| /* |
| * Copyright © 2008-2015 Intel Corporation |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a |
| * copy of this software and associated documentation files (the "Software"), |
| * to deal in the Software without restriction, including without limitation |
| * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| * and/or sell copies of the Software, and to permit persons to whom the |
| * Software is furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice (including the next |
| * paragraph) shall be included in all copies or substantial portions of the |
| * Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING |
| * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS |
| * IN THE SOFTWARE. |
| * |
| * Authors: |
| * Eric Anholt <eric@anholt.net> |
| * |
| */ |
| |
| #include <drm/drm_vma_manager.h> |
| #include <drm/i915_drm.h> |
| #include <linux/dma-fence-array.h> |
| #include <linux/kthread.h> |
| #include <linux/reservation.h> |
| #include <linux/shmem_fs.h> |
| #include <linux/slab.h> |
| #include <linux/stop_machine.h> |
| #include <linux/swap.h> |
| #include <linux/pci.h> |
| #include <linux/dma-buf.h> |
| |
| #include "i915_drv.h" |
| #include "i915_gem_clflush.h" |
| #include "i915_gemfs.h" |
| #include "i915_reset.h" |
| #include "i915_trace.h" |
| #include "i915_vgpu.h" |
| |
| #include "intel_drv.h" |
| #include "intel_frontbuffer.h" |
| #include "intel_mocs.h" |
| #include "intel_workarounds.h" |
| |
| static void i915_gem_flush_free_objects(struct drm_i915_private *i915); |
| |
| static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj) |
| { |
| if (obj->cache_dirty) |
| return false; |
| |
| if (!(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE)) |
| return true; |
| |
| return obj->pin_global; /* currently in use by HW, keep flushed */ |
| } |
| |
| static int |
| insert_mappable_node(struct i915_ggtt *ggtt, |
| struct drm_mm_node *node, u32 size) |
| { |
| memset(node, 0, sizeof(*node)); |
| return drm_mm_insert_node_in_range(&ggtt->vm.mm, node, |
| size, 0, I915_COLOR_UNEVICTABLE, |
| 0, ggtt->mappable_end, |
| DRM_MM_INSERT_LOW); |
| } |
| |
| static void |
| remove_mappable_node(struct drm_mm_node *node) |
| { |
| drm_mm_remove_node(node); |
| } |
| |
| /* some bookkeeping */ |
| static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv, |
| u64 size) |
| { |
| spin_lock(&dev_priv->mm.object_stat_lock); |
| dev_priv->mm.object_count++; |
| dev_priv->mm.object_memory += size; |
| spin_unlock(&dev_priv->mm.object_stat_lock); |
| } |
| |
| static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv, |
| u64 size) |
| { |
| spin_lock(&dev_priv->mm.object_stat_lock); |
| dev_priv->mm.object_count--; |
| dev_priv->mm.object_memory -= size; |
| spin_unlock(&dev_priv->mm.object_stat_lock); |
| } |
| |
| static int |
| i915_gem_wait_for_error(struct i915_gpu_error *error) |
| { |
| int ret; |
| |
| might_sleep(); |
| |
| /* |
| * Only wait 10 seconds for the gpu reset to complete to avoid hanging |
| * userspace. If it takes that long something really bad is going on and |
| * we should simply try to bail out and fail as gracefully as possible. |
| */ |
| ret = wait_event_interruptible_timeout(error->reset_queue, |
| !i915_reset_backoff(error), |
| I915_RESET_TIMEOUT); |
| if (ret == 0) { |
| DRM_ERROR("Timed out waiting for the gpu reset to complete\n"); |
| return -EIO; |
| } else if (ret < 0) { |
| return ret; |
| } else { |
| return 0; |
| } |
| } |
| |
| int i915_mutex_lock_interruptible(struct drm_device *dev) |
| { |
| struct drm_i915_private *dev_priv = to_i915(dev); |
| int ret; |
| |
| ret = i915_gem_wait_for_error(&dev_priv->gpu_error); |
| if (ret) |
| return ret; |
| |
| ret = mutex_lock_interruptible(&dev->struct_mutex); |
| if (ret) |
| return ret; |
| |
| return 0; |
| } |
| |
| static u32 __i915_gem_park(struct drm_i915_private *i915) |
| { |
| intel_wakeref_t wakeref; |
| |
| GEM_TRACE("\n"); |
| |
| lockdep_assert_held(&i915->drm.struct_mutex); |
| GEM_BUG_ON(i915->gt.active_requests); |
| GEM_BUG_ON(!list_empty(&i915->gt.active_rings)); |
| |
| if (!i915->gt.awake) |
| return I915_EPOCH_INVALID; |
| |
| GEM_BUG_ON(i915->gt.epoch == I915_EPOCH_INVALID); |
| |
| /* |
| * Be paranoid and flush a concurrent interrupt to make sure |
| * we don't reactivate any irq tasklets after parking. |
| * |
| * FIXME: Note that even though we have waited for execlists to be idle, |
| * there may still be an in-flight interrupt even though the CSB |
| * is now empty. synchronize_irq() makes sure that a residual interrupt |
| * is completed before we continue, but it doesn't prevent the HW from |
| * raising a spurious interrupt later. To complete the shield we should |
| * coordinate disabling the CS irq with flushing the interrupts. |
| */ |
| synchronize_irq(i915->drm.irq); |
| |
| intel_engines_park(i915); |
| i915_timelines_park(i915); |
| |
| i915_pmu_gt_parked(i915); |
| i915_vma_parked(i915); |
| |
| wakeref = fetch_and_zero(&i915->gt.awake); |
| GEM_BUG_ON(!wakeref); |
| |
| if (INTEL_GEN(i915) >= 6) |
| gen6_rps_idle(i915); |
| |
| intel_display_power_put(i915, POWER_DOMAIN_GT_IRQ, wakeref); |
| |
| return i915->gt.epoch; |
| } |
| |
| void i915_gem_park(struct drm_i915_private *i915) |
| { |
| GEM_TRACE("\n"); |
| |
| lockdep_assert_held(&i915->drm.struct_mutex); |
| GEM_BUG_ON(i915->gt.active_requests); |
| |
| if (!i915->gt.awake) |
| return; |
| |
| /* Defer the actual call to __i915_gem_park() to prevent ping-pongs */ |
| mod_delayed_work(i915->wq, &i915->gt.idle_work, msecs_to_jiffies(100)); |
| } |
| |
| void i915_gem_unpark(struct drm_i915_private *i915) |
| { |
| GEM_TRACE("\n"); |
| |
| lockdep_assert_held(&i915->drm.struct_mutex); |
| GEM_BUG_ON(!i915->gt.active_requests); |
| assert_rpm_wakelock_held(i915); |
| |
| if (i915->gt.awake) |
| return; |
| |
| /* |
| * It seems that the DMC likes to transition between the DC states a lot |
| * when there are no connected displays (no active power domains) during |
| * command submission. |
| * |
| * This activity has negative impact on the performance of the chip with |
| * huge latencies observed in the interrupt handler and elsewhere. |
| * |
| * Work around it by grabbing a GT IRQ power domain whilst there is any |
| * GT activity, preventing any DC state transitions. |
| */ |
| i915->gt.awake = intel_display_power_get(i915, POWER_DOMAIN_GT_IRQ); |
| GEM_BUG_ON(!i915->gt.awake); |
| |
| if (unlikely(++i915->gt.epoch == 0)) /* keep 0 as invalid */ |
| i915->gt.epoch = 1; |
| |
| intel_enable_gt_powersave(i915); |
| i915_update_gfx_val(i915); |
| if (INTEL_GEN(i915) >= 6) |
| gen6_rps_busy(i915); |
| i915_pmu_gt_unparked(i915); |
| |
| intel_engines_unpark(i915); |
| |
| i915_queue_hangcheck(i915); |
| |
| queue_delayed_work(i915->wq, |
| &i915->gt.retire_work, |
| round_jiffies_up_relative(HZ)); |
| } |
| |
| int |
| i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data, |
| struct drm_file *file) |
| { |
| struct i915_ggtt *ggtt = &to_i915(dev)->ggtt; |
| struct drm_i915_gem_get_aperture *args = data; |
| struct i915_vma *vma; |
| u64 pinned; |
| |
| mutex_lock(&ggtt->vm.mutex); |
| |
| pinned = ggtt->vm.reserved; |
| list_for_each_entry(vma, &ggtt->vm.bound_list, vm_link) |
| if (i915_vma_is_pinned(vma)) |
| pinned += vma->node.size; |
| |
| mutex_unlock(&ggtt->vm.mutex); |
| |
| args->aper_size = ggtt->vm.total; |
| args->aper_available_size = args->aper_size - pinned; |
| |
| return 0; |
| } |
| |
| static int i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj) |
| { |
| struct address_space *mapping = obj->base.filp->f_mapping; |
| drm_dma_handle_t *phys; |
| struct sg_table *st; |
| struct scatterlist *sg; |
| char *vaddr; |
| int i; |
| int err; |
| |
| if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj))) |
| return -EINVAL; |
| |
| /* Always aligning to the object size, allows a single allocation |
| * to handle all possible callers, and given typical object sizes, |
| * the alignment of the buddy allocation will naturally match. |
| */ |
| phys = drm_pci_alloc(obj->base.dev, |
| roundup_pow_of_two(obj->base.size), |
| roundup_pow_of_two(obj->base.size)); |
| if (!phys) |
| return -ENOMEM; |
| |
| vaddr = phys->vaddr; |
| for (i = 0; i < obj->base.size / PAGE_SIZE; i++) { |
| struct page *page; |
| char *src; |
| |
| page = shmem_read_mapping_page(mapping, i); |
| if (IS_ERR(page)) { |
| err = PTR_ERR(page); |
| goto err_phys; |
| } |
| |
| src = kmap_atomic(page); |
| memcpy(vaddr, src, PAGE_SIZE); |
| drm_clflush_virt_range(vaddr, PAGE_SIZE); |
| kunmap_atomic(src); |
| |
| put_page(page); |
| vaddr += PAGE_SIZE; |
| } |
| |
| i915_gem_chipset_flush(to_i915(obj->base.dev)); |
| |
| st = kmalloc(sizeof(*st), GFP_KERNEL); |
| if (!st) { |
| err = -ENOMEM; |
| goto err_phys; |
| } |
| |
| if (sg_alloc_table(st, 1, GFP_KERNEL)) { |
| kfree(st); |
| err = -ENOMEM; |
| goto err_phys; |
| } |
| |
| sg = st->sgl; |
| sg->offset = 0; |
| sg->length = obj->base.size; |
| |
| sg_dma_address(sg) = phys->busaddr; |
| sg_dma_len(sg) = obj->base.size; |
| |
| obj->phys_handle = phys; |
| |
| __i915_gem_object_set_pages(obj, st, sg->length); |
| |
| return 0; |
| |
| err_phys: |
| drm_pci_free(obj->base.dev, phys); |
| |
| return err; |
| } |
| |
| static void __start_cpu_write(struct drm_i915_gem_object *obj) |
| { |
| obj->read_domains = I915_GEM_DOMAIN_CPU; |
| obj->write_domain = I915_GEM_DOMAIN_CPU; |
| if (cpu_write_needs_clflush(obj)) |
| obj->cache_dirty = true; |
| } |
| |
| static void |
| __i915_gem_object_release_shmem(struct drm_i915_gem_object *obj, |
| struct sg_table *pages, |
| bool needs_clflush) |
| { |
| GEM_BUG_ON(obj->mm.madv == __I915_MADV_PURGED); |
| |
| if (obj->mm.madv == I915_MADV_DONTNEED) |
| obj->mm.dirty = false; |
| |
| if (needs_clflush && |
| (obj->read_domains & I915_GEM_DOMAIN_CPU) == 0 && |
| !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ)) |
| drm_clflush_sg(pages); |
| |
| __start_cpu_write(obj); |
| } |
| |
| static void |
| i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj, |
| struct sg_table *pages) |
| { |
| __i915_gem_object_release_shmem(obj, pages, false); |
| |
| if (obj->mm.dirty) { |
| struct address_space *mapping = obj->base.filp->f_mapping; |
| char *vaddr = obj->phys_handle->vaddr; |
| int i; |
| |
| for (i = 0; i < obj->base.size / PAGE_SIZE; i++) { |
| struct page *page; |
| char *dst; |
| |
| page = shmem_read_mapping_page(mapping, i); |
| if (IS_ERR(page)) |
| continue; |
| |
| dst = kmap_atomic(page); |
| drm_clflush_virt_range(vaddr, PAGE_SIZE); |
| memcpy(dst, vaddr, PAGE_SIZE); |
| kunmap_atomic(dst); |
| |
| set_page_dirty(page); |
| if (obj->mm.madv == I915_MADV_WILLNEED) |
| mark_page_accessed(page); |
| put_page(page); |
| vaddr += PAGE_SIZE; |
| } |
| obj->mm.dirty = false; |
| } |
| |
| sg_free_table(pages); |
| kfree(pages); |
| |
| drm_pci_free(obj->base.dev, obj->phys_handle); |
| } |
| |
| static void |
| i915_gem_object_release_phys(struct drm_i915_gem_object *obj) |
| { |
| i915_gem_object_unpin_pages(obj); |
| } |
| |
| static const struct drm_i915_gem_object_ops i915_gem_phys_ops = { |
| .get_pages = i915_gem_object_get_pages_phys, |
| .put_pages = i915_gem_object_put_pages_phys, |
| .release = i915_gem_object_release_phys, |
| }; |
| |
| static const struct drm_i915_gem_object_ops i915_gem_object_ops; |
| |
| int i915_gem_object_unbind(struct drm_i915_gem_object *obj) |
| { |
| struct i915_vma *vma; |
| LIST_HEAD(still_in_list); |
| int ret; |
| |
| lockdep_assert_held(&obj->base.dev->struct_mutex); |
| |
| /* Closed vma are removed from the obj->vma_list - but they may |
| * still have an active binding on the object. To remove those we |
| * must wait for all rendering to complete to the object (as unbinding |
| * must anyway), and retire the requests. |
| */ |
| ret = i915_gem_object_set_to_cpu_domain(obj, false); |
| if (ret) |
| return ret; |
| |
| spin_lock(&obj->vma.lock); |
| while (!ret && (vma = list_first_entry_or_null(&obj->vma.list, |
| struct i915_vma, |
| obj_link))) { |
| list_move_tail(&vma->obj_link, &still_in_list); |
| spin_unlock(&obj->vma.lock); |
| |
| ret = i915_vma_unbind(vma); |
| |
| spin_lock(&obj->vma.lock); |
| } |
| list_splice(&still_in_list, &obj->vma.list); |
| spin_unlock(&obj->vma.lock); |
| |
| return ret; |
| } |
| |
| static long |
| i915_gem_object_wait_fence(struct dma_fence *fence, |
| unsigned int flags, |
| long timeout, |
| struct intel_rps_client *rps_client) |
| { |
| struct i915_request *rq; |
| |
| BUILD_BUG_ON(I915_WAIT_INTERRUPTIBLE != 0x1); |
| |
| if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) |
| return timeout; |
| |
| if (!dma_fence_is_i915(fence)) |
| return dma_fence_wait_timeout(fence, |
| flags & I915_WAIT_INTERRUPTIBLE, |
| timeout); |
| |
| rq = to_request(fence); |
| if (i915_request_completed(rq)) |
| goto out; |
| |
| /* |
| * This client is about to stall waiting for the GPU. In many cases |
| * this is undesirable and limits the throughput of the system, as |
| * many clients cannot continue processing user input/output whilst |
| * blocked. RPS autotuning may take tens of milliseconds to respond |
| * to the GPU load and thus incurs additional latency for the client. |
| * We can circumvent that by promoting the GPU frequency to maximum |
| * before we wait. This makes the GPU throttle up much more quickly |
| * (good for benchmarks and user experience, e.g. window animations), |
| * but at a cost of spending more power processing the workload |
| * (bad for battery). Not all clients even want their results |
| * immediately and for them we should just let the GPU select its own |
| * frequency to maximise efficiency. To prevent a single client from |
| * forcing the clocks too high for the whole system, we only allow |
| * each client to waitboost once in a busy period. |
| */ |
| if (rps_client && !i915_request_started(rq)) { |
| if (INTEL_GEN(rq->i915) >= 6) |
| gen6_rps_boost(rq, rps_client); |
| } |
| |
| timeout = i915_request_wait(rq, flags, timeout); |
| |
| out: |
| if (flags & I915_WAIT_LOCKED && i915_request_completed(rq)) |
| i915_request_retire_upto(rq); |
| |
| return timeout; |
| } |
| |
| static long |
| i915_gem_object_wait_reservation(struct reservation_object *resv, |
| unsigned int flags, |
| long timeout, |
| struct intel_rps_client *rps_client) |
| { |
| unsigned int seq = __read_seqcount_begin(&resv->seq); |
| struct dma_fence *excl; |
| bool prune_fences = false; |
| |
| if (flags & I915_WAIT_ALL) { |
| struct dma_fence **shared; |
| unsigned int count, i; |
| int ret; |
| |
| ret = reservation_object_get_fences_rcu(resv, |
| &excl, &count, &shared); |
| if (ret) |
| return ret; |
| |
| for (i = 0; i < count; i++) { |
| timeout = i915_gem_object_wait_fence(shared[i], |
| flags, timeout, |
| rps_client); |
| if (timeout < 0) |
| break; |
| |
| dma_fence_put(shared[i]); |
| } |
| |
| for (; i < count; i++) |
| dma_fence_put(shared[i]); |
| kfree(shared); |
| |
| /* |
| * If both shared fences and an exclusive fence exist, |
| * then by construction the shared fences must be later |
| * than the exclusive fence. If we successfully wait for |
| * all the shared fences, we know that the exclusive fence |
| * must all be signaled. If all the shared fences are |
| * signaled, we can prune the array and recover the |
| * floating references on the fences/requests. |
| */ |
| prune_fences = count && timeout >= 0; |
| } else { |
| excl = reservation_object_get_excl_rcu(resv); |
| } |
| |
| if (excl && timeout >= 0) |
| timeout = i915_gem_object_wait_fence(excl, flags, timeout, |
| rps_client); |
| |
| dma_fence_put(excl); |
| |
| /* |
| * Opportunistically prune the fences iff we know they have *all* been |
| * signaled and that the reservation object has not been changed (i.e. |
| * no new fences have been added). |
| */ |
| if (prune_fences && !__read_seqcount_retry(&resv->seq, seq)) { |
| if (reservation_object_trylock(resv)) { |
| if (!__read_seqcount_retry(&resv->seq, seq)) |
| reservation_object_add_excl_fence(resv, NULL); |
| reservation_object_unlock(resv); |
| } |
| } |
| |
| return timeout; |
| } |
| |
| static void __fence_set_priority(struct dma_fence *fence, |
| const struct i915_sched_attr *attr) |
| { |
| struct i915_request *rq; |
| struct intel_engine_cs *engine; |
| |
| if (dma_fence_is_signaled(fence) || !dma_fence_is_i915(fence)) |
| return; |
| |
| rq = to_request(fence); |
| engine = rq->engine; |
| |
| local_bh_disable(); |
| rcu_read_lock(); /* RCU serialisation for set-wedged protection */ |
| if (engine->schedule) |
| engine->schedule(rq, attr); |
| rcu_read_unlock(); |
| local_bh_enable(); /* kick the tasklets if queues were reprioritised */ |
| } |
| |
| static void fence_set_priority(struct dma_fence *fence, |
| const struct i915_sched_attr *attr) |
| { |
| /* Recurse once into a fence-array */ |
| if (dma_fence_is_array(fence)) { |
| struct dma_fence_array *array = to_dma_fence_array(fence); |
| int i; |
| |
| for (i = 0; i < array->num_fences; i++) |
| __fence_set_priority(array->fences[i], attr); |
| } else { |
| __fence_set_priority(fence, attr); |
| } |
| } |
| |
| int |
| i915_gem_object_wait_priority(struct drm_i915_gem_object *obj, |
| unsigned int flags, |
| const struct i915_sched_attr *attr) |
| { |
| struct dma_fence *excl; |
| |
| if (flags & I915_WAIT_ALL) { |
| struct dma_fence **shared; |
| unsigned int count, i; |
| int ret; |
| |
| ret = reservation_object_get_fences_rcu(obj->resv, |
| &excl, &count, &shared); |
| if (ret) |
| return ret; |
| |
| for (i = 0; i < count; i++) { |
| fence_set_priority(shared[i], attr); |
| dma_fence_put(shared[i]); |
| } |
| |
| kfree(shared); |
| } else { |
| excl = reservation_object_get_excl_rcu(obj->resv); |
| } |
| |
| if (excl) { |
| fence_set_priority(excl, attr); |
| dma_fence_put(excl); |
| } |
| return 0; |
| } |
| |
| /** |
| * Waits for rendering to the object to be completed |
| * @obj: i915 gem object |
| * @flags: how to wait (under a lock, for all rendering or just for writes etc) |
| * @timeout: how long to wait |
| * @rps_client: client (user process) to charge for any waitboosting |
| */ |
| int |
| i915_gem_object_wait(struct drm_i915_gem_object *obj, |
| unsigned int flags, |
| long timeout, |
| struct intel_rps_client *rps_client) |
| { |
| might_sleep(); |
| GEM_BUG_ON(timeout < 0); |
| |
| timeout = i915_gem_object_wait_reservation(obj->resv, |
| flags, timeout, |
| rps_client); |
| return timeout < 0 ? timeout : 0; |
| } |
| |
| static struct intel_rps_client *to_rps_client(struct drm_file *file) |
| { |
| struct drm_i915_file_private *fpriv = file->driver_priv; |
| |
| return &fpriv->rps_client; |
| } |
| |
| static int |
| i915_gem_phys_pwrite(struct drm_i915_gem_object *obj, |
| struct drm_i915_gem_pwrite *args, |
| struct drm_file *file) |
| { |
| void *vaddr = obj->phys_handle->vaddr + args->offset; |
| char __user *user_data = u64_to_user_ptr(args->data_ptr); |
| |
| /* We manually control the domain here and pretend that it |
| * remains coherent i.e. in the GTT domain, like shmem_pwrite. |
| */ |
| intel_fb_obj_invalidate(obj, ORIGIN_CPU); |
| if (copy_from_user(vaddr, user_data, args->size)) |
| return -EFAULT; |
| |
| drm_clflush_virt_range(vaddr, args->size); |
| i915_gem_chipset_flush(to_i915(obj->base.dev)); |
| |
| intel_fb_obj_flush(obj, ORIGIN_CPU); |
| return 0; |
| } |
| |
| void *i915_gem_object_alloc(struct drm_i915_private *dev_priv) |
| { |
| return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL); |
| } |
| |
| void i915_gem_object_free(struct drm_i915_gem_object *obj) |
| { |
| struct drm_i915_private *dev_priv = to_i915(obj->base.dev); |
| kmem_cache_free(dev_priv->objects, obj); |
| } |
| |
| static int |
| i915_gem_create(struct drm_file *file, |
| struct drm_i915_private *dev_priv, |
| u64 size, |
| u32 *handle_p) |
| { |
| struct drm_i915_gem_object *obj; |
| int ret; |
| u32 handle; |
| |
| size = roundup(size, PAGE_SIZE); |
| if (size == 0) |
| return -EINVAL; |
| |
| /* Allocate the new object */ |
| obj = i915_gem_object_create(dev_priv, size); |
| if (IS_ERR(obj)) |
| return PTR_ERR(obj); |
| |
| ret = drm_gem_handle_create(file, &obj->base, &handle); |
| /* drop reference from allocate - handle holds it now */ |
| i915_gem_object_put(obj); |
| if (ret) |
| return ret; |
| |
| *handle_p = handle; |
| return 0; |
| } |
| |
| int |
| i915_gem_dumb_create(struct drm_file *file, |
| struct drm_device *dev, |
| struct drm_mode_create_dumb *args) |
| { |
| /* have to work out size/pitch and return them */ |
| args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64); |
| args->size = args->pitch * args->height; |
| return i915_gem_create(file, to_i915(dev), |
| args->size, &args->handle); |
| } |
| |
| static bool gpu_write_needs_clflush(struct drm_i915_gem_object *obj) |
| { |
| return !(obj->cache_level == I915_CACHE_NONE || |
| obj->cache_level == I915_CACHE_WT); |
| } |
| |
| /** |
| * Creates a new mm object and returns a handle to it. |
| * @dev: drm device pointer |
| * @data: ioctl data blob |
| * @file: drm file pointer |
| */ |
| int |
| i915_gem_create_ioctl(struct drm_device *dev, void *data, |
| struct drm_file *file) |
| { |
| struct drm_i915_private *dev_priv = to_i915(dev); |
| struct drm_i915_gem_create *args = data; |
| |
| i915_gem_flush_free_objects(dev_priv); |
| |
| return i915_gem_create(file, dev_priv, |
| args->size, &args->handle); |
| } |
| |
| static inline enum fb_op_origin |
| fb_write_origin(struct drm_i915_gem_object *obj, unsigned int domain) |
| { |
| return (domain == I915_GEM_DOMAIN_GTT ? |
| obj->frontbuffer_ggtt_origin : ORIGIN_CPU); |
| } |
| |
| void i915_gem_flush_ggtt_writes(struct drm_i915_private *dev_priv) |
| { |
| intel_wakeref_t wakeref; |
| |
| /* |
| * No actual flushing is required for the GTT write domain for reads |
| * from the GTT domain. Writes to it "immediately" go to main memory |
| * as far as we know, so there's no chipset flush. It also doesn't |
| * land in the GPU render cache. |
| * |
| * However, we do have to enforce the order so that all writes through |
| * the GTT land before any writes to the device, such as updates to |
| * the GATT itself. |
| * |
| * We also have to wait a bit for the writes to land from the GTT. |
| * An uncached read (i.e. mmio) seems to be ideal for the round-trip |
| * timing. This issue has only been observed when switching quickly |
| * between GTT writes and CPU reads from inside the kernel on recent hw, |
| * and it appears to only affect discrete GTT blocks (i.e. on LLC |
| * system agents we cannot reproduce this behaviour, until Cannonlake |
| * that was!). |
| */ |
| |
| wmb(); |
| |
| if (INTEL_INFO(dev_priv)->has_coherent_ggtt) |
| return; |
| |
| i915_gem_chipset_flush(dev_priv); |
| |
| with_intel_runtime_pm(dev_priv, wakeref) { |
| spin_lock_irq(&dev_priv->uncore.lock); |
| |
| POSTING_READ_FW(RING_HEAD(RENDER_RING_BASE)); |
| |
| spin_unlock_irq(&dev_priv->uncore.lock); |
| } |
| } |
| |
| static void |
| flush_write_domain(struct drm_i915_gem_object *obj, unsigned int flush_domains) |
| { |
| struct drm_i915_private *dev_priv = to_i915(obj->base.dev); |
| struct i915_vma *vma; |
| |
| if (!(obj->write_domain & flush_domains)) |
| return; |
| |
| switch (obj->write_domain) { |
| case I915_GEM_DOMAIN_GTT: |
| i915_gem_flush_ggtt_writes(dev_priv); |
| |
| intel_fb_obj_flush(obj, |
| fb_write_origin(obj, I915_GEM_DOMAIN_GTT)); |
| |
| for_each_ggtt_vma(vma, obj) { |
| if (vma->iomap) |
| continue; |
| |
| i915_vma_unset_ggtt_write(vma); |
| } |
| break; |
| |
| case I915_GEM_DOMAIN_WC: |
| wmb(); |
| break; |
| |
| case I915_GEM_DOMAIN_CPU: |
| i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC); |
| break; |
| |
| case I915_GEM_DOMAIN_RENDER: |
| if (gpu_write_needs_clflush(obj)) |
| obj->cache_dirty = true; |
| break; |
| } |
| |
| obj->write_domain = 0; |
| } |
| |
| /* |
| * Pins the specified object's pages and synchronizes the object with |
| * GPU accesses. Sets needs_clflush to non-zero if the caller should |
| * flush the object from the CPU cache. |
| */ |
| int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj, |
| unsigned int *needs_clflush) |
| { |
| int ret; |
| |
| lockdep_assert_held(&obj->base.dev->struct_mutex); |
| |
| *needs_clflush = 0; |
| if (!i915_gem_object_has_struct_page(obj)) |
| return -ENODEV; |
| |
| ret = i915_gem_object_wait(obj, |
| I915_WAIT_INTERRUPTIBLE | |
| I915_WAIT_LOCKED, |
| MAX_SCHEDULE_TIMEOUT, |
| NULL); |
| if (ret) |
| return ret; |
| |
| ret = i915_gem_object_pin_pages(obj); |
| if (ret) |
| return ret; |
| |
| if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ || |
| !static_cpu_has(X86_FEATURE_CLFLUSH)) { |
| ret = i915_gem_object_set_to_cpu_domain(obj, false); |
| if (ret) |
| goto err_unpin; |
| else |
| goto out; |
| } |
| |
| flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU); |
| |
| /* If we're not in the cpu read domain, set ourself into the gtt |
| * read domain and manually flush cachelines (if required). This |
| * optimizes for the case when the gpu will dirty the data |
| * anyway again before the next pread happens. |
| */ |
| if (!obj->cache_dirty && |
| !(obj->read_domains & I915_GEM_DOMAIN_CPU)) |
| *needs_clflush = CLFLUSH_BEFORE; |
| |
| out: |
| /* return with the pages pinned */ |
| return 0; |
| |
| err_unpin: |
| i915_gem_object_unpin_pages(obj); |
| return ret; |
| } |
| |
| int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj, |
| unsigned int *needs_clflush) |
| { |
| int ret; |
| |
| lockdep_assert_held(&obj->base.dev->struct_mutex); |
| |
| *needs_clflush = 0; |
| if (!i915_gem_object_has_struct_page(obj)) |
| return -ENODEV; |
| |
| ret = i915_gem_object_wait(obj, |
| I915_WAIT_INTERRUPTIBLE | |
| I915_WAIT_LOCKED | |
| I915_WAIT_ALL, |
| MAX_SCHEDULE_TIMEOUT, |
| NULL); |
| if (ret) |
| return ret; |
| |
| ret = i915_gem_object_pin_pages(obj); |
| if (ret) |
| return ret; |
| |
| if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE || |
| !static_cpu_has(X86_FEATURE_CLFLUSH)) { |
| ret = i915_gem_object_set_to_cpu_domain(obj, true); |
| if (ret) |
| goto err_unpin; |
| else |
| goto out; |
| } |
| |
| flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU); |
| |
| /* If we're not in the cpu write domain, set ourself into the |
| * gtt write domain and manually flush cachelines (as required). |
| * This optimizes for the case when the gpu will use the data |
| * right away and we therefore have to clflush anyway. |
| */ |
| if (!obj->cache_dirty) { |
| *needs_clflush |= CLFLUSH_AFTER; |
| |
| /* |
| * Same trick applies to invalidate partially written |
| * cachelines read before writing. |
| */ |
| if (!(obj->read_domains & I915_GEM_DOMAIN_CPU)) |
| *needs_clflush |= CLFLUSH_BEFORE; |
| } |
| |
| out: |
| intel_fb_obj_invalidate(obj, ORIGIN_CPU); |
| obj->mm.dirty = true; |
| /* return with the pages pinned */ |
| return 0; |
| |
| err_unpin: |
| i915_gem_object_unpin_pages(obj); |
| return ret; |
| } |
| |
| static int |
| shmem_pread(struct page *page, int offset, int len, char __user *user_data, |
| bool needs_clflush) |
| { |
| char *vaddr; |
| int ret; |
| |
| vaddr = kmap(page); |
| |
| if (needs_clflush) |
| drm_clflush_virt_range(vaddr + offset, len); |
| |
| ret = __copy_to_user(user_data, vaddr + offset, len); |
| |
| kunmap(page); |
| |
| return ret ? -EFAULT : 0; |
| } |
| |
| static int |
| i915_gem_shmem_pread(struct drm_i915_gem_object *obj, |
| struct drm_i915_gem_pread *args) |
| { |
| char __user *user_data; |
| u64 remain; |
| unsigned int needs_clflush; |
| unsigned int idx, offset; |
| int ret; |
| |
| ret = mutex_lock_interruptible(&obj->base.dev->struct_mutex); |
| if (ret) |
| return ret; |
| |
| ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush); |
| mutex_unlock(&obj->base.dev->struct_mutex); |
| if (ret) |
| return ret; |
| |
| remain = args->size; |
| user_data = u64_to_user_ptr(args->data_ptr); |
| offset = offset_in_page(args->offset); |
| for (idx = args->offset >> PAGE_SHIFT; remain; idx++) { |
| struct page *page = i915_gem_object_get_page(obj, idx); |
| unsigned int length = min_t(u64, remain, PAGE_SIZE - offset); |
| |
| ret = shmem_pread(page, offset, length, user_data, |
| needs_clflush); |
| if (ret) |
| break; |
| |
| remain -= length; |
| user_data += length; |
| offset = 0; |
| } |
| |
| i915_gem_obj_finish_shmem_access(obj); |
| return ret; |
| } |
| |
| static inline bool |
| gtt_user_read(struct io_mapping *mapping, |
| loff_t base, int offset, |
| char __user *user_data, int length) |
| { |
| void __iomem *vaddr; |
| unsigned long unwritten; |
| |
| /* We can use the cpu mem copy function because this is X86. */ |
| vaddr = io_mapping_map_atomic_wc(mapping, base); |
| unwritten = __copy_to_user_inatomic(user_data, |
| (void __force *)vaddr + offset, |
| length); |
| io_mapping_unmap_atomic(vaddr); |
| if (unwritten) { |
| vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE); |
| unwritten = copy_to_user(user_data, |
| (void __force *)vaddr + offset, |
| length); |
| io_mapping_unmap(vaddr); |
| } |
| return unwritten; |
| } |
| |
| static int |
| i915_gem_gtt_pread(struct drm_i915_gem_object *obj, |
| const struct drm_i915_gem_pread *args) |
| { |
| struct drm_i915_private *i915 = to_i915(obj->base.dev); |
| struct i915_ggtt *ggtt = &i915->ggtt; |
| intel_wakeref_t wakeref; |
| struct drm_mm_node node; |
| struct i915_vma *vma; |
| void __user *user_data; |
| u64 remain, offset; |
| int ret; |
| |
| ret = mutex_lock_interruptible(&i915->drm.struct_mutex); |
| if (ret) |
| return ret; |
| |
| wakeref = intel_runtime_pm_get(i915); |
| vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, |
| PIN_MAPPABLE | |
| PIN_NONFAULT | |
| PIN_NONBLOCK); |
| if (!IS_ERR(vma)) { |
| node.start = i915_ggtt_offset(vma); |
| node.allocated = false; |
| ret = i915_vma_put_fence(vma); |
| if (ret) { |
| i915_vma_unpin(vma); |
| vma = ERR_PTR(ret); |
| } |
| } |
| if (IS_ERR(vma)) { |
| ret = insert_mappable_node(ggtt, &node, PAGE_SIZE); |
| if (ret) |
| goto out_unlock; |
| GEM_BUG_ON(!node.allocated); |
| } |
| |
| ret = i915_gem_object_set_to_gtt_domain(obj, false); |
| if (ret) |
| goto out_unpin; |
| |
| mutex_unlock(&i915->drm.struct_mutex); |
| |
| user_data = u64_to_user_ptr(args->data_ptr); |
| remain = args->size; |
| offset = args->offset; |
| |
| while (remain > 0) { |
| /* Operation in this page |
| * |
| * page_base = page offset within aperture |
| * page_offset = offset within page |
| * page_length = bytes to copy for this page |
| */ |
| u32 page_base = node.start; |
| unsigned page_offset = offset_in_page(offset); |
| unsigned page_length = PAGE_SIZE - page_offset; |
| page_length = remain < page_length ? remain : page_length; |
| if (node.allocated) { |
| wmb(); |
| ggtt->vm.insert_page(&ggtt->vm, |
| i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT), |
| node.start, I915_CACHE_NONE, 0); |
| wmb(); |
| } else { |
| page_base += offset & PAGE_MASK; |
| } |
| |
| if (gtt_user_read(&ggtt->iomap, page_base, page_offset, |
| user_data, page_length)) { |
| ret = -EFAULT; |
| break; |
| } |
| |
| remain -= page_length; |
| user_data += page_length; |
| offset += page_length; |
| } |
| |
| mutex_lock(&i915->drm.struct_mutex); |
| out_unpin: |
| if (node.allocated) { |
| wmb(); |
| ggtt->vm.clear_range(&ggtt->vm, node.start, node.size); |
| remove_mappable_node(&node); |
| } else { |
| i915_vma_unpin(vma); |
| } |
| out_unlock: |
| intel_runtime_pm_put(i915, wakeref); |
| mutex_unlock(&i915->drm.struct_mutex); |
| |
| return ret; |
| } |
| |
| /** |
| * Reads data from the object referenced by handle. |
| * @dev: drm device pointer |
| * @data: ioctl data blob |
| * @file: drm file pointer |
| * |
| * On error, the contents of *data are undefined. |
| */ |
| int |
| i915_gem_pread_ioctl(struct drm_device *dev, void *data, |
| struct drm_file *file) |
| { |
| struct drm_i915_gem_pread *args = data; |
| struct drm_i915_gem_object *obj; |
| int ret; |
| |
| if (args->size == 0) |
| return 0; |
| |
| if (!access_ok(u64_to_user_ptr(args->data_ptr), |
| args->size)) |
| return -EFAULT; |
| |
| obj = i915_gem_object_lookup(file, args->handle); |
| if (!obj) |
| return -ENOENT; |
| |
| /* Bounds check source. */ |
| if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) { |
| ret = -EINVAL; |
| goto out; |
| } |
| |
| trace_i915_gem_object_pread(obj, args->offset, args->size); |
| |
| ret = i915_gem_object_wait(obj, |
| I915_WAIT_INTERRUPTIBLE, |
| MAX_SCHEDULE_TIMEOUT, |
| to_rps_client(file)); |
| if (ret) |
| goto out; |
| |
| ret = i915_gem_object_pin_pages(obj); |
| if (ret) |
| goto out; |
| |
| ret = i915_gem_shmem_pread(obj, args); |
| if (ret == -EFAULT || ret == -ENODEV) |
| ret = i915_gem_gtt_pread(obj, args); |
| |
| i915_gem_object_unpin_pages(obj); |
| out: |
| i915_gem_object_put(obj); |
| return ret; |
| } |
| |
| /* This is the fast write path which cannot handle |
| * page faults in the source data |
| */ |
| |
| static inline bool |
| ggtt_write(struct io_mapping *mapping, |
| loff_t base, int offset, |
| char __user *user_data, int length) |
| { |
| void __iomem *vaddr; |
| unsigned long unwritten; |
| |
| /* We can use the cpu mem copy function because this is X86. */ |
| vaddr = io_mapping_map_atomic_wc(mapping, base); |
| unwritten = __copy_from_user_inatomic_nocache((void __force *)vaddr + offset, |
| user_data, length); |
| io_mapping_unmap_atomic(vaddr); |
| if (unwritten) { |
| vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE); |
| unwritten = copy_from_user((void __force *)vaddr + offset, |
| user_data, length); |
| io_mapping_unmap(vaddr); |
| } |
| |
| return unwritten; |
| } |
| |
| /** |
| * This is the fast pwrite path, where we copy the data directly from the |
| * user into the GTT, uncached. |
| * @obj: i915 GEM object |
| * @args: pwrite arguments structure |
| */ |
| static int |
| i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj, |
| const struct drm_i915_gem_pwrite *args) |
| { |
| struct drm_i915_private *i915 = to_i915(obj->base.dev); |
| struct i915_ggtt *ggtt = &i915->ggtt; |
| intel_wakeref_t wakeref; |
| struct drm_mm_node node; |
| struct i915_vma *vma; |
| u64 remain, offset; |
| void __user *user_data; |
| int ret; |
| |
| ret = mutex_lock_interruptible(&i915->drm.struct_mutex); |
| if (ret) |
| return ret; |
| |
| if (i915_gem_object_has_struct_page(obj)) { |
| /* |
| * Avoid waking the device up if we can fallback, as |
| * waking/resuming is very slow (worst-case 10-100 ms |
| * depending on PCI sleeps and our own resume time). |
| * This easily dwarfs any performance advantage from |
| * using the cache bypass of indirect GGTT access. |
| */ |
| wakeref = intel_runtime_pm_get_if_in_use(i915); |
| if (!wakeref) { |
| ret = -EFAULT; |
| goto out_unlock; |
| } |
| } else { |
| /* No backing pages, no fallback, we must force GGTT access */ |
| wakeref = intel_runtime_pm_get(i915); |
| } |
| |
| vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, |
| PIN_MAPPABLE | |
| PIN_NONFAULT | |
| PIN_NONBLOCK); |
| if (!IS_ERR(vma)) { |
| node.start = i915_ggtt_offset(vma); |
| node.allocated = false; |
| ret = i915_vma_put_fence(vma); |
| if (ret) { |
| i915_vma_unpin(vma); |
| vma = ERR_PTR(ret); |
| } |
| } |
| if (IS_ERR(vma)) { |
| ret = insert_mappable_node(ggtt, &node, PAGE_SIZE); |
| if (ret) |
| goto out_rpm; |
| GEM_BUG_ON(!node.allocated); |
| } |
| |
| ret = i915_gem_object_set_to_gtt_domain(obj, true); |
| if (ret) |
| goto out_unpin; |
| |
| mutex_unlock(&i915->drm.struct_mutex); |
| |
| intel_fb_obj_invalidate(obj, ORIGIN_CPU); |
| |
| user_data = u64_to_user_ptr(args->data_ptr); |
| offset = args->offset; |
| remain = args->size; |
| while (remain) { |
| /* Operation in this page |
| * |
| * page_base = page offset within aperture |
| * page_offset = offset within page |
| * page_length = bytes to copy for this page |
| */ |
| u32 page_base = node.start; |
| unsigned int page_offset = offset_in_page(offset); |
| unsigned int page_length = PAGE_SIZE - page_offset; |
| page_length = remain < page_length ? remain : page_length; |
| if (node.allocated) { |
| wmb(); /* flush the write before we modify the GGTT */ |
| ggtt->vm.insert_page(&ggtt->vm, |
| i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT), |
| node.start, I915_CACHE_NONE, 0); |
| wmb(); /* flush modifications to the GGTT (insert_page) */ |
| } else { |
| page_base += offset & PAGE_MASK; |
| } |
| /* If we get a fault while copying data, then (presumably) our |
| * source page isn't available. Return the error and we'll |
| * retry in the slow path. |
| * If the object is non-shmem backed, we retry again with the |
| * path that handles page fault. |
| */ |
| if (ggtt_write(&ggtt->iomap, page_base, page_offset, |
| user_data, page_length)) { |
| ret = -EFAULT; |
| break; |
| } |
| |
| remain -= page_length; |
| user_data += page_length; |
| offset += page_length; |
| } |
| intel_fb_obj_flush(obj, ORIGIN_CPU); |
| |
| mutex_lock(&i915->drm.struct_mutex); |
| out_unpin: |
| if (node.allocated) { |
| wmb(); |
| ggtt->vm.clear_range(&ggtt->vm, node.start, node.size); |
| remove_mappable_node(&node); |
| } else { |
| i915_vma_unpin(vma); |
| } |
| out_rpm: |
| intel_runtime_pm_put(i915, wakeref); |
| out_unlock: |
| mutex_unlock(&i915->drm.struct_mutex); |
| return ret; |
| } |
| |
| /* Per-page copy function for the shmem pwrite fastpath. |
| * Flushes invalid cachelines before writing to the target if |
| * needs_clflush_before is set and flushes out any written cachelines after |
| * writing if needs_clflush is set. |
| */ |
| static int |
| shmem_pwrite(struct page *page, int offset, int len, char __user *user_data, |
| bool needs_clflush_before, |
| bool needs_clflush_after) |
| { |
| char *vaddr; |
| int ret; |
| |
| vaddr = kmap(page); |
| |
| if (needs_clflush_before) |
| drm_clflush_virt_range(vaddr + offset, len); |
| |
| ret = __copy_from_user(vaddr + offset, user_data, len); |
| if (!ret && needs_clflush_after) |
| drm_clflush_virt_range(vaddr + offset, len); |
| |
| kunmap(page); |
| |
| return ret ? -EFAULT : 0; |
| } |
| |
| static int |
| i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj, |
| const struct drm_i915_gem_pwrite *args) |
| { |
| struct drm_i915_private *i915 = to_i915(obj->base.dev); |
| void __user *user_data; |
| u64 remain; |
| unsigned int partial_cacheline_write; |
| unsigned int needs_clflush; |
| unsigned int offset, idx; |
| int ret; |
| |
| ret = mutex_lock_interruptible(&i915->drm.struct_mutex); |
| if (ret) |
| return ret; |
| |
| ret = i915_gem_obj_prepare_shmem_write(obj, &needs_clflush); |
| mutex_unlock(&i915->drm.struct_mutex); |
| if (ret) |
| return ret; |
| |
| /* If we don't overwrite a cacheline completely we need to be |
| * careful to have up-to-date data by first clflushing. Don't |
| * overcomplicate things and flush the entire patch. |
| */ |
| partial_cacheline_write = 0; |
| if (needs_clflush & CLFLUSH_BEFORE) |
| partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1; |
| |
| user_data = u64_to_user_ptr(args->data_ptr); |
| remain = args->size; |
| offset = offset_in_page(args->offset); |
| for (idx = args->offset >> PAGE_SHIFT; remain; idx++) { |
| struct page *page = i915_gem_object_get_page(obj, idx); |
| unsigned int length = min_t(u64, remain, PAGE_SIZE - offset); |
| |
| ret = shmem_pwrite(page, offset, length, user_data, |
| (offset | length) & partial_cacheline_write, |
| needs_clflush & CLFLUSH_AFTER); |
| if (ret) |
| break; |
| |
| remain -= length; |
| user_data += length; |
| offset = 0; |
| } |
| |
| intel_fb_obj_flush(obj, ORIGIN_CPU); |
| i915_gem_obj_finish_shmem_access(obj); |
| return ret; |
| } |
| |
| /** |
| * Writes data to the object referenced by handle. |
| * @dev: drm device |
| * @data: ioctl data blob |
| * @file: drm file |
| * |
| * On error, the contents of the buffer that were to be modified are undefined. |
| */ |
| int |
| i915_gem_pwrite_ioctl(struct drm_device *dev, void *data, |
| struct drm_file *file) |
| { |
| struct drm_i915_gem_pwrite *args = data; |
| struct drm_i915_gem_object *obj; |
| int ret; |
| |
| if (args->size == 0) |
| return 0; |
| |
| if (!access_ok(u64_to_user_ptr(args->data_ptr), args->size)) |
| return -EFAULT; |
| |
| obj = i915_gem_object_lookup(file, args->handle); |
| if (!obj) |
| return -ENOENT; |
| |
| /* Bounds check destination. */ |
| if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) { |
| ret = -EINVAL; |
| goto err; |
| } |
| |
| /* Writes not allowed into this read-only object */ |
| if (i915_gem_object_is_readonly(obj)) { |
| ret = -EINVAL; |
| goto err; |
| } |
| |
| trace_i915_gem_object_pwrite(obj, args->offset, args->size); |
| |
| ret = -ENODEV; |
| if (obj->ops->pwrite) |
| ret = obj->ops->pwrite(obj, args); |
| if (ret != -ENODEV) |
| goto err; |
| |
| ret = i915_gem_object_wait(obj, |
| I915_WAIT_INTERRUPTIBLE | |
| I915_WAIT_ALL, |
| MAX_SCHEDULE_TIMEOUT, |
| to_rps_client(file)); |
| if (ret) |
| goto err; |
| |
| ret = i915_gem_object_pin_pages(obj); |
| if (ret) |
| goto err; |
| |
| ret = -EFAULT; |
| /* We can only do the GTT pwrite on untiled buffers, as otherwise |
| * it would end up going through the fenced access, and we'll get |
| * different detiling behavior between reading and writing. |
| * pread/pwrite currently are reading and writing from the CPU |
| * perspective, requiring manual detiling by the client. |
| */ |
| if (!i915_gem_object_has_struct_page(obj) || |
| cpu_write_needs_clflush(obj)) |
| /* Note that the gtt paths might fail with non-page-backed user |
| * pointers (e.g. gtt mappings when moving data between |
| * textures). Fallback to the shmem path in that case. |
| */ |
| ret = i915_gem_gtt_pwrite_fast(obj, args); |
| |
| if (ret == -EFAULT || ret == -ENOSPC) { |
| if (obj->phys_handle) |
| ret = i915_gem_phys_pwrite(obj, args, file); |
| else |
| ret = i915_gem_shmem_pwrite(obj, args); |
| } |
| |
| i915_gem_object_unpin_pages(obj); |
| err: |
| i915_gem_object_put(obj); |
| return ret; |
| } |
| |
| static void i915_gem_object_bump_inactive_ggtt(struct drm_i915_gem_object *obj) |
| { |
| struct drm_i915_private *i915 = to_i915(obj->base.dev); |
| struct list_head *list; |
| struct i915_vma *vma; |
| |
| GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj)); |
| |
| mutex_lock(&i915->ggtt.vm.mutex); |
| for_each_ggtt_vma(vma, obj) { |
| if (!drm_mm_node_allocated(&vma->node)) |
| continue; |
| |
| list_move_tail(&vma->vm_link, &vma->vm->bound_list); |
| } |
| mutex_unlock(&i915->ggtt.vm.mutex); |
| |
| spin_lock(&i915->mm.obj_lock); |
| list = obj->bind_count ? &i915->mm.bound_list : &i915->mm.unbound_list; |
| list_move_tail(&obj->mm.link, list); |
| spin_unlock(&i915->mm.obj_lock); |
| } |
| |
| /** |
| * Called when user space prepares to use an object with the CPU, either |
| * through the mmap ioctl's mapping or a GTT mapping. |
| * @dev: drm device |
| * @data: ioctl data blob |
| * @file: drm file |
| */ |
| int |
| i915_gem_set_domain_ioctl(struct drm_device *dev, void *data, |
| struct drm_file *file) |
| { |
| struct drm_i915_gem_set_domain *args = data; |
| struct drm_i915_gem_object *obj; |
| u32 read_domains = args->read_domains; |
| u32 write_domain = args->write_domain; |
| int err; |
| |
| /* Only handle setting domains to types used by the CPU. */ |
| if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS) |
| return -EINVAL; |
| |
| /* Having something in the write domain implies it's in the read |
| * domain, and only that read domain. Enforce that in the request. |
| */ |
| if (write_domain != 0 && read_domains != write_domain) |
| return -EINVAL; |
| |
| obj = i915_gem_object_lookup(file, args->handle); |
| if (!obj) |
| return -ENOENT; |
| |
| /* Try to flush the object off the GPU without holding the lock. |
| * We will repeat the flush holding the lock in the normal manner |
| * to catch cases where we are gazumped. |
| */ |
| err = i915_gem_object_wait(obj, |
| I915_WAIT_INTERRUPTIBLE | |
| I915_WAIT_PRIORITY | |
| (write_domain ? I915_WAIT_ALL : 0), |
| MAX_SCHEDULE_TIMEOUT, |
| to_rps_client(file)); |
| if (err) |
| goto out; |
| |
| /* |
| * Proxy objects do not control access to the backing storage, ergo |
| * they cannot be used as a means to manipulate the cache domain |
| * tracking for that backing storage. The proxy object is always |
| * considered to be outside of any cache domain. |
| */ |
| if (i915_gem_object_is_proxy(obj)) { |
| err = -ENXIO; |
| goto out; |
| } |
| |
| /* |
| * Flush and acquire obj->pages so that we are coherent through |
| * direct access in memory with previous cached writes through |
| * shmemfs and that our cache domain tracking remains valid. |
| * For example, if the obj->filp was moved to swap without us |
| * being notified and releasing the pages, we would mistakenly |
| * continue to assume that the obj remained out of the CPU cached |
| * domain. |
| */ |
| err = i915_gem_object_pin_pages(obj); |
| if (err) |
| goto out; |
| |
| err = i915_mutex_lock_interruptible(dev); |
| if (err) |
| goto out_unpin; |
| |
| if (read_domains & I915_GEM_DOMAIN_WC) |
| err = i915_gem_object_set_to_wc_domain(obj, write_domain); |
| else if (read_domains & I915_GEM_DOMAIN_GTT) |
| err = i915_gem_object_set_to_gtt_domain(obj, write_domain); |
| else |
| err = i915_gem_object_set_to_cpu_domain(obj, write_domain); |
| |
| /* And bump the LRU for this access */ |
| i915_gem_object_bump_inactive_ggtt(obj); |
| |
| mutex_unlock(&dev->struct_mutex); |
| |
| if (write_domain != 0) |
| intel_fb_obj_invalidate(obj, |
| fb_write_origin(obj, write_domain)); |
| |
| out_unpin: |
| i915_gem_object_unpin_pages(obj); |
| out: |
| i915_gem_object_put(obj); |
| return err; |
| } |
| |
| /** |
| * Called when user space has done writes to this buffer |
| * @dev: drm device |
| * @data: ioctl data blob |
| * @file: drm file |
| */ |
| int |
| i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data, |
| struct drm_file *file) |
| { |
| struct drm_i915_gem_sw_finish *args = data; |
| struct drm_i915_gem_object *obj; |
| |
| obj = i915_gem_object_lookup(file, args->handle); |
| if (!obj) |
| return -ENOENT; |
| |
| /* |
| * Proxy objects are barred from CPU access, so there is no |
| * need to ban sw_finish as it is a nop. |
| */ |
| |
| /* Pinned buffers may be scanout, so flush the cache */ |
| i915_gem_object_flush_if_display(obj); |
| i915_gem_object_put(obj); |
| |
| return 0; |
| } |
| |
| /** |
| * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address |
| * it is mapped to. |
| * @dev: drm device |
| * @data: ioctl data blob |
| * @file: drm file |
| * |
| * While the mapping holds a reference on the contents of the object, it doesn't |
| * imply a ref on the object itself. |
| * |
| * IMPORTANT: |
| * |
| * DRM driver writers who look a this function as an example for how to do GEM |
| * mmap support, please don't implement mmap support like here. The modern way |
| * to implement DRM mmap support is with an mmap offset ioctl (like |
| * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly. |
| * That way debug tooling like valgrind will understand what's going on, hiding |
| * the mmap call in a driver private ioctl will break that. The i915 driver only |
| * does cpu mmaps this way because we didn't know better. |
| */ |
| int |
| i915_gem_mmap_ioctl(struct drm_device *dev, void *data, |
| struct drm_file *file) |
| { |
| struct drm_i915_gem_mmap *args = data; |
| struct drm_i915_gem_object *obj; |
| unsigned long addr; |
| |
| if (args->flags & ~(I915_MMAP_WC)) |
| return -EINVAL; |
| |
| if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT)) |
| return -ENODEV; |
| |
| obj = i915_gem_object_lookup(file, args->handle); |
| if (!obj) |
| return -ENOENT; |
| |
| /* prime objects have no backing filp to GEM mmap |
| * pages from. |
| */ |
| if (!obj->base.filp) { |
| i915_gem_object_put(obj); |
| return -ENXIO; |
| } |
| |
| addr = vm_mmap(obj->base.filp, 0, args->size, |
| PROT_READ | PROT_WRITE, MAP_SHARED, |
| args->offset); |
| if (args->flags & I915_MMAP_WC) { |
| struct mm_struct *mm = current->mm; |
| struct vm_area_struct *vma; |
| |
| if (down_write_killable(&mm->mmap_sem)) { |
| i915_gem_object_put(obj); |
| return -EINTR; |
| } |
| vma = find_vma(mm, addr); |
| if (vma) |
| vma->vm_page_prot = |
| pgprot_writecombine(vm_get_page_prot(vma->vm_flags)); |
| else |
| addr = -ENOMEM; |
| up_write(&mm->mmap_sem); |
| |
| /* This may race, but that's ok, it only gets set */ |
| WRITE_ONCE(obj->frontbuffer_ggtt_origin, ORIGIN_CPU); |
| } |
| i915_gem_object_put(obj); |
| if (IS_ERR((void *)addr)) |
| return addr; |
| |
| args->addr_ptr = (u64)addr; |
| |
| return 0; |
| } |
| |
| static unsigned int tile_row_pages(const struct drm_i915_gem_object *obj) |
| { |
| return i915_gem_object_get_tile_row_size(obj) >> PAGE_SHIFT; |
| } |
| |
| /** |
| * i915_gem_mmap_gtt_version - report the current feature set for GTT mmaps |
| * |
| * A history of the GTT mmap interface: |
| * |
| * 0 - Everything had to fit into the GTT. Both parties of a memcpy had to |
| * aligned and suitable for fencing, and still fit into the available |
| * mappable space left by the pinned display objects. A classic problem |
| * we called the page-fault-of-doom where we would ping-pong between |
| * two objects that could not fit inside the GTT and so the memcpy |
| * would page one object in at the expense of the other between every |
| * single byte. |
| * |
| * 1 - Objects can be any size, and have any compatible fencing (X Y, or none |
| * as set via i915_gem_set_tiling() [DRM_I915_GEM_SET_TILING]). If the |
| * object is too large for the available space (or simply too large |
| * for the mappable aperture!), a view is created instead and faulted |
| * into userspace. (This view is aligned and sized appropriately for |
| * fenced access.) |
| * |
| * 2 - Recognise WC as a separate cache domain so that we can flush the |
| * delayed writes via GTT before performing direct access via WC. |
| * |
| * Restrictions: |
| * |
| * * snoopable objects cannot be accessed via the GTT. It can cause machine |
| * hangs on some architectures, corruption on others. An attempt to service |
| * a GTT page fault from a snoopable object will generate a SIGBUS. |
| * |
| * * the object must be able to fit into RAM (physical memory, though no |
| * limited to the mappable aperture). |
| * |
| * |
| * Caveats: |
| * |
| * * a new GTT page fault will synchronize rendering from the GPU and flush |
| * all data to system memory. Subsequent access will not be synchronized. |
| * |
| * * all mappings are revoked on runtime device suspend. |
| * |
| * * there are only 8, 16 or 32 fence registers to share between all users |
| * (older machines require fence register for display and blitter access |
| * as well). Contention of the fence registers will cause the previous users |
| * to be unmapped and any new access will generate new page faults. |
| * |
| * * running out of memory while servicing a fault may generate a SIGBUS, |
| * rather than the expected SIGSEGV. |
| */ |
| int i915_gem_mmap_gtt_version(void) |
| { |
| return 2; |
| } |
| |
| static inline struct i915_ggtt_view |
| compute_partial_view(const struct drm_i915_gem_object *obj, |
| pgoff_t page_offset, |
| unsigned int chunk) |
| { |
| struct i915_ggtt_view view; |
| |
| if (i915_gem_object_is_tiled(obj)) |
| chunk = roundup(chunk, tile_row_pages(obj)); |
| |
| view.type = I915_GGTT_VIEW_PARTIAL; |
| view.partial.offset = rounddown(page_offset, chunk); |
| view.partial.size = |
| min_t(unsigned int, chunk, |
| (obj->base.size >> PAGE_SHIFT) - view.partial.offset); |
| |
| /* If the partial covers the entire object, just create a normal VMA. */ |
| if (chunk >= obj->base.size >> PAGE_SHIFT) |
| view.type = I915_GGTT_VIEW_NORMAL; |
| |
| return view; |
| } |
| |
| /** |
| * i915_gem_fault - fault a page into the GTT |
| * @vmf: fault info |
| * |
| * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped |
| * from userspace. The fault handler takes care of binding the object to |
| * the GTT (if needed), allocating and programming a fence register (again, |
| * only if needed based on whether the old reg is still valid or the object |
| * is tiled) and inserting a new PTE into the faulting process. |
| * |
| * Note that the faulting process may involve evicting existing objects |
| * from the GTT and/or fence registers to make room. So performance may |
| * suffer if the GTT working set is large or there are few fence registers |
| * left. |
| * |
| * The current feature set supported by i915_gem_fault() and thus GTT mmaps |
| * is exposed via I915_PARAM_MMAP_GTT_VERSION (see i915_gem_mmap_gtt_version). |
| */ |
| vm_fault_t i915_gem_fault(struct vm_fault *vmf) |
| { |
| #define MIN_CHUNK_PAGES (SZ_1M >> PAGE_SHIFT) |
| struct vm_area_struct *area = vmf->vma; |
| struct drm_i915_gem_object *obj = to_intel_bo(area->vm_private_data); |
| struct drm_device *dev = obj->base.dev; |
| struct drm_i915_private *dev_priv = to_i915(dev); |
| struct i915_ggtt *ggtt = &dev_priv->ggtt; |
| bool write = area->vm_flags & VM_WRITE; |
| intel_wakeref_t wakeref; |
| struct i915_vma *vma; |
| pgoff_t page_offset; |
| int ret; |
| |
| /* Sanity check that we allow writing into this object */ |
| if (i915_gem_object_is_readonly(obj) && write) |
| return VM_FAULT_SIGBUS; |
| |
| /* We don't use vmf->pgoff since that has the fake offset */ |
| page_offset = (vmf->address - area->vm_start) >> PAGE_SHIFT; |
| |
| trace_i915_gem_object_fault(obj, page_offset, true, write); |
| |
| /* Try to flush the object off the GPU first without holding the lock. |
| * Upon acquiring the lock, we will perform our sanity checks and then |
| * repeat the flush holding the lock in the normal manner to catch cases |
| * where we are gazumped. |
| */ |
| ret = i915_gem_object_wait(obj, |
| I915_WAIT_INTERRUPTIBLE, |
| MAX_SCHEDULE_TIMEOUT, |
| NULL); |
| if (ret) |
| goto err; |
| |
| ret = i915_gem_object_pin_pages(obj); |
| if (ret) |
| goto err; |
| |
| wakeref = intel_runtime_pm_get(dev_priv); |
| |
| ret = i915_mutex_lock_interruptible(dev); |
| if (ret) |
| goto err_rpm; |
| |
| /* Access to snoopable pages through the GTT is incoherent. */ |
| if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev_priv)) { |
| ret = -EFAULT; |
| goto err_unlock; |
| } |
| |
| |
| /* Now pin it into the GTT as needed */ |
| vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, |
| PIN_MAPPABLE | |
| PIN_NONBLOCK | |
| PIN_NONFAULT); |
| if (IS_ERR(vma)) { |
| /* Use a partial view if it is bigger than available space */ |
| struct i915_ggtt_view view = |
| compute_partial_view(obj, page_offset, MIN_CHUNK_PAGES); |
| unsigned int flags; |
| |
| flags = PIN_MAPPABLE; |
| if (view.type == I915_GGTT_VIEW_NORMAL) |
| flags |= PIN_NONBLOCK; /* avoid warnings for pinned */ |
| |
| /* |
| * Userspace is now writing through an untracked VMA, abandon |
| * all hope that the hardware is able to track future writes. |
| */ |
| obj->frontbuffer_ggtt_origin = ORIGIN_CPU; |
| |
| vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, flags); |
| if (IS_ERR(vma) && !view.type) { |
| flags = PIN_MAPPABLE; |
| view.type = I915_GGTT_VIEW_PARTIAL; |
| vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, flags); |
| } |
| } |
| if (IS_ERR(vma)) { |
| ret = PTR_ERR(vma); |
| goto err_unlock; |
| } |
| |
| ret = i915_gem_object_set_to_gtt_domain(obj, write); |
| if (ret) |
| goto err_unpin; |
| |
| ret = i915_vma_pin_fence(vma); |
| if (ret) |
| goto err_unpin; |
| |
| /* Finally, remap it using the new GTT offset */ |
| ret = remap_io_mapping(area, |
| area->vm_start + (vma->ggtt_view.partial.offset << PAGE_SHIFT), |
| (ggtt->gmadr.start + vma->node.start) >> PAGE_SHIFT, |
| min_t(u64, vma->size, area->vm_end - area->vm_start), |
| &ggtt->iomap); |
| if (ret) |
| goto err_fence; |
| |
| /* Mark as being mmapped into userspace for later revocation */ |
| assert_rpm_wakelock_held(dev_priv); |
| if (!i915_vma_set_userfault(vma) && !obj->userfault_count++) |
| list_add(&obj->userfault_link, &dev_priv->mm.userfault_list); |
| GEM_BUG_ON(!obj->userfault_count); |
| |
| i915_vma_set_ggtt_write(vma); |
| |
| err_fence: |
| i915_vma_unpin_fence(vma); |
| err_unpin: |
| __i915_vma_unpin(vma); |
| err_unlock: |
| mutex_unlock(&dev->struct_mutex); |
| err_rpm: |
| intel_runtime_pm_put(dev_priv, wakeref); |
| i915_gem_object_unpin_pages(obj); |
| err: |
| switch (ret) { |
| case -EIO: |
| /* |
| * We eat errors when the gpu is terminally wedged to avoid |
| * userspace unduly crashing (gl has no provisions for mmaps to |
| * fail). But any other -EIO isn't ours (e.g. swap in failure) |
| * and so needs to be reported. |
| */ |
| if (!i915_terminally_wedged(&dev_priv->gpu_error)) |
| return VM_FAULT_SIGBUS; |
| /* else: fall through */ |
| case -EAGAIN: |
| /* |
| * EAGAIN means the gpu is hung and we'll wait for the error |
| * handler to reset everything when re-faulting in |
| * i915_mutex_lock_interruptible. |
| */ |
| case 0: |
| case -ERESTARTSYS: |
| case -EINTR: |
| case -EBUSY: |
| /* |
| * EBUSY is ok: this just means that another thread |
| * already did the job. |
| */ |
| return VM_FAULT_NOPAGE; |
| case -ENOMEM: |
| return VM_FAULT_OOM; |
| case -ENOSPC: |
| case -EFAULT: |
| return VM_FAULT_SIGBUS; |
| default: |
| WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret); |
| return VM_FAULT_SIGBUS; |
| } |
| } |
| |
| static void __i915_gem_object_release_mmap(struct drm_i915_gem_object *obj) |
| { |
| struct i915_vma *vma; |
| |
| GEM_BUG_ON(!obj->userfault_count); |
| |
| obj->userfault_count = 0; |
| list_del(&obj->userfault_link); |
| drm_vma_node_unmap(&obj->base.vma_node, |
| obj->base.dev->anon_inode->i_mapping); |
| |
| for_each_ggtt_vma(vma, obj) |
| i915_vma_unset_userfault(vma); |
| } |
| |
| /** |
| * i915_gem_release_mmap - remove physical page mappings |
| * @obj: obj in question |
| * |
| * Preserve the reservation of the mmapping with the DRM core code, but |
| * relinquish ownership of the pages back to the system. |
| * |
| * It is vital that we remove the page mapping if we have mapped a tiled |
| * object through the GTT and then lose the fence register due to |
| * resource pressure. Similarly if the object has been moved out of the |
| * aperture, than pages mapped into userspace must be revoked. Removing the |
| * mapping will then trigger a page fault on the next user access, allowing |
| * fixup by i915_gem_fault(). |
| */ |
| void |
| i915_gem_release_mmap(struct drm_i915_gem_object *obj) |
| { |
| struct drm_i915_private *i915 = to_i915(obj->base.dev); |
| intel_wakeref_t wakeref; |
| |
| /* Serialisation between user GTT access and our code depends upon |
| * revoking the CPU's PTE whilst the mutex is held. The next user |
| * pagefault then has to wait until we release the mutex. |
| * |
| * Note that RPM complicates somewhat by adding an additional |
| * requirement that operations to the GGTT be made holding the RPM |
| * wakeref. |
| */ |
| lockdep_assert_held(&i915->drm.struct_mutex); |
| wakeref = intel_runtime_pm_get(i915); |
| |
| if (!obj->userfault_count) |
| goto out; |
| |
| __i915_gem_object_release_mmap(obj); |
| |
| /* Ensure that the CPU's PTE are revoked and there are not outstanding |
| * memory transactions from userspace before we return. The TLB |
| * flushing implied above by changing the PTE above *should* be |
| * sufficient, an extra barrier here just provides us with a bit |
| * of paranoid documentation about our requirement to serialise |
| * memory writes before touching registers / GSM. |
| */ |
| wmb(); |
| |
| out: |
| intel_runtime_pm_put(i915, wakeref); |
| } |
| |
| void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv) |
| { |
| struct drm_i915_gem_object *obj, *on; |
| int i; |
| |
| /* |
| * Only called during RPM suspend. All users of the userfault_list |
| * must be holding an RPM wakeref to ensure that this can not |
| * run concurrently with themselves (and use the struct_mutex for |
| * protection between themselves). |
| */ |
| |
| list_for_each_entry_safe(obj, on, |
| &dev_priv->mm.userfault_list, userfault_link) |
| __i915_gem_object_release_mmap(obj); |
| |
| /* The fence will be lost when the device powers down. If any were |
| * in use by hardware (i.e. they are pinned), we should not be powering |
| * down! All other fences will be reacquired by the user upon waking. |
| */ |
| for (i = 0; i < dev_priv->num_fence_regs; i++) { |
| struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i]; |
| |
| /* Ideally we want to assert that the fence register is not |
| * live at this point (i.e. that no piece of code will be |
| * trying to write through fence + GTT, as that both violates |
| * our tracking of activity and associated locking/barriers, |
| * but also is illegal given that the hw is powered down). |
| * |
| * Previously we used reg->pin_count as a "liveness" indicator. |
| * That is not sufficient, and we need a more fine-grained |
| * tool if we want to have a sanity check here. |
| */ |
| |
| if (!reg->vma) |
| continue; |
| |
| GEM_BUG_ON(i915_vma_has_userfault(reg->vma)); |
| reg->dirty = true; |
| } |
| } |
| |
| static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj) |
| { |
| struct drm_i915_private *dev_priv = to_i915(obj->base.dev); |
| int err; |
| |
| err = drm_gem_create_mmap_offset(&obj->base); |
| if (likely(!err)) |
| return 0; |
| |
| /* Attempt to reap some mmap space from dead objects */ |
| do { |
| err = i915_gem_wait_for_idle(dev_priv, |
| I915_WAIT_INTERRUPTIBLE, |
| MAX_SCHEDULE_TIMEOUT); |
| if (err) |
| break; |
| |
| i915_gem_drain_freed_objects(dev_priv); |
| err = drm_gem_create_mmap_offset(&obj->base); |
| if (!err) |
| break; |
| |
| } while (flush_delayed_work(&dev_priv->gt.retire_work)); |
| |
| return err; |
| } |
| |
| static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj) |
| { |
| drm_gem_free_mmap_offset(&obj->base); |
| } |
| |
| int |
| i915_gem_mmap_gtt(struct drm_file *file, |
| struct drm_device *dev, |
| u32 handle, |
| u64 *offset) |
| { |
| struct drm_i915_gem_object *obj; |
| int ret; |
| |
| obj = i915_gem_object_lookup(file, handle); |
| if (!obj) |
| return -ENOENT; |
| |
| ret = i915_gem_object_create_mmap_offset(obj); |
| if (ret == 0) |
| *offset = drm_vma_node_offset_addr(&obj->base.vma_node); |
| |
| i915_gem_object_put(obj); |
| return ret; |
| } |
| |
| /** |
| * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing |
| * @dev: DRM device |
| * @data: GTT mapping ioctl data |
| * @file: GEM object info |
| * |
| * Simply returns the fake offset to userspace so it can mmap it. |
| * The mmap call will end up in drm_gem_mmap(), which will set things |
| * up so we can get faults in the handler above. |
| * |
| * The fault handler will take care of binding the object into the GTT |
| * (since it may have been evicted to make room for something), allocating |
| * a fence register, and mapping the appropriate aperture address into |
| * userspace. |
| */ |
| int |
| i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data, |
| struct drm_file *file) |
| { |
| struct drm_i915_gem_mmap_gtt *args = data; |
| |
| return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset); |
| } |
| |
| /* Immediately discard the backing storage */ |
| static void |
| i915_gem_object_truncate(struct drm_i915_gem_object *obj) |
| { |
| i915_gem_object_free_mmap_offset(obj); |
| |
| if (obj->base.filp == NULL) |
| return; |
| |
| /* Our goal here is to return as much of the memory as |
| * is possible back to the system as we are called from OOM. |
| * To do this we must instruct the shmfs to drop all of its |
| * backing pages, *now*. |
| */ |
| shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1); |
| obj->mm.madv = __I915_MADV_PURGED; |
| obj->mm.pages = ERR_PTR(-EFAULT); |
| } |
| |
| /* Try to discard unwanted pages */ |
| void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj) |
| { |
| struct address_space *mapping; |
| |
| lockdep_assert_held(&obj->mm.lock); |
| GEM_BUG_ON(i915_gem_object_has_pages(obj)); |
| |
| switch (obj->mm.madv) { |
| case I915_MADV_DONTNEED: |
| i915_gem_object_truncate(obj); |
| case __I915_MADV_PURGED: |
| return; |
| } |
| |
| if (obj->base.filp == NULL) |
| return; |
| |
| mapping = obj->base.filp->f_mapping, |
| invalidate_mapping_pages(mapping, 0, (loff_t)-1); |
| } |
| |
| /* |
| * Move pages to appropriate lru and release the pagevec, decrementing the |
| * ref count of those pages. |
| */ |
| static void check_release_pagevec(struct pagevec *pvec) |
| { |
| check_move_unevictable_pages(pvec); |
| __pagevec_release(pvec); |
| cond_resched(); |
| } |
| |
| static void |
| i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj, |
| struct sg_table *pages) |
| { |
| struct sgt_iter sgt_iter; |
| struct pagevec pvec; |
| struct page *page; |
| |
| __i915_gem_object_release_shmem(obj, pages, true); |
| |
| i915_gem_gtt_finish_pages(obj, pages); |
| |
| if (i915_gem_object_needs_bit17_swizzle(obj)) |
| i915_gem_object_save_bit_17_swizzle(obj, pages); |
| |
| mapping_clear_unevictable(file_inode(obj->base.filp)->i_mapping); |
| |
| pagevec_init(&pvec); |
| for_each_sgt_page(page, sgt_iter, pages) { |
| if (obj->mm.dirty) |
| set_page_dirty(page); |
| |
| if (obj->mm.madv == I915_MADV_WILLNEED) |
| mark_page_accessed(page); |
| |
| if (!pagevec_add(&pvec, page)) |
| check_release_pagevec(&pvec); |
| } |
| if (pagevec_count(&pvec)) |
| check_release_pagevec(&pvec); |
| obj->mm.dirty = false; |
| |
| sg_free_table(pages); |
| kfree(pages); |
| } |
| |
| static void __i915_gem_object_reset_page_iter(struct drm_i915_gem_object *obj) |
| { |
| struct radix_tree_iter iter; |
| void __rcu **slot; |
| |
| rcu_read_lock(); |
| radix_tree_for_each_slot(slot, &obj->mm.get_page.radix, &iter, 0) |
| radix_tree_delete(&obj->mm.get_page.radix, iter.index); |
| rcu_read_unlock(); |
| } |
| |
| static struct sg_table * |
| __i915_gem_object_unset_pages(struct drm_i915_gem_object *obj) |
| { |
| struct drm_i915_private *i915 = to_i915(obj->base.dev); |
| struct sg_table *pages; |
| |
| pages = fetch_and_zero(&obj->mm.pages); |
| if (IS_ERR_OR_NULL(pages)) |
| return pages; |
| |
| spin_lock(&i915->mm.obj_lock); |
| list_del(&obj->mm.link); |
| spin_unlock(&i915->mm.obj_lock); |
| |
| if (obj->mm.mapping) { |
| void *ptr; |
| |
| ptr = page_mask_bits(obj->mm.mapping); |
| if (is_vmalloc_addr(ptr)) |
| vunmap(ptr); |
| else |
| kunmap(kmap_to_page(ptr)); |
| |
| obj->mm.mapping = NULL; |
| } |
| |
| __i915_gem_object_reset_page_iter(obj); |
| obj->mm.page_sizes.phys = obj->mm.page_sizes.sg = 0; |
| |
| return pages; |
| } |
| |
| int __i915_gem_object_put_pages(struct drm_i915_gem_object *obj, |
| enum i915_mm_subclass subclass) |
| { |
| struct sg_table *pages; |
| int ret; |
| |
| if (i915_gem_object_has_pinned_pages(obj)) |
| return -EBUSY; |
| |
| GEM_BUG_ON(obj->bind_count); |
| |
| /* May be called by shrinker from within get_pages() (on another bo) */ |
| mutex_lock_nested(&obj->mm.lock, subclass); |
| if (unlikely(atomic_read(&obj->mm.pages_pin_count))) { |
| ret = -EBUSY; |
| goto unlock; |
| } |
| |
| /* |
| * ->put_pages might need to allocate memory for the bit17 swizzle |
| * array, hence protect them from being reaped by removing them from gtt |
| * lists early. |
| */ |
| pages = __i915_gem_object_unset_pages(obj); |
| |
| /* |
| * XXX Temporary hijinx to avoid updating all backends to handle |
| * NULL pages. In the future, when we have more asynchronous |
| * get_pages backends we should be better able to handle the |
| * cancellation of the async task in a more uniform manner. |
| */ |
| if (!pages && !i915_gem_object_needs_async_cancel(obj)) |
| pages = ERR_PTR(-EINVAL); |
| |
| if (!IS_ERR(pages)) |
| obj->ops->put_pages(obj, pages); |
| |
| ret = 0; |
| unlock: |
| mutex_unlock(&obj->mm.lock); |
| |
| return ret; |
| } |
| |
| bool i915_sg_trim(struct sg_table *orig_st) |
| { |
| struct sg_table new_st; |
| struct scatterlist *sg, *new_sg; |
| unsigned int i; |
| |
| if (orig_st->nents == orig_st->orig_nents) |
| return false; |
| |
| if (sg_alloc_table(&new_st, orig_st->nents, GFP_KERNEL | __GFP_NOWARN)) |
| return false; |
| |
| new_sg = new_st.sgl; |
| for_each_sg(orig_st->sgl, sg, orig_st->nents, i) { |
| sg_set_page(new_sg, sg_page(sg), sg->length, 0); |
| sg_dma_address(new_sg) = sg_dma_address(sg); |
| sg_dma_len(new_sg) = sg_dma_len(sg); |
| |
| new_sg = sg_next(new_sg); |
| } |
| GEM_BUG_ON(new_sg); /* Should walk exactly nents and hit the end */ |
| |
| sg_free_table(orig_st); |
| |
| *orig_st = new_st; |
| return true; |
| } |
| |
| static int i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj) |
| { |
| struct drm_i915_private *dev_priv = to_i915(obj->base.dev); |
| const unsigned long page_count = obj->base.size / PAGE_SIZE; |
| unsigned long i; |
| struct address_space *mapping; |
| struct sg_table *st; |
| struct scatterlist *sg; |
| struct sgt_iter sgt_iter; |
| struct page *page; |
| unsigned long last_pfn = 0; /* suppress gcc warning */ |
| unsigned int max_segment = i915_sg_segment_size(); |
| unsigned int sg_page_sizes; |
| struct pagevec pvec; |
| gfp_t noreclaim; |
| int ret; |
| |
| /* |
| * Assert that the object is not currently in any GPU domain. As it |
| * wasn't in the GTT, there shouldn't be any way it could have been in |
| * a GPU cache |
| */ |
| GEM_BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS); |
| GEM_BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS); |
| |
| /* |
| * If there's no chance of allocating enough pages for the whole |
| * object, bail early. |
| */ |
| if (page_count > totalram_pages()) |
| return -ENOMEM; |
| |
| st = kmalloc(sizeof(*st), GFP_KERNEL); |
| if (st == NULL) |
| return -ENOMEM; |
| |
| rebuild_st: |
| if (sg_alloc_table(st, page_count, GFP_KERNEL)) { |
| kfree(st); |
| return -ENOMEM; |
| } |
| |
| /* |
| * Get the list of pages out of our struct file. They'll be pinned |
| * at this point until we release them. |
| * |
| * Fail silently without starting the shrinker |
| */ |
| mapping = obj->base.filp->f_mapping; |
| mapping_set_unevictable(mapping); |
| noreclaim = mapping_gfp_constraint(mapping, ~__GFP_RECLAIM); |
| noreclaim |= __GFP_NORETRY | __GFP_NOWARN; |
| |
| sg = st->sgl; |
| st->nents = 0; |
| sg_page_sizes = 0; |
| for (i = 0; i < page_count; i++) { |
| const unsigned int shrink[] = { |
| I915_SHRINK_BOUND | I915_SHRINK_UNBOUND | I915_SHRINK_PURGEABLE, |
| 0, |
| }, *s = shrink; |
| gfp_t gfp = noreclaim; |
| |
| do { |
| cond_resched(); |
| page = shmem_read_mapping_page_gfp(mapping, i, gfp); |
| if (likely(!IS_ERR(page))) |
| break; |
| |
| if (!*s) { |
| ret = PTR_ERR(page); |
| goto err_sg; |
| } |
| |
| i915_gem_shrink(dev_priv, 2 * page_count, NULL, *s++); |
| |
| /* |
| * We've tried hard to allocate the memory by reaping |
| * our own buffer, now let the real VM do its job and |
| * go down in flames if truly OOM. |
| * |
| * However, since graphics tend to be disposable, |
| * defer the oom here by reporting the ENOMEM back |
| * to userspace. |
| */ |
| if (!*s) { |
| /* reclaim and warn, but no oom */ |
| gfp = mapping_gfp_mask(mapping); |
| |
| /* |
| * Our bo are always dirty and so we require |
| * kswapd to reclaim our pages (direct reclaim |
| * does not effectively begin pageout of our |
| * buffers on its own). However, direct reclaim |
| * only waits for kswapd when under allocation |
| * congestion. So as a result __GFP_RECLAIM is |
| * unreliable and fails to actually reclaim our |
| * dirty pages -- unless you try over and over |
| * again with !__GFP_NORETRY. However, we still |
| * want to fail this allocation rather than |
| * trigger the out-of-memory killer and for |
| * this we want __GFP_RETRY_MAYFAIL. |
| */ |
| gfp |= __GFP_RETRY_MAYFAIL; |
| } |
| } while (1); |
| |
| if (!i || |
| sg->length >= max_segment || |
| page_to_pfn(page) != last_pfn + 1) { |
| if (i) { |
| sg_page_sizes |= sg->length; |
| sg = sg_next(sg); |
| } |
| st->nents++; |
| sg_set_page(sg, page, PAGE_SIZE, 0); |
| } else { |
| sg->length += PAGE_SIZE; |
| } |
| last_pfn = page_to_pfn(page); |
| |
| /* Check that the i965g/gm workaround works. */ |
| WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL)); |
| } |
| if (sg) { /* loop terminated early; short sg table */ |
| sg_page_sizes |= sg->length; |
| sg_mark_end(sg); |
| } |
| |
| /* Trim unused sg entries to avoid wasting memory. */ |
| i915_sg_trim(st); |
| |
| ret = i915_gem_gtt_prepare_pages(obj, st); |
| if (ret) { |
| /* |
| * DMA remapping failed? One possible cause is that |
| * it could not reserve enough large entries, asking |
| * for PAGE_SIZE chunks instead may be helpful. |
| */ |
| if (max_segment > PAGE_SIZE) { |
| for_each_sgt_page(page, sgt_iter, st) |
| put_page(page); |
| sg_free_table(st); |
| |
| max_segment = PAGE_SIZE; |
| goto rebuild_st; |
| } else { |
| dev_warn(&dev_priv->drm.pdev->dev, |
| "Failed to DMA remap %lu pages\n", |
| page_count); |
| goto err_pages; |
| } |
| } |
| |
| if (i915_gem_object_needs_bit17_swizzle(obj)) |
| i915_gem_object_do_bit_17_swizzle(obj, st); |
| |
| __i915_gem_object_set_pages(obj, st, sg_page_sizes); |
| |
| return 0; |
| |
| err_sg: |
| sg_mark_end(sg); |
| err_pages: |
| mapping_clear_unevictable(mapping); |
| pagevec_init(&pvec); |
| for_each_sgt_page(page, sgt_iter, st) { |
| if (!pagevec_add(&pvec, page)) |
| check_release_pagevec(&pvec); |
| } |
| if (pagevec_count(&pvec)) |
| check_release_pagevec(&pvec); |
| sg_free_table(st); |
| kfree(st); |
| |
| /* |
| * shmemfs first checks if there is enough memory to allocate the page |
| * and reports ENOSPC should there be insufficient, along with the usual |
| * ENOMEM for a genuine allocation failure. |
| * |
| * We use ENOSPC in our driver to mean that we have run out of aperture |
| * space and so want to translate the error from shmemfs back to our |
| * usual understanding of ENOMEM. |
| */ |
| if (ret == -ENOSPC) |
| ret = -ENOMEM; |
| |
| return ret; |
| } |
| |
| void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj, |
| struct sg_table *pages, |
| unsigned int sg_page_sizes) |
| { |
| struct drm_i915_private *i915 = to_i915(obj->base.dev); |
| unsigned long supported = INTEL_INFO(i915)->page_sizes; |
| int i; |
| |
| lockdep_assert_held(&obj->mm.lock); |
| |
| obj->mm.get_page.sg_pos = pages->sgl; |
| obj->mm.get_page.sg_idx = 0; |
| |
| obj->mm.pages = pages; |
| |
| if (i915_gem_object_is_tiled(obj) && |
| i915->quirks & QUIRK_PIN_SWIZZLED_PAGES) { |
| GEM_BUG_ON(obj->mm.quirked); |
| __i915_gem_object_pin_pages(obj); |
| obj->mm.quirked = true; |
| } |
| |
| GEM_BUG_ON(!sg_page_sizes); |
| obj->mm.page_sizes.phys = sg_page_sizes; |
| |
| /* |
| * Calculate the supported page-sizes which fit into the given |
| * sg_page_sizes. This will give us the page-sizes which we may be able |
| * to use opportunistically when later inserting into the GTT. For |
| * example if phys=2G, then in theory we should be able to use 1G, 2M, |
| * 64K or 4K pages, although in practice this will depend on a number of |
| * other factors. |
| */ |
| obj->mm.page_sizes.sg = 0; |
| for_each_set_bit(i, &supported, ilog2(I915_GTT_MAX_PAGE_SIZE) + 1) { |
| if (obj->mm.page_sizes.phys & ~0u << i) |
| obj->mm.page_sizes.sg |= BIT(i); |
| } |
| GEM_BUG_ON(!HAS_PAGE_SIZES(i915, obj->mm.page_sizes.sg)); |
| |
| spin_lock(&i915->mm.obj_lock); |
| list_add(&obj->mm.link, &i915->mm.unbound_list); |
| spin_unlock(&i915->mm.obj_lock); |
| } |
| |
| static int ____i915_gem_object_get_pages(struct drm_i915_gem_object *obj) |
| { |
| int err; |
| |
| if (unlikely(obj->mm.madv != I915_MADV_WILLNEED)) { |
| DRM_DEBUG("Attempting to obtain a purgeable object\n"); |
| return -EFAULT; |
| } |
| |
| err = obj->ops->get_pages(obj); |
| GEM_BUG_ON(!err && !i915_gem_object_has_pages(obj)); |
| |
| return err; |
| } |
| |
| /* Ensure that the associated pages are gathered from the backing storage |
| * and pinned into our object. i915_gem_object_pin_pages() may be called |
| * multiple times before they are released by a single call to |
| * i915_gem_object_unpin_pages() - once the pages are no longer referenced |
| * either as a result of memory pressure (reaping pages under the shrinker) |
| * or as the object is itself released. |
| */ |
| int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj) |
| { |
| int err; |
| |
| err = mutex_lock_interruptible(&obj->mm.lock); |
| if (err) |
| return err; |
| |
| if (unlikely(!i915_gem_object_has_pages(obj))) { |
| GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj)); |
| |
| err = ____i915_gem_object_get_pages(obj); |
| if (err) |
| goto unlock; |
| |
| smp_mb__before_atomic(); |
| } |
| atomic_inc(&obj->mm.pages_pin_count); |
| |
| unlock: |
| mutex_unlock(&obj->mm.lock); |
| return err; |
| } |
| |
| /* The 'mapping' part of i915_gem_object_pin_map() below */ |
| static void *i915_gem_object_map(const struct drm_i915_gem_object *obj, |
| enum i915_map_type type) |
| { |
| unsigned long n_pages = obj->base.size >> PAGE_SHIFT; |
| struct sg_table *sgt = obj->mm.pages; |
| struct sgt_iter sgt_iter; |
| struct page *page; |
| struct page *stack_pages[32]; |
| struct page **pages = stack_pages; |
| unsigned long i = 0; |
| pgprot_t pgprot; |
| void *addr; |
| |
| /* A single page can always be kmapped */ |
| if (n_pages == 1 && type == I915_MAP_WB) |
| return kmap(sg_page(sgt->sgl)); |
| |
| if (n_pages > ARRAY_SIZE(stack_pages)) { |
| /* Too big for stack -- allocate temporary array instead */ |
| pages = kvmalloc_array(n_pages, sizeof(*pages), GFP_KERNEL); |
| if (!pages) |
| return NULL; |
| } |
| |
| for_each_sgt_page(page, sgt_iter, sgt) |
| pages[i++] = page; |
| |
| /* Check that we have the expected number of pages */ |
| GEM_BUG_ON(i != n_pages); |
| |
| switch (type) { |
| default: |
| MISSING_CASE(type); |
| /* fallthrough to use PAGE_KERNEL anyway */ |
| case I915_MAP_WB: |
| pgprot = PAGE_KERNEL; |
| break; |
| case I915_MAP_WC: |
| pgprot = pgprot_writecombine(PAGE_KERNEL_IO); |
| break; |
| } |
| addr = vmap(pages, n_pages, 0, pgprot); |
| |
| if (pages != stack_pages) |
| kvfree(pages); |
| |
| return addr; |
| } |
| |
| /* get, pin, and map the pages of the object into kernel space */ |
| void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj, |
| enum i915_map_type type) |
| { |
| enum i915_map_type has_type; |
| bool pinned; |
| void *ptr; |
| int ret; |
| |
| if (unlikely(!i915_gem_object_has_struct_page(obj))) |
| return ERR_PTR(-ENXIO); |
| |
| ret = mutex_lock_interruptible(&obj->mm.lock); |
| if (ret) |
| return ERR_PTR(ret); |
| |
| pinned = !(type & I915_MAP_OVERRIDE); |
| type &= ~I915_MAP_OVERRIDE; |
| |
| if (!atomic_inc_not_zero(&obj->mm.pages_pin_count)) { |
| if (unlikely(!i915_gem_object_has_pages(obj))) { |
| GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj)); |
| |
| ret = ____i915_gem_object_get_pages(obj); |
| if (ret) |
| goto err_unlock; |
| |
| smp_mb__before_atomic(); |
| } |
| atomic_inc(&obj->mm.pages_pin_count); |
| pinned = false; |
| } |
| GEM_BUG_ON(!i915_gem_object_has_pages(obj)); |
| |
| ptr = page_unpack_bits(obj->mm.mapping, &has_type); |
| if (ptr && has_type != type) { |
| if (pinned) { |
| ret = -EBUSY; |
| goto err_unpin; |
| } |
| |
| if (is_vmalloc_addr(ptr)) |
| vunmap(ptr); |
| else |
| kunmap(kmap_to_page(ptr)); |
| |
| ptr = obj->mm.mapping = NULL; |
| } |
| |
| if (!ptr) { |
| ptr = i915_gem_object_map(obj, type); |
| if (!ptr) { |
| ret = -ENOMEM; |
| goto err_unpin; |
| } |
| |
| obj->mm.mapping = page_pack_bits(ptr, type); |
| } |
| |
| out_unlock: |
| mutex_unlock(&obj->mm.lock); |
| return ptr; |
| |
| err_unpin: |
| atomic_dec(&obj->mm.pages_pin_count); |
| err_unlock: |
| ptr = ERR_PTR(ret); |
| goto out_unlock; |
| } |
| |
| static int |
| i915_gem_object_pwrite_gtt(struct drm_i915_gem_object *obj, |
| const struct drm_i915_gem_pwrite *arg) |
| { |
| struct address_space *mapping = obj->base.filp->f_mapping; |
| char __user *user_data = u64_to_user_ptr(arg->data_ptr); |
| u64 remain, offset; |
| unsigned int pg; |
| |
| /* Before we instantiate/pin the backing store for our use, we |
| * can prepopulate the shmemfs filp efficiently using a write into |
| * the pagecache. We avoid the penalty of instantiating all the |
| * pages, important if the user is just writing to a few and never |
| * uses the object on the GPU, and using a direct write into shmemfs |
| * allows it to avoid the cost of retrieving a page (either swapin |
| * or clearing-before-use) before it is overwritten. |
| */ |
| if (i915_gem_object_has_pages(obj)) |
| return -ENODEV; |
| |
| if (obj->mm.madv != I915_MADV_WILLNEED) |
| return -EFAULT; |
| |
| /* Before the pages are instantiated the object is treated as being |
| * in the CPU domain. The pages will be clflushed as required before |
| * use, and we can freely write into the pages directly. If userspace |
| * races pwrite with any other operation; corruption will ensue - |
| * that is userspace's prerogative! |
| */ |
| |
| remain = arg->size; |
| offset = arg->offset; |
| pg = offset_in_page(offset); |
| |
| do { |
| unsigned int len, unwritten; |
| struct page *page; |
| void *data, *vaddr; |
| int err; |
| |
| len = PAGE_SIZE - pg; |
| if (len > remain) |
| len = remain; |
| |
| err = pagecache_write_begin(obj->base.filp, mapping, |
| offset, len, 0, |
| &page, &data); |
| if (err < 0) |
| return err; |
| |
| vaddr = kmap(page); |
| unwritten = copy_from_user(vaddr + pg, user_data, len); |
| kunmap(page); |
| |
| err = pagecache_write_end(obj->base.filp, mapping, |
| offset, len, len - unwritten, |
| page, data); |
| if (err < 0) |
| return err; |
| |
| if (unwritten) |
| return -EFAULT; |
| |
| remain -= len; |
| user_data += len; |
| offset += len; |
| pg = 0; |
| } while (remain); |
| |
| return 0; |
| } |
| |
| static bool match_ring(struct i915_request *rq) |
| { |
| struct drm_i915_private *dev_priv = rq->i915; |
| u32 ring = I915_READ(RING_START(rq->engine->mmio_base)); |
| |
| return ring == i915_ggtt_offset(rq->ring->vma); |
| } |
| |
| struct i915_request * |
| i915_gem_find_active_request(struct intel_engine_cs *engine) |
| { |
| struct i915_request *request, *active = NULL; |
| unsigned long flags; |
| |
| /* |
| * We are called by the error capture, reset and to dump engine |
| * state at random points in time. In particular, note that neither is |
| * crucially ordered with an interrupt. After a hang, the GPU is dead |
| * and we assume that no more writes can happen (we waited long enough |
| * for all writes that were in transaction to be flushed) - adding an |
| * extra delay for a recent interrupt is pointless. Hence, we do |
| * not need an engine->irq_seqno_barrier() before the seqno reads. |
| * At all other times, we must assume the GPU is still running, but |
| * we only care about the snapshot of this moment. |
| */ |
| spin_lock_irqsave(&engine->timeline.lock, flags); |
| list_for_each_entry(request, &engine->timeline.requests, link) { |
| if (i915_request_completed(request)) |
| continue; |
| |
| if (!i915_request_started(request)) |
| break; |
| |
| /* More than one preemptible request may match! */ |
| if (!match_ring(request)) |
| break; |
| |
| active = request; |
| break; |
| } |
| spin_unlock_irqrestore(&engine->timeline.lock, flags); |
| |
| return active; |
| } |
| |
| static void |
| i915_gem_retire_work_handler(struct work_struct *work) |
| { |
| struct drm_i915_private *dev_priv = |
| container_of(work, typeof(*dev_priv), gt.retire_work.work); |
| struct drm_device *dev = &dev_priv->drm; |
| |
| /* Come back later if the device is busy... */ |
| if (mutex_trylock(&dev->struct_mutex)) { |
| i915_retire_requests(dev_priv); |
| mutex_unlock(&dev->struct_mutex); |
| } |
| |
| /* |
| * Keep the retire handler running until we are finally idle. |
| * We do not need to do this test under locking as in the worst-case |
| * we queue the retire worker once too often. |
| */ |
| if (READ_ONCE(dev_priv->gt.awake)) |
| queue_delayed_work(dev_priv->wq, |
| &dev_priv->gt.retire_work, |
| round_jiffies_up_relative(HZ)); |
| } |
| |
| static void shrink_caches(struct drm_i915_private *i915) |
| { |
| /* |
| * kmem_cache_shrink() discards empty slabs and reorders partially |
| * filled slabs to prioritise allocating from the mostly full slabs, |
| * with the aim of reducing fragmentation. |
| */ |
| kmem_cache_shrink(i915->priorities); |
| kmem_cache_shrink(i915->dependencies); |
| kmem_cache_shrink(i915->requests); |
| kmem_cache_shrink(i915->luts); |
| kmem_cache_shrink(i915->vmas); |
| kmem_cache_shrink(i915->objects); |
| } |
| |
| struct sleep_rcu_work { |
| union { |
| struct rcu_head rcu; |
| struct work_struct work; |
| }; |
| struct drm_i915_private *i915; |
| unsigned int epoch; |
| }; |
| |
| static inline bool |
| same_epoch(struct drm_i915_private *i915, unsigned int epoch) |
| { |
| /* |
| * There is a small chance that the epoch wrapped since we started |
| * sleeping. If we assume that epoch is at least a u32, then it will |
| * take at least 2^32 * 100ms for it to wrap, or about 326 years. |
| */ |
| return epoch == READ_ONCE(i915->gt.epoch); |
| } |
| |
| static void __sleep_work(struct work_struct *work) |
| { |
| struct sleep_rcu_work *s = container_of(work, typeof(*s), work); |
| struct drm_i915_private *i915 = s->i915; |
| unsigned int epoch = s->epoch; |
| |
| kfree(s); |
| if (same_epoch(i915, epoch)) |
| shrink_caches(i915); |
| } |
| |
| static void __sleep_rcu(struct rcu_head *rcu) |
| { |
| struct sleep_rcu_work *s = container_of(rcu, typeof(*s), rcu); |
| struct drm_i915_private *i915 = s->i915; |
| |
| destroy_rcu_head(&s->rcu); |
| |
| if (same_epoch(i915, s->epoch)) { |
| INIT_WORK(&s->work, __sleep_work); |
| queue_work(i915->wq, &s->work); |
| } else { |
| kfree(s); |
| } |
| } |
| |
| static inline bool |
| new_requests_since_last_retire(const struct drm_i915_private *i915) |
| { |
| return (READ_ONCE(i915->gt.active_requests) || |
| work_pending(&i915->gt.idle_work.work)); |
| } |
| |
| static void assert_kernel_context_is_current(struct drm_i915_private *i915) |
| { |
| struct intel_engine_cs *engine; |
| enum intel_engine_id id; |
| |
| if (i915_terminally_wedged(&i915->gpu_error)) |
| return; |
| |
| GEM_BUG_ON(i915->gt.active_requests); |
| for_each_engine(engine, i915, id) { |
| GEM_BUG_ON(__i915_gem_active_peek(&engine->timeline.last_request)); |
| GEM_BUG_ON(engine->last_retired_context != |
| to_intel_context(i915->kernel_context, engine)); |
| } |
| } |
| |
| static void |
| i915_gem_idle_work_handler(struct work_struct *work) |
| { |
| struct drm_i915_private *dev_priv = |
| container_of(work, typeof(*dev_priv), gt.idle_work.work); |
| unsigned int epoch = I915_EPOCH_INVALID; |
| bool rearm_hangcheck; |
| |
| if (!READ_ONCE(dev_priv->gt.awake)) |
| return; |
| |
| if (READ_ONCE(dev_priv->gt.active_requests)) |
| return; |
| |
| /* |
| * Flush out the last user context, leaving only the pinned |
| * kernel context resident. When we are idling on the kernel_context, |
| * no more new requests (with a context switch) are emitted and we |
| * can finally rest. A consequence is that the idle work handler is |
| * always called at least twice before idling (and if the system is |
| * idle that implies a round trip through the retire worker). |
| */ |
| mutex_lock(&dev_priv->drm.struct_mutex); |
| i915_gem_switch_to_kernel_context(dev_priv); |
| mutex_unlock(&dev_priv->drm.struct_mutex); |
| |
| GEM_TRACE("active_requests=%d (after switch-to-kernel-context)\n", |
| READ_ONCE(dev_priv->gt.active_requests)); |
| |
| /* |
| * Wait for last execlists context complete, but bail out in case a |
| * new request is submitted. As we don't trust the hardware, we |
| * continue on if the wait times out. This is necessary to allow |
| * the machine to suspend even if the hardware dies, and we will |
| * try to recover in resume (after depriving the hardware of power, |
| * it may be in a better mmod). |
| */ |
| __wait_for(if (new_requests_since_last_retire(dev_priv)) return, |
| intel_engines_are_idle(dev_priv), |
| I915_IDLE_ENGINES_TIMEOUT * 1000, |
| 10, 500); |
| |
| rearm_hangcheck = |
| cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work); |
| |
| if (!mutex_trylock(&dev_priv->drm.struct_mutex)) { |
| /* Currently busy, come back later */ |
| mod_delayed_work(dev_priv->wq, |
| &dev_priv->gt.idle_work, |
| msecs_to_jiffies(50)); |
| goto out_rearm; |
| } |
| |
| /* |
| * New request retired after this work handler started, extend active |
| * period until next instance of the work. |
| */ |
| if (new_requests_since_last_retire(dev_priv)) |
| goto out_unlock; |
| |
| epoch = __i915_gem_park(dev_priv); |
| |
| assert_kernel_context_is_current(dev_priv); |
| |
| rearm_hangcheck = false; |
| out_unlock: |
| mutex_unlock(&dev_priv->drm.struct_mutex); |
| |
| out_rearm: |
| if (rearm_hangcheck) { |
| GEM_BUG_ON(!dev_priv->gt.awake); |
| i915_queue_hangcheck(dev_priv); |
| } |
| |
| /* |
| * When we are idle, it is an opportune time to reap our caches. |
| * However, we have many objects that utilise RCU and the ordered |
| * i915->wq that this work is executing on. To try and flush any |
| * pending frees now we are idle, we first wait for an RCU grace |
| * period, and then queue a task (that will run last on the wq) to |
| * shrink and re-optimize the caches. |
| */ |
| if (same_epoch(dev_priv, epoch)) { |
| struct sleep_rcu_work *s = kmalloc(sizeof(*s), GFP_KERNEL); |
| if (s) { |
| init_rcu_head(&s->rcu); |
| s->i915 = dev_priv; |
| s->epoch = epoch; |
| call_rcu(&s->rcu, __sleep_rcu); |
| } |
| } |
| } |
| |
| void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file) |
| { |
| struct drm_i915_private *i915 = to_i915(gem->dev); |
| struct drm_i915_gem_object *obj = to_intel_bo(gem); |
| struct drm_i915_file_private *fpriv = file->driver_priv; |
| struct i915_lut_handle *lut, *ln; |
| |
| mutex_lock(&i915->drm.struct_mutex); |
| |
| list_for_each_entry_safe(lut, ln, &obj->lut_list, obj_link) { |
| struct i915_gem_context *ctx = lut->ctx; |
| struct i915_vma *vma; |
| |
| GEM_BUG_ON(ctx->file_priv == ERR_PTR(-EBADF)); |
| if (ctx->file_priv != fpriv) |
| continue; |
| |
| vma = radix_tree_delete(&ctx->handles_vma, lut->handle); |
| GEM_BUG_ON(vma->obj != obj); |
| |
| /* We allow the process to have multiple handles to the same |
| * vma, in the same fd namespace, by virtue of flink/open. |
| */ |
| GEM_BUG_ON(!vma->open_count); |
| if (!--vma->open_count && !i915_vma_is_ggtt(vma)) |
| i915_vma_close(vma); |
| |
| list_del(&lut->obj_link); |
| list_del(&lut->ctx_link); |
| |
| kmem_cache_free(i915->luts, lut); |
| __i915_gem_object_release_unless_active(obj); |
| } |
| |
| mutex_unlock(&i915->drm.struct_mutex); |
| } |
| |
| static unsigned long to_wait_timeout(s64 timeout_ns) |
| { |
| if (timeout_ns < 0) |
| return MAX_SCHEDULE_TIMEOUT; |
| |
| if (timeout_ns == 0) |
| return 0; |
| |
| return nsecs_to_jiffies_timeout(timeout_ns); |
| } |
| |
| /** |
| * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT |
| * @dev: drm device pointer |
| * @data: ioctl data blob |
| * @file: drm file pointer |
| * |
| * Returns 0 if successful, else an error is returned with the remaining time in |
| * the timeout parameter. |
| * -ETIME: object is still busy after timeout |
| * -ERESTARTSYS: signal interrupted the wait |
| * -ENONENT: object doesn't exist |
| * Also possible, but rare: |
| * -EAGAIN: incomplete, restart syscall |
| * -ENOMEM: damn |
| * -ENODEV: Internal IRQ fail |
| * -E?: The add request failed |
| * |
| * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any |
| * non-zero timeout parameter the wait ioctl will wait for the given number of |
| * nanoseconds on an object becoming unbusy. Since the wait itself does so |
| * without holding struct_mutex the object may become re-busied before this |
| * function completes. A similar but shorter * race condition exists in the busy |
| * ioctl |
| */ |
| int |
| i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file) |
| { |
| struct drm_i915_gem_wait *args = data; |
| struct drm_i915_gem_object *obj; |
| ktime_t start; |
| long ret; |
| |
| if (args->flags != 0) |
| return -EINVAL; |
| |
| obj = i915_gem_object_lookup(file, args->bo_handle); |
| if (!obj) |
| return -ENOENT; |
| |
| start = ktime_get(); |
| |
| ret = i915_gem_object_wait(obj, |
| I915_WAIT_INTERRUPTIBLE | |
| I915_WAIT_PRIORITY | |
| I915_WAIT_ALL, |
| to_wait_timeout(args->timeout_ns), |
| to_rps_client(file)); |
| |
| if (args->timeout_ns > 0) { |
| args->timeout_ns -= ktime_to_ns(ktime_sub(ktime_get(), start)); |
| if (args->timeout_ns < 0) |
| args->timeout_ns = 0; |
| |
| /* |
| * Apparently ktime isn't accurate enough and occasionally has a |
| * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch |
| * things up to make the test happy. We allow up to 1 jiffy. |
| * |
| * This is a regression from the timespec->ktime conversion. |
| */ |
| if (ret == -ETIME && !nsecs_to_jiffies(args->timeout_ns)) |
| args->timeout_ns = 0; |
| |
| /* Asked to wait beyond the jiffie/scheduler precision? */ |
| if (ret == -ETIME && args->timeout_ns) |
| ret = -EAGAIN; |
| } |
| |
| i915_gem_object_put(obj); |
| return ret; |
| } |
| |
| static int wait_for_engines(struct drm_i915_private *i915) |
| { |
| if (wait_for(intel_engines_are_idle(i915), I915_IDLE_ENGINES_TIMEOUT)) { |
| dev_err(i915->drm.dev, |
| "Failed to idle engines, declaring wedged!\n"); |
| GEM_TRACE_DUMP(); |
| i915_gem_set_wedged(i915); |
| return -EIO; |
| } |
| |
| return 0; |
| } |
| |
| static long |
| wait_for_timelines(struct drm_i915_private *i915, |
| unsigned int flags, long timeout) |
| { |
| struct i915_gt_timelines *gt = &i915->gt.timelines; |
| struct i915_timeline *tl; |
| |
| if (!READ_ONCE(i915->gt.active_requests)) |
| return timeout; |
| |
| mutex_lock(>->mutex); |
| list_for_each_entry(tl, >->active_list, link) { |
| struct i915_request *rq; |
| |
| rq = i915_gem_active_get_unlocked(&tl->last_request); |
| if (!rq) |
| continue; |
| |
| mutex_unlock(>->mutex); |
| |
| /* |
| * "Race-to-idle". |
| * |
| * Switching to the kernel context is often used a synchronous |
| * step prior to idling, e.g. in suspend for flushing all |
| * current operations to memory before sleeping. These we |
| * want to complete as quickly as possible to avoid prolonged |
| * stalls, so allow the gpu to boost to maximum clocks. |
| */ |
| if (flags & I915_WAIT_FOR_IDLE_BOOST) |
| gen6_rps_boost(rq, NULL); |
| |
| timeout = i915_request_wait(rq, flags, timeout); |
| i915_request_put(rq); |
| if (timeout < 0) |
| return timeout; |
| |
| /* restart after reacquiring the lock */ |
| mutex_lock(>->mutex); |
| tl = list_entry(>->active_list, typeof(*tl), link); |
| } |
| mutex_unlock(>->mutex); |
| |
| return timeout; |
| } |
| |
| int i915_gem_wait_for_idle(struct drm_i915_private *i915, |
| unsigned int flags, long timeout) |
| { |
| GEM_TRACE("flags=%x (%s), timeout=%ld%s\n", |
| flags, flags & I915_WAIT_LOCKED ? "locked" : "unlocked", |
| timeout, timeout == MAX_SCHEDULE_TIMEOUT ? " (forever)" : ""); |
| |
| /* If the device is asleep, we have no requests outstanding */ |
| if (!READ_ONCE(i915->gt.awake)) |
| return 0; |
| |
| timeout = wait_for_timelines(i915, flags, timeout); |
| if (timeout < 0) |
| return timeout; |
| |
| if (flags & I915_WAIT_LOCKED) { |
| int err; |
| |
| lockdep_assert_held(&i915->drm.struct_mutex); |
| |
| if (GEM_SHOW_DEBUG() && !timeout) { |
| /* Presume that timeout was non-zero to begin with! */ |
| dev_warn(&i915->drm.pdev->dev, |
| "Missed idle-completion interrupt!\n"); |
| GEM_TRACE_DUMP(); |
| } |
| |
| err = wait_for_engines(i915); |
| if (err) |
| return err; |
| |
| i915_retire_requests(i915); |
| GEM_BUG_ON(i915->gt.active_requests); |
| } |
| |
| return 0; |
| } |
| |
| static void __i915_gem_object_flush_for_display(struct drm_i915_gem_object *obj) |
| { |
| /* |
| * We manually flush the CPU domain so that we can override and |
| * force the flush for the display, and perform it asyncrhonously. |
| */ |
| flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU); |
| if (obj->cache_dirty) |
| i915_gem_clflush_object(obj, I915_CLFLUSH_FORCE); |
| obj->write_domain = 0; |
| } |
| |
| void i915_gem_object_flush_if_display(struct drm_i915_gem_object *obj) |
| { |
| if (!READ_ONCE(obj->pin_global)) |
| return; |
| |
| mutex_lock(&obj->base.dev->struct_mutex); |
| __i915_gem_object_flush_for_display(obj); |
| mutex_unlock(&obj->base.dev->struct_mutex); |
| } |
| |
| /** |
| * Moves a single object to the WC read, and possibly write domain. |
| * @obj: object to act on |
| * @write: ask for write access or read only |
| * |
| * This function returns when the move is complete, including waiting on |
| * flushes to occur. |
| */ |
| int |
| i915_gem_object_set_to_wc_domain(struct drm_i915_gem_object *obj, bool write) |
| { |
| int ret; |
| |
| lockdep_assert_held(&obj->base.dev->struct_mutex); |
| |
| ret = i915_gem_object_wait(obj, |
| I915_WAIT_INTERRUPTIBLE | |
| I915_WAIT_LOCKED | |
| (write ? I915_WAIT_ALL : 0), |
| MAX_SCHEDULE_TIMEOUT, |
| NULL); |
| if (ret) |
| return ret; |
| |
| if (obj->write_domain == I915_GEM_DOMAIN_WC) |
| return 0; |
| |
| /* Flush and acquire obj->pages so that we are coherent through |
| * direct access in memory with previous cached writes through |
| * shmemfs and that our cache domain tracking remains valid. |
| * For example, if the obj->filp was moved to swap without us |
| * being notified and releasing the pages, we would mistakenly |
| * continue to assume that the obj remained out of the CPU cached |
| * domain. |
| */ |
| ret = i915_gem_object_pin_pages(obj); |
| if (ret) |
| return ret; |
| |
| flush_write_domain(obj, ~I915_GEM_DOMAIN_WC); |
| |
| /* Serialise direct access to this object with the barriers for |
| * coherent writes from the GPU, by effectively invalidating the |
| * WC domain upon first access. |
| */ |
| if ((obj->read_domains & I915_GEM_DOMAIN_WC) == 0) |
| mb(); |
| |
| /* It should now be out of any other write domains, and we can update |
| * the domain values for our changes. |
| */ |
| GEM_BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_WC) != 0); |
| obj->read_domains |= I915_GEM_DOMAIN_WC; |
| if (write) { |
| obj->read_domains = I915_GEM_DOMAIN_WC; |
| obj->write_domain = I915_GEM_DOMAIN_WC; |
| obj->mm.dirty = true; |
| } |
| |
| i915_gem_object_unpin_pages(obj); |
| return 0; |
| } |
| |
| /** |
| * Moves a single object to the GTT read, and possibly write domain. |
| * @obj: object to act on |
| * @write: ask for write access or read only |
| * |
| * This function returns when the move is complete, including waiting on |
| * flushes to occur. |
| */ |
| int |
| i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write) |
| { |
| int ret; |
| |
| lockdep_assert_held(&obj->base.dev->struct_mutex); |
| |
| ret = i915_gem_object_wait(obj, |
| I915_WAIT_INTERRUPTIBLE | |
| I915_WAIT_LOCKED | |
| (write ? I915_WAIT_ALL : 0), |
| MAX_SCHEDULE_TIMEOUT, |
| NULL); |
| if (ret) |
| return ret; |
| |
| if (obj->write_domain == I915_GEM_DOMAIN_GTT) |
| return 0; |
| |
| /* Flush and acquire obj->pages so that we are coherent through |
| * direct access in memory with previous cached writes through |
| * shmemfs and that our cache domain tracking remains valid. |
| * For example, if the obj->filp was moved to swap without us |
| * being notified and releasing the pages, we would mistakenly |
| * continue to assume that the obj remained out of the CPU cached |
| * domain. |
| */ |
| ret = i915_gem_object_pin_pages(obj); |
| if (ret) |
| return ret; |
| |
| flush_write_domain(obj, ~I915_GEM_DOMAIN_GTT); |
| |
| /* Serialise direct access to this object with the barriers for |
| * coherent writes from the GPU, by effectively invalidating the |
| * GTT domain upon first access. |
| */ |
| if ((obj->read_domains & I915_GEM_DOMAIN_GTT) == 0) |
| mb(); |
| |
| /* It should now be out of any other write domains, and we can update |
| * the domain values for our changes. |
| */ |
| GEM_BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0); |
| obj->read_domains |= I915_GEM_DOMAIN_GTT; |
| if (write) { |
| obj->read_domains = I915_GEM_DOMAIN_GTT; |
| obj->write_domain = I915_GEM_DOMAIN_GTT; |
| obj->mm.dirty = true; |
| } |
| |
| i915_gem_object_unpin_pages(obj); |
| return 0; |
| } |
| |
| /** |
| * Changes the cache-level of an object across all VMA. |
| * @obj: object to act on |
| * @cache_level: new cache level to set for the object |
| * |
| * After this function returns, the object will be in the new cache-level |
| * across all GTT and the contents of the backing storage will be coherent, |
| * with respect to the new cache-level. In order to keep the backing storage |
| * coherent for all users, we only allow a single cache level to be set |
| * globally on the object and prevent it from being changed whilst the |
| * hardware is reading from the object. That is if the object is currently |
| * on the scanout it will be set to uncached (or equivalent display |
| * cache coherency) and all non-MOCS GPU access will also be uncached so |
| * that all direct access to the scanout remains coherent. |
| */ |
| int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj, |
| enum i915_cache_level cache_level) |
| { |
| struct i915_vma *vma; |
| int ret; |
| |
| lockdep_assert_held(&obj->base.dev->struct_mutex); |
| |
| if (obj->cache_level == cache_level) |
| return 0; |
| |
| /* Inspect the list of currently bound VMA and unbind any that would |
| * be invalid given the new cache-level. This is principally to |
| * catch the issue of the CS prefetch crossing page boundaries and |
| * reading an invalid PTE on older architectures. |
| */ |
| restart: |
| list_for_each_entry(vma, &obj->vma.list, obj_link) { |
| if (!drm_mm_node_allocated(&vma->node)) |
| continue; |
| |
| if (i915_vma_is_pinned(vma)) { |
| DRM_DEBUG("can not change the cache level of pinned objects\n"); |
| return -EBUSY; |
| } |
| |
| if (!i915_vma_is_closed(vma) && |
| i915_gem_valid_gtt_space(vma, cache_level)) |
| continue; |
| |
| ret = i915_vma_unbind(vma); |
| if (ret) |
| return ret; |
| |
| /* As unbinding may affect other elements in the |
| * obj->vma_list (due to side-effects from retiring |
| * an active vma), play safe and restart the iterator. |
| */ |
| goto restart; |
| } |
| |
| /* We can reuse the existing drm_mm nodes but need to change the |
| * cache-level on the PTE. We could simply unbind them all and |
| * rebind with the correct cache-level on next use. However since |
| * we already have a valid slot, dma mapping, pages etc, we may as |
| * rewrite the PTE in the belief that doing so tramples upon less |
| * state and so involves less work. |
| */ |
| if (obj->bind_count) { |
| /* Before we change the PTE, the GPU must not be accessing it. |
| * If we wait upon the object, we know that all the bound |
| * VMA are no longer active. |
| */ |
| ret = i915_gem_object_wait(obj, |
| I915_WAIT_INTERRUPTIBLE | |
| I915_WAIT_LOCKED | |
| I915_WAIT_ALL, |
| MAX_SCHEDULE_TIMEOUT, |
| NULL); |
| if (ret) |
| return ret; |
| |
| if (!HAS_LLC(to_i915(obj->base.dev)) && |
| cache_level != I915_CACHE_NONE) { |
| /* Access to snoopable pages through the GTT is |
| * incoherent and on some machines causes a hard |
| * lockup. Relinquish the CPU mmaping to force |
| * userspace to refault in the pages and we can |
| * then double check if the GTT mapping is still |
| * valid for that pointer access. |
| */ |
| i915_gem_release_mmap(obj); |
| |
| /* As we no longer need a fence for GTT access, |
| * we can relinquish it now (and so prevent having |
| * to steal a fence from someone else on the next |
| * fence request). Note GPU activity would have |
| * dropped the fence as all snoopable access is |
| * supposed to be linear. |
| */ |
| for_each_ggtt_vma(vma, obj) { |
| ret = i915_vma_put_fence(vma); |
| if (ret) |
| return ret; |
| } |
| } else { |
| /* We either have incoherent backing store and |
| * so no GTT access or the architecture is fully |
| * coherent. In such cases, existing GTT mmaps |
| * ignore the cache bit in the PTE and we can |
| * rewrite it without confusing the GPU or having |
| * to force userspace to fault back in its mmaps. |
| */ |
| } |
| |
| list_for_each_entry(vma, &obj->vma.list, obj_link) { |
| if (!drm_mm_node_allocated(&vma->node)) |
| continue; |
| |
| ret = i915_vma_bind(vma, cache_level, PIN_UPDATE); |
| if (ret) |
| return ret; |
| } |
| } |
| |
| list_for_each_entry(vma, &obj->vma.list, obj_link) |
| vma->node.color = cache_level; |
| i915_gem_object_set_cache_coherency(obj, cache_level); |
| obj->cache_dirty = true; /* Always invalidate stale cachelines */ |
| |
| return 0; |
| } |
| |
| int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data, |
| struct drm_file *file) |
| { |
| struct drm_i915_gem_caching *args = data; |
| struct drm_i915_gem_object *obj; |
| int err = 0; |
| |
| rcu_read_lock(); |
| obj = i915_gem_object_lookup_rcu(file, args->handle); |
| if (!obj) { |
| err = -ENOENT; |
| goto out; |
| } |
| |
| switch (obj->cache_level) { |
| case I915_CACHE_LLC: |
| case I915_CACHE_L3_LLC: |
| args->caching = I915_CACHING_CACHED; |
| break; |
| |
| case I915_CACHE_WT: |
| args->caching = I915_CACHING_DISPLAY; |
| break; |
| |
| default: |
| args->caching = I915_CACHING_NONE; |
| break; |
| } |
| out: |
| rcu_read_unlock(); |
| return err; |
| } |
| |
| int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data, |
| struct drm_file *file) |
| { |
| struct drm_i915_private *i915 = to_i915(dev); |
| struct drm_i915_gem_caching *args = data; |
| struct drm_i915_gem_object *obj; |
| enum i915_cache_level level; |
| int ret = 0; |
| |
| switch (args->caching) { |
| case I915_CACHING_NONE: |
| level = I915_CACHE_NONE; |
| break; |
| case I915_CACHING_CACHED: |
| /* |
| * Due to a HW issue on BXT A stepping, GPU stores via a |
| * snooped mapping may leave stale data in a corresponding CPU |
| * cacheline, whereas normally such cachelines would get |
| * invalidated. |
| */ |
| if (!HAS_LLC(i915) && !HAS_SNOOP(i915)) |
| return -ENODEV; |
| |
| level = I915_CACHE_LLC; |
| break; |
| case I915_CACHING_DISPLAY: |
| level = HAS_WT(i915) ? I915_CACHE_WT : I915_CACHE_NONE; |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| obj = i915_gem_object_lookup(file, args->handle); |
| if (!obj) |
| return -ENOENT; |
| |
| /* |
| * The caching mode of proxy object is handled by its generator, and |
| * not allowed to be changed by userspace. |
| */ |
| if (i915_gem_object_is_proxy(obj)) { |
| ret = -ENXIO; |
| goto out; |
| } |
| |
| if (obj->cache_level == level) |
| goto out; |
| |
| ret = i915_gem_object_wait(obj, |
| I915_WAIT_INTERRUPTIBLE, |
| MAX_SCHEDULE_TIMEOUT, |
| to_rps_client(file)); |
| if (ret) |
| goto out; |
| |
| ret = i915_mutex_lock_interruptible(dev); |
| if (ret) |
| goto out; |
| |
| ret = i915_gem_object_set_cache_level(obj, level); |
| mutex_unlock(&dev->struct_mutex); |
| |
| out: |
| i915_gem_object_put(obj); |
| return ret; |
| } |
| |
| /* |
| * Prepare buffer for display plane (scanout, cursors, etc). Can be called from |
| * an uninterruptible phase (modesetting) and allows any flushes to be pipelined |
| * (for pageflips). We only flush the caches while preparing the buffer for |
| * display, the callers are responsible for frontbuffer flush. |
| */ |
| struct i915_vma * |
| i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj, |
| u32 alignment, |
| const struct i915_ggtt_view *view, |
| unsigned int flags) |
| { |
| struct i915_vma *vma; |
| int ret; |
| |
| lockdep_assert_held(&obj->base.dev->struct_mutex); |
| |
| /* Mark the global pin early so that we account for the |
| * display coherency whilst setting up the cache domains. |
| */ |
| obj->pin_global++; |
| |
| /* The display engine is not coherent with the LLC cache on gen6. As |
| * a result, we make sure that the pinning that is about to occur is |
| * done with uncached PTEs. This is lowest common denominator for all |
| * chipsets. |
| * |
| * However for gen6+, we could do better by using the GFDT bit instead |
| * of uncaching, which would allow us to flush all the LLC-cached data |
| * with that bit in the PTE to main memory with just one PIPE_CONTROL. |
| */ |
| ret = i915_gem_object_set_cache_level(obj, |
| HAS_WT(to_i915(obj->base.dev)) ? |
| I915_CACHE_WT : I915_CACHE_NONE); |
| if (ret) { |
| vma = ERR_PTR(ret); |
| goto err_unpin_global; |
| } |
| |
| /* As the user may map the buffer once pinned in the display plane |
| * (e.g. libkms for the bootup splash), we have to ensure that we |
| * always use map_and_fenceable for all scanout buffers. However, |
| * it may simply be too big to fit into mappable, in which case |
| * put it anyway and hope that userspace can cope (but always first |
| * try to preserve the existing ABI). |
| */ |
| vma = ERR_PTR(-ENOSPC); |
| if ((flags & PIN_MAPPABLE) == 0 && |
| (!view || view->type == I915_GGTT_VIEW_NORMAL)) |
| vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment, |
| flags | |
| PIN_MAPPABLE | |
| PIN_NONBLOCK); |
| if (IS_ERR(vma)) |
| vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment, flags); |
| if (IS_ERR(vma)) |
| goto err_unpin_global; |
| |
| vma->display_alignment = max_t(u64, vma->display_alignment, alignment); |
| |
| __i915_gem_object_flush_for_display(obj); |
| |
| /* It should now be out of any other write domains, and we can update |
| * the domain values for our changes. |
| */ |
| obj->read_domains |= I915_GEM_DOMAIN_GTT; |
| |
| return vma; |
| |
| err_unpin_global: |
| obj->pin_global--; |
| return vma; |
| } |
| |
| void |
| i915_gem_object_unpin_from_display_plane(struct i915_vma *vma) |
| { |
| lockdep_assert_held(&vma->vm->i915->drm.struct_mutex); |
| |
| if (WARN_ON(vma->obj->pin_global == 0)) |
| return; |
| |
| if (--vma->obj->pin_global == 0) |
| vma->display_alignment = I915_GTT_MIN_ALIGNMENT; |
| |
| /* Bump the LRU to try and avoid premature eviction whilst flipping */ |
| i915_gem_object_bump_inactive_ggtt(vma->obj); |
| |
| i915_vma_unpin(vma); |
| } |
| |
| /** |
| * Moves a single object to the CPU read, and possibly write domain. |
| * @obj: object to act on |
| * @write: requesting write or read-only access |
| * |
| * This function returns when the move is complete, including waiting on |
| * flushes to occur. |
| */ |
| int |
| i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write) |
| { |
| int ret; |
| |
| lockdep_assert_held(&obj->base.dev->struct_mutex); |
| |
| ret = i915_gem_object_wait(obj, |
| I915_WAIT_INTERRUPTIBLE | |
| I915_WAIT_LOCKED | |
| (write ? I915_WAIT_ALL : 0), |
| MAX_SCHEDULE_TIMEOUT, |
| NULL); |
| if (ret) |
| return ret; |
| |
| flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU); |
| |
| /* Flush the CPU cache if it's still invalid. */ |
| if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) { |
| i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC); |
| obj->read_domains |= I915_GEM_DOMAIN_CPU; |
| } |
| |
| /* It should now be out of any other write domains, and we can update |
| * the domain values for our changes. |
| */ |
| GEM_BUG_ON(obj->write_domain & ~I915_GEM_DOMAIN_CPU); |
| |
| /* If we're writing through the CPU, then the GPU read domains will |
| * need to be invalidated at next use. |
| */ |
| if (write) |
| __start_cpu_write(obj); |
| |
| return 0; |
| } |
| |
| /* Throttle our rendering by waiting until the ring has completed our requests |
| * emitted over 20 msec ago. |
| * |
| * Note that if we were to use the current jiffies each time around the loop, |
| * we wouldn't escape the function with any frames outstanding if the time to |
| * render a frame was over 20ms. |
| * |
| * This should get us reasonable parallelism between CPU and GPU but also |
| * relatively low latency when blocking on a particular request to finish. |
| */ |
| static int |
| i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file) |
| { |
| struct drm_i915_private *dev_priv = to_i915(dev); |
| struct drm_i915_file_private *file_priv = file->driver_priv; |
| unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES; |
| struct i915_request *request, *target = NULL; |
| long ret; |
| |
| /* ABI: return -EIO if already wedged */ |
| if (i915_terminally_wedged(&dev_priv->gpu_error)) |
| return -EIO; |
| |
| spin_lock(&file_priv->mm.lock); |
| list_for_each_entry(request, &file_priv->mm.request_list, client_link) { |
| if (time_after_eq(request->emitted_jiffies, recent_enough)) |
| break; |
| |
| if (target) { |
| list_del(&target->client_link); |
| target->file_priv = NULL; |
| } |
| |
| target = request; |
| } |
| if (target) |
| i915_request_get(target); |
| spin_unlock(&file_priv->mm.lock); |
| |
| if (target == NULL) |
| return 0; |
| |
| ret = i915_request_wait(target, |
| I915_WAIT_INTERRUPTIBLE, |
| MAX_SCHEDULE_TIMEOUT); |
| i915_request_put(target); |
| |
| return ret < 0 ? ret : 0; |
| } |
| |
| struct i915_vma * |
| i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj, |
| const struct i915_ggtt_view *view, |
| u64 size, |
| u64 alignment, |
| u64 flags) |
| { |
| struct drm_i915_private *dev_priv = to_i915(obj->base.dev); |
| struct i915_address_space *vm = &dev_priv->ggtt.vm; |
| struct i915_vma *vma; |
| int ret; |
| |
| lockdep_assert_held(&obj->base.dev->struct_mutex); |
| |
| if (flags & PIN_MAPPABLE && |
| (!view || view->type == I915_GGTT_VIEW_NORMAL)) { |
| /* If the required space is larger than the available |
| * aperture, we will not able to find a slot for the |
| * object and unbinding the object now will be in |
| * vain. Worse, doing so may cause us to ping-pong |
| * the object in and out of the Global GTT and |
| * waste a lot of cycles under the mutex. |
| */ |
| if (obj->base.size > dev_priv->ggtt.mappable_end) |
| return ERR_PTR(-E2BIG); |
| |
| /* If NONBLOCK is set the caller is optimistically |
| * trying to cache the full object within the mappable |
| * aperture, and *must* have a fallback in place for |
| * situations where we cannot bind the object. We |
| * can be a little more lax here and use the fallback |
| * more often to avoid costly migrations of ourselves |
| * and other objects within the aperture. |
| * |
| * Half-the-aperture is used as a simple heuristic. |
| * More interesting would to do search for a free |
| * block prior to making the commitment to unbind. |
| * That caters for the self-harm case, and with a |
| * little more heuristics (e.g. NOFAULT, NOEVICT) |
| * we could try to minimise harm to others. |
| */ |
| if (flags & PIN_NONBLOCK && |
| obj->base.size > dev_priv->ggtt.mappable_end / 2) |
| return ERR_PTR(-ENOSPC); |
| } |
| |
| vma = i915_vma_instance(obj, vm, view); |
| if (unlikely(IS_ERR(vma))) |
| return vma; |
| |
| if (i915_vma_misplaced(vma, size, alignment, flags)) { |
| if (flags & PIN_NONBLOCK) { |
| if (i915_vma_is_pinned(vma) || i915_vma_is_active(vma)) |
| return ERR_PTR(-ENOSPC); |
| |
| if (flags & PIN_MAPPABLE && |
| vma->fence_size > dev_priv->ggtt.mappable_end / 2) |
| return ERR_PTR(-ENOSPC); |
| } |
| |
| WARN(i915_vma_is_pinned(vma), |
| "bo is already pinned in ggtt with incorrect alignment:" |
| " offset=%08x, req.alignment=%llx," |
| " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n", |
| i915_ggtt_offset(vma), alignment, |
| !!(flags & PIN_MAPPABLE), |
| i915_vma_is_map_and_fenceable(vma)); |
| ret = i915_vma_unbind(vma); |
| if (ret) |
| return ERR_PTR(ret); |
| } |
| |
| ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL); |
| if (ret) |
| return ERR_PTR(ret); |
| |
| return vma; |
| } |
| |
| static __always_inline unsigned int __busy_read_flag(unsigned int id) |
| { |
| /* Note that we could alias engines in the execbuf API, but |
| * that would be very unwise as it prevents userspace from |
| * fine control over engine selection. Ahem. |
| * |
| * This should be something like EXEC_MAX_ENGINE instead of |
| * I915_NUM_ENGINES. |
| */ |
| BUILD_BUG_ON(I915_NUM_ENGINES > 16); |
| return 0x10000 << id; |
| } |
| |
| static __always_inline unsigned int __busy_write_id(unsigned int id) |
| { |
| /* The uABI guarantees an active writer is also amongst the read |
| * engines. This would be true if we accessed the activity tracking |
| * under the lock, but as we perform the lookup of the object and |
| * its activity locklessly we can not guarantee that the last_write |
| * being active implies that we have set the same engine flag from |
| * last_read - hence we always set both read and write busy for |
| * last_write. |
| */ |
| return id | __busy_read_flag(id); |
| } |
| |
| static __always_inline unsigned int |
| __busy_set_if_active(const struct dma_fence *fence, |
| unsigned int (*flag)(unsigned int id)) |
| { |
| struct i915_request *rq; |
| |
| /* We have to check the current hw status of the fence as the uABI |
| * guarantees forward progress. We could rely on the idle worker |
| * to eventually flush us, but to minimise latency just ask the |
| * hardware. |
| * |
| * Note we only report on the status of native fences. |
| */ |
| if (!dma_fence_is_i915(fence)) |
| return 0; |
| |
| /* opencode to_request() in order to avoid const warnings */ |
| rq = container_of(fence, struct i915_request, fence); |
| if (i915_request_completed(rq)) |
| return 0; |
| |
| return flag(rq->engine->uabi_id); |
| } |
| |
| static __always_inline unsigned int |
| busy_check_reader(const struct dma_fence *fence) |
| { |
| return __busy_set_if_active(fence, __busy_read_flag); |
| } |
| |
| static __always_inline unsigned int |
| busy_check_writer(const struct dma_fence *fence) |
| { |
| if (!fence) |
| return 0; |
| |
| return __busy_set_if_active(fence, __busy_write_id); |
| } |
| |
| int |
| i915_gem_busy_ioctl(struct drm_device *dev, void *data, |
| struct drm_file *file) |
| { |
| struct drm_i915_gem_busy *args = data; |
| struct drm_i915_gem_object *obj; |
| struct reservation_object_list *list; |
| unsigned int seq; |
| int err; |
| |
| err = -ENOENT; |
| rcu_read_lock(); |
| obj = i915_gem_object_lookup_rcu(file, args->handle); |
| if (!obj) |
| goto out; |
| |
| /* A discrepancy here is that we do not report the status of |
| * non-i915 fences, i.e. even though we may report the object as idle, |
| * a call to set-domain may still stall waiting for foreign rendering. |
| * This also means that wait-ioctl may report an object as busy, |
| * where busy-ioctl considers it idle. |
| * |
| * We trade the ability to warn of foreign fences to report on which |
| * i915 engines are active for the object. |
| * |
| * Alternatively, we can trade that extra information on read/write |
| * activity with |
| * args->busy = |
| * !reservation_object_test_signaled_rcu(obj->resv, true); |
| * to report the overall busyness. This is what the wait-ioctl does. |
| * |
| */ |
| retry: |
| seq = raw_read_seqcount(&obj->resv->seq); |
| |
| /* Translate the exclusive fence to the READ *and* WRITE engine */ |
| args->busy = busy_check_writer(rcu_dereference(obj->resv->fence_excl)); |
| |
| /* Translate shared fences to READ set of engines */ |
| list = rcu_dereference(obj->resv->fence); |
| if (list) { |
| unsigned int shared_count = list->shared_count, i; |
| |
| for (i = 0; i < shared_count; ++i) { |
| struct dma_fence *fence = |
| rcu_dereference(list->shared[i]); |
| |
| args->busy |= busy_check_reader(fence); |
| } |
| } |
| |
| if (args->busy && read_seqcount_retry(&obj->resv->seq, seq)) |
| goto retry; |
| |
| err = 0; |
| out: |
| rcu_read_unlock(); |
| return err; |
| } |
| |
| int |
| i915_gem_throttle_ioctl(struct drm_device *dev, void *data, |
| struct drm_file *file_priv) |
| { |
| return i915_gem_ring_throttle(dev, file_priv); |
| } |
| |
| int |
| i915_gem_madvise_ioctl(struct drm_device *dev, void *data, |
| struct drm_file *file_priv) |
| { |
| struct drm_i915_private *dev_priv = to_i915(dev); |
| struct drm_i915_gem_madvise *args = data; |
| struct drm_i915_gem_object *obj; |
| int err; |
| |
| switch (args->madv) { |
| case I915_MADV_DONTNEED: |
| case I915_MADV_WILLNEED: |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| obj = i915_gem_object_lookup(file_priv, args->handle); |
| if (!obj) |
| return -ENOENT; |
| |
| err = mutex_lock_interruptible(&obj->mm.lock); |
| if (err) |
| goto out; |
| |
| if (i915_gem_object_has_pages(obj) && |
| i915_gem_object_is_tiled(obj) && |
| dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) { |
| if (obj->mm.madv == I915_MADV_WILLNEED) { |
| GEM_BUG_ON(!obj->mm.quirked); |
| __i915_gem_object_unpin_pages(obj); |
| obj->mm.quirked = false; |
| } |
| if (args->madv == I915_MADV_WILLNEED) { |
| GEM_BUG_ON(obj->mm.quirked); |
| __i915_gem_object_pin_pages(obj); |
| obj->mm.quirked = true; |
| } |
| } |
| |
| if (obj->mm.madv != __I915_MADV_PURGED) |
| obj->mm.madv = args->madv; |
| |
| /* if the object is no longer attached, discard its backing storage */ |
| if (obj->mm.madv == I915_MADV_DONTNEED && |
| !i915_gem_object_has_pages(obj)) |
| i915_gem_object_truncate(obj); |
| |
| args->retained = obj->mm.madv != __I915_MADV_PURGED; |
| mutex_unlock(&obj->mm.lock); |
| |
| out: |
| i915_gem_object_put(obj); |
| return err; |
| } |
| |
| static void |
| frontbuffer_retire(struct i915_gem_active *active, struct i915_request *request) |
| { |
| struct drm_i915_gem_object *obj = |
| container_of(active, typeof(*obj), frontbuffer_write); |
| |
| intel_fb_obj_flush(obj, ORIGIN_CS); |
| } |
| |
| void i915_gem_object_init(struct drm_i915_gem_object *obj, |
| const struct drm_i915_gem_object_ops *ops) |
| { |
| mutex_init(&obj->mm.lock); |
| |
| spin_lock_init(&obj->vma.lock); |
| INIT_LIST_HEAD(&obj->vma.list); |
| |
| INIT_LIST_HEAD(&obj->lut_list); |
| INIT_LIST_HEAD(&obj->batch_pool_link); |
| |
| init_rcu_head(&obj->rcu); |
| |
| obj->ops = ops; |
| |
| reservation_object_init(&obj->__builtin_resv); |
| obj->resv = &obj->__builtin_resv; |
| |
| obj->frontbuffer_ggtt_origin = ORIGIN_GTT; |
| init_request_active(&obj->frontbuffer_write, frontbuffer_retire); |
| |
| obj->mm.madv = I915_MADV_WILLNEED; |
| INIT_RADIX_TREE(&obj->mm.get_page.radix, GFP_KERNEL | __GFP_NOWARN); |
| mutex_init(&obj->mm.get_page.lock); |
| |
| i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size); |
| } |
| |
| static const struct drm_i915_gem_object_ops i915_gem_object_ops = { |
| .flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE | |
| I915_GEM_OBJECT_IS_SHRINKABLE, |
| |
| .get_pages = i915_gem_object_get_pages_gtt, |
| .put_pages = i915_gem_object_put_pages_gtt, |
| |
| .pwrite = i915_gem_object_pwrite_gtt, |
| }; |
| |
| static int i915_gem_object_create_shmem(struct drm_device *dev, |
| struct drm_gem_object *obj, |
| size_t size) |
| { |
| struct drm_i915_private *i915 = to_i915(dev); |
| unsigned long flags = VM_NORESERVE; |
| struct file *filp; |
| |
| drm_gem_private_object_init(dev, obj, size); |
| |
| if (i915->mm.gemfs) |
| filp = shmem_file_setup_with_mnt(i915->mm.gemfs, "i915", size, |
| flags); |
| else |
| filp = shmem_file_setup("i915", size, flags); |
| |
| if (IS_ERR(filp)) |
| return PTR_ERR(filp); |
| |
| obj->filp = filp; |
| |
| return 0; |
| } |
| |
| struct drm_i915_gem_object * |
| i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size) |
| { |
| struct drm_i915_gem_object *obj; |
| struct address_space *mapping; |
| unsigned int cache_level; |
| gfp_t mask; |
| int ret; |
| |
| /* There is a prevalence of the assumption that we fit the object's |
| * page count inside a 32bit _signed_ variable. Let's document this and |
| * catch if we ever need to fix it. In the meantime, if you do spot |
| * such a local variable, please consider fixing! |
| */ |
| if (size >> PAGE_SHIFT > INT_MAX) |
| return ERR_PTR(-E2BIG); |
| |
| if (overflows_type(size, obj->base.size)) |
| return ERR_PTR(-E2BIG); |
| |
| obj = i915_gem_object_alloc(dev_priv); |
| if (obj == NULL) |
| return ERR_PTR(-ENOMEM); |
| |
| ret = i915_gem_object_create_shmem(&dev_priv->drm, &obj->base, size); |
| if (ret) |
| goto fail; |
| |
| mask = GFP_HIGHUSER | __GFP_RECLAIMABLE; |
| if (IS_I965GM(dev_priv) || IS_I965G(dev_priv)) { |
| /* 965gm cannot relocate objects above 4GiB. */ |
| mask &= ~__GFP_HIGHMEM; |
| mask |= __GFP_DMA32; |
| } |
| |
| mapping = obj->base.filp->f_mapping; |
| mapping_set_gfp_mask(mapping, mask); |
| GEM_BUG_ON(!(mapping_gfp_mask(mapping) & __GFP_RECLAIM)); |
| |
| i915_gem_object_init(obj, &i915_gem_object_ops); |
| |
| obj->write_domain = I915_GEM_DOMAIN_CPU; |
| obj->read_domains = I915_GEM_DOMAIN_CPU; |
| |
| if (HAS_LLC(dev_priv)) |
| /* On some devices, we can have the GPU use the LLC (the CPU |
| * cache) for about a 10% performance improvement |
| * compared to uncached. Graphics requests other than |
| * display scanout are coherent with the CPU in |
| * accessing this cache. This means in this mode we |
| * don't need to clflush on the CPU side, and on the |
| * GPU side we only need to flush internal caches to |
| * get data visible to the CPU. |
| * |
| * However, we maintain the display planes as UC, and so |
| * need to rebind when first used as such. |
| */ |
| cache_level = I915_CACHE_LLC; |
| else |
| cache_level = I915_CACHE_NONE; |
| |
| i915_gem_object_set_cache_coherency(obj, cache_level); |
| |
| trace_i915_gem_object_create(obj); |
| |
| return obj; |
| |
| fail: |
| i915_gem_object_free(obj); |
| return ERR_PTR(ret); |
| } |
| |
| static bool discard_backing_storage(struct drm_i915_gem_object *obj) |
| { |
| /* If we are the last user of the backing storage (be it shmemfs |
| * pages or stolen etc), we know that the pages are going to be |
| * immediately released. In this case, we can then skip copying |
| * back the contents from the GPU. |
| */ |
| |
| if (obj->mm.madv != I915_MADV_WILLNEED) |
| return false; |
| |
| if (obj->base.filp == NULL) |
| return true; |
| |
| /* At first glance, this looks racy, but then again so would be |
| * userspace racing mmap against close. However, the first external |
| * reference to the filp can only be obtained through the |
| * i915_gem_mmap_ioctl() which safeguards us against the user |
| * acquiring such a reference whilst we are in the middle of |
| * freeing the object. |
| */ |
| return atomic_long_read(&obj->base.filp->f_count) == 1; |
| } |
| |
| static void __i915_gem_free_objects(struct drm_i915_private *i915, |
| struct llist_node *freed) |
| { |
| struct drm_i915_gem_object *obj, *on; |
| intel_wakeref_t wakeref; |
| |
| wakeref = intel_runtime_pm_get(i915); |
| llist_for_each_entry_safe(obj, on, freed, freed) { |
| struct i915_vma *vma, *vn; |
| |
| trace_i915_gem_object_destroy(obj); |
| |
| mutex_lock(&i915->drm.struct_mutex); |
| |
| GEM_BUG_ON(i915_gem_object_is_active(obj)); |
| list_for_each_entry_safe(vma, vn, &obj->vma.list, obj_link) { |
| GEM_BUG_ON(i915_vma_is_active(vma)); |
| vma->flags &= ~I915_VMA_PIN_MASK; |
| i915_vma_destroy(vma); |
| } |
| GEM_BUG_ON(!list_empty(&obj->vma.list)); |
| GEM_BUG_ON(!RB_EMPTY_ROOT(&obj->vma.tree)); |
| |
| /* This serializes freeing with the shrinker. Since the free |
| * is delayed, first by RCU then by the workqueue, we want the |
| * shrinker to be able to free pages of unreferenced objects, |
| * or else we may oom whilst there are plenty of deferred |
| * freed objects. |
| */ |
| if (i915_gem_object_has_pages(obj)) { |
| spin_lock(&i915->mm.obj_lock); |
| list_del_init(&obj->mm.link); |
| spin_unlock(&i915->mm.obj_lock); |
| } |
| |
| mutex_unlock(&i915->drm.struct_mutex); |
| |
| GEM_BUG_ON(obj->bind_count); |
| GEM_BUG_ON(obj->userfault_count); |
| GEM_BUG_ON(atomic_read(&obj->frontbuffer_bits)); |
| GEM_BUG_ON(!list_empty(&obj->lut_list)); |
| |
| if (obj->ops->release) |
| obj->ops->release(obj); |
| |
| if (WARN_ON(i915_gem_object_has_pinned_pages(obj))) |
| atomic_set(&obj->mm.pages_pin_count, 0); |
| __i915_gem_object_put_pages(obj, I915_MM_NORMAL); |
| GEM_BUG_ON(i915_gem_object_has_pages(obj)); |
| |
| if (obj->base.import_attach) |
| drm_prime_gem_destroy(&obj->base, NULL); |
| |
| reservation_object_fini(&obj->__builtin_resv); |
| drm_gem_object_release(&obj->base); |
| i915_gem_info_remove_obj(i915, obj->base.size); |
| |
| kfree(obj->bit_17); |
| i915_gem_object_free(obj); |
| |
| GEM_BUG_ON(!atomic_read(&i915->mm.free_count)); |
| atomic_dec(&i915->mm.free_count); |
| |
| if (on) |
| cond_resched(); |
| } |
| intel_runtime_pm_put(i915, wakeref); |
| } |
| |
| static void i915_gem_flush_free_objects(struct drm_i915_private *i915) |
| { |
| struct llist_node *freed; |
| |
| /* Free the oldest, most stale object to keep the free_list short */ |
| freed = NULL; |
| if (!llist_empty(&i915->mm.free_list)) { /* quick test for hotpath */ |
| /* Only one consumer of llist_del_first() allowed */ |
| spin_lock(&i915->mm.free_lock); |
| freed = llist_del_first(&i915->mm.free_list); |
| spin_unlock(&i915->mm.free_lock); |
| } |
| if (unlikely(freed)) { |
| freed->next = NULL; |
| __i915_gem_free_objects(i915, freed); |
| } |
| } |
| |
| static void __i915_gem_free_work(struct work_struct *work) |
| { |
| struct drm_i915_private *i915 = |
| container_of(work, struct drm_i915_private, mm.free_work); |
| struct llist_node *freed; |
| |
| /* |
| * All file-owned VMA should have been released by this point through |
| * i915_gem_close_object(), or earlier by i915_gem_context_close(). |
| * However, the object may also be bound into the global GTT (e.g. |
| * older GPUs without per-process support, or for direct access through |
| * the GTT either for the user or for scanout). Those VMA still need to |
| * unbound now. |
| */ |
| |
| spin_lock(&i915->mm.free_lock); |
| while ((freed = llist_del_all(&i915->mm.free_list))) { |
| spin_unlock(&i915->mm.free_lock); |
| |
| __i915_gem_free_objects(i915, freed); |
| if (need_resched()) |
| return; |
| |
| spin_lock(&i915->mm.free_lock); |
| } |
| spin_unlock(&i915->mm.free_lock); |
| } |
| |
| static void __i915_gem_free_object_rcu(struct rcu_head *head) |
| { |
| struct drm_i915_gem_object *obj = |
| container_of(head, typeof(*obj), rcu); |
| struct drm_i915_private *i915 = to_i915(obj->base.dev); |
| |
| /* |
| * We reuse obj->rcu for the freed list, so we had better not treat |
| * it like a rcu_head from this point forwards. And we expect all |
| * objects to be freed via this path. |
| */ |
| destroy_rcu_head(&obj->rcu); |
| |
| /* |
| * Since we require blocking on struct_mutex to unbind the freed |
| * object from the GPU before releasing resources back to the |
| * system, we can not do that directly from the RCU callback (which may |
| * be a softirq context), but must instead then defer that work onto a |
| * kthread. We use the RCU callback rather than move the freed object |
| * directly onto the work queue so that we can mix between using the |
| * worker and performing frees directly from subsequent allocations for |
| * crude but effective memory throttling. |
| */ |
| if (llist_add(&obj->freed, &i915->mm.free_list)) |
| queue_work(i915->wq, &i915->mm.free_work); |
| } |
| |
| void i915_gem_free_object(struct drm_gem_object *gem_obj) |
| { |
| struct drm_i915_gem_object *obj = to_intel_bo(gem_obj); |
| |
| if (obj->mm.quirked) |
| __i915_gem_object_unpin_pages(obj); |
| |
| if (discard_backing_storage(obj)) |
| obj->mm.madv = I915_MADV_DONTNEED; |
| |
| /* |
| * Before we free the object, make sure any pure RCU-only |
| * read-side critical sections are complete, e.g. |
| * i915_gem_busy_ioctl(). For the corresponding synchronized |
| * lookup see i915_gem_object_lookup_rcu(). |
| */ |
| atomic_inc(&to_i915(obj->base.dev)->mm.free_count); |
| call_rcu(&obj->rcu, __i915_gem_free_object_rcu); |
| } |
| |
| void __i915_gem_object_release_unless_active(struct drm_i915_gem_object *obj) |
| { |
| lockdep_assert_held(&obj->base.dev->struct_mutex); |
| |
| if (!i915_gem_object_has_active_reference(obj) && |
| i915_gem_object_is_active(obj)) |
| i915_gem_object_set_active_reference(obj); |
| else |
| i915_gem_object_put(obj); |
| } |
| |
| void i915_gem_sanitize(struct drm_i915_private *i915) |
| { |
| intel_wakeref_t wakeref; |
| |
| GEM_TRACE("\n"); |
| |
| wakeref = intel_runtime_pm_get(i915); |
| intel_uncore_forcewake_get(i915, FORCEWAKE_ALL); |
| |
| /* |
| * As we have just resumed the machine and woken the device up from |
| * deep PCI sleep (presumably D3_cold), assume the HW has been reset |
| * back to defaults, recovering from whatever wedged state we left it |
| * in and so worth trying to use the device once more. |
| */ |
| if (i915_terminally_wedged(&i915->gpu_error)) |
| i915_gem_unset_wedged(i915); |
| |
| /* |
| * If we inherit context state from the BIOS or earlier occupants |
| * of the GPU, the GPU may be in an inconsistent state when we |
| * try to take over. The only way to remove the earlier state |
| * is by resetting. However, resetting on earlier gen is tricky as |
| * it may impact the display and we are uncertain about the stability |
| * of the reset, so this could be applied to even earlier gen. |
| */ |
| intel_engines_sanitize(i915, false); |
| |
| intel_uncore_forcewake_put(i915, FORCEWAKE_ALL); |
| intel_runtime_pm_put(i915, wakeref); |
| |
| mutex_lock(&i915->drm.struct_mutex); |
| i915_gem_contexts_lost(i915); |
| mutex_unlock(&i915->drm.struct_mutex); |
| } |
| |
| int i915_gem_suspend(struct drm_i915_private *i915) |
| { |
| intel_wakeref_t wakeref; |
| int ret; |
| |
| GEM_TRACE("\n"); |
| |
| wakeref = intel_runtime_pm_get(i915); |
| intel_suspend_gt_powersave(i915); |
| |
| flush_workqueue(i915->wq); |
| |
| mutex_lock(&i915->drm.struct_mutex); |
| |
| /* |
| * We have to flush all the executing contexts to main memory so |
| * that they can saved in the hibernation image. To ensure the last |
| * context image is coherent, we have to switch away from it. That |
| * leaves the i915->kernel_context still active when |
| * we actually suspend, and its image in memory may not match the GPU |
| * state. Fortunately, the kernel_context is disposable and we do |
| * not rely on its state. |
| */ |
| if (!i915_terminally_wedged(&i915->gpu_error)) { |
| ret = i915_gem_switch_to_kernel_context(i915); |
| if (ret) |
| goto err_unlock; |
| |
| ret = i915_gem_wait_for_idle(i915, |
| I915_WAIT_INTERRUPTIBLE | |
| I915_WAIT_LOCKED | |
| I915_WAIT_FOR_IDLE_BOOST, |
| MAX_SCHEDULE_TIMEOUT); |
| if (ret && ret != -EIO) |
| goto err_unlock; |
| |
| assert_kernel_context_is_current(i915); |
| } |
| i915_retire_requests(i915); /* ensure we flush after wedging */ |
| |
| mutex_unlock(&i915->drm.struct_mutex); |
| i915_reset_flush(i915); |
| |
| drain_delayed_work(&i915->gt.retire_work); |
| |
| /* |
| * As the idle_work is rearming if it detects a race, play safe and |
| * repeat the flush until it is definitely idle. |
| */ |
| drain_delayed_work(&i915->gt.idle_work); |
| |
| intel_uc_suspend(i915); |
| |
| /* |
| * Assert that we successfully flushed all the work and |
| * reset the GPU back to its idle, low power state. |
| */ |
| WARN_ON(i915->gt.awake); |
| if (WARN_ON(!intel_engines_are_idle(i915))) |
| i915_gem_set_wedged(i915); /* no hope, discard everything */ |
| |
| intel_runtime_pm_put(i915, wakeref); |
| return 0; |
| |
| err_unlock: |
| mutex_unlock(&i915->drm.struct_mutex); |
| intel_runtime_pm_put(i915, wakeref); |
| return ret; |
| } |
| |
| void i915_gem_suspend_late(struct drm_i915_private *i915) |
| { |
| struct drm_i915_gem_object *obj; |
| struct list_head *phases[] = { |
| &i915->mm.unbound_list, |
| &i915->mm.bound_list, |
| NULL |
| }, **phase; |
| |
| /* |
| * Neither the BIOS, ourselves or any other kernel |
| * expects the system to be in execlists mode on startup, |
| * so we need to reset the GPU back to legacy mode. And the only |
| * known way to disable logical contexts is through a GPU reset. |
| * |
| * So in order to leave the system in a known default configuration, |
| * always reset the GPU upon unload and suspend. Afterwards we then |
| * clean up the GEM state tracking, flushing off the requests and |
| * leaving the system in a known idle state. |
| * |
| * Note that is of the upmost importance that the GPU is idle and |
| * all stray writes are flushed *before* we dismantle the backing |
| * storage for the pinned objects. |
| * |
| * However, since we are uncertain that resetting the GPU on older |
| * machines is a good idea, we don't - just in case it leaves the |
| * machine in an unusable condition. |
| */ |
| |
| mutex_lock(&i915->drm.struct_mutex); |
| for (phase = phases; *phase; phase++) { |
| list_for_each_entry(obj, *phase, mm.link) |
| WARN_ON(i915_gem_object_set_to_gtt_domain(obj, false)); |
| } |
| mutex_unlock(&i915->drm.struct_mutex); |
| |
| intel_uc_sanitize(i915); |
| i915_gem_sanitize(i915); |
| } |
| |
| void i915_gem_resume(struct drm_i915_private *i915) |
| { |
| GEM_TRACE("\n"); |
| |
| WARN_ON(i915->gt.awake); |
| |
| mutex_lock(&i915->drm.struct_mutex); |
| intel_uncore_forcewake_get(i915, FORCEWAKE_ALL); |
| |
| i915_gem_restore_gtt_mappings(i915); |
| i915_gem_restore_fences(i915); |
| |
| /* |
| * As we didn't flush the kernel context before suspend, we cannot |
| * guarantee that the context image is complete. So let's just reset |
| * it and start again. |
| */ |
| i915->gt.resume(i915); |
| |
| if (i915_gem_init_hw(i915)) |
| goto err_wedged; |
| |
| intel_uc_resume(i915); |
| |
| /* Always reload a context for powersaving. */ |
| if (i915_gem_switch_to_kernel_context(i915)) |
| goto err_wedged; |
| |
| out_unlock: |
| intel_uncore_forcewake_put(i915, FORCEWAKE_ALL); |
| mutex_unlock(&i915->drm.struct_mutex); |
| return; |
| |
| err_wedged: |
| if (!i915_terminally_wedged(&i915->gpu_error)) { |
| DRM_ERROR("failed to re-initialize GPU, declaring wedged!\n"); |
| i915_gem_set_wedged(i915); |
| } |
| goto out_unlock; |
| } |
| |
| void i915_gem_init_swizzling(struct drm_i915_private *dev_priv) |
| { |
| if (INTEL_GEN(dev_priv) < 5 || |
| dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE) |
| return; |
| |
| I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) | |
| DISP_TILE_SURFACE_SWIZZLING); |
| |
| if (IS_GEN(dev_priv, 5)) |
| return; |
| |
| I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL); |
| if (IS_GEN(dev_priv, 6)) |
| I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB)); |
| else if (IS_GEN(dev_priv, 7)) |
| I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB)); |
| else if (IS_GEN(dev_priv, 8)) |
| I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW)); |
| else |
| BUG(); |
| } |
| |
| static void init_unused_ring(struct drm_i915_private *dev_priv, u32 base) |
| { |
| I915_WRITE(RING_CTL(base), 0); |
| I915_WRITE(RING_HEAD(base), 0); |
| I915_WRITE(RING_TAIL(base), 0); |
| I915_WRITE(RING_START(base), 0); |
| } |
| |
| static void init_unused_rings(struct drm_i915_private *dev_priv) |
| { |
| if (IS_I830(dev_priv)) { |
| init_unused_ring(dev_priv, PRB1_BASE); |
| init_unused_ring(dev_priv, SRB0_BASE); |
| init_unused_ring(dev_priv, SRB1_BASE); |
| init_unused_ring(dev_priv, SRB2_BASE); |
| init_unused_ring(dev_priv, SRB3_BASE); |
| } else if (IS_GEN(dev_priv, 2)) { |
| init_unused_ring(dev_priv, SRB0_BASE); |
| init_unused_ring(dev_priv, SRB1_BASE); |
| } else if (IS_GEN(dev_priv, 3)) { |
| init_unused_ring(dev_priv, PRB1_BASE); |
| init_unused_ring(dev_priv, PRB2_BASE); |
| } |
| } |
| |
| static int __i915_gem_restart_engines(void *data) |
| { |
| struct drm_i915_private *i915 = data; |
| struct intel_engine_cs *engine; |
| enum intel_engine_id id; |
| int err; |
| |
| for_each_engine(engine, i915, id) { |
| err = engine->init_hw(engine); |
| if (err) { |
| DRM_ERROR("Failed to restart %s (%d)\n", |
| engine->name, err); |
| return err; |
| } |
| } |
| |
| return 0; |
| } |
| |
| int i915_gem_init_hw(struct drm_i915_private *dev_priv) |
| { |
| int ret; |
| |
| dev_priv->gt.last_init_time = ktime_get(); |
| |
| /* Double layer security blanket, see i915_gem_init() */ |
| intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL); |
| |
| if (HAS_EDRAM(dev_priv) && INTEL_GEN(dev_priv) < 9) |
| I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf)); |
| |
| if (IS_HASWELL(dev_priv)) |
| I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev_priv) ? |
| LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED); |
| |
| /* Apply the GT workarounds... */ |
| intel_gt_apply_workarounds(dev_priv); |
| /* ...and determine whether they are sticking. */ |
| intel_gt_verify_workarounds(dev_priv, "init"); |
| |
| i915_gem_init_swizzling(dev_priv); |
| |
| /* |
| * At least 830 can leave some of the unused rings |
| * "active" (ie. head != tail) after resume which |
| * will prevent c3 entry. Makes sure all unused rings |
| * are totally idle. |
| */ |
| init_unused_rings(dev_priv); |
| |
| BUG_ON(!dev_priv->kernel_context); |
| if (i915_terminally_wedged(&dev_priv->gpu_error)) { |
| ret = -EIO; |
| goto out; |
| } |
| |
| ret = i915_ppgtt_init_hw(dev_priv); |
| if (ret) { |
| DRM_ERROR("Enabling PPGTT failed (%d)\n", ret); |
| goto out; |
| } |
| |
| ret = intel_wopcm_init_hw(&dev_priv->wopcm); |
| if (ret) { |
| DRM_ERROR("Enabling WOPCM failed (%d)\n", ret); |
| goto out; |
| } |
| |
| /* We can't enable contexts until all firmware is loaded */ |
| ret = intel_uc_init_hw(dev_priv); |
| if (ret) { |
| DRM_ERROR("Enabling uc failed (%d)\n", ret); |
| goto out; |
| } |
| |
| intel_mocs_init_l3cc_table(dev_priv); |
| |
| /* Only when the HW is re-initialised, can we replay the requests */ |
| ret = __i915_gem_restart_engines(dev_priv); |
| if (ret) |
| goto cleanup_uc; |
| |
| intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL); |
| |
| return 0; |
| |
| cleanup_uc: |
| intel_uc_fini_hw(dev_priv); |
| out: |
| intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL); |
| |
| return ret; |
| } |
| |
| static int __intel_engines_record_defaults(struct drm_i915_private *i915) |
| { |
| struct i915_gem_context *ctx; |
| struct intel_engine_cs *engine; |
| enum intel_engine_id id; |
| int err; |
| |
| /* |
| * As we reset the gpu during very early sanitisation, the current |
| * register state on the GPU should reflect its defaults values. |
| * We load a context onto the hw (with restore-inhibit), then switch |
| * over to a second context to save that default register state. We |
| * can then prime every new context with that state so they all start |
| * from the same default HW values. |
| */ |
| |
| ctx = i915_gem_context_create_kernel(i915, 0); |
| if (IS_ERR(ctx)) |
| return PTR_ERR(ctx); |
| |
| for_each_engine(engine, i915, id) { |
| struct i915_request *rq; |
| |
| rq = i915_request_alloc(engine, ctx); |
| if (IS_ERR(rq)) { |
| err = PTR_ERR(rq); |
| goto out_ctx; |
| } |
| |
| err = 0; |
| if (engine->init_context) |
| err = engine->init_context(rq); |
| |
| i915_request_add(rq); |
| if (err) |
| goto err_active; |
| } |
| |
| err = i915_gem_switch_to_kernel_context(i915); |
| if (err) |
| goto err_active; |
| |
| if (i915_gem_wait_for_idle(i915, I915_WAIT_LOCKED, HZ / 5)) { |
| i915_gem_set_wedged(i915); |
| err = -EIO; /* Caller will declare us wedged */ |
| goto err_active; |
| } |
| |
| assert_kernel_context_is_current(i915); |
| |
| /* |
| * Immediately park the GPU so that we enable powersaving and |
| * treat it as idle. The next time we issue a request, we will |
| * unpark and start using the engine->pinned_default_state, otherwise |
| * it is in limbo and an early reset may fail. |
| */ |
| __i915_gem_park(i915); |
| |
| for_each_engine(engine, i915, id) { |
| struct i915_vma *state; |
| void *vaddr; |
| |
| GEM_BUG_ON(to_intel_context(ctx, engine)->pin_count); |
| |
| state = to_intel_context(ctx, engine)->state; |
| if (!state) |
| continue; |
| |
| /* |
| * As we will hold a reference to the logical state, it will |
| * not be torn down with the context, and importantly the |
| * object will hold onto its vma (making it possible for a |
| * stray GTT write to corrupt our defaults). Unmap the vma |
| * from the GTT to prevent such accidents and reclaim the |
| * space. |
| */ |
| err = i915_vma_unbind(state); |
| if (err) |
| goto err_active; |
| |
| err = i915_gem_object_set_to_cpu_domain(state->obj, false); |
| if (err) |
| goto err_active; |
| |
| engine->default_state = i915_gem_object_get(state->obj); |
| |
| /* Check we can acquire the image of the context state */ |
| vaddr = i915_gem_object_pin_map(engine->default_state, |
| I915_MAP_FORCE_WB); |
| if (IS_ERR(vaddr)) { |
| err = PTR_ERR(vaddr); |
| goto err_active; |
| } |
| |
| i915_gem_object_unpin_map(engine->default_state); |
| } |
| |
| if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) { |
| unsigned int found = intel_engines_has_context_isolation(i915); |
| |
| /* |
| * Make sure that classes with multiple engine instances all |
| * share the same basic configuration. |
| */ |
| for_each_engine(engine, i915, id) { |
| unsigned int bit = BIT(engine->uabi_class); |
| unsigned int expected = engine->default_state ? bit : 0; |
| |
| if ((found & bit) != expected) { |
| DRM_ERROR("mismatching default context state for class %d on engine %s\n", |
| engine->uabi_class, engine->name); |
| } |
| } |
| } |
| |
| out_ctx: |
| i915_gem_context_set_closed(ctx); |
| i915_gem_context_put(ctx); |
| return err; |
| |
| err_active: |
| /* |
| * If we have to abandon now, we expect the engines to be idle |
| * and ready to be torn-down. First try to flush any remaining |
| * request, ensure we are pointing at the kernel context and |
| * then remove it. |
| */ |
| if (WARN_ON(i915_gem_switch_to_kernel_context(i915))) |
| goto out_ctx; |
| |
| if (WARN_ON(i915_gem_wait_for_idle(i915, |
| I915_WAIT_LOCKED, |
| MAX_SCHEDULE_TIMEOUT))) |
| goto out_ctx; |
| |
| i915_gem_contexts_lost(i915); |
| goto out_ctx; |
| } |
| |
| static int |
| i915_gem_init_scratch(struct drm_i915_private *i915, unsigned int size) |
| { |
| struct drm_i915_gem_object *obj; |
| struct i915_vma *vma; |
| int ret; |
| |
| obj = i915_gem_object_create_stolen(i915, size); |
| if (!obj) |
| obj = i915_gem_object_create_internal(i915, size); |
| if (IS_ERR(obj)) { |
| DRM_ERROR("Failed to allocate scratch page\n"); |
| return PTR_ERR(obj); |
| } |
| |
| vma = i915_vma_instance(obj, &i915->ggtt.vm, NULL); |
| if (IS_ERR(vma)) { |
| ret = PTR_ERR(vma); |
| goto err_unref; |
| } |
| |
| ret = i915_vma_pin(vma, 0, 0, PIN_GLOBAL | PIN_HIGH); |
| if (ret) |
| goto err_unref; |
| |
| i915->gt.scratch = vma; |
| return 0; |
| |
| err_unref: |
| i915_gem_object_put(obj); |
| return ret; |
| } |
| |
| static void i915_gem_fini_scratch(struct drm_i915_private *i915) |
| { |
| i915_vma_unpin_and_release(&i915->gt.scratch, 0); |
| } |
| |
| int i915_gem_init(struct drm_i915_private *dev_priv) |
| { |
| int ret; |
| |
| /* We need to fallback to 4K pages if host doesn't support huge gtt. */ |
| if (intel_vgpu_active(dev_priv) && !intel_vgpu_has_huge_gtt(dev_priv)) |
| mkwrite_device_info(dev_priv)->page_sizes = |
| I915_GTT_PAGE_SIZE_4K; |
| |
| dev_priv->mm.unordered_timeline = dma_fence_context_alloc(1); |
| |
| if (HAS_LOGICAL_RING_CONTEXTS(dev_priv)) { |
| dev_priv->gt.resume = intel_lr_context_resume; |
| dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup; |
| } else { |
| dev_priv->gt.resume = intel_legacy_submission_resume; |
| dev_priv->gt.cleanup_engine = intel_engine_cleanup; |
| } |
| |
| i915_timelines_init(dev_priv); |
| |
| ret = i915_gem_init_userptr(dev_priv); |
| if (ret) |
| return ret; |
| |
| ret = intel_uc_init_misc(dev_priv); |
| if (ret) |
| return ret; |
| |
| ret = intel_wopcm_init(&dev_priv->wopcm); |
| if (ret) |
| goto err_uc_misc; |
| |
| /* This is just a security blanket to placate dragons. |
| * On some systems, we very sporadically observe that the first TLBs |
| * used by the CS may be stale, despite us poking the TLB reset. If |
| * we hold the forcewake during initialisation these problems |
| * just magically go away. |
| */ |
| mutex_lock(&dev_priv->drm.struct_mutex); |
| intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL); |
| |
| ret = i915_gem_init_ggtt(dev_priv); |
| if (ret) { |
| GEM_BUG_ON(ret == -EIO); |
| goto err_unlock; |
| } |
| |
| ret = i915_gem_init_scratch(dev_priv, |
| IS_GEN(dev_priv, 2) ? SZ_256K : PAGE_SIZE); |
| if (ret) { |
| GEM_BUG_ON(ret == -EIO); |
| goto err_ggtt; |
| } |
| |
| ret = i915_gem_contexts_init(dev_priv); |
| if (ret) { |
| GEM_BUG_ON(ret == -EIO); |
| goto err_scratch; |
| } |
| |
| ret = intel_engines_init(dev_priv); |
| if (ret) { |
| GEM_BUG_ON(ret == -EIO); |
| goto err_context; |
| } |
| |
| intel_init_gt_powersave(dev_priv); |
| |
| ret = intel_uc_init(dev_priv); |
| if (ret) |
| goto err_pm; |
| |
| ret = i915_gem_init_hw(dev_priv); |
| if (ret) |
| goto err_uc_init; |
| |
| /* |
| * Despite its name intel_init_clock_gating applies both display |
| * clock gating workarounds; GT mmio workarounds and the occasional |
| * GT power context workaround. Worse, sometimes it includes a context |
| * register workaround which we need to apply before we record the |
| * default HW state for all contexts. |
| * |
| * FIXME: break up the workarounds and apply them at the right time! |
| */ |
| intel_init_clock_gating(dev_priv); |
| |
| ret = __intel_engines_record_defaults(dev_priv); |
| if (ret) |
| goto err_init_hw; |
| |
| if (i915_inject_load_failure()) { |
| ret = -ENODEV; |
| goto err_init_hw; |
| } |
| |
| if (i915_inject_load_failure()) { |
| ret = -EIO; |
| goto err_init_hw; |
| } |
| |
| intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL); |
| mutex_unlock(&dev_priv->drm.struct_mutex); |
| |
| return 0; |
| |
| /* |
| * Unwinding is complicated by that we want to handle -EIO to mean |
| * disable GPU submission but keep KMS alive. We want to mark the |
| * HW as irrevisibly wedged, but keep enough state around that the |
| * driver doesn't explode during runtime. |
| */ |
| err_init_hw: |
| mutex_unlock(&dev_priv->drm.struct_mutex); |
| |
| WARN_ON(i915_gem_suspend(dev_priv)); |
| i915_gem_suspend_late(dev_priv); |
| |
| i915_gem_drain_workqueue(dev_priv); |
| |
| mutex_lock(&dev_priv->drm.struct_mutex); |
| intel_uc_fini_hw(dev_priv); |
| err_uc_init: |
| intel_uc_fini(dev_priv); |
| err_pm: |
| if (ret != -EIO) { |
| intel_cleanup_gt_powersave(dev_priv); |
| i915_gem_cleanup_engines(dev_priv); |
| } |
| err_context: |
| if (ret != -EIO) |
| i915_gem_contexts_fini(dev_priv); |
| err_scratch: |
| i915_gem_fini_scratch(dev_priv); |
| err_ggtt: |
| err_unlock: |
| intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL); |
| mutex_unlock(&dev_priv->drm.struct_mutex); |
| |
| err_uc_misc: |
| intel_uc_fini_misc(dev_priv); |
| |
| if (ret != -EIO) { |
| i915_gem_cleanup_userptr(dev_priv); |
| i915_timelines_fini(dev_priv); |
| } |
| |
| if (ret == -EIO) { |
| mutex_lock(&dev_priv->drm.struct_mutex); |
| |
| /* |
| * Allow engine initialisation to fail by marking the GPU as |
| * wedged. But we only want to do this where the GPU is angry, |
| * for all other failure, such as an allocation failure, bail. |
| */ |
| if (!i915_terminally_wedged(&dev_priv->gpu_error)) { |
| i915_load_error(dev_priv, |
| "Failed to initialize GPU, declaring it wedged!\n"); |
| i915_gem_set_wedged(dev_priv); |
| } |
| |
| /* Minimal basic recovery for KMS */ |
| ret = i915_ggtt_enable_hw(dev_priv); |
| i915_gem_restore_gtt_mappings(dev_priv); |
| i915_gem_restore_fences(dev_priv); |
| intel_init_clock_gating(dev_priv); |
| |
| mutex_unlock(&dev_priv->drm.struct_mutex); |
| } |
| |
| i915_gem_drain_freed_objects(dev_priv); |
| return ret; |
| } |
| |
| void i915_gem_fini(struct drm_i915_private *dev_priv) |
| { |
| i915_gem_suspend_late(dev_priv); |
| intel_disable_gt_powersave(dev_priv); |
| |
| /* Flush any outstanding unpin_work. */ |
| i915_gem_drain_workqueue(dev_priv); |
| |
| mutex_lock(&dev_priv->drm.struct_mutex); |
| intel_uc_fini_hw(dev_priv); |
| intel_uc_fini(dev_priv); |
| i915_gem_cleanup_engines(dev_priv); |
| i915_gem_contexts_fini(dev_priv); |
| i915_gem_fini_scratch(dev_priv); |
| mutex_unlock(&dev_priv->drm.struct_mutex); |
| |
| intel_wa_list_free(&dev_priv->gt_wa_list); |
| |
| intel_cleanup_gt_powersave(dev_priv); |
| |
| intel_uc_fini_misc(dev_priv); |
| i915_gem_cleanup_userptr(dev_priv); |
| i915_timelines_fini(dev_priv); |
| |
| i915_gem_drain_freed_objects(dev_priv); |
| |
| WARN_ON(!list_empty(&dev_priv->contexts.list)); |
| } |
| |
| void i915_gem_init_mmio(struct drm_i915_private *i915) |
| { |
| i915_gem_sanitize(i915); |
| } |
| |
| void |
| i915_gem_cleanup_engines(struct drm_i915_private *dev_priv) |
| { |
| struct intel_engine_cs *engine; |
| enum intel_engine_id id; |
| |
| for_each_engine(engine, dev_priv, id) |
| dev_priv->gt.cleanup_engine(engine); |
| } |
| |
| void |
| i915_gem_load_init_fences(struct drm_i915_private *dev_priv) |
| { |
| int i; |
| |
| if (INTEL_GEN(dev_priv) >= 7 && !IS_VALLEYVIEW(dev_priv) && |
| !IS_CHERRYVIEW(dev_priv)) |
| dev_priv->num_fence_regs = 32; |
| else if (INTEL_GEN(dev_priv) >= 4 || |
| IS_I945G(dev_priv) || IS_I945GM(dev_priv) || |
| IS_G33(dev_priv) || IS_PINEVIEW(dev_priv)) |
| dev_priv->num_fence_regs = 16; |
| else |
| dev_priv->num_fence_regs = 8; |
| |
| if (intel_vgpu_active(dev_priv)) |
| dev_priv->num_fence_regs = |
| I915_READ(vgtif_reg(avail_rs.fence_num)); |
| |
| /* Initialize fence registers to zero */ |
| for (i = 0; i < dev_priv->num_fence_regs; i++) { |
| struct drm_i915_fence_reg *fence = &dev_priv->fence_regs[i]; |
| |
| fence->i915 = dev_priv; |
| fence->id = i; |
| list_add_tail(&fence->link, &dev_priv->mm.fence_list); |
| } |
| i915_gem_restore_fences(dev_priv); |
| |
| i915_gem_detect_bit_6_swizzle(dev_priv); |
| } |
| |
| static void i915_gem_init__mm(struct drm_i915_private *i915) |
| { |
| spin_lock_init(&i915->mm.object_stat_lock); |
| spin_lock_init(&i915->mm.obj_lock); |
| spin_lock_init(&i915->mm.free_lock); |
| |
| init_llist_head(&i915->mm.free_list); |
| |
| INIT_LIST_HEAD(&i915->mm.unbound_list); |
| INIT_LIST_HEAD(&i915->mm.bound_list); |
| INIT_LIST_HEAD(&i915->mm.fence_list); |
| INIT_LIST_HEAD(&i915->mm.userfault_list); |
| |
| INIT_WORK(&i915->mm.free_work, __i915_gem_free_work); |
| } |
| |
| int i915_gem_init_early(struct drm_i915_private *dev_priv) |
| { |
| int err = -ENOMEM; |
| |
| dev_priv->objects = KMEM_CACHE(drm_i915_gem_object, SLAB_HWCACHE_ALIGN); |
| if (!dev_priv->objects) |
| goto err_out; |
| |
| dev_priv->vmas = KMEM_CACHE(i915_vma, SLAB_HWCACHE_ALIGN); |
| if (!dev_priv->vmas) |
| goto err_objects; |
| |
| dev_priv->luts = KMEM_CACHE(i915_lut_handle, 0); |
| if (!dev_priv->luts) |
| goto err_vmas; |
| |
| dev_priv->requests = KMEM_CACHE(i915_request, |
| SLAB_HWCACHE_ALIGN | |
| SLAB_RECLAIM_ACCOUNT | |
| SLAB_TYPESAFE_BY_RCU); |
| if (!dev_priv->requests) |
| goto err_luts; |
| |
| dev_priv->dependencies = KMEM_CACHE(i915_dependency, |
| SLAB_HWCACHE_ALIGN | |
| SLAB_RECLAIM_ACCOUNT); |
| if (!dev_priv->dependencies) |
| goto err_requests; |
| |
| dev_priv->priorities = KMEM_CACHE(i915_priolist, SLAB_HWCACHE_ALIGN); |
| if (!dev_priv->priorities) |
| goto err_dependencies; |
| |
| INIT_LIST_HEAD(&dev_priv->gt.active_rings); |
| INIT_LIST_HEAD(&dev_priv->gt.closed_vma); |
| |
| i915_gem_init__mm(dev_priv); |
| |
| INIT_DELAYED_WORK(&dev_priv->gt.retire_work, |
| i915_gem_retire_work_handler); |
| INIT_DELAYED_WORK(&dev_priv->gt.idle_work, |
| i915_gem_idle_work_handler); |
| init_waitqueue_head(&dev_priv->gpu_error.wait_queue); |
| init_waitqueue_head(&dev_priv->gpu_error.reset_queue); |
| mutex_init(&dev_priv->gpu_error.wedge_mutex); |
| |
| atomic_set(&dev_priv->mm.bsd_engine_dispatch_index, 0); |
| |
| spin_lock_init(&dev_priv->fb_tracking.lock); |
| |
| err = i915_gemfs_init(dev_priv); |
| if (err) |
| DRM_NOTE("Unable to create a private tmpfs mount, hugepage support will be disabled(%d).\n", err); |
| |
| return 0; |
| |
| err_dependencies: |
| kmem_cache_destroy(dev_priv->dependencies); |
| err_requests: |
| kmem_cache_destroy(dev_priv->requests); |
| err_luts: |
| kmem_cache_destroy(dev_priv->luts); |
| err_vmas: |
| kmem_cache_destroy(dev_priv->vmas); |
| err_objects: |
| kmem_cache_destroy(dev_priv->objects); |
| err_out: |
| return err; |
| } |
| |
| void i915_gem_cleanup_early(struct drm_i915_private *dev_priv) |
| { |
| i915_gem_drain_freed_objects(dev_priv); |
| GEM_BUG_ON(!llist_empty(&dev_priv->mm.free_list)); |
| GEM_BUG_ON(atomic_read(&dev_priv->mm.free_count)); |
| WARN_ON(dev_priv->mm.object_count); |
| |
| kmem_cache_destroy(dev_priv->priorities); |
| kmem_cache_destroy(dev_priv->dependencies); |
| kmem_cache_destroy(dev_priv->requests); |
| kmem_cache_destroy(dev_priv->luts); |
| kmem_cache_destroy(dev_priv->vmas); |
| kmem_cache_destroy(dev_priv->objects); |
| |
| /* And ensure that our DESTROY_BY_RCU slabs are truly destroyed */ |
| rcu_barrier(); |
| |
| i915_gemfs_fini(dev_priv); |
| } |
| |
| int i915_gem_freeze(struct drm_i915_private *dev_priv) |
| { |
| /* Discard all purgeable objects, let userspace recover those as |
| * required after resuming. |
| */ |
| i915_gem_shrink_all(dev_priv); |
| |
| return 0; |
| } |
| |
| int i915_gem_freeze_late(struct drm_i915_private *i915) |
| { |
| struct drm_i915_gem_object *obj; |
| struct list_head *phases[] = { |
| &i915->mm.unbound_list, |
| &i915->mm.bound_list, |
| NULL |
| }, **phase; |
| |
| /* |
| * Called just before we write the hibernation image. |
| * |
| * We need to update the domain tracking to reflect that the CPU |
| * will be accessing all the pages to create and restore from the |
| * hibernation, and so upon restoration those pages will be in the |
| * CPU domain. |
| * |
| * To make sure the hibernation image contains the latest state, |
| * we update that state just before writing out the image. |
| * |
| * To try and reduce the hibernation image, we manually shrink |
| * the objects as well, see i915_gem_freeze() |
| */ |
| |
| i915_gem_shrink(i915, -1UL, NULL, I915_SHRINK_UNBOUND); |
| i915_gem_drain_freed_objects(i915); |
| |
| mutex_lock(&i915->drm.struct_mutex); |
| for (phase = phases; *phase; phase++) { |
| list_for_each_entry(obj, *phase, mm.link) |
| WARN_ON(i915_gem_object_set_to_cpu_domain(obj, true)); |
| } |
| mutex_unlock(&i915->drm.struct_mutex); |
| |
| return 0; |
| } |
| |
| void i915_gem_release(struct drm_device *dev, struct drm_file *file) |
| { |
| struct drm_i915_file_private *file_priv = file->driver_priv; |
| struct i915_request *request; |
| |
| /* Clean up our request list when the client is going away, so that |
| * later retire_requests won't dereference our soon-to-be-gone |
| * file_priv. |
| */ |
| spin_lock(&file_priv->mm.lock); |
| list_for_each_entry(request, &file_priv->mm.request_list, client_link) |
| request->file_priv = NULL; |
| spin_unlock(&file_priv->mm.lock); |
| } |
| |
| int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file) |
| { |
| struct drm_i915_file_private *file_priv; |
| int ret; |
| |
| DRM_DEBUG("\n"); |
| |
| file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL); |
| if (!file_priv) |
| return -ENOMEM; |
| |
| file->driver_priv = file_priv; |
| file_priv->dev_priv = i915; |
| file_priv->file = file; |
| |
| spin_lock_init(&file_priv->mm.lock); |
| INIT_LIST_HEAD(&file_priv->mm.request_list); |
| |
| file_priv->bsd_engine = -1; |
| file_priv->hang_timestamp = jiffies; |
| |
| ret = i915_gem_context_open(i915, file); |
| if (ret) |
| kfree(file_priv); |
| |
| return ret; |
| } |
| |
| /** |
| * i915_gem_track_fb - update frontbuffer tracking |
| * @old: current GEM buffer for the frontbuffer slots |
| * @new: new GEM buffer for the frontbuffer slots |
| * @frontbuffer_bits: bitmask of frontbuffer slots |
| * |
| * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them |
| * from @old and setting them in @new. Both @old and @new can be NULL. |
| */ |
| void i915_gem_track_fb(struct drm_i915_gem_object *old, |
| struct drm_i915_gem_object *new, |
| unsigned frontbuffer_bits) |
| { |
| /* Control of individual bits within the mask are guarded by |
| * the owning plane->mutex, i.e. we can never see concurrent |
| * manipulation of individual bits. But since the bitfield as a whole |
| * is updated using RMW, we need to use atomics in order to update |
| * the bits. |
| */ |
| BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES > |
| BITS_PER_TYPE(atomic_t)); |
| |
| if (old) { |
| WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits)); |
| atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits); |
| } |
| |
| if (new) { |
| WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits); |
| atomic_or(frontbuffer_bits, &new->frontbuffer_bits); |
| } |
| } |
| |
| /* Allocate a new GEM object and fill it with the supplied data */ |
| struct drm_i915_gem_object * |
| i915_gem_object_create_from_data(struct drm_i915_private *dev_priv, |
| const void *data, size_t size) |
| { |
| struct drm_i915_gem_object *obj; |
| struct file *file; |
| size_t offset; |
| int err; |
| |
| obj = i915_gem_object_create(dev_priv, round_up(size, PAGE_SIZE)); |
| if (IS_ERR(obj)) |
| return obj; |
| |
| GEM_BUG_ON(obj->write_domain != I915_GEM_DOMAIN_CPU); |
| |
| file = obj->base.filp; |
| offset = 0; |
| do { |
| unsigned int len = min_t(typeof(size), size, PAGE_SIZE); |
| struct page *page; |
| void *pgdata, *vaddr; |
| |
| err = pagecache_write_begin(file, file->f_mapping, |
| offset, len, 0, |
| &page, &pgdata); |
| if (err < 0) |
| goto fail; |
| |
| vaddr = kmap(page); |
| memcpy(vaddr, data, len); |
| kunmap(page); |
| |
| err = pagecache_write_end(file, file->f_mapping, |
| offset, len, len, |
| page, pgdata); |
| if (err < 0) |
| goto fail; |
| |
| size -= len; |
| data += len; |
| offset += len; |
| } while (size); |
| |
| return obj; |
| |
| fail: |
| i915_gem_object_put(obj); |
| return ERR_PTR(err); |
| } |
| |
| struct scatterlist * |
| i915_gem_object_get_sg(struct drm_i915_gem_object *obj, |
| unsigned int n, |
| unsigned int *offset) |
| { |
| struct i915_gem_object_page_iter *iter = &obj->mm.get_page; |
| struct scatterlist *sg; |
| unsigned int idx, count; |
| |
| might_sleep(); |
| GEM_BUG_ON(n >= obj->base.size >> PAGE_SHIFT); |
| GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj)); |
| |
| /* As we iterate forward through the sg, we record each entry in a |
| * radixtree for quick repeated (backwards) lookups. If we have seen |
| * this index previously, we will have an entry for it. |
| * |
| * Initial lookup is O(N), but this is amortized to O(1) for |
| * sequential page access (where each new request is consecutive |
| * to the previous one). Repeated lookups are O(lg(obj->base.size)), |
| * i.e. O(1) with a large constant! |
| */ |
| if (n < READ_ONCE(iter->sg_idx)) |
| goto lookup; |
| |
| mutex_lock(&iter->lock); |
| |
| /* We prefer to reuse the last sg so that repeated lookup of this |
| * (or the subsequent) sg are fast - comparing against the last |
| * sg is faster than going through the radixtree. |
| */ |
| |
| sg = iter->sg_pos; |
| idx = iter->sg_idx; |
| count = __sg_page_count(sg); |
| |
| while (idx + count <= n) { |
| void *entry; |
| unsigned long i; |
| int ret; |
| |
| /* If we cannot allocate and insert this entry, or the |
| * individual pages from this range, cancel updating the |
| * sg_idx so that on this lookup we are forced to linearly |
| * scan onwards, but on future lookups we will try the |
| * insertion again (in which case we need to be careful of |
| * the error return reporting that we have already inserted |
| * this index). |
| */ |
| ret = radix_tree_insert(&iter->radix, idx, sg); |
| if (ret && ret != -EEXIST) |
| goto scan; |
| |
| entry = xa_mk_value(idx); |
| for (i = 1; i < count; i++) { |
| ret = radix_tree_insert(&iter->radix, idx + i, entry); |
| if (ret && ret != -EEXIST) |
| goto scan; |
| } |
| |
| idx += count; |
| sg = ____sg_next(sg); |
| count = __sg_page_count(sg); |
| } |
| |
| scan: |
| iter->sg_pos = sg; |
| iter->sg_idx = idx; |
| |
| mutex_unlock(&iter->lock); |
| |
| if (unlikely(n < idx)) /* insertion completed by another thread */ |
| goto lookup; |
| |
| /* In case we failed to insert the entry into the radixtree, we need |
| * to look beyond the current sg. |
| */ |
| while (idx + count <= n) { |
| idx += count; |
| sg = ____sg_next(sg); |
| count = __sg_page_count(sg); |
| } |
| |
| *offset = n - idx; |
| return sg; |
| |
| lookup: |
| rcu_read_lock(); |
| |
| sg = radix_tree_lookup(&iter->radix, n); |
| GEM_BUG_ON(!sg); |
| |
| /* If this index is in the middle of multi-page sg entry, |
| * the radix tree will contain a value entry that points |
| * to the start of that range. We will return the pointer to |
| * the base page and the offset of this page within the |
| * sg entry's range. |
| */ |
| *offset = 0; |
| if (unlikely(xa_is_value(sg))) { |
| unsigned long base = xa_to_value(sg); |
| |
| sg = radix_tree_lookup(&iter->radix, base); |
| GEM_BUG_ON(!sg); |
| |
| *offset = n - base; |
| } |
| |
| rcu_read_unlock(); |
| |
| return sg; |
| } |
| |
| struct page * |
| i915_gem_object_get_page(struct drm_i915_gem_object *obj, unsigned int n) |
| { |
| struct scatterlist *sg; |
| unsigned int offset; |
| |
| GEM_BUG_ON(!i915_gem_object_has_struct_page(obj)); |
| |
| sg = i915_gem_object_get_sg(obj, n, &offset); |
| return nth_page(sg_page(sg), offset); |
| } |
| |
| /* Like i915_gem_object_get_page(), but mark the returned page dirty */ |
| struct page * |
| i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj, |
| unsigned int n) |
| { |
| struct page *page; |
| |
| page = i915_gem_object_get_page(obj, n); |
| if (!obj->mm.dirty) |
| set_page_dirty(page); |
| |
| return page; |
| } |
| |
| dma_addr_t |
| i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj, |
| unsigned long n) |
| { |
| struct scatterlist *sg; |
| unsigned int offset; |
| |
| sg = i915_gem_object_get_sg(obj, n, &offset); |
| return sg_dma_address(sg) + (offset << PAGE_SHIFT); |
| } |
| |
| int i915_gem_object_attach_phys(struct drm_i915_gem_object *obj, int align) |
| { |
| struct sg_table *pages; |
| int err; |
| |
| if (align > obj->base.size) |
| return -EINVAL; |
| |
| if (obj->ops == &i915_gem_phys_ops) |
| return 0; |
| |
| if (obj->ops != &i915_gem_object_ops) |
| return -EINVAL; |
| |
| err = i915_gem_object_unbind(obj); |
| if (err) |
| return err; |
| |
| mutex_lock(&obj->mm.lock); |
| |
| if (obj->mm.madv != I915_MADV_WILLNEED) { |
| err = -EFAULT; |
| goto err_unlock; |
| } |
| |
| if (obj->mm.quirked) { |
| err = -EFAULT; |
| goto err_unlock; |
| } |
| |
| if (obj->mm.mapping) { |
| err = -EBUSY; |
| goto err_unlock; |
| } |
| |
| pages = __i915_gem_object_unset_pages(obj); |
| |
| obj->ops = &i915_gem_phys_ops; |
| |
| err = ____i915_gem_object_get_pages(obj); |
| if (err) |
| goto err_xfer; |
| |
| /* Perma-pin (until release) the physical set of pages */ |
| __i915_gem_object_pin_pages(obj); |
| |
| if (!IS_ERR_OR_NULL(pages)) |
| i915_gem_object_ops.put_pages(obj, pages); |
| mutex_unlock(&obj->mm.lock); |
| return 0; |
| |
| err_xfer: |
| obj->ops = &i915_gem_object_ops; |
| if (!IS_ERR_OR_NULL(pages)) { |
| unsigned int sg_page_sizes = i915_sg_page_sizes(pages->sgl); |
| |
| __i915_gem_object_set_pages(obj, pages, sg_page_sizes); |
| } |
| err_unlock: |
| mutex_unlock(&obj->mm.lock); |
| return err; |
| } |
| |
| #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) |
| #include "selftests/scatterlist.c" |
| #include "selftests/mock_gem_device.c" |
| #include "selftests/huge_gem_object.c" |
| #include "selftests/huge_pages.c" |
| #include "selftests/i915_gem_object.c" |
| #include "selftests/i915_gem_coherency.c" |
| #include "selftests/i915_gem.c" |
| #endif |