); |
| } |
| |
| static inline void kvm_vm_bugged(struct kvm *kvm) |
| { |
| kvm->vm_bugged = true; |
| kvm_vm_dead(kvm); |
| } |
| |
| |
| #define KVM_BUG(cond, kvm, fmt...) \ |
| ({ \ |
| int __ret = (cond); \ |
| \ |
| if (WARN_ONCE(__ret && !(kvm)->vm_bugged, fmt)) \ |
| kvm_vm_bugged(kvm); \ |
| unlikely(__ret); \ |
| }) |
| |
| #define KVM_BUG_ON(cond, kvm) \ |
| ({ \ |
| int __ret = (cond); \ |
| \ |
| if (WARN_ON_ONCE(__ret && !(kvm)->vm_bugged)) \ |
| kvm_vm_bugged(kvm); \ |
| unlikely(__ret); \ |
| }) |
| |
| static inline bool kvm_dirty_log_manual_protect_and_init_set(struct kvm *kvm) |
| { |
| return !!(kvm->manual_dirty_log_protect & KVM_DIRTY_LOG_INITIALLY_SET); |
| } |
| |
| static inline struct kvm_io_bus *kvm_get_bus(struct kvm *kvm, enum kvm_bus idx) |
| { |
| return srcu_dereference_check(kvm->buses[idx], &kvm->srcu, |
| lockdep_is_held(&kvm->slots_lock) || |
| !refcount_read(&kvm->users_count)); |
| } |
| |
| static inline struct kvm_vcpu *kvm_get_vcpu(struct kvm *kvm, int i) |
| { |
| int num_vcpus = atomic_read(&kvm->online_vcpus); |
| i = array_index_nospec(i, num_vcpus); |
| |
| /* Pairs with smp_wmb() in kvm_vm_ioctl_create_vcpu. */ |
| smp_rmb(); |
| return xa_load(&kvm->vcpu_array, i); |
| } |
| |
| #define kvm_for_each_vcpu(idx, vcpup, kvm) \ |
| xa_for_each_range(&kvm->vcpu_array, idx, vcpup, 0, \ |
| (atomic_read(&kvm->online_vcpus) - 1)) |
| |
| static inline struct kvm_vcpu *kvm_get_vcpu_by_id(struct kvm *kvm, int id) |
| { |
| struct kvm_vcpu *vcpu = NULL; |
| unsigned long i; |
| |
| if (id < 0) |
| return NULL; |
| if (id < KVM_MAX_VCPUS) |
| vcpu = kvm_get_vcpu(kvm, id); |
| if (vcpu && vcpu->vcpu_id == id) |
| return vcpu; |
| kvm_for_each_vcpu(i, vcpu, kvm) |
| if (vcpu->vcpu_id == id) |
| return vcpu; |
| return NULL; |
| } |
| |
| static inline int kvm_vcpu_get_idx(struct kvm_vcpu *vcpu) |
| { |
| return vcpu->vcpu_idx; |
| } |
| |
| void kvm_destroy_vcpus(struct kvm *kvm); |
| |
| void vcpu_load(struct kvm_vcpu *vcpu); |
| void vcpu_put(struct kvm_vcpu *vcpu); |
| |
| #ifdef __KVM_HAVE_IOAPIC |
| void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm); |
| void kvm_arch_post_irq_routing_update(struct kvm *kvm); |
| #else |
| static inline void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm) |
| { |
| } |
| static inline void kvm_arch_post_irq_routing_update(struct kvm *kvm) |
| { |
| } |
| #endif |
| |
| #ifdef CONFIG_HAVE_KVM_IRQFD |
| int kvm_irqfd_init(void); |
| void kvm_irqfd_exit(void); |
| #else |
| static inline int kvm_irqfd_init(void) |
| { |
| return 0; |
| } |
| |
| static inline void kvm_irqfd_exit(void) |
| { |
| } |
| #endif |
| int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align, |
| struct module *module); |
| void kvm_exit(void); |
| |
| void kvm_get_kvm(struct kvm *kvm); |
| bool kvm_get_kvm_safe(struct kvm *kvm); |
| void kvm_put_kvm(struct kvm *kvm); |
| bool file_is_kvm(struct file *file); |
| void kvm_put_kvm_no_destroy(struct kvm *kvm); |
| |
| static inline struct kvm_memslots *__kvm_memslots(struct kvm *kvm, int as_id) |
| { |
| as_id = array_index_nospec(as_id, KVM_ADDRESS_SPACE_NUM); |
| return srcu_dereference_check(kvm->memslots[as_id], &kvm->srcu, |
| lockdep_is_held(&kvm->slots_lock) || |
| !refcount_read(&kvm->users_count)); |
| } |
| |
| static inline struct kvm_memslots *kvm_memslots(struct kvm *kvm) |
| { |
| return __kvm_memslots(kvm, 0); |
| } |
| |
| static inline struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu) |
| { |
| int as_id = kvm_arch_vcpu_memslots_id(vcpu); |
| |
| return __kvm_memslots(vcpu->kvm, as_id); |
| } |
| |
| static inline bool kvm_memslots_empty(struct kvm_memslots *slots) |
| { |
| return RB_EMPTY_ROOT(&slots->gfn_tree); |
| } |
| |
| #define kvm_for_each_memslot(memslot, bkt, slots) \ |
| hash_for_each(slots->id_hash, bkt, memslot, id_node[slots->node_idx]) \ |
| if (WARN_ON_ONCE(!memslot->npages)) { \ |
| } else |
| |
| static inline |
| struct kvm_memory_slot *id_to_memslot(struct kvm_memslots *slots, int id) |
| { |
| struct kvm_memory_slot *slot; |
| int idx = slots->node_idx; |
| |
| hash_for_each_possible(slots->id_hash, slot, id_node[idx], id) { |
| if (slot->id == id) |
| return slot; |
| } |
| |
| return NULL; |
| } |
| |
| /* Iterator used for walking memslots that overlap a gfn range. */ |
| struct kvm_memslot_iter { |
| struct kvm_memslots *slots; |
| struct rb_node *node; |
| struct kvm_memory_slot *slot; |
| }; |
| |
| static inline void kvm_memslot_iter_next(struct kvm_memslot_iter *iter) |
| { |
| iter->node = rb_next(iter->node); |
| if (!iter->node) |
| return; |
| |
| iter->slot = container_of(iter->node, struct kvm_memory_slot, gfn_node[iter->slots->node_idx]); |
| } |
| |
| static inline void kvm_memslot_iter_start(struct kvm_memslot_iter *iter, |
| struct kvm_memslots *slots, |
| gfn_t start) |
| { |
| int idx = slots->node_idx; |
| struct rb_node *tmp; |
| struct kvm_memory_slot *slot; |
| |
| iter->slots = slots; |
| |
| /* |
| * Find the so called "upper bound" of a key - the first node that has |
| * its key strictly greater than the searched one (the start gfn in our case). |
| */ |
| iter->node = NULL; |
| for (tmp = slots->gfn_tree.rb_node; tmp; ) { |
| slot = container_of(tmp, struct kvm_memory_slot, gfn_node[idx]); |
| if (start < slot->base_gfn) { |
| iter->node = tmp; |
| tmp = tmp->rb_left; |
| } else { |
| tmp = tmp->rb_right; |
| } |
| } |
| |
| /* |
| * Find the slot with the lowest gfn that can possibly intersect with |
| * the range, so we'll ideally have slot start <= range start |
| */ |
| if (iter->node) { |
| /* |
| * A NULL previous node means that the very first slot |
| * already has a higher start gfn. |
| * In this case slot start > range start. |
| */ |
| tmp = rb_prev(iter->node); |
| if (tmp) |
| iter->node = tmp; |
| } else { |
| /* a NULL node below means no slots */ |
| iter->node = rb_last(&slots->gfn_tree); |
| } |
| |
| if (iter->node) { |
| iter->slot = container_of(iter->node, struct kvm_memory_slot, gfn_node[idx]); |
| |
| /* |
| * It is possible in the slot start < range start case that the |
| * found slot ends before or at range start (slot end <= range start) |
| * and so it does not overlap the requested range. |
| * |
| * In such non-overlapping case the next slot (if it exists) will |
| * already have slot start > range start, otherwise the logic above |
| * would have found it instead of the current slot. |
| */ |
| if (iter->slot->base_gfn + iter->slot->npages <= start) |
| kvm_memslot_iter_next(iter); |
| } |
| } |
| |
| static inline bool kvm_memslot_iter_is_valid(struct kvm_memslot_iter *iter, gfn_t end) |
| { |
| if (!iter->node) |
| return false; |
| |
| /* |
| * If this slot starts beyond or at the end of the range so does |
| * every next one |
| */ |
| return iter->slot->base_gfn < end; |
| } |
| |
| /* Iterate over each memslot at least partially intersecting [start, end) range */ |
| #define kvm_for_each_memslot_in_gfn_range(iter, slots, start, end) \ |
| for (kvm_memslot_iter_start(iter, slots, start); \ |
| kvm_memslot_iter_is_valid(iter, end); \ |
| kvm_memslot_iter_next(iter)) |
| |
| /* |
| * KVM_SET_USER_MEMORY_REGION ioctl allows the following operations: |
| * - create a new memory slot |
| * - delete an existing memory slot |
| * - modify an existing memory slot |
| * -- move it in the guest physical memory space |
| * -- just change its flags |
| * |
| * Since flags can be changed by some of these operations, the following |
| * differentiation is the best we can do for __kvm_set_memory_region(): |
| */ |
| enum kvm_mr_change { |
| KVM_MR_CREATE, |
| KVM_MR_DELETE, |
| KVM_MR_MOVE, |
| KVM_MR_FLAGS_ONLY, |
| }; |
| |
| int kvm_set_memory_region(struct kvm *kvm, |
| const struct kvm_userspace_memory_region *mem); |
| int __kvm_set_memory_region(struct kvm *kvm, |
| const struct kvm_userspace_memory_region *mem); |
| void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot); |
| void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen); |
| int kvm_arch_prepare_memory_region(struct kvm *kvm, |
| const struct kvm_memory_slot *old, |
| struct kvm_memory_slot *new, |
| enum kvm_mr_change change); |
| void kvm_arch_commit_memory_region(struct kvm *kvm, |
| struct kvm_memory_slot *old, |
| const struct kvm_memory_slot *new, |
| enum kvm_mr_change change); |
| /* flush all memory translations */ |
| void kvm_arch_flush_shadow_all(struct kvm *kvm); |
| /* flush memory translations pointing to 'slot' */ |
| void kvm_arch_flush_shadow_memslot(struct kvm *kvm, |
| struct kvm_memory_slot *slot); |
| |
| int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn, |
| struct page **pages, int nr_pages); |
| |
| struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn); |
| unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn); |
| unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable); |
| unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn); |
| unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, gfn_t gfn, |
| bool *writable); |
| void kvm_release_page_clean(struct page *page); |
| void kvm_release_page_dirty(struct page *page); |
| void kvm_set_page_accessed(struct page *page); |
| |
| kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn); |
| kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault, |
| bool *writable); |
| kvm_pfn_t gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn); |
| kvm_pfn_t gfn_to_pfn_memslot_atomic(const struct kvm_memory_slot *slot, gfn_t gfn); |
| kvm_pfn_t __gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn, |
| bool atomic, bool *async, bool write_fault, |
| bool *writable, hva_t *hva); |
| |
| void kvm_release_pfn_clean(kvm_pfn_t pfn); |
| void kvm_release_pfn_dirty(kvm_pfn_t pfn); |
| void kvm_set_pfn_dirty(kvm_pfn_t pfn); |
| void kvm_set_pfn_accessed(kvm_pfn_t pfn); |
| |
| void kvm_release_pfn(kvm_pfn_t pfn, bool dirty); |
| int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset, |
| int len); |
| int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len); |
| int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, |
| void *data, unsigned long len); |
| int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, |
| void *data, unsigned int offset, |
| unsigned long len); |
| int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data, |
| int offset, int len); |
| int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data, |
| unsigned long len); |
| int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, |
| void *data, unsigned long len); |
| int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, |
| void *data, unsigned int offset, |
| unsigned long len); |
| int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc, |
| gpa_t gpa, unsigned long len); |
| |
| #define __kvm_get_guest(kvm, gfn, offset, v) \ |
| ({ \ |
| unsigned long __addr = gfn_to_hva(kvm, gfn); \ |
| typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset); \ |
| int __ret = -EFAULT; \ |
| \ |
| if (!kvm_is_error_hva(__addr)) \ |
| __ret = get_user(v, __uaddr); \ |
| __ret; \ |
| }) |
| |
| #define kvm_get_guest(kvm, gpa, v) \ |
| ({ \ |
| gpa_t __gpa = gpa; \ |
| struct kvm *__kvm = kvm; \ |
| \ |
| __kvm_get_guest(__kvm, __gpa >> PAGE_SHIFT, \ |
| offset_in_page(__gpa), v); \ |
| }) |
| |
| #define __kvm_put_guest(kvm, gfn, offset, v) \ |
| ({ \ |
| unsigned long __addr = gfn_to_hva(kvm, gfn); \ |
| typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset); \ |
| int __ret = -EFAULT; \ |
| \ |
| if (!kvm_is_error_hva(__addr)) \ |
| __ret = put_user(v, __uaddr); \ |
| if (!__ret) \ |
| mark_page_dirty(kvm, gfn); \ |
| __ret; \ |
| }) |
| |
| #define kvm_put_guest(kvm, gpa, v) \ |
| ({ \ |
| gpa_t __gpa = gpa; \ |
| struct kvm *__kvm = kvm; \ |
| \ |
| __kvm_put_guest(__kvm, __gpa >> PAGE_SHIFT, \ |
| offset_in_page(__gpa), v); \ |
| }) |
| |
| int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len); |
| struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn); |
| bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn); |
| bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn); |
| unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn); |
| void mark_page_dirty_in_slot(struct kvm *kvm, const struct kvm_memory_slot *memslot, gfn_t gfn); |
| void mark_page_dirty(struct kvm *kvm, gfn_t gfn); |
| |
| struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu); |
| struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn); |
| kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn); |
| kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn); |
| int kvm_vcpu_map(struct kvm_vcpu *vcpu, gpa_t gpa, struct kvm_host_map *map); |
| struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn); |
| void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty); |
| unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn); |
| unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable); |
| int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, int offset, |
| int len); |
| int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, |
| unsigned long len); |
| int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, |
| unsigned long len); |
| int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, const void *data, |
| int offset, int len); |
| int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data, |
| unsigned long len); |
| void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn); |
| |
| /** |
| * kvm_gfn_to_pfn_cache_init - prepare a cached kernel mapping and HPA for a |
| * given guest physical address. |
| * |
| * @kvm: pointer to kvm instance. |
| * @gpc: struct gfn_to_pfn_cache object. |
| * @vcpu: vCPU to be used for marking pages dirty and to be woken on |
| * invalidation. |
| * @guest_uses_pa: indicates that the resulting host physical PFN is used while |
| * @vcpu is IN_GUEST_MODE so invalidations should wake it. |
| * @kernel_map: requests a kernel virtual mapping (kmap / memremap). |
| * @gpa: guest physical address to map. |
| * @len: sanity check; the range being access must fit a single page. |
| * @dirty: mark the cache dirty immediately. |
| * |
| * @return: 0 for success. |
| * -EINVAL for a mapping which would cross a page boundary. |
| * -EFAULT for an untranslatable guest physical address. |
| * |
| * This primes a gfn_to_pfn_cache and links it into the @kvm's list for |
| * invalidations to be processed. Invalidation callbacks to @vcpu using |
| * %KVM_REQ_GPC_INVALIDATE will occur only for MMU notifiers, not for KVM |
| * memslot changes. Callers are required to use kvm_gfn_to_pfn_cache_check() |
| * to ensure that the cache is valid before accessing the target page. |
| */ |
| int kvm_gfn_to_pfn_cache_init(struct kvm *kvm, struct gfn_to_pfn_cache *gpc, |
| struct kvm_vcpu *vcpu, bool guest_uses_pa, |
| bool kernel_map, gpa_t gpa, unsigned long len, |
| bool dirty); |
| |
| /** |
| * kvm_gfn_to_pfn_cache_check - check validity of a gfn_to_pfn_cache. |
| * |
| * @kvm: pointer to kvm instance. |
| * @gpc: struct gfn_to_pfn_cache object. |
| * @gpa: current guest physical address to map. |
| * @len: sanity check; the range being access must fit a single page. |
| * @dirty: mark the cache dirty immediately. |
| * |
| * @return: %true if the cache is still valid and the address matches. |
| * %false if the cache is not valid. |
| * |
| * Callers outside IN_GUEST_MODE context should hold a read lock on @gpc->lock |
| * while calling this function, and then continue to hold the lock until the |
| * access is complete. |
| * |
| * Callers in IN_GUEST_MODE may do so without locking, although they should |
| * still hold a read lock on kvm->scru for the memslot checks. |
| */ |
| bool kvm_gfn_to_pfn_cache_check(struct kvm *kvm, struct gfn_to_pfn_cache *gpc, |
| gpa_t gpa, unsigned long len); |
| |
| /** |
| * kvm_gfn_to_pfn_cache_refresh - update a previously initialized cache. |
| * |
| * @kvm: pointer to kvm instance. |
| * @gpc: struct gfn_to_pfn_cache object. |
| * @gpa: updated guest physical address to map. |
| * @len: sanity check; the range being access must fit a single page. |
| * @dirty: mark the cache dirty immediately. |
| * |
| * @return: 0 for success. |
| * -EINVAL for a mapping which would cross a page boundary. |
| * -EFAULT for an untranslatable guest physical address. |
| * |
| * This will attempt to refresh a gfn_to_pfn_cache. Note that a successful |
| * returm from this function does not mean the page can be immediately |
| * accessed because it may have raced with an invalidation. Callers must |
| * still lock and check the cache status, as this function does not return |
| * with the lock still held to permit access. |
| */ |
| int kvm_gfn_to_pfn_cache_refresh(struct kvm *kvm, struct gfn_to_pfn_cache *gpc, |
| gpa_t gpa, unsigned long len, bool dirty); |
| |
| /** |
| * kvm_gfn_to_pfn_cache_unmap - temporarily unmap a gfn_to_pfn_cache. |
| * |
| * @kvm: pointer to kvm instance. |
| * @gpc: struct gfn_to_pfn_cache object. |
| * |
| * This unmaps the referenced page and marks it dirty, if appropriate. The |
| * cache is left in the invalid state but at least the mapping from GPA to |
| * userspace HVA will remain cached and can be reused on a subsequent |
| * refresh. |
| */ |
| void kvm_gfn_to_pfn_cache_unmap(struct kvm *kvm, struct gfn_to_pfn_cache *gpc); |
| |
| /** |
| * kvm_gfn_to_pfn_cache_destroy - destroy and unlink a gfn_to_pfn_cache. |
| * |
| * @kvm: pointer to kvm instance. |
| * @gpc: struct gfn_to_pfn_cache object. |
| * |
| * This removes a cache from the @kvm's list to be processed on MMU notifier |
| * invocation. |
| */ |
| void kvm_gfn_to_pfn_cache_destroy(struct kvm *kvm, struct gfn_to_pfn_cache *gpc); |
| |
| void kvm_sigset_activate(struct kvm_vcpu *vcpu); |
| void kvm_sigset_deactivate(struct kvm_vcpu *vcpu); |
| |
| void kvm_vcpu_halt(struct kvm_vcpu *vcpu); |
| bool kvm_vcpu_block(struct kvm_vcpu *vcpu); |
| void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu); |
| void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu); |
| bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu); |
| void kvm_vcpu_kick(struct kvm_vcpu *vcpu); |
| int kvm_vcpu_yield_to(struct kvm_vcpu *target); |
| void kvm_vcpu_on_spin(struct kvm_vcpu *vcpu, bool usermode_vcpu_not_eligible); |
| |
| void kvm_flush_remote_tlbs(struct kvm *kvm); |
| void kvm_reload_remote_mmus(struct kvm *kvm); |
| |
| #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE |
| int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min); |
| int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc); |
| void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc); |
| void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc); |
| #endif |
| |
| void kvm_inc_notifier_count(struct kvm *kvm, unsigned long start, |
| unsigned long end); |
| void kvm_dec_notifier_count(struct kvm *kvm, unsigned long start, |
| unsigned long end); |
| |
| long kvm_arch_dev_ioctl(struct file *filp, |
| unsigned int ioctl, unsigned long arg); |
| long kvm_arch_vcpu_ioctl(struct file *filp, |
| unsigned int ioctl, unsigned long arg); |
| vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf); |
| |
| int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext); |
| |
| void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm, |
| struct kvm_memory_slot *slot, |
| gfn_t gfn_offset, |
| unsigned long mask); |
| void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot); |
| |
| #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT |
| void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm, |
| const struct kvm_memory_slot *memslot); |
| #else /* !CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */ |
| int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log); |
| int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log, |
| int *is_dirty, struct kvm_memory_slot **memslot); |
| #endif |
| |
| int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level, |
| bool line_status); |
| int kvm_vm_ioctl_enable_cap(struct kvm *kvm, |
| struct kvm_enable_cap *cap); |
| long kvm_arch_vm_ioctl(struct file *filp, |
| unsigned int ioctl, unsigned long arg); |
| |
| int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu); |
| int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu); |
| |
| int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, |
| struct kvm_translation *tr); |
| |
| int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs); |
| int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs); |
| int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, |
| struct kvm_sregs *sregs); |
| int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, |
| struct kvm_sregs *sregs); |
| int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, |
| struct kvm_mp_state *mp_state); |
| int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, |
| struct kvm_mp_state *mp_state); |
| int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, |
| struct kvm_guest_debug *dbg); |
| int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu); |
| |
| int kvm_arch_init(void *opaque); |
| void kvm_arch_exit(void); |
| |
| void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu); |
| |
| void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu); |
| void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu); |
| int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id); |
| int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu); |
| void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu); |
| void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu); |
| |
| #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER |
| int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state); |
| #endif |
| |
| #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS |
| void kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu, struct dentry *debugfs_dentry); |
| #endif |
| |
| int kvm_arch_hardware_enable(void); |
| void kvm_arch_hardware_disable(void); |
| int kvm_arch_hardware_setup(void *opaque); |
| void kvm_arch_hardware_unsetup(void); |
| int kvm_arch_check_processor_compat(void *opaque); |
| int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu); |
| bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu); |
| int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu); |
| bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu); |
| bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu); |
| int kvm_arch_post_init_vm(struct kvm *kvm); |
| void kvm_arch_pre_destroy_vm(struct kvm *kvm); |
| int kvm_arch_create_vm_debugfs(struct kvm *kvm); |
| |
| #ifndef __KVM_HAVE_ARCH_VM_ALLOC |
| /* |
| * All architectures that want to use vzalloc currently also |
| * need their own kvm_arch_alloc_vm implementation. |
| */ |
| static inline struct kvm *kvm_arch_alloc_vm(void) |
| { |
| return kzalloc(sizeof(struct kvm), GFP_KERNEL); |
| } |
| #endif |
| |
| static inline void __kvm_arch_free_vm(struct kvm *kvm) |
| { |
| kvfree(kvm); |
| } |
| |
| #ifndef __KVM_HAVE_ARCH_VM_FREE |
| static inline void kvm_arch_free_vm(struct kvm *kvm) |
| { |
| __kvm_arch_free_vm(kvm); |
| } |
| #endif |
| |
| #ifndef __KVM_HAVE_ARCH_FLUSH_REMOTE_TLB |
| static inline int kvm_arch_flush_remote_tlb(struct kvm *kvm) |
| { |
| return -ENOTSUPP; |
| } |
| #endif |
| |
| #ifdef __KVM_HAVE_ARCH_NONCOHERENT_DMA |
| void kvm_arch_register_noncoherent_dma(struct kvm *kvm); |
| void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm); |
| bool kvm_arch_has_noncoherent_dma(struct kvm *kvm); |
| #else |
| static inline void kvm_arch_register_noncoherent_dma(struct kvm *kvm) |
| { |
| } |
| |
| static inline void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm) |
| { |
| } |
| |
| static inline bool kvm_arch_has_noncoherent_dma(struct kvm *kvm) |
| { |
| return false; |
| } |
| #endif |
| #ifdef __KVM_HAVE_ARCH_ASSIGNED_DEVICE |
| void kvm_arch_start_assignment(struct kvm *kvm); |
| void kvm_arch_end_assignment(struct kvm *kvm); |
| bool kvm_arch_has_assigned_device(struct kvm *kvm); |
| #else |
| static inline void kvm_arch_start_assignment(struct kvm *kvm) |
| { |
| } |
| |
| static inline void kvm_arch_end_assignment(struct kvm *kvm) |
| { |
| } |
| |
| static inline bool kvm_arch_has_assigned_device(struct kvm *kvm) |
| { |
| return false; |
| } |
| #endif |
| |
| static inline struct rcuwait *kvm_arch_vcpu_get_wait(struct kvm_vcpu *vcpu) |
| { |
| #ifdef __KVM_HAVE_ARCH_WQP |
| return vcpu->arch.waitp; |
| #else |
| return &vcpu->wait; |
| #endif |
| } |
| |
| /* |
| * Wake a vCPU if necessary, but don't do any stats/metadata updates. Returns |
| * true if the vCPU was blocking and was awakened, false otherwise. |
| */ |
| static inline bool __kvm_vcpu_wake_up(struct kvm_vcpu *vcpu) |
| { |
| return !!rcuwait_wake_up(kvm_arch_vcpu_get_wait(vcpu)); |
| } |
| |
| static inline bool kvm_vcpu_is_blocking(struct kvm_vcpu *vcpu) |
| { |
| return rcuwait_active(kvm_arch_vcpu_get_wait(vcpu)); |
| } |
| |
| #ifdef __KVM_HAVE_ARCH_INTC_INITIALIZED |
| /* |
| * returns true if the virtual interrupt controller is initialized and |
| * ready to accept virtual IRQ. On some architectures the virtual interrupt |
| * controller is dynamically instantiated and this is not always true. |
| */ |
| bool kvm_arch_intc_initialized(struct kvm *kvm); |
| #else |
| static inline bool kvm_arch_intc_initialized(struct kvm *kvm) |
| { |
| return true; |
| } |
| #endif |
| |
| #ifdef CONFIG_GUEST_PERF_EVENTS |
| unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu); |
| |
| void kvm_register_perf_callbacks(unsigned int (*pt_intr_handler)(void)); |
| void kvm_unregister_perf_callbacks(void); |
| #else |
| static inline void kvm_register_perf_callbacks(void *ign) {} |
| static inline void kvm_unregister_perf_callbacks(void) {} |
| #endif /* CONFIG_GUEST_PERF_EVENTS */ |
| |
| int kvm_arch_init_vm(struct kvm *kvm, unsigned long type); |
| void kvm_arch_destroy_vm(struct kvm *kvm); |
| void kvm_arch_sync_events(struct kvm *kvm); |
| |
| int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu); |
| |
| bool kvm_is_reserved_pfn(kvm_pfn_t pfn); |
| bool kvm_is_zone_device_pfn(kvm_pfn_t pfn); |
| |
| struct kvm_irq_ack_notifier { |
| struct hlist_node link; |
| unsigned gsi; |
| void (*irq_acked)(struct kvm_irq_ack_notifier *kian); |
| }; |
| |
| int kvm_irq_map_gsi(struct kvm *kvm, |
| struct kvm_kernel_irq_routing_entry *entries, int gsi); |
| int kvm_irq_map_chip_pin(struct kvm *kvm, unsigned irqchip, unsigned pin); |
| |
| int kvm_set_irq(struct kvm *kvm, int irq_source_id, u32 irq, int level, |
| bool line_status); |
| int kvm_set_msi(struct kvm_kernel_irq_routing_entry *irq_entry, struct kvm *kvm, |
| int irq_source_id, int level, bool line_status); |
| int kvm_arch_set_irq_inatomic(struct kvm_kernel_irq_routing_entry *e, |
| struct kvm *kvm, int irq_source_id, |
| int level, bool line_status); |
| bool kvm_irq_has_notifier(struct kvm *kvm, unsigned irqchip, unsigned pin); |
| void kvm_notify_acked_gsi(struct kvm *kvm, int gsi); |
| void kvm_notify_acked_irq(struct kvm *kvm, unsigned irqchip, unsigned pin); |
| void kvm_register_irq_ack_notifier(struct kvm *kvm, |
| struct kvm_irq_ack_notifier *kian); |
| void kvm_unregister_irq_ack_notifier(struct kvm *kvm, |
| struct kvm_irq_ack_notifier *kian); |
| int kvm_request_irq_source_id(struct kvm *kvm); |
| void kvm_free_irq_source_id(struct kvm *kvm, int irq_source_id); |
| bool kvm_arch_irqfd_allowed(struct kvm *kvm, struct kvm_irqfd *args); |
| |
| /* |
| * Returns a pointer to the memslot if it contains gfn. |
| * Otherwise returns NULL. |
| */ |
| static inline struct kvm_memory_slot * |
| try_get_memslot(struct kvm_memory_slot *slot, gfn_t gfn) |
| { |
| if (!slot) |
| return NULL; |
| |
| if (gfn >= slot->base_gfn && gfn < slot->base_gfn + slot->npages) |
| return slot; |
| else |
| return NULL; |
| } |
| |
| /* |
| * Returns a pointer to the memslot that contains gfn. Otherwise returns NULL. |
| * |
| * With "approx" set returns the memslot also when the address falls |
| * in a hole. In that case one of the memslots bordering the hole is |
| * returned. |
| */ |
| static inline struct kvm_memory_slot * |
| search_memslots(struct kvm_memslots *slots, gfn_t gfn, bool approx) |
| { |
| struct kvm_memory_slot *slot; |
| struct rb_node *node; |
| int idx = slots->node_idx; |
| |
| slot = NULL; |
| for (node = slots->gfn_tree.rb_node; node; ) { |
| slot = container_of(node, struct kvm_memory_slot, gfn_node[idx]); |
| if (gfn >= slot->base_gfn) { |
| if (gfn < slot->base_gfn + slot->npages) |
| return slot; |
| node = node->rb_right; |
| } else |
| node = node->rb_left; |
| } |
| |
| return approx ? slot : NULL; |
| } |
| |
| static inline struct kvm_memory_slot * |
| ____gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn, bool approx) |
| { |
| struct kvm_memory_slot *slot; |
| |
| slot = (struct kvm_memory_slot *)atomic_long_read(&slots->last_used_slot); |
| slot = try_get_memslot(slot, gfn); |
| if (slot) |
| return slot; |
| |
| slot = search_memslots(slots, gfn, approx); |
| if (slot) { |
| atomic_long_set(&slots->last_used_slot, (unsigned long)slot); |
| return slot; |
| } |
| |
| return NULL; |
| } |
| |
| /* |
| * __gfn_to_memslot() and its descendants are here to allow arch code to inline |
| * the lookups in hot paths. gfn_to_memslot() itself isn't here as an inline |
| * because that would bloat other code too much. |
| */ |
| static inline struct kvm_memory_slot * |
| __gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn) |
| { |
| return ____gfn_to_memslot(slots, gfn, false); |
| } |
| |
| static inline unsigned long |
| __gfn_to_hva_memslot(const struct kvm_memory_slot *slot, gfn_t gfn) |
| { |
| /* |
| * The index was checked originally in search_memslots. To avoid |
| * that a malicious guest builds a Spectre gadget out of e.g. page |
| * table walks, do not let the processor speculate loads outside |
| * the guest's registered memslots. |
| */ |
| unsigned long offset = gfn - slot->base_gfn; |
| offset = array_index_nospec(offset, slot->npages); |
| return slot->userspace_addr + offset * PAGE_SIZE; |
| } |
| |
| static inline int memslot_id(struct kvm *kvm, gfn_t gfn) |
| { |
| return gfn_to_memslot(kvm, gfn)->id; |
| } |
| |
| static inline gfn_t |
| hva_to_gfn_memslot(unsigned long hva, struct kvm_memory_slot *slot) |
| { |
| gfn_t gfn_offset = (hva - slot->userspace_addr) >> PAGE_SHIFT; |
| |
| return slot->base_gfn + gfn_offset; |
| } |
| |
| static inline gpa_t gfn_to_gpa(gfn_t gfn) |
| { |
| return (gpa_t)gfn << PAGE_SHIFT; |
| } |
| |
| static inline gfn_t gpa_to_gfn(gpa_t gpa) |
| { |
| return (gfn_t)(gpa >> PAGE_SHIFT); |
| } |
| |
| static inline hpa_t pfn_to_hpa(kvm_pfn_t pfn) |
| { |
| return (hpa_t)pfn << PAGE_SHIFT; |
| } |
| |
| static inline struct page *kvm_vcpu_gpa_to_page(struct kvm_vcpu *vcpu, |
| gpa_t gpa) |
| { |
| return kvm_vcpu_gfn_to_page(vcpu, gpa_to_gfn(gpa)); |
| } |
| |
| static inline bool kvm_is_error_gpa(struct kvm *kvm, gpa_t gpa) |
| { |
| unsigned long hva = gfn_to_hva(kvm, gpa_to_gfn(gpa)); |
| |
| return kvm_is_error_hva(hva); |
| } |
| |
| enum kvm_stat_kind { |
| KVM_STAT_VM, |
| KVM_STAT_VCPU, |
| }; |
| |
| struct kvm_stat_data { |
| struct kvm *kvm; |
| const struct _kvm_stats_desc *desc; |
| enum kvm_stat_kind kind; |
| }; |
| |
| struct _kvm_stats_desc { |
| struct kvm_stats_desc desc; |
| char name[KVM_STATS_NAME_SIZE]; |
| }; |
| |
| #define STATS_DESC_COMMON(type, unit, base, exp, sz, bsz) \ |
| .flags = type | unit | base | \ |
| BUILD_BUG_ON_ZERO(type & ~KVM_STATS_TYPE_MASK) | \ |
| BUILD_BUG_ON_ZERO(unit & ~KVM_STATS_UNIT_MASK) | \ |
| BUILD_BUG_ON_ZERO(base & ~KVM_STATS_BASE_MASK), \ |
| .exponent = exp, \ |
| .size = sz, \ |
| .bucket_size = bsz |
| |
| #define VM_GENERIC_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \ |
| { \ |
| { \ |
| STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \ |
| .offset = offsetof(struct kvm_vm_stat, generic.stat) \ |
| }, \ |
| .name = #stat, \ |
| } |
| #define VCPU_GENERIC_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \ |
| { \ |
| { \ |
| STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \ |
| .offset = offsetof(struct kvm_vcpu_stat, generic.stat) \ |
| }, \ |
| .name = #stat, \ |
| } |
| #define VM_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \ |
| { \ |
| { \ |
| STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \ |
| .offset = offsetof(struct kvm_vm_stat, stat) \ |
| }, \ |
| .name = #stat, \ |
| } |
| #define VCPU_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \ |
| { \ |
| { \ |
| STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \ |
| .offset = offsetof(struct kvm_vcpu_stat, stat) \ |
| }, \ |
| .name = #stat, \ |
| } |
| /* SCOPE: VM, VM_GENERIC, VCPU, VCPU_GENERIC */ |
| #define STATS_DESC(SCOPE, stat, type, unit, base, exp, sz, bsz) \ |
| SCOPE##_STATS_DESC(stat, type, unit, base, exp, sz, bsz) |
| |
| #define STATS_DESC_CUMULATIVE(SCOPE, name, unit, base, exponent) \ |
| STATS_DESC(SCOPE, name, KVM_STATS_TYPE_CUMULATIVE, \ |
| unit, base, exponent, 1, 0) |
| #define STATS_DESC_INSTANT(SCOPE, name, unit, base, exponent) \ |
| STATS_DESC(SCOPE, name, KVM_STATS_TYPE_INSTANT, \ |
| unit, base, exponent, 1, 0) |
| #define STATS_DESC_PEAK(SCOPE, name, unit, base, exponent) \ |
| STATS_DESC(SCOPE, name, KVM_STATS_TYPE_PEAK, \ |
| unit, base, exponent, 1, 0) |
| #define STATS_DESC_LINEAR_HIST(SCOPE, name, unit, base, exponent, sz, bsz) \ |
| STATS_DESC(SCOPE, name, KVM_STATS_TYPE_LINEAR_HIST, \ |
| unit, base, exponent, sz, bsz) |
| #define STATS_DESC_LOG_HIST(SCOPE, name, unit, base, exponent, sz) \ |
| STATS_DESC(SCOPE, name, KVM_STATS_TYPE_LOG_HIST, \ |
| unit, base, exponent, sz, 0) |
| |
| /* Cumulative counter, read/write */ |
| #define STATS_DESC_COUNTER(SCOPE, name) \ |
| STATS_DESC_CUMULATIVE(SCOPE, name, KVM_STATS_UNIT_NONE, \ |
| KVM_STATS_BASE_POW10, 0) |
| /* Instantaneous counter, read only */ |
| #define STATS_DESC_ICOUNTER(SCOPE, name) \ |
| STATS_DESC_INSTANT(SCOPE, name, KVM_STATS_UNIT_NONE, \ |
| KVM_STATS_BASE_POW10, 0) |
| /* Peak counter, read/write */ |
| #define STATS_DESC_PCOUNTER(SCOPE, name) \ |
| STATS_DESC_PEAK(SCOPE, name, KVM_STATS_UNIT_NONE, \ |
| KVM_STATS_BASE_POW10, 0) |
| |
| /* Cumulative time in nanosecond */ |
| #define STATS_DESC_TIME_NSEC(SCOPE, name) \ |
| STATS_DESC_CUMULATIVE(SCOPE, name, KVM_STATS_UNIT_SECONDS, \ |
| KVM_STATS_BASE_POW10, -9) |
| /* Linear histogram for time in nanosecond */ |
| #define STATS_DESC_LINHIST_TIME_NSEC(SCOPE, name, sz, bsz) \ |
| STATS_DESC_LINEAR_HIST(SCOPE, name, KVM_STATS_UNIT_SECONDS, \ |
| KVM_STATS_BASE_POW10, -9, sz, bsz) |
| /* Logarithmic histogram for time in nanosecond */ |
| #define STATS_DESC_LOGHIST_TIME_NSEC(SCOPE, name, sz) \ |
| STATS_DESC_LOG_HIST(SCOPE, name, KVM_STATS_UNIT_SECONDS, \ |
| KVM_STATS_BASE_POW10, -9, sz) |
| |
| #define KVM_GENERIC_VM_STATS() \ |
| STATS_DESC_COUNTER(VM_GENERIC, remote_tlb_flush), \ |
| STATS_DESC_COUNTER(VM_GENERIC, remote_tlb_flush_requests) |
| |
| #define KVM_GENERIC_VCPU_STATS() \ |
| STATS_DESC_COUNTER(VCPU_GENERIC, halt_successful_poll), \ |
| STATS_DESC_COUNTER(VCPU_GENERIC, halt_attempted_poll), \ |
| STATS_DESC_COUNTER(VCPU_GENERIC, halt_poll_invalid), \ |
| STATS_DESC_COUNTER(VCPU_GENERIC, halt_wakeup), \ |
| STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_poll_success_ns), \ |
| STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_poll_fail_ns), \ |
| STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_wait_ns), \ |
| STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_poll_success_hist, \ |
| HALT_POLL_HIST_COUNT), \ |
| STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_poll_fail_hist, \ |
| HALT_POLL_HIST_COUNT), \ |
| STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_wait_hist, \ |
| HALT_POLL_HIST_COUNT), \ |
| STATS_DESC_ICOUNTER(VCPU_GENERIC, blocking) |
| |
| extern struct dentry *kvm_debugfs_dir; |
| |
| ssize_t kvm_stats_read(char *id, const struct kvm_stats_header *header, |
| const struct _kvm_stats_desc *desc, |
| void *stats, size_t size_stats, |
| char __user *user_buffer, size_t size, loff_t *offset); |
| |
| /** |
| * kvm_stats_linear_hist_update() - Update bucket value for linear histogram |
| * statistics data. |
| * |
| * @data: start address of the stats data |
| * @size: the number of bucket of the stats data |
| * @value: the new value used to update the linear histogram's bucket |
| * @bucket_size: the size (width) of a bucket |
| */ |
| static inline void kvm_stats_linear_hist_update(u64 *data, size_t size, |
| u64 value, size_t bucket_size) |
| { |
| size_t index = div64_u64(value, bucket_size); |
| |
| index = min(index, size - 1); |
| ++data[index]; |
| } |
| |
| /** |
| * kvm_stats_log_hist_update() - Update bucket value for logarithmic histogram |
| * statistics data. |
| * |
| * @data: start address of the stats data |
| * @size: the number of bucket of the stats data |
| * @value: the new value used to update the logarithmic histogram's bucket |
| */ |
| static inline void kvm_stats_log_hist_update(u64 *data, size_t size, u64 value) |
| { |
| size_t index = fls64(value); |
| |
| index = min(index, size - 1); |
| ++data[index]; |
| } |
| |
| #define KVM_STATS_LINEAR_HIST_UPDATE(array, value, bsize) \ |
| kvm_stats_linear_hist_update(array, ARRAY_SIZE(array), value, bsize) |
| #define KVM_STATS_LOG_HIST_UPDATE(array, value) \ |
| kvm_stats_log_hist_update(array, ARRAY_SIZE(array), value) |
| |
| |
| extern const struct kvm_stats_header kvm_vm_stats_header; |
| extern const struct _kvm_stats_desc kvm_vm_stats_desc[]; |
| extern const struct kvm_stats_header kvm_vcpu_stats_header; |
| extern const struct _kvm_stats_desc kvm_vcpu_stats_desc[]; |
| |
| #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) |
| static inline int mmu_notifier_retry(struct kvm *kvm, unsigned long mmu_seq) |
| { |
| if (unlikely(kvm->mmu_notifier_count)) |
| return 1; |
| /* |
| * Ensure the read of mmu_notifier_count happens before the read |
| * of mmu_notifier_seq. This interacts with the smp_wmb() in |
| * mmu_notifier_invalidate_range_end to make sure that the caller |
| * either sees the old (non-zero) value of mmu_notifier_count or |
| * the new (incremented) value of mmu_notifier_seq. |
| * PowerPC Book3s HV KVM calls this under a per-page lock |
| * rather than under kvm->mmu_lock, for scalability, so |
| * can't rely on kvm->mmu_lock to keep things ordered. |
| */ |
| smp_rmb(); |
| if (kvm->mmu_notifier_seq != mmu_seq) |
| return 1; |
| return 0; |
| } |
| |
| static inline int mmu_notifier_retry_hva(struct kvm *kvm, |
| unsigned long mmu_seq, |
| unsigned long hva) |
| { |
| lockdep_assert_held(&kvm->mmu_lock); |
| /* |
| * If mmu_notifier_count is non-zero, then the range maintained by |
| * kvm_mmu_notifier_invalidate_range_start contains all addresses that |
| * might be being invalidated. Note that it may include some false |
| * positives, due to shortcuts when handing concurrent invalidations. |
| */ |
| if (unlikely(kvm->mmu_notifier_count) && |
| hva >= kvm->mmu_notifier_range_start && |
| hva < kvm->mmu_notifier_range_end) |
| return 1; |
| if (kvm->mmu_notifier_seq != mmu_seq) |
| return 1; |
| return 0; |
| } |
| #endif |
| |
| #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING |
| |
| #define KVM_MAX_IRQ_ROUTES 4096 /* might need extension/rework in the future */ |
| |
| bool kvm_arch_can_set_irq_routing(struct kvm *kvm); |
| int kvm_set_irq_routing(struct kvm *kvm, |
| const struct kvm_irq_routing_entry *entries, |
| unsigned nr, |
| unsigned flags); |
| int kvm_set_routing_entry(struct kvm *kvm, |
| struct kvm_kernel_irq_routing_entry *e, |
| const struct kvm_irq_routing_entry *ue); |
| void kvm_free_irq_routing(struct kvm *kvm); |
| |
| #else |
| |
| static inline void kvm_free_irq_routing(struct kvm *kvm) {} |
| |
| #endif |
| |
| int kvm_send_userspace_msi(struct kvm *kvm, struct kvm_msi *msi); |
| |
| #ifdef CONFIG_HAVE_KVM_EVENTFD |
| |
| void kvm_eventfd_init(struct kvm *kvm); |
| int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args); |
| |
| #ifdef CONFIG_HAVE_KVM_IRQFD |
| int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args); |
| void kvm_irqfd_release(struct kvm *kvm); |
| void kvm_irq_routing_update(struct kvm *); |
| #else |
| static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args) |
| { |
| return -EINVAL; |
| } |
| |
| static inline void kvm_irqfd_release(struct kvm *kvm) {} |
| #endif |
| |
| #else |
| |
| static inline void kvm_eventfd_init(struct kvm *kvm) {} |
| |
| static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args) |
| { |
| return -EINVAL; |
| } |
| |
| static inline void kvm_irqfd_release(struct kvm *kvm) {} |
| |
| #ifdef CONFIG_HAVE_KVM_IRQCHIP |
| static inline void kvm_irq_routing_update(struct kvm *kvm) |
| { |
| } |
| #endif |
| |
| static inline int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args) |
| { |
| return -ENOSYS; |
| } |
| |
| #endif /* CONFIG_HAVE_KVM_EVENTFD */ |
| |
| void kvm_arch_irq_routing_update(struct kvm *kvm); |
| |
| static inline void kvm_make_request(int req, struct kvm_vcpu *vcpu) |
| { |
| /* |
| * Ensure the rest of the request is published to kvm_check_request's |
| * caller. Paired with the smp_mb__after_atomic in kvm_check_request. |
| */ |
| smp_wmb(); |
| set_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests); |
| } |
| |
| static inline bool kvm_request_pending(struct kvm_vcpu *vcpu) |
| { |
| return READ_ONCE(vcpu->requests); |
| } |
| |
| static inline bool kvm_test_request(int req, struct kvm_vcpu *vcpu) |
| { |
| return test_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests); |
| } |
| |
| static inline void kvm_clear_request(int req, struct kvm_vcpu *vcpu) |
| { |
| clear_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests); |
| } |
| |
| static inline bool kvm_check_request(int req, struct kvm_vcpu *vcpu) |
| { |
| if (kvm_test_request(req, vcpu)) { |
| kvm_clear_request(req, vcpu); |
| |
| /* |
| * Ensure the rest of the request is visible to kvm_check_request's |
| * caller. Paired with the smp_wmb in kvm_make_request. |
| */ |
| smp_mb__after_atomic(); |
| return true; |
| } else { |
| return false; |
| } |
| } |
| |
| extern bool kvm_rebooting; |
| |
| extern unsigned int halt_poll_ns; |
| extern unsigned int halt_poll_ns_grow; |
| extern unsigned int halt_poll_ns_grow_start; |
| extern unsigned int halt_poll_ns_shrink; |
| |
| struct kvm_device { |
| const struct kvm_device_ops *ops; |
| struct kvm *kvm; |
| void *private; |
| struct list_head vm_node; |
| }; |
| |
| /* create, destroy, and name are mandatory */ |
| struct kvm_device_ops { |
| const char *name; |
| |
| /* |
| * create is called holding kvm->lock and any operations not suitable |
| * to do while holding the lock should be deferred to init (see |
| * below). |
| */ |
| int (*create)(struct kvm_device *dev, u32 type); |
| |
| /* |
| * init is called after create if create is successful and is called |
| * outside of holding kvm->lock. |
| */ |
| void (*init)(struct kvm_device *dev); |
| |
| /* |
| * Destroy is responsible for freeing dev. |
| * |
| * Destroy may be called before or after destructors are called |
| * on emulated I/O regions, depending on whether a reference is |
| * held by a vcpu or other kvm component that gets destroyed |
| * after the emulated I/O. |
| */ |
| void (*destroy)(struct kvm_device *dev); |
| |
| /* |
| * Release is an alternative method to free the device. It is |
| * called when the device file descriptor is closed. Once |
| * release is called, the destroy method will not be called |
| * anymore as the device is removed from the device list of |
| * the VM. kvm->lock is held. |
| */ |
| void (*release)(struct kvm_device *dev); |
| |
| int (*set_attr)(struct kvm_device *dev, struct kvm_device_attr *attr); |
| int (*get_attr)(struct kvm_device *dev, struct kvm_device_attr *attr); |
| int (*has_attr)(struct kvm_device *dev, struct kvm_device_attr *attr); |
| long (*ioctl)(struct kvm_device *dev, unsigned int ioctl, |
| unsigned long arg); |
| int (*mmap)(struct kvm_device *dev, struct vm_area_struct *vma); |
| }; |
| |
| void kvm_device_get(struct kvm_device *dev); |
| void kvm_device_put(struct kvm_device *dev); |
| struct kvm_device *kvm_device_from_filp(struct file *filp); |
| int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type); |
| void kvm_unregister_device_ops(u32 type); |
| |
| extern struct kvm_device_ops kvm_mpic_ops; |
| extern struct kvm_device_ops kvm_arm_vgic_v2_ops; |
| extern struct kvm_device_ops kvm_arm_vgic_v3_ops; |
| |
| #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT |
| |
| static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val) |
| { |
| vcpu->spin_loop.in_spin_loop = val; |
| } |
| static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val) |
| { |
| vcpu->spin_loop.dy_eligible = val; |
| } |
| |
| #else /* !CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */ |
| |
| static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val) |
| { |
| } |
| |
| static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val) |
| { |
| } |
| #endif /* CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */ |
| |
| static inline bool kvm_is_visible_memslot(struct kvm_memory_slot *memslot) |
| { |
| return (memslot && memslot->id < KVM_USER_MEM_SLOTS && |
| !(memslot->flags & KVM_MEMSLOT_INVALID)); |
| } |
| |
| struct kvm_vcpu *kvm_get_running_vcpu(void); |
| struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void); |
| |
| #ifdef CONFIG_HAVE_KVM_IRQ_BYPASS |
| bool kvm_arch_has_irq_bypass(void); |
| int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *, |
| struct irq_bypass_producer *); |
| void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *, |
| struct irq_bypass_producer *); |
| void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *); |
| void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *); |
| int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq, |
| uint32_t guest_irq, bool set); |
| bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *, |
| struct kvm_kernel_irq_routing_entry *); |
| #endif /* CONFIG_HAVE_KVM_IRQ_BYPASS */ |
| |
| #ifdef CONFIG_HAVE_KVM_INVALID_WAKEUPS |
| /* If we wakeup during the poll time, was it a sucessful poll? */ |
| static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu) |
| { |
| return vcpu->valid_wakeup; |
| } |
| |
| #else |
| static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu) |
| { |
| return true; |
| } |
| #endif /* CONFIG_HAVE_KVM_INVALID_WAKEUPS */ |
| |
| #ifdef CONFIG_HAVE_KVM_NO_POLL |
| /* Callback that tells if we must not poll */ |
| bool kvm_arch_no_poll(struct kvm_vcpu *vcpu); |
| #else |
| static inline bool kvm_arch_no_poll(struct kvm_vcpu *vcpu) |
| { |
| return false; |
| } |
| #endif /* CONFIG_HAVE_KVM_NO_POLL */ |
| |
| #ifdef CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL |
| long kvm_arch_vcpu_async_ioctl(struct file *filp, |
| unsigned int ioctl, unsigned long arg); |
| #else |
| static inline long kvm_arch_vcpu_async_ioctl(struct file *filp, |
| unsigned int ioctl, |
| unsigned long arg) |
| { |
| return -ENOIOCTLCMD; |
| } |
| #endif /* CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL */ |
| |
| void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm, |
| unsigned long start, unsigned long end); |
| |
| #ifdef CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE |
| int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu); |
| #else |
| static inline int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu) |
| { |
| return 0; |
| } |
| #endif /* CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE */ |
| |
| typedef int (*kvm_vm_thread_fn_t)(struct kvm *kvm, uintptr_t data); |
| |
| int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn, |
| uintptr_t data, const char *name, |
| struct task_struct **thread_ptr); |
| |
| #ifdef CONFIG_KVM_XFER_TO_GUEST_WORK |
| static inline void kvm_handle_signal_exit(struct kvm_vcpu *vcpu) |
| { |
| vcpu->run->exit_reason = KVM_EXIT_INTR; |
| vcpu->stat.signal_exits++; |
| } |
| #endif /* CONFIG_KVM_XFER_TO_GUEST_WORK */ |
| |
| /* |
| * This defines how many reserved entries we want to keep before we |
| * kick the vcpu to the userspace to avoid dirty ring full. This |
| * value can be tuned to higher if e.g. PML is enabled on the host. |
| */ |
| #define KVM_DIRTY_RING_RSVD_ENTRIES 64 |
| |
| /* Max number of entries allowed for each kvm dirty ring */ |
| #define KVM_DIRTY_RING_MAX_ENTRIES 65536 |
| |
| #endif |