| /* |
| * Copyright © 2008-2015 Intel Corporation |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a |
| * copy of this software and associated documentation files (the "Software"), |
| * to deal in the Software without restriction, including without limitation |
| * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| * and/or sell copies of the Software, and to permit persons to whom the |
| * Software is furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice (including the next |
| * paragraph) shall be included in all copies or substantial portions of the |
| * Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING |
| * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS |
| * IN THE SOFTWARE. |
| * |
| */ |
| |
| #include <linux/prefetch.h> |
| #include <linux/dma-fence-array.h> |
| #include <linux/sched.h> |
| #include <linux/sched/clock.h> |
| #include <linux/sched/signal.h> |
| |
| #include "i915_drv.h" |
| |
| static const char *i915_fence_get_driver_name(struct dma_fence *fence) |
| { |
| return "i915"; |
| } |
| |
| static const char *i915_fence_get_timeline_name(struct dma_fence *fence) |
| { |
| /* |
| * The timeline struct (as part of the ppgtt underneath a context) |
| * may be freed when the request is no longer in use by the GPU. |
| * We could extend the life of a context to beyond that of all |
| * fences, possibly keeping the hw resource around indefinitely, |
| * or we just give them a false name. Since |
| * dma_fence_ops.get_timeline_name is a debug feature, the occasional |
| * lie seems justifiable. |
| */ |
| if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) |
| return "signaled"; |
| |
| return to_request(fence)->timeline->common->name; |
| } |
| |
| static bool i915_fence_signaled(struct dma_fence *fence) |
| { |
| return i915_request_completed(to_request(fence)); |
| } |
| |
| static bool i915_fence_enable_signaling(struct dma_fence *fence) |
| { |
| return intel_engine_enable_signaling(to_request(fence), true); |
| } |
| |
| static signed long i915_fence_wait(struct dma_fence *fence, |
| bool interruptible, |
| signed long timeout) |
| { |
| return i915_request_wait(to_request(fence), interruptible, timeout); |
| } |
| |
| static void i915_fence_release(struct dma_fence *fence) |
| { |
| struct i915_request *rq = to_request(fence); |
| |
| /* |
| * The request is put onto a RCU freelist (i.e. the address |
| * is immediately reused), mark the fences as being freed now. |
| * Otherwise the debugobjects for the fences are only marked as |
| * freed when the slab cache itself is freed, and so we would get |
| * caught trying to reuse dead objects. |
| */ |
| i915_sw_fence_fini(&rq->submit); |
| |
| kmem_cache_free(rq->i915->requests, rq); |
| } |
| |
| const struct dma_fence_ops i915_fence_ops = { |
| .get_driver_name = i915_fence_get_driver_name, |
| .get_timeline_name = i915_fence_get_timeline_name, |
| .enable_signaling = i915_fence_enable_signaling, |
| .signaled = i915_fence_signaled, |
| .wait = i915_fence_wait, |
| .release = i915_fence_release, |
| }; |
| |
| static inline void |
| i915_request_remove_from_client(struct i915_request *request) |
| { |
| struct drm_i915_file_private *file_priv; |
| |
| file_priv = request->file_priv; |
| if (!file_priv) |
| return; |
| |
| spin_lock(&file_priv->mm.lock); |
| if (request->file_priv) { |
| list_del(&request->client_link); |
| request->file_priv = NULL; |
| } |
| spin_unlock(&file_priv->mm.lock); |
| } |
| |
| static struct i915_dependency * |
| i915_dependency_alloc(struct drm_i915_private *i915) |
| { |
| return kmem_cache_alloc(i915->dependencies, GFP_KERNEL); |
| } |
| |
| static void |
| i915_dependency_free(struct drm_i915_private *i915, |
| struct i915_dependency *dep) |
| { |
| kmem_cache_free(i915->dependencies, dep); |
| } |
| |
| static void |
| __i915_sched_node_add_dependency(struct i915_sched_node *node, |
| struct i915_sched_node *signal, |
| struct i915_dependency *dep, |
| unsigned long flags) |
| { |
| INIT_LIST_HEAD(&dep->dfs_link); |
| list_add(&dep->wait_link, &signal->waiters_list); |
| list_add(&dep->signal_link, &node->signalers_list); |
| dep->signaler = signal; |
| dep->flags = flags; |
| } |
| |
| static int |
| i915_sched_node_add_dependency(struct drm_i915_private *i915, |
| struct i915_sched_node *node, |
| struct i915_sched_node *signal) |
| { |
| struct i915_dependency *dep; |
| |
| dep = i915_dependency_alloc(i915); |
| if (!dep) |
| return -ENOMEM; |
| |
| __i915_sched_node_add_dependency(node, signal, dep, |
| I915_DEPENDENCY_ALLOC); |
| return 0; |
| } |
| |
| static void |
| i915_sched_node_fini(struct drm_i915_private *i915, |
| struct i915_sched_node *node) |
| { |
| struct i915_dependency *dep, *tmp; |
| |
| GEM_BUG_ON(!list_empty(&node->link)); |
| |
| /* |
| * Everyone we depended upon (the fences we wait to be signaled) |
| * should retire before us and remove themselves from our list. |
| * However, retirement is run independently on each timeline and |
| * so we may be called out-of-order. |
| */ |
| list_for_each_entry_safe(dep, tmp, &node->signalers_list, signal_link) { |
| GEM_BUG_ON(!i915_sched_node_signaled(dep->signaler)); |
| GEM_BUG_ON(!list_empty(&dep->dfs_link)); |
| |
| list_del(&dep->wait_link); |
| if (dep->flags & I915_DEPENDENCY_ALLOC) |
| i915_dependency_free(i915, dep); |
| } |
| |
| /* Remove ourselves from everyone who depends upon us */ |
| list_for_each_entry_safe(dep, tmp, &node->waiters_list, wait_link) { |
| GEM_BUG_ON(dep->signaler != node); |
| GEM_BUG_ON(!list_empty(&dep->dfs_link)); |
| |
| list_del(&dep->signal_link); |
| if (dep->flags & I915_DEPENDENCY_ALLOC) |
| i915_dependency_free(i915, dep); |
| } |
| } |
| |
| static void |
| i915_sched_node_init(struct i915_sched_node *node) |
| { |
| INIT_LIST_HEAD(&node->signalers_list); |
| INIT_LIST_HEAD(&node->waiters_list); |
| INIT_LIST_HEAD(&node->link); |
| node->attr.priority = I915_PRIORITY_INVALID; |
| } |
| |
| static int reset_all_global_seqno(struct drm_i915_private *i915, u32 seqno) |
| { |
| struct intel_engine_cs *engine; |
| enum intel_engine_id id; |
| int ret; |
| |
| /* Carefully retire all requests without writing to the rings */ |
| ret = i915_gem_wait_for_idle(i915, |
| I915_WAIT_INTERRUPTIBLE | |
| I915_WAIT_LOCKED); |
| if (ret) |
| return ret; |
| |
| GEM_BUG_ON(i915->gt.active_requests); |
| |
| /* If the seqno wraps around, we need to clear the breadcrumb rbtree */ |
| for_each_engine(engine, i915, id) { |
| struct i915_gem_timeline *timeline; |
| struct intel_timeline *tl = engine->timeline; |
| |
| GEM_TRACE("%s seqno %d (current %d) -> %d\n", |
| engine->name, |
| tl->seqno, |
| intel_engine_get_seqno(engine), |
| seqno); |
| |
| if (!i915_seqno_passed(seqno, tl->seqno)) { |
| /* Flush any waiters before we reuse the seqno */ |
| intel_engine_disarm_breadcrumbs(engine); |
| GEM_BUG_ON(!list_empty(&engine->breadcrumbs.signals)); |
| } |
| |
| /* Check we are idle before we fiddle with hw state! */ |
| GEM_BUG_ON(!intel_engine_is_idle(engine)); |
| GEM_BUG_ON(i915_gem_active_isset(&engine->timeline->last_request)); |
| |
| /* Finally reset hw state */ |
| intel_engine_init_global_seqno(engine, seqno); |
| tl->seqno = seqno; |
| |
| list_for_each_entry(timeline, &i915->gt.timelines, link) |
| memset(timeline->engine[id].global_sync, 0, |
| sizeof(timeline->engine[id].global_sync)); |
| } |
| |
| i915->gt.request_serial = seqno; |
| return 0; |
| } |
| |
| int i915_gem_set_global_seqno(struct drm_device *dev, u32 seqno) |
| { |
| struct drm_i915_private *i915 = to_i915(dev); |
| |
| lockdep_assert_held(&i915->drm.struct_mutex); |
| |
| if (seqno == 0) |
| return -EINVAL; |
| |
| /* HWS page needs to be set less than what we will inject to ring */ |
| return reset_all_global_seqno(i915, seqno - 1); |
| } |
| |
| static int reserve_gt(struct drm_i915_private *i915) |
| { |
| int ret; |
| |
| /* |
| * Reservation is fine until we may need to wrap around |
| * |
| * By incrementing the serial for every request, we know that no |
| * individual engine may exceed that serial (as each is reset to 0 |
| * on any wrap). This protects even the most pessimistic of migrations |
| * of every request from all engines onto just one. |
| */ |
| while (unlikely(++i915->gt.request_serial == 0)) { |
| ret = reset_all_global_seqno(i915, 0); |
| if (ret) { |
| i915->gt.request_serial--; |
| return ret; |
| } |
| } |
| |
| if (!i915->gt.active_requests++) |
| i915_gem_unpark(i915); |
| |
| return 0; |
| } |
| |
| static void unreserve_gt(struct drm_i915_private *i915) |
| { |
| if (!--i915->gt.active_requests) |
| i915_gem_park(i915); |
| } |
| |
| void i915_gem_retire_noop(struct i915_gem_active *active, |
| struct i915_request *request) |
| { |
| /* Space left intentionally blank */ |
| } |
| |
| static void advance_ring(struct i915_request *request) |
| { |
| unsigned int tail; |
| |
| /* |
| * We know the GPU must have read the request to have |
| * sent us the seqno + interrupt, so use the position |
| * of tail of the request to update the last known position |
| * of the GPU head. |
| * |
| * Note this requires that we are always called in request |
| * completion order. |
| */ |
| if (list_is_last(&request->ring_link, &request->ring->request_list)) { |
| /* |
| * We may race here with execlists resubmitting this request |
| * as we retire it. The resubmission will move the ring->tail |
| * forwards (to request->wa_tail). We either read the |
| * current value that was written to hw, or the value that |
| * is just about to be. Either works, if we miss the last two |
| * noops - they are safe to be replayed on a reset. |
| */ |
| tail = READ_ONCE(request->tail); |
| } else { |
| tail = request->postfix; |
| } |
| list_del(&request->ring_link); |
| |
| request->ring->head = tail; |
| } |
| |
| static void free_capture_list(struct i915_request *request) |
| { |
| struct i915_capture_list *capture; |
| |
| capture = request->capture_list; |
| while (capture) { |
| struct i915_capture_list *next = capture->next; |
| |
| kfree(capture); |
| capture = next; |
| } |
| } |
| |
| static void i915_request_retire(struct i915_request *request) |
| { |
| struct intel_engine_cs *engine = request->engine; |
| struct i915_gem_active *active, *next; |
| |
| GEM_TRACE("%s fence %llx:%d, global=%d, current %d\n", |
| engine->name, |
| request->fence.context, request->fence.seqno, |
| request->global_seqno, |
| intel_engine_get_seqno(engine)); |
| |
| lockdep_assert_held(&request->i915->drm.struct_mutex); |
| GEM_BUG_ON(!i915_sw_fence_signaled(&request->submit)); |
| GEM_BUG_ON(!i915_request_completed(request)); |
| GEM_BUG_ON(!request->i915->gt.active_requests); |
| |
| trace_i915_request_retire(request); |
| |
| spin_lock_irq(&engine->timeline->lock); |
| list_del_init(&request->link); |
| spin_unlock_irq(&engine->timeline->lock); |
| |
| advance_ring(request); |
| |
| free_capture_list(request); |
| |
| /* |
| * Walk through the active list, calling retire on each. This allows |
| * objects to track their GPU activity and mark themselves as idle |
| * when their *last* active request is completed (updating state |
| * tracking lists for eviction, active references for GEM, etc). |
| * |
| * As the ->retire() may free the node, we decouple it first and |
| * pass along the auxiliary information (to avoid dereferencing |
| * the node after the callback). |
| */ |
| list_for_each_entry_safe(active, next, &request->active_list, link) { |
| /* |
| * In microbenchmarks or focusing upon time inside the kernel, |
| * we may spend an inordinate amount of time simply handling |
| * the retirement of requests and processing their callbacks. |
| * Of which, this loop itself is particularly hot due to the |
| * cache misses when jumping around the list of i915_gem_active. |
| * So we try to keep this loop as streamlined as possible and |
| * also prefetch the next i915_gem_active to try and hide |
| * the likely cache miss. |
| */ |
| prefetchw(next); |
| |
| INIT_LIST_HEAD(&active->link); |
| RCU_INIT_POINTER(active->request, NULL); |
| |
| active->retire(active, request); |
| } |
| |
| i915_request_remove_from_client(request); |
| |
| /* Retirement decays the ban score as it is a sign of ctx progress */ |
| atomic_dec_if_positive(&request->ctx->ban_score); |
| |
| /* |
| * The backing object for the context is done after switching to the |
| * *next* context. Therefore we cannot retire the previous context until |
| * the next context has already started running. However, since we |
| * cannot take the required locks at i915_request_submit() we |
| * defer the unpinning of the active context to now, retirement of |
| * the subsequent request. |
| */ |
| if (engine->last_retired_context) |
| engine->context_unpin(engine, engine->last_retired_context); |
| engine->last_retired_context = request->ctx; |
| |
| spin_lock_irq(&request->lock); |
| if (!test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &request->fence.flags)) |
| dma_fence_signal_locked(&request->fence); |
| if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags)) |
| intel_engine_cancel_signaling(request); |
| if (request->waitboost) { |
| GEM_BUG_ON(!atomic_read(&request->i915->gt_pm.rps.num_waiters)); |
| atomic_dec(&request->i915->gt_pm.rps.num_waiters); |
| } |
| spin_unlock_irq(&request->lock); |
| |
| unreserve_gt(request->i915); |
| |
| i915_sched_node_fini(request->i915, &request->sched); |
| i915_request_put(request); |
| } |
| |
| void i915_request_retire_upto(struct i915_request *rq) |
| { |
| struct intel_engine_cs *engine = rq->engine; |
| struct i915_request *tmp; |
| |
| lockdep_assert_held(&rq->i915->drm.struct_mutex); |
| GEM_BUG_ON(!i915_request_completed(rq)); |
| |
| if (list_empty(&rq->link)) |
| return; |
| |
| do { |
| tmp = list_first_entry(&engine->timeline->requests, |
| typeof(*tmp), link); |
| |
| i915_request_retire(tmp); |
| } while (tmp != rq); |
| } |
| |
| static u32 timeline_get_seqno(struct intel_timeline *tl) |
| { |
| return ++tl->seqno; |
| } |
| |
| static void move_to_timeline(struct i915_request *request, |
| struct intel_timeline *timeline) |
| { |
| GEM_BUG_ON(request->timeline == request->engine->timeline); |
| lockdep_assert_held(&request->engine->timeline->lock); |
| |
| spin_lock(&request->timeline->lock); |
| list_move_tail(&request->link, &timeline->requests); |
| spin_unlock(&request->timeline->lock); |
| } |
| |
| void __i915_request_submit(struct i915_request *request) |
| { |
| struct intel_engine_cs *engine = request->engine; |
| u32 seqno; |
| |
| GEM_TRACE("%s fence %llx:%d -> global=%d, current %d\n", |
| engine->name, |
| request->fence.context, request->fence.seqno, |
| engine->timeline->seqno + 1, |
| intel_engine_get_seqno(engine)); |
| |
| GEM_BUG_ON(!irqs_disabled()); |
| lockdep_assert_held(&engine->timeline->lock); |
| |
| GEM_BUG_ON(request->global_seqno); |
| |
| seqno = timeline_get_seqno(engine->timeline); |
| GEM_BUG_ON(!seqno); |
| GEM_BUG_ON(i915_seqno_passed(intel_engine_get_seqno(engine), seqno)); |
| |
| /* We may be recursing from the signal callback of another i915 fence */ |
| spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING); |
| request->global_seqno = seqno; |
| if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags)) |
| intel_engine_enable_signaling(request, false); |
| spin_unlock(&request->lock); |
| |
| engine->emit_breadcrumb(request, |
| request->ring->vaddr + request->postfix); |
| |
| /* Transfer from per-context onto the global per-engine timeline */ |
| move_to_timeline(request, engine->timeline); |
| |
| trace_i915_request_execute(request); |
| |
| wake_up_all(&request->execute); |
| } |
| |
| void i915_request_submit(struct i915_request *request) |
| { |
| struct intel_engine_cs *engine = request->engine; |
| unsigned long flags; |
| |
| /* Will be called from irq-context when using foreign fences. */ |
| spin_lock_irqsave(&engine->timeline->lock, flags); |
| |
| __i915_request_submit(request); |
| |
| spin_unlock_irqrestore(&engine->timeline->lock, flags); |
| } |
| |
| void __i915_request_unsubmit(struct i915_request *request) |
| { |
| struct intel_engine_cs *engine = request->engine; |
| |
| GEM_TRACE("%s fence %llx:%d <- global=%d, current %d\n", |
| engine->name, |
| request->fence.context, request->fence.seqno, |
| request->global_seqno, |
| intel_engine_get_seqno(engine)); |
| |
| GEM_BUG_ON(!irqs_disabled()); |
| lockdep_assert_held(&engine->timeline->lock); |
| |
| /* |
| * Only unwind in reverse order, required so that the per-context list |
| * is kept in seqno/ring order. |
| */ |
| GEM_BUG_ON(!request->global_seqno); |
| GEM_BUG_ON(request->global_seqno != engine->timeline->seqno); |
| GEM_BUG_ON(i915_seqno_passed(intel_engine_get_seqno(engine), |
| request->global_seqno)); |
| engine->timeline->seqno--; |
| |
| /* We may be recursing from the signal callback of another i915 fence */ |
| spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING); |
| request->global_seqno = 0; |
| if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags)) |
| intel_engine_cancel_signaling(request); |
| spin_unlock(&request->lock); |
| |
| /* Transfer back from the global per-engine timeline to per-context */ |
| move_to_timeline(request, request->timeline); |
| |
| /* |
| * We don't need to wake_up any waiters on request->execute, they |
| * will get woken by any other event or us re-adding this request |
| * to the engine timeline (__i915_request_submit()). The waiters |
| * should be quite adapt at finding that the request now has a new |
| * global_seqno to the one they went to sleep on. |
| */ |
| } |
| |
| void i915_request_unsubmit(struct i915_request *request) |
| { |
| struct intel_engine_cs *engine = request->engine; |
| unsigned long flags; |
| |
| /* Will be called from irq-context when using foreign fences. */ |
| spin_lock_irqsave(&engine->timeline->lock, flags); |
| |
| __i915_request_unsubmit(request); |
| |
| spin_unlock_irqrestore(&engine->timeline->lock, flags); |
| } |
| |
| static int __i915_sw_fence_call |
| submit_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state) |
| { |
| struct i915_request *request = |
| container_of(fence, typeof(*request), submit); |
| |
| switch (state) { |
| case FENCE_COMPLETE: |
| trace_i915_request_submit(request); |
| /* |
| * We need to serialize use of the submit_request() callback |
| * with its hotplugging performed during an emergency |
| * i915_gem_set_wedged(). We use the RCU mechanism to mark the |
| * critical section in order to force i915_gem_set_wedged() to |
| * wait until the submit_request() is completed before |
| * proceeding. |
| */ |
| rcu_read_lock(); |
| request->engine->submit_request(request); |
| rcu_read_unlock(); |
| break; |
| |
| case FENCE_FREE: |
| i915_request_put(request); |
| break; |
| } |
| |
| return NOTIFY_DONE; |
| } |
| |
| /** |
| * i915_request_alloc - allocate a request structure |
| * |
| * @engine: engine that we wish to issue the request on. |
| * @ctx: context that the request will be associated with. |
| * |
| * Returns a pointer to the allocated request if successful, |
| * or an error code if not. |
| */ |
| struct i915_request * |
| i915_request_alloc(struct intel_engine_cs *engine, struct i915_gem_context *ctx) |
| { |
| struct drm_i915_private *i915 = engine->i915; |
| struct i915_request *rq; |
| struct intel_ring *ring; |
| int ret; |
| |
| lockdep_assert_held(&i915->drm.struct_mutex); |
| |
| /* |
| * Preempt contexts are reserved for exclusive use to inject a |
| * preemption context switch. They are never to be used for any trivial |
| * request! |
| */ |
| GEM_BUG_ON(ctx == i915->preempt_context); |
| |
| /* |
| * ABI: Before userspace accesses the GPU (e.g. execbuffer), report |
| * EIO if the GPU is already wedged. |
| */ |
| if (i915_terminally_wedged(&i915->gpu_error)) |
| return ERR_PTR(-EIO); |
| |
| /* |
| * Pinning the contexts may generate requests in order to acquire |
| * GGTT space, so do this first before we reserve a seqno for |
| * ourselves. |
| */ |
| ring = engine->context_pin(engine, ctx); |
| if (IS_ERR(ring)) |
| return ERR_CAST(ring); |
| GEM_BUG_ON(!ring); |
| |
| ret = reserve_gt(i915); |
| if (ret) |
| goto err_unpin; |
| |
| ret = intel_ring_wait_for_space(ring, MIN_SPACE_FOR_ADD_REQUEST); |
| if (ret) |
| goto err_unreserve; |
| |
| /* Move the oldest request to the slab-cache (if not in use!) */ |
| rq = list_first_entry_or_null(&engine->timeline->requests, |
| typeof(*rq), link); |
| if (rq && i915_request_completed(rq)) |
| i915_request_retire(rq); |
| |
| /* |
| * Beware: Dragons be flying overhead. |
| * |
| * We use RCU to look up requests in flight. The lookups may |
| * race with the request being allocated from the slab freelist. |
| * That is the request we are writing to here, may be in the process |
| * of being read by __i915_gem_active_get_rcu(). As such, |
| * we have to be very careful when overwriting the contents. During |
| * the RCU lookup, we change chase the request->engine pointer, |
| * read the request->global_seqno and increment the reference count. |
| * |
| * The reference count is incremented atomically. If it is zero, |
| * the lookup knows the request is unallocated and complete. Otherwise, |
| * it is either still in use, or has been reallocated and reset |
| * with dma_fence_init(). This increment is safe for release as we |
| * check that the request we have a reference to and matches the active |
| * request. |
| * |
| * Before we increment the refcount, we chase the request->engine |
| * pointer. We must not call kmem_cache_zalloc() or else we set |
| * that pointer to NULL and cause a crash during the lookup. If |
| * we see the request is completed (based on the value of the |
| * old engine and seqno), the lookup is complete and reports NULL. |
| * If we decide the request is not completed (new engine or seqno), |
| * then we grab a reference and double check that it is still the |
| * active request - which it won't be and restart the lookup. |
| * |
| * Do not use kmem_cache_zalloc() here! |
| */ |
| rq = kmem_cache_alloc(i915->requests, |
| GFP_KERNEL | __GFP_RETRY_MAYFAIL | __GFP_NOWARN); |
| if (unlikely(!rq)) { |
| /* Ratelimit ourselves to prevent oom from malicious clients */ |
| ret = i915_gem_wait_for_idle(i915, |
| I915_WAIT_LOCKED | |
| I915_WAIT_INTERRUPTIBLE); |
| if (ret) |
| goto err_unreserve; |
| |
| /* |
| * We've forced the client to stall and catch up with whatever |
| * backlog there might have been. As we are assuming that we |
| * caused the mempressure, now is an opportune time to |
| * recover as much memory from the request pool as is possible. |
| * Having already penalized the client to stall, we spend |
| * a little extra time to re-optimise page allocation. |
| */ |
| kmem_cache_shrink(i915->requests); |
| rcu_barrier(); /* Recover the TYPESAFE_BY_RCU pages */ |
| |
| rq = kmem_cache_alloc(i915->requests, GFP_KERNEL); |
| if (!rq) { |
| ret = -ENOMEM; |
| goto err_unreserve; |
| } |
| } |
| |
| rq->timeline = i915_gem_context_lookup_timeline(ctx, engine); |
| GEM_BUG_ON(rq->timeline == engine->timeline); |
| |
| spin_lock_init(&rq->lock); |
| dma_fence_init(&rq->fence, |
| &i915_fence_ops, |
| &rq->lock, |
| rq->timeline->fence_context, |
| timeline_get_seqno(rq->timeline)); |
| |
| /* We bump the ref for the fence chain */ |
| i915_sw_fence_init(&i915_request_get(rq)->submit, submit_notify); |
| init_waitqueue_head(&rq->execute); |
| |
| i915_sched_node_init(&rq->sched); |
| |
| INIT_LIST_HEAD(&rq->active_list); |
| rq->i915 = i915; |
| rq->engine = engine; |
| rq->ctx = ctx; |
| rq->ring = ring; |
| |
| /* No zalloc, must clear what we need by hand */ |
| rq->global_seqno = 0; |
| rq->signaling.wait.seqno = 0; |
| rq->file_priv = NULL; |
| rq->batch = NULL; |
| rq->capture_list = NULL; |
| rq->waitboost = false; |
| |
| /* |
| * Reserve space in the ring buffer for all the commands required to |
| * eventually emit this request. This is to guarantee that the |
| * i915_request_add() call can't fail. Note that the reserve may need |
| * to be redone if the request is not actually submitted straight |
| * away, e.g. because a GPU scheduler has deferred it. |
| */ |
| rq->reserved_space = MIN_SPACE_FOR_ADD_REQUEST; |
| GEM_BUG_ON(rq->reserved_space < engine->emit_breadcrumb_sz); |
| |
| /* |
| * Record the position of the start of the request so that |
| * should we detect the updated seqno part-way through the |
| * GPU processing the request, we never over-estimate the |
| * position of the head. |
| */ |
| rq->head = rq->ring->emit; |
| |
| /* Unconditionally invalidate GPU caches and TLBs. */ |
| ret = engine->emit_flush(rq, EMIT_INVALIDATE); |
| if (ret) |
| goto err_unwind; |
| |
| ret = engine->request_alloc(rq); |
| if (ret) |
| goto err_unwind; |
| |
| /* Check that we didn't interrupt ourselves with a new request */ |
| GEM_BUG_ON(rq->timeline->seqno != rq->fence.seqno); |
| return rq; |
| |
| err_unwind: |
| rq->ring->emit = rq->head; |
| |
| /* Make sure we didn't add ourselves to external state before freeing */ |
| GEM_BUG_ON(!list_empty(&rq->active_list)); |
| GEM_BUG_ON(!list_empty(&rq->sched.signalers_list)); |
| GEM_BUG_ON(!list_empty(&rq->sched.waiters_list)); |
| |
| kmem_cache_free(i915->requests, rq); |
| err_unreserve: |
| unreserve_gt(i915); |
| err_unpin: |
| engine->context_unpin(engine, ctx); |
| return ERR_PTR(ret); |
| } |
| |
| static int |
| i915_request_await_request(struct i915_request *to, struct i915_request *from) |
| { |
| int ret; |
| |
| GEM_BUG_ON(to == from); |
| GEM_BUG_ON(to->timeline == from->timeline); |
| |
| if (i915_request_completed(from)) |
| return 0; |
| |
| if (to->engine->schedule) { |
| ret = i915_sched_node_add_dependency(to->i915, |
| &to->sched, |
| &from->sched); |
| if (ret < 0) |
| return ret; |
| } |
| |
| if (to->engine == from->engine) { |
| ret = i915_sw_fence_await_sw_fence_gfp(&to->submit, |
| &from->submit, |
| I915_FENCE_GFP); |
| return ret < 0 ? ret : 0; |
| } |
| |
| if (to->engine->semaphore.sync_to) { |
| u32 seqno; |
| |
| GEM_BUG_ON(!from->engine->semaphore.signal); |
| |
| seqno = i915_request_global_seqno(from); |
| if (!seqno) |
| goto await_dma_fence; |
| |
| if (seqno <= to->timeline->global_sync[from->engine->id]) |
| return 0; |
| |
| trace_i915_gem_ring_sync_to(to, from); |
| ret = to->engine->semaphore.sync_to(to, from); |
| if (ret) |
| return ret; |
| |
| to->timeline->global_sync[from->engine->id] = seqno; |
| return 0; |
| } |
| |
| await_dma_fence: |
| ret = i915_sw_fence_await_dma_fence(&to->submit, |
| &from->fence, 0, |
| I915_FENCE_GFP); |
| return ret < 0 ? ret : 0; |
| } |
| |
| int |
| i915_request_await_dma_fence(struct i915_request *rq, struct dma_fence *fence) |
| { |
| struct dma_fence **child = &fence; |
| unsigned int nchild = 1; |
| int ret; |
| |
| /* |
| * Note that if the fence-array was created in signal-on-any mode, |
| * we should *not* decompose it into its individual fences. However, |
| * we don't currently store which mode the fence-array is operating |
| * in. Fortunately, the only user of signal-on-any is private to |
| * amdgpu and we should not see any incoming fence-array from |
| * sync-file being in signal-on-any mode. |
| */ |
| if (dma_fence_is_array(fence)) { |
| struct dma_fence_array *array = to_dma_fence_array(fence); |
| |
| child = array->fences; |
| nchild = array->num_fences; |
| GEM_BUG_ON(!nchild); |
| } |
| |
| do { |
| fence = *child++; |
| if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) |
| continue; |
| |
| /* |
| * Requests on the same timeline are explicitly ordered, along |
| * with their dependencies, by i915_request_add() which ensures |
| * that requests are submitted in-order through each ring. |
| */ |
| if (fence->context == rq->fence.context) |
| continue; |
| |
| /* Squash repeated waits to the same timelines */ |
| if (fence->context != rq->i915->mm.unordered_timeline && |
| intel_timeline_sync_is_later(rq->timeline, fence)) |
| continue; |
| |
| if (dma_fence_is_i915(fence)) |
| ret = i915_request_await_request(rq, to_request(fence)); |
| else |
| ret = i915_sw_fence_await_dma_fence(&rq->submit, fence, |
| I915_FENCE_TIMEOUT, |
| I915_FENCE_GFP); |
| if (ret < 0) |
| return ret; |
| |
| /* Record the latest fence used against each timeline */ |
| if (fence->context != rq->i915->mm.unordered_timeline) |
| intel_timeline_sync_set(rq->timeline, fence); |
| } while (--nchild); |
| |
| return 0; |
| } |
| |
| /** |
| * i915_request_await_object - set this request to (async) wait upon a bo |
| * @to: request we are wishing to use |
| * @obj: object which may be in use on another ring. |
| * @write: whether the wait is on behalf of a writer |
| * |
| * This code is meant to abstract object synchronization with the GPU. |
| * Conceptually we serialise writes between engines inside the GPU. |
| * We only allow one engine to write into a buffer at any time, but |
| * multiple readers. To ensure each has a coherent view of memory, we must: |
| * |
| * - If there is an outstanding write request to the object, the new |
| * request must wait for it to complete (either CPU or in hw, requests |
| * on the same ring will be naturally ordered). |
| * |
| * - If we are a write request (pending_write_domain is set), the new |
| * request must wait for outstanding read requests to complete. |
| * |
| * Returns 0 if successful, else propagates up the lower layer error. |
| */ |
| int |
| i915_request_await_object(struct i915_request *to, |
| struct drm_i915_gem_object *obj, |
| bool write) |
| { |
| struct dma_fence *excl; |
| int ret = 0; |
| |
| if (write) { |
| struct dma_fence **shared; |
| unsigned int count, i; |
| |
| ret = reservation_object_get_fences_rcu(obj->resv, |
| &excl, &count, &shared); |
| if (ret) |
| return ret; |
| |
| for (i = 0; i < count; i++) { |
| ret = i915_request_await_dma_fence(to, shared[i]); |
| if (ret) |
| break; |
| |
| dma_fence_put(shared[i]); |
| } |
| |
| for (; i < count; i++) |
| dma_fence_put(shared[i]); |
| kfree(shared); |
| } else { |
| excl = reservation_object_get_excl_rcu(obj->resv); |
| } |
| |
| if (excl) { |
| if (ret == 0) |
| ret = i915_request_await_dma_fence(to, excl); |
| |
| dma_fence_put(excl); |
| } |
| |
| return ret; |
| } |
| |
| /* |
| * NB: This function is not allowed to fail. Doing so would mean the the |
| * request is not being tracked for completion but the work itself is |
| * going to happen on the hardware. This would be a Bad Thing(tm). |
| */ |
| void __i915_request_add(struct i915_request *request, bool flush_caches) |
| { |
| struct intel_engine_cs *engine = request->engine; |
| struct intel_ring *ring = request->ring; |
| struct intel_timeline *timeline = request->timeline; |
| struct i915_request *prev; |
| u32 *cs; |
| int err; |
| |
| GEM_TRACE("%s fence %llx:%d\n", |
| engine->name, request->fence.context, request->fence.seqno); |
| |
| lockdep_assert_held(&request->i915->drm.struct_mutex); |
| trace_i915_request_add(request); |
| |
| /* |
| * Make sure that no request gazumped us - if it was allocated after |
| * our i915_request_alloc() and called __i915_request_add() before |
| * us, the timeline will hold its seqno which is later than ours. |
| */ |
| GEM_BUG_ON(timeline->seqno != request->fence.seqno); |
| |
| /* |
| * To ensure that this call will not fail, space for its emissions |
| * should already have been reserved in the ring buffer. Let the ring |
| * know that it is time to use that space up. |
| */ |
| request->reserved_space = 0; |
| |
| /* |
| * Emit any outstanding flushes - execbuf can fail to emit the flush |
| * after having emitted the batchbuffer command. Hence we need to fix |
| * things up similar to emitting the lazy request. The difference here |
| * is that the flush _must_ happen before the next request, no matter |
| * what. |
| */ |
| if (flush_caches) { |
| err = engine->emit_flush(request, EMIT_FLUSH); |
| |
| /* Not allowed to fail! */ |
| WARN(err, "engine->emit_flush() failed: %d!\n", err); |
| } |
| |
| /* |
| * Record the position of the start of the breadcrumb so that |
| * should we detect the updated seqno part-way through the |
| * GPU processing the request, we never over-estimate the |
| * position of the ring's HEAD. |
| */ |
| cs = intel_ring_begin(request, engine->emit_breadcrumb_sz); |
| GEM_BUG_ON(IS_ERR(cs)); |
| request->postfix = intel_ring_offset(request, cs); |
| |
| /* |
| * Seal the request and mark it as pending execution. Note that |
| * we may inspect this state, without holding any locks, during |
| * hangcheck. Hence we apply the barrier to ensure that we do not |
| * see a more recent value in the hws than we are tracking. |
| */ |
| |
| prev = i915_gem_active_raw(&timeline->last_request, |
| &request->i915->drm.struct_mutex); |
| if (prev && !i915_request_completed(prev)) { |
| i915_sw_fence_await_sw_fence(&request->submit, &prev->submit, |
| &request->submitq); |
| if (engine->schedule) |
| __i915_sched_node_add_dependency(&request->sched, |
| &prev->sched, |
| &request->dep, |
| 0); |
| } |
| |
| spin_lock_irq(&timeline->lock); |
| list_add_tail(&request->link, &timeline->requests); |
| spin_unlock_irq(&timeline->lock); |
| |
| GEM_BUG_ON(timeline->seqno != request->fence.seqno); |
| i915_gem_active_set(&timeline->last_request, request); |
| |
| list_add_tail(&request->ring_link, &ring->request_list); |
| request->emitted_jiffies = jiffies; |
| |
| /* |
| * Let the backend know a new request has arrived that may need |
| * to adjust the existing execution schedule due to a high priority |
| * request - i.e. we may want to preempt the current request in order |
| * to run a high priority dependency chain *before* we can execute this |
| * request. |
| * |
| * This is called before the request is ready to run so that we can |
| * decide whether to preempt the entire chain so that it is ready to |
| * run at the earliest possible convenience. |
| */ |
| rcu_read_lock(); |
| if (engine->schedule) |
| engine->schedule(request, &request->ctx->sched); |
| rcu_read_unlock(); |
| |
| local_bh_disable(); |
| i915_sw_fence_commit(&request->submit); |
| local_bh_enable(); /* Kick the execlists tasklet if just scheduled */ |
| |
| /* |
| * In typical scenarios, we do not expect the previous request on |
| * the timeline to be still tracked by timeline->last_request if it |
| * has been completed. If the completed request is still here, that |
| * implies that request retirement is a long way behind submission, |
| * suggesting that we haven't been retiring frequently enough from |
| * the combination of retire-before-alloc, waiters and the background |
| * retirement worker. So if the last request on this timeline was |
| * already completed, do a catch up pass, flushing the retirement queue |
| * up to this client. Since we have now moved the heaviest operations |
| * during retirement onto secondary workers, such as freeing objects |
| * or contexts, retiring a bunch of requests is mostly list management |
| * (and cache misses), and so we should not be overly penalizing this |
| * client by performing excess work, though we may still performing |
| * work on behalf of others -- but instead we should benefit from |
| * improved resource management. (Well, that's the theory at least.) |
| */ |
| if (prev && i915_request_completed(prev)) |
| i915_request_retire_upto(prev); |
| } |
| |
| static unsigned long local_clock_us(unsigned int *cpu) |
| { |
| unsigned long t; |
| |
| /* |
| * Cheaply and approximately convert from nanoseconds to microseconds. |
| * The result and subsequent calculations are also defined in the same |
| * approximate microseconds units. The principal source of timing |
| * error here is from the simple truncation. |
| * |
| * Note that local_clock() is only defined wrt to the current CPU; |
| * the comparisons are no longer valid if we switch CPUs. Instead of |
| * blocking preemption for the entire busywait, we can detect the CPU |
| * switch and use that as indicator of system load and a reason to |
| * stop busywaiting, see busywait_stop(). |
| */ |
| *cpu = get_cpu(); |
| t = local_clock() >> 10; |
| put_cpu(); |
| |
| return t; |
| } |
| |
| static bool busywait_stop(unsigned long timeout, unsigned int cpu) |
| { |
| unsigned int this_cpu; |
| |
| if (time_after(local_clock_us(&this_cpu), timeout)) |
| return true; |
| |
| return this_cpu != cpu; |
| } |
| |
| static bool __i915_spin_request(const struct i915_request *rq, |
| u32 seqno, int state, unsigned long timeout_us) |
| { |
| struct intel_engine_cs *engine = rq->engine; |
| unsigned int irq, cpu; |
| |
| GEM_BUG_ON(!seqno); |
| |
| /* |
| * Only wait for the request if we know it is likely to complete. |
| * |
| * We don't track the timestamps around requests, nor the average |
| * request length, so we do not have a good indicator that this |
| * request will complete within the timeout. What we do know is the |
| * order in which requests are executed by the engine and so we can |
| * tell if the request has started. If the request hasn't started yet, |
| * it is a fair assumption that it will not complete within our |
| * relatively short timeout. |
| */ |
| if (!i915_seqno_passed(intel_engine_get_seqno(engine), seqno - 1)) |
| return false; |
| |
| /* |
| * When waiting for high frequency requests, e.g. during synchronous |
| * rendering split between the CPU and GPU, the finite amount of time |
| * required to set up the irq and wait upon it limits the response |
| * rate. By busywaiting on the request completion for a short while we |
| * can service the high frequency waits as quick as possible. However, |
| * if it is a slow request, we want to sleep as quickly as possible. |
| * The tradeoff between waiting and sleeping is roughly the time it |
| * takes to sleep on a request, on the order of a microsecond. |
| */ |
| |
| irq = atomic_read(&engine->irq_count); |
| timeout_us += local_clock_us(&cpu); |
| do { |
| if (i915_seqno_passed(intel_engine_get_seqno(engine), seqno)) |
| return seqno == i915_request_global_seqno(rq); |
| |
| /* |
| * Seqno are meant to be ordered *before* the interrupt. If |
| * we see an interrupt without a corresponding seqno advance, |
| * assume we won't see one in the near future but require |
| * the engine->seqno_barrier() to fixup coherency. |
| */ |
| if (atomic_read(&engine->irq_count) != irq) |
| break; |
| |
| if (signal_pending_state(state, current)) |
| break; |
| |
| if (busywait_stop(timeout_us, cpu)) |
| break; |
| |
| cpu_relax(); |
| } while (!need_resched()); |
| |
| return false; |
| } |
| |
| static bool __i915_wait_request_check_and_reset(struct i915_request *request) |
| { |
| struct i915_gpu_error *error = &request->i915->gpu_error; |
| |
| if (likely(!i915_reset_handoff(error))) |
| return false; |
| |
| __set_current_state(TASK_RUNNING); |
| i915_reset(request->i915, error->stalled_mask, error->reason); |
| return true; |
| } |
| |
| /** |
| * i915_request_wait - wait until execution of request has finished |
| * @rq: the request to wait upon |
| * @flags: how to wait |
| * @timeout: how long to wait in jiffies |
| * |
| * i915_request_wait() waits for the request to be completed, for a |
| * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an |
| * unbounded wait). |
| * |
| * If the caller holds the struct_mutex, the caller must pass I915_WAIT_LOCKED |
| * in via the flags, and vice versa if the struct_mutex is not held, the caller |
| * must not specify that the wait is locked. |
| * |
| * Returns the remaining time (in jiffies) if the request completed, which may |
| * be zero or -ETIME if the request is unfinished after the timeout expires. |
| * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is |
| * pending before the request completes. |
| */ |
| long i915_request_wait(struct i915_request *rq, |
| unsigned int flags, |
| long timeout) |
| { |
| const int state = flags & I915_WAIT_INTERRUPTIBLE ? |
| TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE; |
| wait_queue_head_t *errq = &rq->i915->gpu_error.wait_queue; |
| DEFINE_WAIT_FUNC(reset, default_wake_function); |
| DEFINE_WAIT_FUNC(exec, default_wake_function); |
| struct intel_wait wait; |
| |
| might_sleep(); |
| #if IS_ENABLED(CONFIG_LOCKDEP) |
| GEM_BUG_ON(debug_locks && |
| !!lockdep_is_held(&rq->i915->drm.struct_mutex) != |
| !!(flags & I915_WAIT_LOCKED)); |
| #endif |
| GEM_BUG_ON(timeout < 0); |
| |
| if (i915_request_completed(rq)) |
| return timeout; |
| |
| if (!timeout) |
| return -ETIME; |
| |
| trace_i915_request_wait_begin(rq, flags); |
| |
| add_wait_queue(&rq->execute, &exec); |
| if (flags & I915_WAIT_LOCKED) |
| add_wait_queue(errq, &reset); |
| |
| intel_wait_init(&wait, rq); |
| |
| restart: |
| do { |
| set_current_state(state); |
| if (intel_wait_update_request(&wait, rq)) |
| break; |
| |
| if (flags & I915_WAIT_LOCKED && |
| __i915_wait_request_check_and_reset(rq)) |
| continue; |
| |
| if (signal_pending_state(state, current)) { |
| timeout = -ERESTARTSYS; |
| goto complete; |
| } |
| |
| if (!timeout) { |
| timeout = -ETIME; |
| goto complete; |
| } |
| |
| timeout = io_schedule_timeout(timeout); |
| } while (1); |
| |
| GEM_BUG_ON(!intel_wait_has_seqno(&wait)); |
| GEM_BUG_ON(!i915_sw_fence_signaled(&rq->submit)); |
| |
| /* Optimistic short spin before touching IRQs */ |
| if (__i915_spin_request(rq, wait.seqno, state, 5)) |
| goto complete; |
| |
| set_current_state(state); |
| if (intel_engine_add_wait(rq->engine, &wait)) |
| /* |
| * In order to check that we haven't missed the interrupt |
| * as we enabled it, we need to kick ourselves to do a |
| * coherent check on the seqno before we sleep. |
| */ |
| goto wakeup; |
| |
| if (flags & I915_WAIT_LOCKED) |
| __i915_wait_request_check_and_reset(rq); |
| |
| for (;;) { |
| if (signal_pending_state(state, current)) { |
| timeout = -ERESTARTSYS; |
| break; |
| } |
| |
| if (!timeout) { |
| timeout = -ETIME; |
| break; |
| } |
| |
| timeout = io_schedule_timeout(timeout); |
| |
| if (intel_wait_complete(&wait) && |
| intel_wait_check_request(&wait, rq)) |
| break; |
| |
| set_current_state(state); |
| |
| wakeup: |
| /* |
| * Carefully check if the request is complete, giving time |
| * for the seqno to be visible following the interrupt. |
| * We also have to check in case we are kicked by the GPU |
| * reset in order to drop the struct_mutex. |
| */ |
| if (__i915_request_irq_complete(rq)) |
| break; |
| |
| /* |
| * If the GPU is hung, and we hold the lock, reset the GPU |
| * and then check for completion. On a full reset, the engine's |
| * HW seqno will be advanced passed us and we are complete. |
| * If we do a partial reset, we have to wait for the GPU to |
| * resume and update the breadcrumb. |
| * |
| * If we don't hold the mutex, we can just wait for the worker |
| * to come along and update the breadcrumb (either directly |
| * itself, or indirectly by recovering the GPU). |
| */ |
| if (flags & I915_WAIT_LOCKED && |
| __i915_wait_request_check_and_reset(rq)) |
| continue; |
| |
| /* Only spin if we know the GPU is processing this request */ |
| if (__i915_spin_request(rq, wait.seqno, state, 2)) |
| break; |
| |
| if (!intel_wait_check_request(&wait, rq)) { |
| intel_engine_remove_wait(rq->engine, &wait); |
| goto restart; |
| } |
| } |
| |
| intel_engine_remove_wait(rq->engine, &wait); |
| complete: |
| __set_current_state(TASK_RUNNING); |
| if (flags & I915_WAIT_LOCKED) |
| remove_wait_queue(errq, &reset); |
| remove_wait_queue(&rq->execute, &exec); |
| trace_i915_request_wait_end(rq); |
| |
| return timeout; |
| } |
| |
| static void engine_retire_requests(struct intel_engine_cs *engine) |
| { |
| struct i915_request *request, *next; |
| u32 seqno = intel_engine_get_seqno(engine); |
| LIST_HEAD(retire); |
| |
| spin_lock_irq(&engine->timeline->lock); |
| list_for_each_entry_safe(request, next, |
| &engine->timeline->requests, link) { |
| if (!i915_seqno_passed(seqno, request->global_seqno)) |
| break; |
| |
| list_move_tail(&request->link, &retire); |
| } |
| spin_unlock_irq(&engine->timeline->lock); |
| |
| list_for_each_entry_safe(request, next, &retire, link) |
| i915_request_retire(request); |
| } |
| |
| void i915_retire_requests(struct drm_i915_private *i915) |
| { |
| struct intel_engine_cs *engine; |
| enum intel_engine_id id; |
| |
| lockdep_assert_held(&i915->drm.struct_mutex); |
| |
| if (!i915->gt.active_requests) |
| return; |
| |
| for_each_engine(engine, i915, id) |
| engine_retire_requests(engine); |
| } |
| |
| #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) |
| #include "selftests/mock_request.c" |
| #include "selftests/i915_request.c" |
| #endif |