| /* |
| * Fault injection for both 32 and 64bit guests. |
| * |
| * Copyright (C) 2012,2013 - ARM Ltd |
| * Author: Marc Zyngier <marc.zyngier@arm.com> |
| * |
| * Based on arch/arm/kvm/emulate.c |
| * Copyright (C) 2012 - Virtual Open Systems and Columbia University |
| * Author: Christoffer Dall <c.dall@virtualopensystems.com> |
| * |
| * This program is free software: you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License version 2 as |
| * published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program. If not, see <http://www.gnu.org/licenses/>. |
| */ |
| |
| #include <linux/kvm_host.h> |
| #include <asm/kvm_emulate.h> |
| #include <asm/esr.h> |
| |
| #define PSTATE_FAULT_BITS_64 (PSR_MODE_EL1h | PSR_A_BIT | PSR_F_BIT | \ |
| PSR_I_BIT | PSR_D_BIT) |
| |
| #define CURRENT_EL_SP_EL0_VECTOR 0x0 |
| #define CURRENT_EL_SP_ELx_VECTOR 0x200 |
| #define LOWER_EL_AArch64_VECTOR 0x400 |
| #define LOWER_EL_AArch32_VECTOR 0x600 |
| |
| enum exception_type { |
| except_type_sync = 0, |
| except_type_irq = 0x80, |
| except_type_fiq = 0x100, |
| except_type_serror = 0x180, |
| }; |
| |
| static u64 get_except_vector(struct kvm_vcpu *vcpu, enum exception_type type) |
| { |
| u64 exc_offset; |
| |
| switch (*vcpu_cpsr(vcpu) & (PSR_MODE_MASK | PSR_MODE32_BIT)) { |
| case PSR_MODE_EL1t: |
| exc_offset = CURRENT_EL_SP_EL0_VECTOR; |
| break; |
| case PSR_MODE_EL1h: |
| exc_offset = CURRENT_EL_SP_ELx_VECTOR; |
| break; |
| case PSR_MODE_EL0t: |
| exc_offset = LOWER_EL_AArch64_VECTOR; |
| break; |
| default: |
| exc_offset = LOWER_EL_AArch32_VECTOR; |
| } |
| |
| return vcpu_sys_reg(vcpu, VBAR_EL1) + exc_offset + type; |
| } |
| |
| static void inject_abt64(struct kvm_vcpu *vcpu, bool is_iabt, unsigned long addr) |
| { |
| unsigned long cpsr = *vcpu_cpsr(vcpu); |
| bool is_aarch32 = vcpu_mode_is_32bit(vcpu); |
| u32 esr = 0; |
| |
| *vcpu_elr_el1(vcpu) = *vcpu_pc(vcpu); |
| *vcpu_pc(vcpu) = get_except_vector(vcpu, except_type_sync); |
| |
| *vcpu_cpsr(vcpu) = PSTATE_FAULT_BITS_64; |
| *vcpu_spsr(vcpu) = cpsr; |
| |
| vcpu_sys_reg(vcpu, FAR_EL1) = addr; |
| |
| /* |
| * Build an {i,d}abort, depending on the level and the |
| * instruction set. Report an external synchronous abort. |
| */ |
| if (kvm_vcpu_trap_il_is32bit(vcpu)) |
| esr |= ESR_ELx_IL; |
| |
| /* |
| * Here, the guest runs in AArch64 mode when in EL1. If we get |
| * an AArch32 fault, it means we managed to trap an EL0 fault. |
| */ |
| if (is_aarch32 || (cpsr & PSR_MODE_MASK) == PSR_MODE_EL0t) |
| esr |= (ESR_ELx_EC_IABT_LOW << ESR_ELx_EC_SHIFT); |
| else |
| esr |= (ESR_ELx_EC_IABT_CUR << ESR_ELx_EC_SHIFT); |
| |
| if (!is_iabt) |
| esr |= ESR_ELx_EC_DABT_LOW << ESR_ELx_EC_SHIFT; |
| |
| vcpu_sys_reg(vcpu, ESR_EL1) = esr | ESR_ELx_FSC_EXTABT; |
| } |
| |
| static void inject_undef64(struct kvm_vcpu *vcpu) |
| { |
| unsigned long cpsr = *vcpu_cpsr(vcpu); |
| u32 esr = (ESR_ELx_EC_UNKNOWN << ESR_ELx_EC_SHIFT); |
| |
| *vcpu_elr_el1(vcpu) = *vcpu_pc(vcpu); |
| *vcpu_pc(vcpu) = get_except_vector(vcpu, except_type_sync); |
| |
| *vcpu_cpsr(vcpu) = PSTATE_FAULT_BITS_64; |
| *vcpu_spsr(vcpu) = cpsr; |
| |
| /* |
| * Build an unknown exception, depending on the instruction |
| * set. |
| */ |
| if (kvm_vcpu_trap_il_is32bit(vcpu)) |
| esr |= ESR_ELx_IL; |
| |
| vcpu_sys_reg(vcpu, ESR_EL1) = esr; |
| } |
| |
| /** |
| * kvm_inject_dabt - inject a data abort into the guest |
| * @vcpu: The VCPU to receive the undefined exception |
| * @addr: The address to report in the DFAR |
| * |
| * It is assumed that this code is called from the VCPU thread and that the |
| * VCPU therefore is not currently executing guest code. |
| */ |
| void kvm_inject_dabt(struct kvm_vcpu *vcpu, unsigned long addr) |
| { |
| if (vcpu_el1_is_32bit(vcpu)) |
| kvm_inject_dabt32(vcpu, addr); |
| else |
| inject_abt64(vcpu, false, addr); |
| } |
| |
| /** |
| * kvm_inject_pabt - inject a prefetch abort into the guest |
| * @vcpu: The VCPU to receive the undefined exception |
| * @addr: The address to report in the DFAR |
| * |
| * It is assumed that this code is called from the VCPU thread and that the |
| * VCPU therefore is not currently executing guest code. |
| */ |
| void kvm_inject_pabt(struct kvm_vcpu *vcpu, unsigned long addr) |
| { |
| if (vcpu_el1_is_32bit(vcpu)) |
| kvm_inject_pabt32(vcpu, addr); |
| else |
| inject_abt64(vcpu, true, addr); |
| } |
| |
| /** |
| * kvm_inject_undefined - inject an undefined instruction into the guest |
| * |
| * It is assumed that this code is called from the VCPU thread and that the |
| * VCPU therefore is not currently executing guest code. |
| */ |
| void kvm_inject_undefined(struct kvm_vcpu *vcpu) |
| { |
| if (vcpu_el1_is_32bit(vcpu)) |
| kvm_inject_undef32(vcpu); |
| else |
| inject_undef64(vcpu); |
| } |
| |
| static void pend_guest_serror(struct kvm_vcpu *vcpu, u64 esr) |
| { |
| vcpu_set_vsesr(vcpu, esr); |
| *vcpu_hcr(vcpu) |= HCR_VSE; |
| } |
| |
| /** |
| * kvm_inject_vabt - inject an async abort / SError into the guest |
| * @vcpu: The VCPU to receive the exception |
| * |
| * It is assumed that this code is called from the VCPU thread and that the |
| * VCPU therefore is not currently executing guest code. |
| * |
| * Systems with the RAS Extensions specify an imp-def ESR (ISV/IDS = 1) with |
| * the remaining ISS all-zeros so that this error is not interpreted as an |
| * uncategorized RAS error. Without the RAS Extensions we can't specify an ESR |
| * value, so the CPU generates an imp-def value. |
| */ |
| void kvm_inject_vabt(struct kvm_vcpu *vcpu) |
| { |
| pend_guest_serror(vcpu, ESR_ELx_ISV); |
| } |