blob: 52de616a806559d6e0a25a5f65e3bef721432f48 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
/*
* (c) 2005-2016 Advanced Micro Devices, Inc.
*
* Written by Jacob Shin - AMD, Inc.
* Maintained by: Borislav Petkov <bp@alien8.de>
*
* All MC4_MISCi registers are shared between cores on a node.
*/
#include <linux/interrupt.h>
#include <linux/notifier.h>
#include <linux/kobject.h>
#include <linux/percpu.h>
#include <linux/errno.h>
#include <linux/sched.h>
#include <linux/sysfs.h>
#include <linux/slab.h>
#include <linux/init.h>
#include <linux/cpu.h>
#include <linux/smp.h>
#include <linux/string.h>
#include <asm/amd_nb.h>
#include <asm/traps.h>
#include <asm/apic.h>
#include <asm/mce.h>
#include <asm/msr.h>
#include <asm/trace/irq_vectors.h>
#include "internal.h"
#define NR_BLOCKS 5
#define THRESHOLD_MAX 0xFFF
#define INT_TYPE_APIC 0x00020000
#define MASK_VALID_HI 0x80000000
#define MASK_CNTP_HI 0x40000000
#define MASK_LOCKED_HI 0x20000000
#define MASK_LVTOFF_HI 0x00F00000
#define MASK_COUNT_EN_HI 0x00080000
#define MASK_INT_TYPE_HI 0x00060000
#define MASK_OVERFLOW_HI 0x00010000
#define MASK_ERR_COUNT_HI 0x00000FFF
#define MASK_BLKPTR_LO 0xFF000000
#define MCG_XBLK_ADDR 0xC0000400
/* Deferred error settings */
#define MSR_CU_DEF_ERR 0xC0000410
#define MASK_DEF_LVTOFF 0x000000F0
#define MASK_DEF_INT_TYPE 0x00000006
#define DEF_LVT_OFF 0x2
#define DEF_INT_TYPE_APIC 0x2
/* Scalable MCA: */
/* Threshold LVT offset is at MSR0xC0000410[15:12] */
#define SMCA_THR_LVT_OFF 0xF000
static bool thresholding_irq_en;
static const char * const th_names[] = {
"load_store",
"insn_fetch",
"combined_unit",
"decode_unit",
"northbridge",
"execution_unit",
};
static const char * const smca_umc_block_names[] = {
"dram_ecc",
"misc_umc"
};
struct smca_bank_name {
const char *name; /* Short name for sysfs */
const char *long_name; /* Long name for pretty-printing */
};
static struct smca_bank_name smca_names[] = {
[SMCA_LS] = { "load_store", "Load Store Unit" },
[SMCA_LS_V2] = { "load_store", "Load Store Unit" },
[SMCA_IF] = { "insn_fetch", "Instruction Fetch Unit" },
[SMCA_L2_CACHE] = { "l2_cache", "L2 Cache" },
[SMCA_DE] = { "decode_unit", "Decode Unit" },
[SMCA_RESERVED] = { "reserved", "Reserved" },
[SMCA_EX] = { "execution_unit", "Execution Unit" },
[SMCA_FP] = { "floating_point", "Floating Point Unit" },
[SMCA_L3_CACHE] = { "l3_cache", "L3 Cache" },
[SMCA_CS] = { "coherent_slave", "Coherent Slave" },
[SMCA_CS_V2] = { "coherent_slave", "Coherent Slave" },
[SMCA_PIE] = { "pie", "Power, Interrupts, etc." },
[SMCA_UMC] = { "umc", "Unified Memory Controller" },
[SMCA_PB] = { "param_block", "Parameter Block" },
[SMCA_PSP] = { "psp", "Platform Security Processor" },
[SMCA_PSP_V2] = { "psp", "Platform Security Processor" },
[SMCA_SMU] = { "smu", "System Management Unit" },
[SMCA_SMU_V2] = { "smu", "System Management Unit" },
[SMCA_MP5] = { "mp5", "Microprocessor 5 Unit" },
[SMCA_NBIO] = { "nbio", "Northbridge IO Unit" },
[SMCA_PCIE] = { "pcie", "PCI Express Unit" },
};
static const char *smca_get_name(enum smca_bank_types t)
{
if (t >= N_SMCA_BANK_TYPES)
return NULL;
return smca_names[t].name;
}
const char *smca_get_long_name(enum smca_bank_types t)
{
if (t >= N_SMCA_BANK_TYPES)
return NULL;
return smca_names[t].long_name;
}
EXPORT_SYMBOL_GPL(smca_get_long_name);
static enum smca_bank_types smca_get_bank_type(unsigned int bank)
{
struct smca_bank *b;
if (bank >= MAX_NR_BANKS)
return N_SMCA_BANK_TYPES;
b = &smca_banks[bank];
if (!b->hwid)
return N_SMCA_BANK_TYPES;
return b->hwid->bank_type;
}
static struct smca_hwid smca_hwid_mcatypes[] = {
/* { bank_type, hwid_mcatype, xec_bitmap } */
/* Reserved type */
{ SMCA_RESERVED, HWID_MCATYPE(0x00, 0x0), 0x0 },
/* ZN Core (HWID=0xB0) MCA types */
{ SMCA_LS, HWID_MCATYPE(0xB0, 0x0), 0x1FFFFF },
{ SMCA_LS_V2, HWID_MCATYPE(0xB0, 0x10), 0xFFFFFF },
{ SMCA_IF, HWID_MCATYPE(0xB0, 0x1), 0x3FFF },
{ SMCA_L2_CACHE, HWID_MCATYPE(0xB0, 0x2), 0xF },
{ SMCA_DE, HWID_MCATYPE(0xB0, 0x3), 0x1FF },
/* HWID 0xB0 MCATYPE 0x4 is Reserved */
{ SMCA_EX, HWID_MCATYPE(0xB0, 0x5), 0xFFF },
{ SMCA_FP, HWID_MCATYPE(0xB0, 0x6), 0x7F },
{ SMCA_L3_CACHE, HWID_MCATYPE(0xB0, 0x7), 0xFF },
/* Data Fabric MCA types */
{ SMCA_CS, HWID_MCATYPE(0x2E, 0x0), 0x1FF },
{ SMCA_PIE, HWID_MCATYPE(0x2E, 0x1), 0x1F },
{ SMCA_CS_V2, HWID_MCATYPE(0x2E, 0x2), 0x3FFF },
/* Unified Memory Controller MCA type */
{ SMCA_UMC, HWID_MCATYPE(0x96, 0x0), 0xFF },
/* Parameter Block MCA type */
{ SMCA_PB, HWID_MCATYPE(0x05, 0x0), 0x1 },
/* Platform Security Processor MCA type */
{ SMCA_PSP, HWID_MCATYPE(0xFF, 0x0), 0x1 },
{ SMCA_PSP_V2, HWID_MCATYPE(0xFF, 0x1), 0x3FFFF },
/* System Management Unit MCA type */
{ SMCA_SMU, HWID_MCATYPE(0x01, 0x0), 0x1 },
{ SMCA_SMU_V2, HWID_MCATYPE(0x01, 0x1), 0x7FF },
/* Microprocessor 5 Unit MCA type */
{ SMCA_MP5, HWID_MCATYPE(0x01, 0x2), 0x3FF },
/* Northbridge IO Unit MCA type */
{ SMCA_NBIO, HWID_MCATYPE(0x18, 0x0), 0x1F },
/* PCI Express Unit MCA type */
{ SMCA_PCIE, HWID_MCATYPE(0x46, 0x0), 0x1F },
};
struct smca_bank smca_banks[MAX_NR_BANKS];
EXPORT_SYMBOL_GPL(smca_banks);
/*
* In SMCA enabled processors, we can have multiple banks for a given IP type.
* So to define a unique name for each bank, we use a temp c-string to append
* the MCA_IPID[InstanceId] to type's name in get_name().
*
* InstanceId is 32 bits which is 8 characters. Make sure MAX_MCATYPE_NAME_LEN
* is greater than 8 plus 1 (for underscore) plus length of longest type name.
*/
#define MAX_MCATYPE_NAME_LEN 30
static char buf_mcatype[MAX_MCATYPE_NAME_LEN];
static DEFINE_PER_CPU(struct threshold_bank **, threshold_banks);
static DEFINE_PER_CPU(unsigned int, bank_map); /* see which banks are on */
/* Map of banks that have more than MCA_MISC0 available. */
static DEFINE_PER_CPU(u32, smca_misc_banks_map);
static void amd_threshold_interrupt(void);
static void amd_deferred_error_interrupt(void);
static void default_deferred_error_interrupt(void)
{
pr_err("Unexpected deferred interrupt at vector %x\n", DEFERRED_ERROR_VECTOR);
}
void (*deferred_error_int_vector)(void) = default_deferred_error_interrupt;
static void smca_set_misc_banks_map(unsigned int bank, unsigned int cpu)
{
u32 low, high;
/*
* For SMCA enabled processors, BLKPTR field of the first MISC register
* (MCx_MISC0) indicates presence of additional MISC regs set (MISC1-4).
*/
if (rdmsr_safe(MSR_AMD64_SMCA_MCx_CONFIG(bank), &low, &high))
return;
if (!(low & MCI_CONFIG_MCAX))
return;
if (rdmsr_safe(MSR_AMD64_SMCA_MCx_MISC(bank), &low, &high))
return;
if (low & MASK_BLKPTR_LO)
per_cpu(smca_misc_banks_map, cpu) |= BIT(bank);
}
static void smca_configure(unsigned int bank, unsigned int cpu)
{
unsigned int i, hwid_mcatype;
struct smca_hwid *s_hwid;
u32 high, low;
u32 smca_config = MSR_AMD64_SMCA_MCx_CONFIG(bank);
/* Set appropriate bits in MCA_CONFIG */
if (!rdmsr_safe(smca_config, &low, &high)) {
/*
* OS is required to set the MCAX bit to acknowledge that it is
* now using the new MSR ranges and new registers under each
* bank. It also means that the OS will configure deferred
* errors in the new MCx_CONFIG register. If the bit is not set,
* uncorrectable errors will cause a system panic.
*
* MCA_CONFIG[MCAX] is bit 32 (0 in the high portion of the MSR.)
*/
high |= BIT(0);
/*
* SMCA sets the Deferred Error Interrupt type per bank.
*
* MCA_CONFIG[DeferredIntTypeSupported] is bit 5, and tells us
* if the DeferredIntType bit field is available.
*
* MCA_CONFIG[DeferredIntType] is bits [38:37] ([6:5] in the
* high portion of the MSR). OS should set this to 0x1 to enable
* APIC based interrupt. First, check that no interrupt has been
* set.
*/
if ((low & BIT(5)) && !((high >> 5) & 0x3))
high |= BIT(5);
wrmsr(smca_config, low, high);
}
smca_set_misc_banks_map(bank, cpu);
/* Return early if this bank was already initialized. */
if (smca_banks[bank].hwid && smca_banks[bank].hwid->hwid_mcatype != 0)
return;
if (rdmsr_safe(MSR_AMD64_SMCA_MCx_IPID(bank), &low, &high)) {
pr_warn("Failed to read MCA_IPID for bank %d\n", bank);
return;
}
hwid_mcatype = HWID_MCATYPE(high & MCI_IPID_HWID,
(high & MCI_IPID_MCATYPE) >> 16);
for (i = 0; i < ARRAY_SIZE(smca_hwid_mcatypes); i++) {
s_hwid = &smca_hwid_mcatypes[i];
if (hwid_mcatype == s_hwid->hwid_mcatype) {
smca_banks[bank].hwid = s_hwid;
smca_banks[bank].id = low;
smca_banks[bank].sysfs_id = s_hwid->count++;
break;
}
}
}
struct thresh_restart {
struct threshold_block *b;
int reset;
int set_lvt_off;
int lvt_off;
u16 old_limit;
};
static inline bool is_shared_bank(int bank)
{
/*
* Scalable MCA provides for only one core to have access to the MSRs of
* a shared bank.
*/
if (mce_flags.smca)
return false;
/* Bank 4 is for northbridge reporting and is thus shared */
return (bank == 4);
}
static const char *bank4_names(const struct threshold_block *b)
{
switch (b->address) {
/* MSR4_MISC0 */
case 0x00000413:
return "dram";
case 0xc0000408:
return "ht_links";
case 0xc0000409:
return "l3_cache";
default:
WARN(1, "Funny MSR: 0x%08x\n", b->address);
return "";
}
};
static bool lvt_interrupt_supported(unsigned int bank, u32 msr_high_bits)
{
/*
* bank 4 supports APIC LVT interrupts implicitly since forever.
*/
if (bank == 4)
return true;
/*
* IntP: interrupt present; if this bit is set, the thresholding
* bank can generate APIC LVT interrupts
*/
return msr_high_bits & BIT(28);
}
static int lvt_off_valid(struct threshold_block *b, int apic, u32 lo, u32 hi)
{
int msr = (hi & MASK_LVTOFF_HI) >> 20;
if (apic < 0) {
pr_err(FW_BUG "cpu %d, failed to setup threshold interrupt "
"for bank %d, block %d (MSR%08X=0x%x%08x)\n", b->cpu,
b->bank, b->block, b->address, hi, lo);
return 0;
}
if (apic != msr) {
/*
* On SMCA CPUs, LVT offset is programmed at a different MSR, and
* the BIOS provides the value. The original field where LVT offset
* was set is reserved. Return early here:
*/
if (mce_flags.smca)
return 0;
pr_err(FW_BUG "cpu %d, invalid threshold interrupt offset %d "
"for bank %d, block %d (MSR%08X=0x%x%08x)\n",
b->cpu, apic, b->bank, b->block, b->address, hi, lo);
return 0;
}
return 1;
};
/* Reprogram MCx_MISC MSR behind this threshold bank. */
static void threshold_restart_bank(void *_tr)
{
struct thresh_restart *tr = _tr;
u32 hi, lo;
rdmsr(tr->b->address, lo, hi);
if (tr->b->threshold_limit < (hi & THRESHOLD_MAX))
tr->reset = 1; /* limit cannot be lower than err count */
if (tr->reset) { /* reset err count and overflow bit */
hi =
(hi & ~(MASK_ERR_COUNT_HI | MASK_OVERFLOW_HI)) |
(THRESHOLD_MAX - tr->b->threshold_limit);
} else if (tr->old_limit) { /* change limit w/o reset */
int new_count = (hi & THRESHOLD_MAX) +
(tr->old_limit - tr->b->threshold_limit);
hi = (hi & ~MASK_ERR_COUNT_HI) |
(new_count & THRESHOLD_MAX);
}
/* clear IntType */
hi &= ~MASK_INT_TYPE_HI;
if (!tr->b->interrupt_capable)
goto done;
if (tr->set_lvt_off) {
if (lvt_off_valid(tr->b, tr->lvt_off, lo, hi)) {
/* set new lvt offset */
hi &= ~MASK_LVTOFF_HI;
hi |= tr->lvt_off << 20;
}
}
if (tr->b->interrupt_enable)
hi |= INT_TYPE_APIC;
done:
hi |= MASK_COUNT_EN_HI;
wrmsr(tr->b->address, lo, hi);
}
static void mce_threshold_block_init(struct threshold_block *b, int offset)
{
struct thresh_restart tr = {
.b = b,
.set_lvt_off = 1,
.lvt_off = offset,
};
b->threshold_limit = THRESHOLD_MAX;
threshold_restart_bank(&tr);
};
static int setup_APIC_mce_threshold(int reserved, int new)
{
if (reserved < 0 && !setup_APIC_eilvt(new, THRESHOLD_APIC_VECTOR,
APIC_EILVT_MSG_FIX, 0))
return new;
return reserved;
}
static int setup_APIC_deferred_error(int reserved, int new)
{
if (reserved < 0 && !setup_APIC_eilvt(new, DEFERRED_ERROR_VECTOR,
APIC_EILVT_MSG_FIX, 0))
return new;
return reserved;
}
static void deferred_error_interrupt_enable(struct cpuinfo_x86 *c)
{
u32 low = 0, high = 0;
int def_offset = -1, def_new;
if (rdmsr_safe(MSR_CU_DEF_ERR, &low, &high))
return;
def_new = (low & MASK_DEF_LVTOFF) >> 4;
if (!(low & MASK_DEF_LVTOFF)) {
pr_err(FW_BUG "Your BIOS is not setting up LVT offset 0x2 for deferred error IRQs correctly.\n");
def_new = DEF_LVT_OFF;
low = (low & ~MASK_DEF_LVTOFF) | (DEF_LVT_OFF << 4);
}
def_offset = setup_APIC_deferred_error(def_offset, def_new);
if ((def_offset == def_new) &&
(deferred_error_int_vector != amd_deferred_error_interrupt))
deferred_error_int_vector = amd_deferred_error_interrupt;
if (!mce_flags.smca)
low = (low & ~MASK_DEF_INT_TYPE) | DEF_INT_TYPE_APIC;
wrmsr(MSR_CU_DEF_ERR, low, high);
}
static u32 smca_get_block_address(unsigned int bank, unsigned int block,
unsigned int cpu)
{
if (!block)
return MSR_AMD64_SMCA_MCx_MISC(bank);
if (!(per_cpu(smca_misc_banks_map, cpu) & BIT(bank)))
return 0;
return MSR_AMD64_SMCA_MCx_MISCy(bank, block - 1);
}
static u32 get_block_address(u32 current_addr, u32 low, u32 high,
unsigned int bank, unsigned int block,
unsigned int cpu)
{
u32 addr = 0, offset = 0;
if ((bank >= per_cpu(mce_num_banks, cpu)) || (block >= NR_BLOCKS))
return addr;
if (mce_flags.smca)
return smca_get_block_address(bank, block, cpu);
/* Fall back to method we used for older processors: */
switch (block) {
case 0:
addr = msr_ops.misc(bank);
break;
case 1:
offset = ((low & MASK_BLKPTR_LO) >> 21);
if (offset)
addr = MCG_XBLK_ADDR + offset;
break;
default:
addr = ++current_addr;
}
return addr;
}
static int
prepare_threshold_block(unsigned int bank, unsigned int block, u32 addr,
int offset, u32 misc_high)
{
unsigned int cpu = smp_processor_id();
u32 smca_low, smca_high;
struct threshold_block b;
int new;
if (!block)
per_cpu(bank_map, cpu) |= (1 << bank);
memset(&b, 0, sizeof(b));
b.cpu = cpu;
b.bank = bank;
b.block = block;
b.address = addr;
b.interrupt_capable = lvt_interrupt_supported(bank, misc_high);
if (!b.interrupt_capable)
goto done;
b.interrupt_enable = 1;
if (!mce_flags.smca) {
new = (misc_high & MASK_LVTOFF_HI) >> 20;
goto set_offset;
}
/* Gather LVT offset for thresholding: */
if (rdmsr_safe(MSR_CU_DEF_ERR, &smca_low, &smca_high))
goto out;
new = (smca_low & SMCA_THR_LVT_OFF) >> 12;
set_offset:
offset = setup_APIC_mce_threshold(offset, new);
if (offset == new)
thresholding_irq_en = true;
done:
mce_threshold_block_init(&b, offset);
out:
return offset;
}
bool amd_filter_mce(struct mce *m)
{
enum smca_bank_types bank_type = smca_get_bank_type(m->bank);
struct cpuinfo_x86 *c = &boot_cpu_data;
u8 xec = (m->status >> 16) & 0x3F;
/* See Family 17h Models 10h-2Fh Erratum #1114. */
if (c->x86 == 0x17 &&
c->x86_model >= 0x10 && c->x86_model <= 0x2F &&
bank_type == SMCA_IF && xec == 10)
return true;
return false;
}
/*
* Turn off thresholding banks for the following conditions:
* - MC4_MISC thresholding is not supported on Family 0x15.
* - Prevent possible spurious interrupts from the IF bank on Family 0x17
* Models 0x10-0x2F due to Erratum #1114.
*/
static void disable_err_thresholding(struct cpuinfo_x86 *c, unsigned int bank)
{
int i, num_msrs;
u64 hwcr;
bool need_toggle;
u32 msrs[NR_BLOCKS];
if (c->x86 == 0x15 && bank == 4) {
msrs[0] = 0x00000413; /* MC4_MISC0 */
msrs[1] = 0xc0000408; /* MC4_MISC1 */
num_msrs = 2;
} else if (c->x86 == 0x17 &&
(c->x86_model >= 0x10 && c->x86_model <= 0x2F)) {
if (smca_get_bank_type(bank) != SMCA_IF)
return;
msrs[0] = MSR_AMD64_SMCA_MCx_MISC(bank);
num_msrs = 1;
} else {
return;
}
rdmsrl(MSR_K7_HWCR, hwcr);
/* McStatusWrEn has to be set */
need_toggle = !(hwcr & BIT(18));
if (need_toggle)
wrmsrl(MSR_K7_HWCR, hwcr | BIT(18));
/* Clear CntP bit safely */
for (i = 0; i < num_msrs; i++)
msr_clear_bit(msrs[i], 62);
/* restore old settings */
if (need_toggle)
wrmsrl(MSR_K7_HWCR, hwcr);
}
/* cpu init entry point, called from mce.c with preempt off */
void mce_amd_feature_init(struct cpuinfo_x86 *c)
{
unsigned int bank, block, cpu = smp_processor_id();
u32 low = 0, high = 0, address = 0;
int offset = -1;
for (bank = 0; bank < this_cpu_read(mce_num_banks); ++bank) {
if (mce_flags.smca)
smca_configure(bank, cpu);
disable_err_thresholding(c, bank);
for (block = 0; block < NR_BLOCKS; ++block) {
address = get_block_address(address, low, high, bank, block, cpu);
if (!address)
break;
if (rdmsr_safe(address, &low, &high))
break;
if (!(high & MASK_VALID_HI))
continue;
if (!(high & MASK_CNTP_HI) ||
(high & MASK_LOCKED_HI))
continue;
offset = prepare_threshold_block(bank, block, address, offset, high);
}
}
if (mce_flags.succor)
deferred_error_interrupt_enable(c);
}
int umc_normaddr_to_sysaddr(u64 norm_addr, u16 nid, u8 umc, u64 *sys_addr)
{
u64 dram_base_addr, dram_limit_addr, dram_hole_base;
/* We start from the normalized address */
u64 ret_addr = norm_addr;
u32 tmp;
u8 die_id_shift, die_id_mask, socket_id_shift, socket_id_mask;
u8 intlv_num_dies, intlv_num_chan, intlv_num_sockets;
u8 intlv_addr_sel, intlv_addr_bit;
u8 num_intlv_bits, hashed_bit;
u8 lgcy_mmio_hole_en, base = 0;
u8 cs_mask, cs_id = 0;
bool hash_enabled = false;
/* Read D18F0x1B4 (DramOffset), check if base 1 is used. */
if (amd_df_indirect_read(nid, 0, 0x1B4, umc, &tmp))
goto out_err;
/* Remove HiAddrOffset from normalized address, if enabled: */
if (tmp & BIT(0)) {
u64 hi_addr_offset = (tmp & GENMASK_ULL(31, 20)) << 8;
if (norm_addr >= hi_addr_offset) {
ret_addr -= hi_addr_offset;
base = 1;
}
}
/* Read D18F0x110 (DramBaseAddress). */
if (amd_df_indirect_read(nid, 0, 0x110 + (8 * base), umc, &tmp))
goto out_err;
/* Check if address range is valid. */
if (!(tmp & BIT(0))) {
pr_err("%s: Invalid DramBaseAddress range: 0x%x.\n",
__func__, tmp);
goto out_err;
}
lgcy_mmio_hole_en = tmp & BIT(1);
intlv_num_chan = (tmp >> 4) & 0xF;
intlv_addr_sel = (tmp >> 8) & 0x7;
dram_base_addr = (tmp & GENMASK_ULL(31, 12)) << 16;
/* {0, 1, 2, 3} map to address bits {8, 9, 10, 11} respectively */
if (intlv_addr_sel > 3) {
pr_err("%s: Invalid interleave address select %d.\n",
__func__, intlv_addr_sel);
goto out_err;
}
/* Read D18F0x114 (DramLimitAddress). */
if (amd_df_indirect_read(nid, 0, 0x114 + (8 * base), umc, &tmp))
goto out_err;
intlv_num_sockets = (tmp >> 8) & 0x1;
intlv_num_dies = (tmp >> 10) & 0x3;
dram_limit_addr = ((tmp & GENMASK_ULL(31, 12)) << 16) | GENMASK_ULL(27, 0);
intlv_addr_bit = intlv_addr_sel + 8;
/* Re-use intlv_num_chan by setting it equal to log2(#channels) */
switch (intlv_num_chan) {
case 0: intlv_num_chan = 0; break;
case 1: intlv_num_chan = 1; break;
case 3: intlv_num_chan = 2; break;
case 5: intlv_num_chan = 3; break;
case 7: intlv_num_chan = 4; break;
case 8: intlv_num_chan = 1;
hash_enabled = true;
break;
default:
pr_err("%s: Invalid number of interleaved channels %d.\n",
__func__, intlv_num_chan);
goto out_err;
}
num_intlv_bits = intlv_num_chan;
if (intlv_num_dies > 2) {
pr_err("%s: Invalid number of interleaved nodes/dies %d.\n",
__func__, intlv_num_dies);
goto out_err;
}
num_intlv_bits += intlv_num_dies;
/* Add a bit if sockets are interleaved. */
num_intlv_bits += intlv_num_sockets;
/* Assert num_intlv_bits <= 4 */
if (num_intlv_bits > 4) {
pr_err("%s: Invalid interleave bits %d.\n",
__func__, num_intlv_bits);
goto out_err;
}
if (num_intlv_bits > 0) {
u64 temp_addr_x, temp_addr_i, temp_addr_y;
u8 die_id_bit, sock_id_bit, cs_fabric_id;
/*
* Read FabricBlockInstanceInformation3_CS[BlockFabricID].
* This is the fabric id for this coherent slave. Use
* umc/channel# as instance id of the coherent slave
* for FICAA.
*/
if (amd_df_indirect_read(nid, 0, 0x50, umc, &tmp))
goto out_err;
cs_fabric_id = (tmp >> 8) & 0xFF;
die_id_bit = 0;
/* If interleaved over more than 1 channel: */
if (intlv_num_chan) {
die_id_bit = intlv_num_chan;
cs_mask = (1 << die_id_bit) - 1;
cs_id = cs_fabric_id & cs_mask;
}
sock_id_bit = die_id_bit;
/* Read D18F1x208 (SystemFabricIdMask). */
if (intlv_num_dies || intlv_num_sockets)
if (amd_df_indirect_read(nid, 1, 0x208, umc, &tmp))
goto out_err;
/* If interleaved over more than 1 die. */
if (intlv_num_dies) {
sock_id_bit = die_id_bit + intlv_num_dies;
die_id_shift = (tmp >> 24) & 0xF;
die_id_mask = (tmp >> 8) & 0xFF;
cs_id |= ((cs_fabric_id & die_id_mask) >> die_id_shift) << die_id_bit;
}
/* If interleaved over more than 1 socket. */
if (intlv_num_sockets) {
socket_id_shift = (tmp >> 28) & 0xF;
socket_id_mask = (tmp >> 16) & 0xFF;
cs_id |= ((cs_fabric_id & socket_id_mask) >> socket_id_shift) << sock_id_bit;
}
/*
* The pre-interleaved address consists of XXXXXXIIIYYYYY
* where III is the ID for this CS, and XXXXXXYYYYY are the
* address bits from the post-interleaved address.
* "num_intlv_bits" has been calculated to tell us how many "I"
* bits there are. "intlv_addr_bit" tells us how many "Y" bits
* there are (where "I" starts).
*/
temp_addr_y = ret_addr & GENMASK_ULL(intlv_addr_bit-1, 0);
temp_addr_i = (cs_id << intlv_addr_bit);
temp_addr_x = (ret_addr & GENMASK_ULL(63, intlv_addr_bit)) << num_intlv_bits;
ret_addr = temp_addr_x | temp_addr_i | temp_addr_y;
}
/* Add dram base address */
ret_addr += dram_base_addr;
/* If legacy MMIO hole enabled */
if (lgcy_mmio_hole_en) {
if (amd_df_indirect_read(nid, 0, 0x104, umc, &tmp))
goto out_err;
dram_hole_base = tmp & GENMASK(31, 24);
if (ret_addr >= dram_hole_base)
ret_addr += (BIT_ULL(32) - dram_hole_base);
}
if (hash_enabled) {
/* Save some parentheses and grab ls-bit at the end. */
hashed_bit = (ret_addr >> 12) ^
(ret_addr >> 18) ^
(ret_addr >> 21) ^
(ret_addr >> 30) ^
cs_id;
hashed_bit &= BIT(0);
if (hashed_bit != ((ret_addr >> intlv_addr_bit) & BIT(0)))
ret_addr ^= BIT(intlv_addr_bit);
}
/* Is calculated system address is above DRAM limit address? */
if (ret_addr > dram_limit_addr)
goto out_err;
*sys_addr = ret_addr;
return 0;
out_err:
return -EINVAL;
}
EXPORT_SYMBOL_GPL(umc_normaddr_to_sysaddr);
bool amd_mce_is_memory_error(struct mce *m)
{
/* ErrCodeExt[20:16] */
u8 xec = (m->status >> 16) & 0x1f;
if (mce_flags.smca)
return smca_get_bank_type(m->bank) == SMCA_UMC && xec == 0x0;
return m->bank == 4 && xec == 0x8;
}
static void __log_error(unsigned int bank, u64 status, u64 addr, u64 misc)
{
struct mce m;
mce_setup(&m);
m.status = status;
m.misc = misc;
m.bank = bank;
m.tsc = rdtsc();
if (m.status & MCI_STATUS_ADDRV) {
m.addr = addr;
/*
* Extract [55:<lsb>] where lsb is the least significant
* *valid* bit of the address bits.
*/
if (mce_flags.smca) {
u8 lsb = (m.addr >> 56) & 0x3f;
m.addr &= GENMASK_ULL(55, lsb);
}
}
if (mce_flags.smca) {
rdmsrl(MSR_AMD64_SMCA_MCx_IPID(bank), m.ipid);
if (m.status & MCI_STATUS_SYNDV)
rdmsrl(MSR_AMD64_SMCA_MCx_SYND(bank), m.synd);
}
mce_log(&m);
}
asmlinkage __visible void __irq_entry smp_deferred_error_interrupt(struct pt_regs *regs)
{
entering_irq();
trace_deferred_error_apic_entry(DEFERRED_ERROR_VECTOR);
inc_irq_stat(irq_deferred_error_count);
deferred_error_int_vector();
trace_deferred_error_apic_exit(DEFERRED_ERROR_VECTOR);
exiting_ack_irq();
}
/*
* Returns true if the logged error is deferred. False, otherwise.
*/
static inline bool
_log_error_bank(unsigned int bank, u32 msr_stat, u32 msr_addr, u64 misc)
{
u64 status, addr = 0;
rdmsrl(msr_stat, status);
if (!(status & MCI_STATUS_VAL))
return false;
if (status & MCI_STATUS_ADDRV)
rdmsrl(msr_addr, addr);
__log_error(bank, status, addr, misc);
wrmsrl(msr_stat, 0);
return status & MCI_STATUS_DEFERRED;
}
/*
* We have three scenarios for checking for Deferred errors:
*
* 1) Non-SMCA systems check MCA_STATUS and log error if found.
* 2) SMCA systems check MCA_STATUS. If error is found then log it and also
* clear MCA_DESTAT.
* 3) SMCA systems check MCA_DESTAT, if error was not found in MCA_STATUS, and
* log it.
*/
static void log_error_deferred(unsigned int bank)
{
bool defrd;
defrd = _log_error_bank(bank, msr_ops.status(bank),
msr_ops.addr(bank), 0);
if (!mce_flags.smca)
return;
/* Clear MCA_DESTAT if we logged the deferred error from MCA_STATUS. */
if (defrd) {
wrmsrl(MSR_AMD64_SMCA_MCx_DESTAT(bank), 0);
return;
}
/*
* Only deferred errors are logged in MCA_DE{STAT,ADDR} so just check
* for a valid error.
*/
_log_error_bank(bank, MSR_AMD64_SMCA_MCx_DESTAT(bank),
MSR_AMD64_SMCA_MCx_DEADDR(bank), 0);
}
/* APIC interrupt handler for deferred errors */
static void amd_deferred_error_interrupt(void)
{
unsigned int bank;
for (bank = 0; bank < this_cpu_read(mce_num_banks); ++bank)
log_error_deferred(bank);
}
static void log_error_thresholding(unsigned int bank, u64 misc)
{
_log_error_bank(bank, msr_ops.status(bank), msr_ops.addr(bank), misc);
}
static void log_and_reset_block(struct threshold_block *block)
{
struct thresh_restart tr;
u32 low = 0, high = 0;
if (!block)
return;
if (rdmsr_safe(block->address, &low, &high))
return;
if (!(high & MASK_OVERFLOW_HI))
return;
/* Log the MCE which caused the threshold event. */
log_error_thresholding(block->bank, ((u64)high << 32) | low);
/* Reset threshold block after logging error. */
memset(&tr, 0, sizeof(tr));
tr.b = block;
threshold_restart_bank(&tr);
}
/*
* Threshold interrupt handler will service THRESHOLD_APIC_VECTOR. The interrupt
* goes off when error_count reaches threshold_limit.
*/
static void amd_threshold_interrupt(void)
{
struct threshold_block *first_block = NULL, *block = NULL, *tmp = NULL;
unsigned int bank, cpu = smp_processor_id();
for (bank = 0; bank < this_cpu_read(mce_num_banks); ++bank) {
if (!(per_cpu(bank_map, cpu) & (1 << bank)))
continue;
first_block = per_cpu(threshold_banks, cpu)[bank]->blocks;
if (!first_block)
continue;
/*
* The first block is also the head of the list. Check it first
* before iterating over the rest.
*/
log_and_reset_block(first_block);
list_for_each_entry_safe(block, tmp, &first_block->miscj, miscj)
log_and_reset_block(block);
}
}
/*
* Sysfs Interface
*/
struct threshold_attr {
struct attribute attr;
ssize_t (*show) (struct threshold_block *, char *);
ssize_t (*store) (struct threshold_block *, const char *, size_t count);
};
#define SHOW_FIELDS(name) \
static ssize_t show_ ## name(struct threshold_block *b, char *buf) \
{ \
return sprintf(buf, "%lu\n", (unsigned long) b->name); \
}
SHOW_FIELDS(interrupt_enable)
SHOW_FIELDS(threshold_limit)
static ssize_t
store_interrupt_enable(struct threshold_block *b, const char *buf, size_t size)
{
struct thresh_restart tr;
unsigned long new;
if (!b->interrupt_capable)
return -EINVAL;
if (kstrtoul(buf, 0, &new) < 0)
return -EINVAL;
b->interrupt_enable = !!new;
memset(&tr, 0, sizeof(tr));
tr.b = b;
smp_call_function_single(b->cpu, threshold_restart_bank, &tr, 1);
return size;
}
static ssize_t
store_threshold_limit(struct threshold_block *b, const char *buf, size_t size)
{
struct thresh_restart tr;
unsigned long new;
if (kstrtoul(buf, 0, &new) < 0)
return -EINVAL;
if (new > THRESHOLD_MAX)
new = THRESHOLD_MAX;
if (new < 1)
new = 1;
memset(&tr, 0, sizeof(tr));
tr.old_limit = b->threshold_limit;
b->threshold_limit = new;
tr.b = b;
smp_call_function_single(b->cpu, threshold_restart_bank, &tr, 1);
return size;
}
static ssize_t show_error_count(struct threshold_block *b, char *buf)
{
u32 lo, hi;
rdmsr_on_cpu(b->cpu, b->address, &lo, &hi);
return sprintf(buf, "%u\n", ((hi & THRESHOLD_MAX) -
(THRESHOLD_MAX - b->threshold_limit)));
}
static struct threshold_attr error_count = {
.attr = {.name = __stringify(error_count), .mode = 0444 },
.show = show_error_count,
};
#define RW_ATTR(val) \
static struct threshold_attr val = { \
.attr = {.name = __stringify(val), .mode = 0644 }, \
.show = show_## val, \
.store = store_## val, \
};
RW_ATTR(interrupt_enable);
RW_ATTR(threshold_limit);
static struct attribute *default_attrs[] = {
&threshold_limit.attr,
&error_count.attr,
NULL, /* possibly interrupt_enable if supported, see below */
NULL,
};
#define to_block(k) container_of(k, struct threshold_block, kobj)
#define to_attr(a) container_of(a, struct threshold_attr, attr)
static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf)
{
struct threshold_block *b = to_block(kobj);
struct threshold_attr *a = to_attr(attr);
ssize_t ret;
ret = a->show ? a->show(b, buf) : -EIO;
return ret;
}
static ssize_t store(struct kobject *kobj, struct attribute *attr,
const char *buf, size_t count)
{
struct threshold_block *b = to_block(kobj);
struct threshold_attr *a = to_attr(attr);
ssize_t ret;
ret = a->store ? a->store(b, buf, count) : -EIO;
return ret;
}
static const struct sysfs_ops threshold_ops = {
.show = show,
.store = store,
};
static void threshold_block_release(struct kobject *kobj);
static struct kobj_type threshold_ktype = {
.sysfs_ops = &threshold_ops,
.default_attrs = default_attrs,
.release = threshold_block_release,
};
static const char *get_name(unsigned int bank, struct threshold_block *b)
{
enum smca_bank_types bank_type;
if (!mce_flags.smca) {
if (b && bank == 4)
return bank4_names(b);
return th_names[bank];
}
bank_type = smca_get_bank_type(bank);
if (bank_type >= N_SMCA_BANK_TYPES)
return NULL;
if (b && bank_type == SMCA_UMC) {
if (b->block < ARRAY_SIZE(smca_umc_block_names))
return smca_umc_block_names[b->block];
return NULL;
}
if (smca_banks[bank].hwid->count == 1)
return smca_get_name(bank_type);
snprintf(buf_mcatype, MAX_MCATYPE_NAME_LEN,
"%s_%x", smca_get_name(bank_type),
smca_banks[bank].sysfs_id);
return buf_mcatype;
}
static int allocate_threshold_blocks(unsigned int cpu, struct threshold_bank *tb,
unsigned int bank, unsigned int block,
u32 address)
{
struct threshold_block *b = NULL;
u32 low, high;
int err;
if ((bank >= per_cpu(mce_num_banks, cpu)) || (block >= NR_BLOCKS))
return 0;
if (rdmsr_safe_on_cpu(cpu, address, &low, &high))
return 0;
if (!(high & MASK_VALID_HI)) {
if (block)
goto recurse;
else
return 0;
}
if (!(high & MASK_CNTP_HI) ||
(high & MASK_LOCKED_HI))
goto recurse;
b = kzalloc(sizeof(struct threshold_block), GFP_KERNEL);
if (!b)
return -ENOMEM;
b->block = block;
b->bank = bank;
b->cpu = cpu;
b->address = address;
b->interrupt_enable = 0;
b->interrupt_capable = lvt_interrupt_supported(bank, high);
b->threshold_limit = THRESHOLD_MAX;
if (b->interrupt_capable) {
threshold_ktype.default_attrs[2] = &interrupt_enable.attr;
b->interrupt_enable = 1;
} else {
threshold_ktype.default_attrs[2] = NULL;
}
INIT_LIST_HEAD(&b->miscj);
if (tb->blocks)
list_add(&b->miscj, &tb->blocks->miscj);
else
tb->blocks = b;
err = kobject_init_and_add(&b->kobj, &threshold_ktype, tb->kobj, get_name(bank, b));
if (err)
goto out_free;
recurse:
address = get_block_address(address, low, high, bank, ++block, cpu);
if (!address)
return 0;
err = allocate_threshold_blocks(cpu, tb, bank, block, address);
if (err)
goto out_free;
if (b)
kobject_uevent(&b->kobj, KOBJ_ADD);
return err;
out_free:
if (b) {
kobject_put(&b->kobj);
list_del(&b->miscj);
kfree(b);
}
return err;
}
static int __threshold_add_blocks(struct threshold_bank *b)
{
struct list_head *head = &b->blocks->miscj;
struct threshold_block *pos = NULL;
struct threshold_block *tmp = NULL;
int err = 0;
err = kobject_add(&b->blocks->kobj, b->kobj, b->blocks->kobj.name);
if (err)
return err;
list_for_each_entry_safe(pos, tmp, head, miscj) {
err = kobject_add(&pos->kobj, b->kobj, pos->kobj.name);
if (err) {
list_for_each_entry_safe_reverse(pos, tmp, head, miscj)
kobject_del(&pos->kobj);
return err;
}
}
return err;
}
static int threshold_create_bank(unsigned int cpu, unsigned int bank)
{
struct device *dev = per_cpu(mce_device, cpu);
struct amd_northbridge *nb = NULL;
struct threshold_bank *b = NULL;
const char *name = get_name(bank, NULL);
int err = 0;
if (!dev)
return -ENODEV;
if (is_shared_bank(bank)) {
nb = node_to_amd_nb(amd_get_nb_id(cpu));
/* threshold descriptor already initialized on this node? */
if (nb && nb->bank4) {
/* yes, use it */
b = nb->bank4;
err = kobject_add(b->kobj, &dev->kobj, name);
if (err)
goto out;
per_cpu(threshold_banks, cpu)[bank] = b;
refcount_inc(&b->cpus);
err = __threshold_add_blocks(b);
goto out;
}
}
b = kzalloc(sizeof(struct threshold_bank), GFP_KERNEL);
if (!b) {
err = -ENOMEM;
goto out;
}
b->kobj = kobject_create_and_add(name, &dev->kobj);
if (!b->kobj) {
err = -EINVAL;
goto out_free;
}
if (is_shared_bank(bank)) {
refcount_set(&b->cpus, 1);
/* nb is already initialized, see above */
if (nb) {
WARN_ON(nb->bank4);
nb->bank4 = b;
}
}
err = allocate_threshold_blocks(cpu, b, bank, 0, msr_ops.misc(bank));
if (err)
goto out_free;
per_cpu(threshold_banks, cpu)[bank] = b;
return 0;
out_free:
kfree(b);
out:
return err;
}
static void threshold_block_release(struct kobject *kobj)
{
kfree(to_block(kobj));
}
static void deallocate_threshold_block(unsigned int cpu, unsigned int bank)
{
struct threshold_block *pos = NULL;
struct threshold_block *tmp = NULL;
struct threshold_bank *head = per_cpu(threshold_banks, cpu)[bank];
if (!head)
return;
list_for_each_entry_safe(pos, tmp, &head->blocks->miscj, miscj) {
list_del(&pos->miscj);
kobject_put(&pos->kobj);
}
kobject_put(&head->blocks->kobj);
}
static void __threshold_remove_blocks(struct threshold_bank *b)
{
struct threshold_block *pos = NULL;
struct threshold_block *tmp = NULL;
kobject_del(b->kobj);
list_for_each_entry_safe(pos, tmp, &b->blocks->miscj, miscj)
kobject_del(&pos->kobj);
}
static void threshold_remove_bank(unsigned int cpu, int bank)
{
struct amd_northbridge *nb;
struct threshold_bank *b;
b = per_cpu(threshold_banks, cpu)[bank];
if (!b)
return;
if (!b->blocks)
goto free_out;
if (is_shared_bank(bank)) {
if (!refcount_dec_and_test(&b->cpus)) {
__threshold_remove_blocks(b);
per_cpu(threshold_banks, cpu)[bank] = NULL;
return;
} else {
/*
* the last CPU on this node using the shared bank is
* going away, remove that bank now.
*/
nb = node_to_amd_nb(amd_get_nb_id(cpu));
nb->bank4 = NULL;
}
}
deallocate_threshold_block(cpu, bank);
free_out:
kobject_del(b->kobj);
kobject_put(b->kobj);
kfree(b);
per_cpu(threshold_banks, cpu)[bank] = NULL;
}
int mce_threshold_remove_device(unsigned int cpu)
{
unsigned int bank;
for (bank = 0; bank < per_cpu(mce_num_banks, cpu); ++bank) {
if (!(per_cpu(bank_map, cpu) & (1 << bank)))
continue;
threshold_remove_bank(cpu, bank);
}
kfree(per_cpu(threshold_banks, cpu));
per_cpu(threshold_banks, cpu) = NULL;
return 0;
}
/* create dir/files for all valid threshold banks */
int mce_threshold_create_device(unsigned int cpu)
{
unsigned int bank;
struct threshold_bank **bp;
int err = 0;
bp = per_cpu(threshold_banks, cpu);
if (bp)
return 0;
bp = kcalloc(per_cpu(mce_num_banks, cpu), sizeof(struct threshold_bank *),
GFP_KERNEL);
if (!bp)
return -ENOMEM;
per_cpu(threshold_banks, cpu) = bp;
for (bank = 0; bank < per_cpu(mce_num_banks, cpu); ++bank) {
if (!(per_cpu(bank_map, cpu) & (1 << bank)))
continue;
err = threshold_create_bank(cpu, bank);
if (err)
goto err;
}
return err;
err:
mce_threshold_remove_device(cpu);
return err;
}
static __init int threshold_init_device(void)
{
unsigned lcpu = 0;
/* to hit CPUs online before the notifier is up */
for_each_online_cpu(lcpu) {
int err = mce_threshold_create_device(lcpu);
if (err)
return err;
}
if (thresholding_irq_en)
mce_threshold_vector = amd_threshold_interrupt;
return 0;
}
/*
* there are 3 funcs which need to be _initcalled in a logic sequence:
* 1. xen_late_init_mcelog
* 2. mcheck_init_device
* 3. threshold_init_device
*
* xen_late_init_mcelog must register xen_mce_chrdev_device before
* native mce_chrdev_device registration if running under xen platform;
*
* mcheck_init_device should be inited before threshold_init_device to
* initialize mce_device, otherwise a NULL ptr dereference will cause panic.
*
* so we use following _initcalls
* 1. device_initcall(xen_late_init_mcelog);
* 2. device_initcall_sync(mcheck_init_device);
* 3. late_initcall(threshold_init_device);
*
* when running under xen, the initcall order is 1,2,3;
* on baremetal, we skip 1 and we do only 2 and 3.
*/
late_initcall(threshold_init_device);