blob: adf9e5880d894fd90afb9cdcd82bf1687a2c748f [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/*
* DPAA2 Ethernet Switch driver
*
* Copyright 2014-2016 Freescale Semiconductor Inc.
* Copyright 2017-2021 NXP
*
*/
#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/msi.h>
#include <linux/kthread.h>
#include <linux/workqueue.h>
#include <linux/iommu.h>
#include <net/pkt_cls.h>
#include <linux/fsl/mc.h>
#include "dpaa2-switch.h"
/* Minimal supported DPSW version */
#define DPSW_MIN_VER_MAJOR 8
#define DPSW_MIN_VER_MINOR 9
#define DEFAULT_VLAN_ID 1
static u16 dpaa2_switch_port_get_fdb_id(struct ethsw_port_priv *port_priv)
{
return port_priv->fdb->fdb_id;
}
static struct dpaa2_switch_fdb *dpaa2_switch_fdb_get_unused(struct ethsw_core *ethsw)
{
int i;
for (i = 0; i < ethsw->sw_attr.num_ifs; i++)
if (!ethsw->fdbs[i].in_use)
return &ethsw->fdbs[i];
return NULL;
}
static struct dpaa2_switch_acl_tbl *
dpaa2_switch_acl_tbl_get_unused(struct ethsw_core *ethsw)
{
int i;
for (i = 0; i < ethsw->sw_attr.num_ifs; i++)
if (!ethsw->acls[i].in_use)
return &ethsw->acls[i];
return NULL;
}
static u16 dpaa2_switch_port_set_fdb(struct ethsw_port_priv *port_priv,
struct net_device *bridge_dev)
{
struct ethsw_port_priv *other_port_priv = NULL;
struct dpaa2_switch_fdb *fdb;
struct net_device *other_dev;
struct list_head *iter;
/* If we leave a bridge (bridge_dev is NULL), find an unused
* FDB and use that.
*/
if (!bridge_dev) {
fdb = dpaa2_switch_fdb_get_unused(port_priv->ethsw_data);
/* If there is no unused FDB, we must be the last port that
* leaves the last bridge, all the others are standalone. We
* can just keep the FDB that we already have.
*/
if (!fdb) {
port_priv->fdb->bridge_dev = NULL;
return 0;
}
port_priv->fdb = fdb;
port_priv->fdb->in_use = true;
port_priv->fdb->bridge_dev = NULL;
return 0;
}
/* The below call to netdev_for_each_lower_dev() demands the RTNL lock
* being held. Assert on it so that it's easier to catch new code
* paths that reach this point without the RTNL lock.
*/
ASSERT_RTNL();
/* If part of a bridge, use the FDB of the first dpaa2 switch interface
* to be present in that bridge
*/
netdev_for_each_lower_dev(bridge_dev, other_dev, iter) {
if (!dpaa2_switch_port_dev_check(other_dev))
continue;
if (other_dev == port_priv->netdev)
continue;
other_port_priv = netdev_priv(other_dev);
break;
}
/* The current port is about to change its FDB to the one used by the
* first port that joined the bridge.
*/
if (other_port_priv) {
/* The previous FDB is about to become unused, since the
* interface is no longer standalone.
*/
port_priv->fdb->in_use = false;
port_priv->fdb->bridge_dev = NULL;
/* Get a reference to the new FDB */
port_priv->fdb = other_port_priv->fdb;
}
/* Keep track of the new upper bridge device */
port_priv->fdb->bridge_dev = bridge_dev;
return 0;
}
static void dpaa2_switch_fdb_get_flood_cfg(struct ethsw_core *ethsw, u16 fdb_id,
enum dpsw_flood_type type,
struct dpsw_egress_flood_cfg *cfg)
{
int i = 0, j;
memset(cfg, 0, sizeof(*cfg));
/* Add all the DPAA2 switch ports found in the same bridging domain to
* the egress flooding domain
*/
for (j = 0; j < ethsw->sw_attr.num_ifs; j++) {
if (!ethsw->ports[j])
continue;
if (ethsw->ports[j]->fdb->fdb_id != fdb_id)
continue;
if (type == DPSW_BROADCAST && ethsw->ports[j]->bcast_flood)
cfg->if_id[i++] = ethsw->ports[j]->idx;
else if (type == DPSW_FLOODING && ethsw->ports[j]->ucast_flood)
cfg->if_id[i++] = ethsw->ports[j]->idx;
}
/* Add the CTRL interface to the egress flooding domain */
cfg->if_id[i++] = ethsw->sw_attr.num_ifs;
cfg->fdb_id = fdb_id;
cfg->flood_type = type;
cfg->num_ifs = i;
}
static int dpaa2_switch_fdb_set_egress_flood(struct ethsw_core *ethsw, u16 fdb_id)
{
struct dpsw_egress_flood_cfg flood_cfg;
int err;
/* Setup broadcast flooding domain */
dpaa2_switch_fdb_get_flood_cfg(ethsw, fdb_id, DPSW_BROADCAST, &flood_cfg);
err = dpsw_set_egress_flood(ethsw->mc_io, 0, ethsw->dpsw_handle,
&flood_cfg);
if (err) {
dev_err(ethsw->dev, "dpsw_set_egress_flood() = %d\n", err);
return err;
}
/* Setup unknown flooding domain */
dpaa2_switch_fdb_get_flood_cfg(ethsw, fdb_id, DPSW_FLOODING, &flood_cfg);
err = dpsw_set_egress_flood(ethsw->mc_io, 0, ethsw->dpsw_handle,
&flood_cfg);
if (err) {
dev_err(ethsw->dev, "dpsw_set_egress_flood() = %d\n", err);
return err;
}
return 0;
}
static void *dpaa2_iova_to_virt(struct iommu_domain *domain,
dma_addr_t iova_addr)
{
phys_addr_t phys_addr;
phys_addr = domain ? iommu_iova_to_phys(domain, iova_addr) : iova_addr;
return phys_to_virt(phys_addr);
}
static int dpaa2_switch_add_vlan(struct ethsw_port_priv *port_priv, u16 vid)
{
struct ethsw_core *ethsw = port_priv->ethsw_data;
struct dpsw_vlan_cfg vcfg = {0};
int err;
vcfg.fdb_id = dpaa2_switch_port_get_fdb_id(port_priv);
err = dpsw_vlan_add(ethsw->mc_io, 0,
ethsw->dpsw_handle, vid, &vcfg);
if (err) {
dev_err(ethsw->dev, "dpsw_vlan_add err %d\n", err);
return err;
}
ethsw->vlans[vid] = ETHSW_VLAN_MEMBER;
return 0;
}
static bool dpaa2_switch_port_is_up(struct ethsw_port_priv *port_priv)
{
struct net_device *netdev = port_priv->netdev;
struct dpsw_link_state state;
int err;
err = dpsw_if_get_link_state(port_priv->ethsw_data->mc_io, 0,
port_priv->ethsw_data->dpsw_handle,
port_priv->idx, &state);
if (err) {
netdev_err(netdev, "dpsw_if_get_link_state() err %d\n", err);
return true;
}
WARN_ONCE(state.up > 1, "Garbage read into link_state");
return state.up ? true : false;
}
static int dpaa2_switch_port_set_pvid(struct ethsw_port_priv *port_priv, u16 pvid)
{
struct ethsw_core *ethsw = port_priv->ethsw_data;
struct net_device *netdev = port_priv->netdev;
struct dpsw_tci_cfg tci_cfg = { 0 };
bool up;
int err, ret;
err = dpsw_if_get_tci(ethsw->mc_io, 0, ethsw->dpsw_handle,
port_priv->idx, &tci_cfg);
if (err) {
netdev_err(netdev, "dpsw_if_get_tci err %d\n", err);
return err;
}
tci_cfg.vlan_id = pvid;
/* Interface needs to be down to change PVID */
up = dpaa2_switch_port_is_up(port_priv);
if (up) {
err = dpsw_if_disable(ethsw->mc_io, 0,
ethsw->dpsw_handle,
port_priv->idx);
if (err) {
netdev_err(netdev, "dpsw_if_disable err %d\n", err);
return err;
}
}
err = dpsw_if_set_tci(ethsw->mc_io, 0, ethsw->dpsw_handle,
port_priv->idx, &tci_cfg);
if (err) {
netdev_err(netdev, "dpsw_if_set_tci err %d\n", err);
goto set_tci_error;
}
/* Delete previous PVID info and mark the new one */
port_priv->vlans[port_priv->pvid] &= ~ETHSW_VLAN_PVID;
port_priv->vlans[pvid] |= ETHSW_VLAN_PVID;
port_priv->pvid = pvid;
set_tci_error:
if (up) {
ret = dpsw_if_enable(ethsw->mc_io, 0,
ethsw->dpsw_handle,
port_priv->idx);
if (ret) {
netdev_err(netdev, "dpsw_if_enable err %d\n", ret);
return ret;
}
}
return err;
}
static int dpaa2_switch_port_add_vlan(struct ethsw_port_priv *port_priv,
u16 vid, u16 flags)
{
struct ethsw_core *ethsw = port_priv->ethsw_data;
struct net_device *netdev = port_priv->netdev;
struct dpsw_vlan_if_cfg vcfg = {0};
int err;
if (port_priv->vlans[vid]) {
netdev_warn(netdev, "VLAN %d already configured\n", vid);
return -EEXIST;
}
/* If hit, this VLAN rule will lead the packet into the FDB table
* specified in the vlan configuration below
*/
vcfg.num_ifs = 1;
vcfg.if_id[0] = port_priv->idx;
vcfg.fdb_id = dpaa2_switch_port_get_fdb_id(port_priv);
vcfg.options |= DPSW_VLAN_ADD_IF_OPT_FDB_ID;
err = dpsw_vlan_add_if(ethsw->mc_io, 0, ethsw->dpsw_handle, vid, &vcfg);
if (err) {
netdev_err(netdev, "dpsw_vlan_add_if err %d\n", err);
return err;
}
port_priv->vlans[vid] = ETHSW_VLAN_MEMBER;
if (flags & BRIDGE_VLAN_INFO_UNTAGGED) {
err = dpsw_vlan_add_if_untagged(ethsw->mc_io, 0,
ethsw->dpsw_handle,
vid, &vcfg);
if (err) {
netdev_err(netdev,
"dpsw_vlan_add_if_untagged err %d\n", err);
return err;
}
port_priv->vlans[vid] |= ETHSW_VLAN_UNTAGGED;
}
if (flags & BRIDGE_VLAN_INFO_PVID) {
err = dpaa2_switch_port_set_pvid(port_priv, vid);
if (err)
return err;
}
return 0;
}
static enum dpsw_stp_state br_stp_state_to_dpsw(u8 state)
{
switch (state) {
case BR_STATE_DISABLED:
return DPSW_STP_STATE_DISABLED;
case BR_STATE_LISTENING:
return DPSW_STP_STATE_LISTENING;
case BR_STATE_LEARNING:
return DPSW_STP_STATE_LEARNING;
case BR_STATE_FORWARDING:
return DPSW_STP_STATE_FORWARDING;
case BR_STATE_BLOCKING:
return DPSW_STP_STATE_BLOCKING;
default:
return DPSW_STP_STATE_DISABLED;
}
}
static int dpaa2_switch_port_set_stp_state(struct ethsw_port_priv *port_priv, u8 state)
{
struct dpsw_stp_cfg stp_cfg = {0};
int err;
u16 vid;
if (!netif_running(port_priv->netdev) || state == port_priv->stp_state)
return 0; /* Nothing to do */
stp_cfg.state = br_stp_state_to_dpsw(state);
for (vid = 0; vid <= VLAN_VID_MASK; vid++) {
if (port_priv->vlans[vid] & ETHSW_VLAN_MEMBER) {
stp_cfg.vlan_id = vid;
err = dpsw_if_set_stp(port_priv->ethsw_data->mc_io, 0,
port_priv->ethsw_data->dpsw_handle,
port_priv->idx, &stp_cfg);
if (err) {
netdev_err(port_priv->netdev,
"dpsw_if_set_stp err %d\n", err);
return err;
}
}
}
port_priv->stp_state = state;
return 0;
}
static int dpaa2_switch_dellink(struct ethsw_core *ethsw, u16 vid)
{
struct ethsw_port_priv *ppriv_local = NULL;
int i, err;
if (!ethsw->vlans[vid])
return -ENOENT;
err = dpsw_vlan_remove(ethsw->mc_io, 0, ethsw->dpsw_handle, vid);
if (err) {
dev_err(ethsw->dev, "dpsw_vlan_remove err %d\n", err);
return err;
}
ethsw->vlans[vid] = 0;
for (i = 0; i < ethsw->sw_attr.num_ifs; i++) {
ppriv_local = ethsw->ports[i];
ppriv_local->vlans[vid] = 0;
}
return 0;
}
static int dpaa2_switch_port_fdb_add_uc(struct ethsw_port_priv *port_priv,
const unsigned char *addr)
{
struct dpsw_fdb_unicast_cfg entry = {0};
u16 fdb_id;
int err;
entry.if_egress = port_priv->idx;
entry.type = DPSW_FDB_ENTRY_STATIC;
ether_addr_copy(entry.mac_addr, addr);
fdb_id = dpaa2_switch_port_get_fdb_id(port_priv);
err = dpsw_fdb_add_unicast(port_priv->ethsw_data->mc_io, 0,
port_priv->ethsw_data->dpsw_handle,
fdb_id, &entry);
if (err)
netdev_err(port_priv->netdev,
"dpsw_fdb_add_unicast err %d\n", err);
return err;
}
static int dpaa2_switch_port_fdb_del_uc(struct ethsw_port_priv *port_priv,
const unsigned char *addr)
{
struct dpsw_fdb_unicast_cfg entry = {0};
u16 fdb_id;
int err;
entry.if_egress = port_priv->idx;
entry.type = DPSW_FDB_ENTRY_STATIC;
ether_addr_copy(entry.mac_addr, addr);
fdb_id = dpaa2_switch_port_get_fdb_id(port_priv);
err = dpsw_fdb_remove_unicast(port_priv->ethsw_data->mc_io, 0,
port_priv->ethsw_data->dpsw_handle,
fdb_id, &entry);
/* Silently discard error for calling multiple times the del command */
if (err && err != -ENXIO)
netdev_err(port_priv->netdev,
"dpsw_fdb_remove_unicast err %d\n", err);
return err;
}
static int dpaa2_switch_port_fdb_add_mc(struct ethsw_port_priv *port_priv,
const unsigned char *addr)
{
struct dpsw_fdb_multicast_cfg entry = {0};
u16 fdb_id;
int err;
ether_addr_copy(entry.mac_addr, addr);
entry.type = DPSW_FDB_ENTRY_STATIC;
entry.num_ifs = 1;
entry.if_id[0] = port_priv->idx;
fdb_id = dpaa2_switch_port_get_fdb_id(port_priv);
err = dpsw_fdb_add_multicast(port_priv->ethsw_data->mc_io, 0,
port_priv->ethsw_data->dpsw_handle,
fdb_id, &entry);
/* Silently discard error for calling multiple times the add command */
if (err && err != -ENXIO)
netdev_err(port_priv->netdev, "dpsw_fdb_add_multicast err %d\n",
err);
return err;
}
static int dpaa2_switch_port_fdb_del_mc(struct ethsw_port_priv *port_priv,
const unsigned char *addr)
{
struct dpsw_fdb_multicast_cfg entry = {0};
u16 fdb_id;
int err;
ether_addr_copy(entry.mac_addr, addr);
entry.type = DPSW_FDB_ENTRY_STATIC;
entry.num_ifs = 1;
entry.if_id[0] = port_priv->idx;
fdb_id = dpaa2_switch_port_get_fdb_id(port_priv);
err = dpsw_fdb_remove_multicast(port_priv->ethsw_data->mc_io, 0,
port_priv->ethsw_data->dpsw_handle,
fdb_id, &entry);
/* Silently discard error for calling multiple times the del command */
if (err && err != -ENAVAIL)
netdev_err(port_priv->netdev,
"dpsw_fdb_remove_multicast err %d\n", err);
return err;
}
static void dpaa2_switch_port_get_stats(struct net_device *netdev,
struct rtnl_link_stats64 *stats)
{
struct ethsw_port_priv *port_priv = netdev_priv(netdev);
u64 tmp;
int err;
err = dpsw_if_get_counter(port_priv->ethsw_data->mc_io, 0,
port_priv->ethsw_data->dpsw_handle,
port_priv->idx,
DPSW_CNT_ING_FRAME, &stats->rx_packets);
if (err)
goto error;
err = dpsw_if_get_counter(port_priv->ethsw_data->mc_io, 0,
port_priv->ethsw_data->dpsw_handle,
port_priv->idx,
DPSW_CNT_EGR_FRAME, &stats->tx_packets);
if (err)
goto error;
err = dpsw_if_get_counter(port_priv->ethsw_data->mc_io, 0,
port_priv->ethsw_data->dpsw_handle,
port_priv->idx,
DPSW_CNT_ING_BYTE, &stats->rx_bytes);
if (err)
goto error;
err = dpsw_if_get_counter(port_priv->ethsw_data->mc_io, 0,
port_priv->ethsw_data->dpsw_handle,
port_priv->idx,
DPSW_CNT_EGR_BYTE, &stats->tx_bytes);
if (err)
goto error;
err = dpsw_if_get_counter(port_priv->ethsw_data->mc_io, 0,
port_priv->ethsw_data->dpsw_handle,
port_priv->idx,
DPSW_CNT_ING_FRAME_DISCARD,
&stats->rx_dropped);
if (err)
goto error;
err = dpsw_if_get_counter(port_priv->ethsw_data->mc_io, 0,
port_priv->ethsw_data->dpsw_handle,
port_priv->idx,
DPSW_CNT_ING_FLTR_FRAME,
&tmp);
if (err)
goto error;
stats->rx_dropped += tmp;
err = dpsw_if_get_counter(port_priv->ethsw_data->mc_io, 0,
port_priv->ethsw_data->dpsw_handle,
port_priv->idx,
DPSW_CNT_EGR_FRAME_DISCARD,
&stats->tx_dropped);
if (err)
goto error;
return;
error:
netdev_err(netdev, "dpsw_if_get_counter err %d\n", err);
}
static bool dpaa2_switch_port_has_offload_stats(const struct net_device *netdev,
int attr_id)
{
return (attr_id == IFLA_OFFLOAD_XSTATS_CPU_HIT);
}
static int dpaa2_switch_port_get_offload_stats(int attr_id,
const struct net_device *netdev,
void *sp)
{
switch (attr_id) {
case IFLA_OFFLOAD_XSTATS_CPU_HIT:
dpaa2_switch_port_get_stats((struct net_device *)netdev, sp);
return 0;
}
return -EINVAL;
}
static int dpaa2_switch_port_change_mtu(struct net_device *netdev, int mtu)
{
struct ethsw_port_priv *port_priv = netdev_priv(netdev);
int err;
err = dpsw_if_set_max_frame_length(port_priv->ethsw_data->mc_io,
0,
port_priv->ethsw_data->dpsw_handle,
port_priv->idx,
(u16)ETHSW_L2_MAX_FRM(mtu));
if (err) {
netdev_err(netdev,
"dpsw_if_set_max_frame_length() err %d\n", err);
return err;
}
netdev->mtu = mtu;
return 0;
}
static int dpaa2_switch_port_carrier_state_sync(struct net_device *netdev)
{
struct ethsw_port_priv *port_priv = netdev_priv(netdev);
struct dpsw_link_state state;
int err;
/* Interrupts are received even though no one issued an 'ifconfig up'
* on the switch interface. Ignore these link state update interrupts
*/
if (!netif_running(netdev))
return 0;
err = dpsw_if_get_link_state(port_priv->ethsw_data->mc_io, 0,
port_priv->ethsw_data->dpsw_handle,
port_priv->idx, &state);
if (err) {
netdev_err(netdev, "dpsw_if_get_link_state() err %d\n", err);
return err;
}
WARN_ONCE(state.up > 1, "Garbage read into link_state");
if (state.up != port_priv->link_state) {
if (state.up) {
netif_carrier_on(netdev);
netif_tx_start_all_queues(netdev);
} else {
netif_carrier_off(netdev);
netif_tx_stop_all_queues(netdev);
}
port_priv->link_state = state.up;
}
return 0;
}
/* Manage all NAPI instances for the control interface.
*
* We only have one RX queue and one Tx Conf queue for all
* switch ports. Therefore, we only need to enable the NAPI instance once, the
* first time one of the switch ports runs .dev_open().
*/
static void dpaa2_switch_enable_ctrl_if_napi(struct ethsw_core *ethsw)
{
int i;
/* Access to the ethsw->napi_users relies on the RTNL lock */
ASSERT_RTNL();
/* a new interface is using the NAPI instance */
ethsw->napi_users++;
/* if there is already a user of the instance, return */
if (ethsw->napi_users > 1)
return;
for (i = 0; i < DPAA2_SWITCH_RX_NUM_FQS; i++)
napi_enable(&ethsw->fq[i].napi);
}
static void dpaa2_switch_disable_ctrl_if_napi(struct ethsw_core *ethsw)
{
int i;
/* Access to the ethsw->napi_users relies on the RTNL lock */
ASSERT_RTNL();
/* If we are not the last interface using the NAPI, return */
ethsw->napi_users--;
if (ethsw->napi_users)
return;
for (i = 0; i < DPAA2_SWITCH_RX_NUM_FQS; i++)
napi_disable(&ethsw->fq[i].napi);
}
static int dpaa2_switch_port_open(struct net_device *netdev)
{
struct ethsw_port_priv *port_priv = netdev_priv(netdev);
struct ethsw_core *ethsw = port_priv->ethsw_data;
int err;
/* Explicitly set carrier off, otherwise
* netif_carrier_ok() will return true and cause 'ip link show'
* to report the LOWER_UP flag, even though the link
* notification wasn't even received.
*/
netif_carrier_off(netdev);
err = dpsw_if_enable(port_priv->ethsw_data->mc_io, 0,
port_priv->ethsw_data->dpsw_handle,
port_priv->idx);
if (err) {
netdev_err(netdev, "dpsw_if_enable err %d\n", err);
return err;
}
/* sync carrier state */
err = dpaa2_switch_port_carrier_state_sync(netdev);
if (err) {
netdev_err(netdev,
"dpaa2_switch_port_carrier_state_sync err %d\n", err);
goto err_carrier_sync;
}
dpaa2_switch_enable_ctrl_if_napi(ethsw);
return 0;
err_carrier_sync:
dpsw_if_disable(port_priv->ethsw_data->mc_io, 0,
port_priv->ethsw_data->dpsw_handle,
port_priv->idx);
return err;
}
static int dpaa2_switch_port_stop(struct net_device *netdev)
{
struct ethsw_port_priv *port_priv = netdev_priv(netdev);
struct ethsw_core *ethsw = port_priv->ethsw_data;
int err;
err = dpsw_if_disable(port_priv->ethsw_data->mc_io, 0,
port_priv->ethsw_data->dpsw_handle,
port_priv->idx);
if (err) {
netdev_err(netdev, "dpsw_if_disable err %d\n", err);
return err;
}
dpaa2_switch_disable_ctrl_if_napi(ethsw);
return 0;
}
static int dpaa2_switch_port_parent_id(struct net_device *dev,
struct netdev_phys_item_id *ppid)
{
struct ethsw_port_priv *port_priv = netdev_priv(dev);
ppid->id_len = 1;
ppid->id[0] = port_priv->ethsw_data->dev_id;
return 0;
}
static int dpaa2_switch_port_get_phys_name(struct net_device *netdev, char *name,
size_t len)
{
struct ethsw_port_priv *port_priv = netdev_priv(netdev);
int err;
err = snprintf(name, len, "p%d", port_priv->idx);
if (err >= len)
return -EINVAL;
return 0;
}
struct ethsw_dump_ctx {
struct net_device *dev;
struct sk_buff *skb;
struct netlink_callback *cb;
int idx;
};
static int dpaa2_switch_fdb_dump_nl(struct fdb_dump_entry *entry,
struct ethsw_dump_ctx *dump)
{
int is_dynamic = entry->type & DPSW_FDB_ENTRY_DINAMIC;
u32 portid = NETLINK_CB(dump->cb->skb).portid;
u32 seq = dump->cb->nlh->nlmsg_seq;
struct nlmsghdr *nlh;
struct ndmsg *ndm;
if (dump->idx < dump->cb->args[2])
goto skip;
nlh = nlmsg_put(dump->skb, portid, seq, RTM_NEWNEIGH,
sizeof(*ndm), NLM_F_MULTI);
if (!nlh)
return -EMSGSIZE;
ndm = nlmsg_data(nlh);
ndm->ndm_family = AF_BRIDGE;
ndm->ndm_pad1 = 0;
ndm->ndm_pad2 = 0;
ndm->ndm_flags = NTF_SELF;
ndm->ndm_type = 0;
ndm->ndm_ifindex = dump->dev->ifindex;
ndm->ndm_state = is_dynamic ? NUD_REACHABLE : NUD_NOARP;
if (nla_put(dump->skb, NDA_LLADDR, ETH_ALEN, entry->mac_addr))
goto nla_put_failure;
nlmsg_end(dump->skb, nlh);
skip:
dump->idx++;
return 0;
nla_put_failure:
nlmsg_cancel(dump->skb, nlh);
return -EMSGSIZE;
}
static int dpaa2_switch_port_fdb_valid_entry(struct fdb_dump_entry *entry,
struct ethsw_port_priv *port_priv)
{
int idx = port_priv->idx;
int valid;
if (entry->type & DPSW_FDB_ENTRY_TYPE_UNICAST)
valid = entry->if_info == port_priv->idx;
else
valid = entry->if_mask[idx / 8] & BIT(idx % 8);
return valid;
}
static int dpaa2_switch_fdb_iterate(struct ethsw_port_priv *port_priv,
dpaa2_switch_fdb_cb_t cb, void *data)
{
struct net_device *net_dev = port_priv->netdev;
struct ethsw_core *ethsw = port_priv->ethsw_data;
struct device *dev = net_dev->dev.parent;
struct fdb_dump_entry *fdb_entries;
struct fdb_dump_entry fdb_entry;
dma_addr_t fdb_dump_iova;
u16 num_fdb_entries;
u32 fdb_dump_size;
int err = 0, i;
u8 *dma_mem;
u16 fdb_id;
fdb_dump_size = ethsw->sw_attr.max_fdb_entries * sizeof(fdb_entry);
dma_mem = kzalloc(fdb_dump_size, GFP_KERNEL);
if (!dma_mem)
return -ENOMEM;
fdb_dump_iova = dma_map_single(dev, dma_mem, fdb_dump_size,
DMA_FROM_DEVICE);
if (dma_mapping_error(dev, fdb_dump_iova)) {
netdev_err(net_dev, "dma_map_single() failed\n");
err = -ENOMEM;
goto err_map;
}
fdb_id = dpaa2_switch_port_get_fdb_id(port_priv);
err = dpsw_fdb_dump(ethsw->mc_io, 0, ethsw->dpsw_handle, fdb_id,
fdb_dump_iova, fdb_dump_size, &num_fdb_entries);
if (err) {
netdev_err(net_dev, "dpsw_fdb_dump() = %d\n", err);
goto err_dump;
}
dma_unmap_single(dev, fdb_dump_iova, fdb_dump_size, DMA_FROM_DEVICE);
fdb_entries = (struct fdb_dump_entry *)dma_mem;
for (i = 0; i < num_fdb_entries; i++) {
fdb_entry = fdb_entries[i];
err = cb(port_priv, &fdb_entry, data);
if (err)
goto end;
}
end:
kfree(dma_mem);
return 0;
err_dump:
dma_unmap_single(dev, fdb_dump_iova, fdb_dump_size, DMA_TO_DEVICE);
err_map:
kfree(dma_mem);
return err;
}
static int dpaa2_switch_fdb_entry_dump(struct ethsw_port_priv *port_priv,
struct fdb_dump_entry *fdb_entry,
void *data)
{
if (!dpaa2_switch_port_fdb_valid_entry(fdb_entry, port_priv))
return 0;
return dpaa2_switch_fdb_dump_nl(fdb_entry, data);
}
static int dpaa2_switch_port_fdb_dump(struct sk_buff *skb, struct netlink_callback *cb,
struct net_device *net_dev,
struct net_device *filter_dev, int *idx)
{
struct ethsw_port_priv *port_priv = netdev_priv(net_dev);
struct ethsw_dump_ctx dump = {
.dev = net_dev,
.skb = skb,
.cb = cb,
.idx = *idx,
};
int err;
err = dpaa2_switch_fdb_iterate(port_priv, dpaa2_switch_fdb_entry_dump, &dump);
*idx = dump.idx;
return err;
}
static int dpaa2_switch_fdb_entry_fast_age(struct ethsw_port_priv *port_priv,
struct fdb_dump_entry *fdb_entry,
void *data __always_unused)
{
if (!dpaa2_switch_port_fdb_valid_entry(fdb_entry, port_priv))
return 0;
if (!(fdb_entry->type & DPSW_FDB_ENTRY_TYPE_DYNAMIC))
return 0;
if (fdb_entry->type & DPSW_FDB_ENTRY_TYPE_UNICAST)
dpaa2_switch_port_fdb_del_uc(port_priv, fdb_entry->mac_addr);
else
dpaa2_switch_port_fdb_del_mc(port_priv, fdb_entry->mac_addr);
return 0;
}
static void dpaa2_switch_port_fast_age(struct ethsw_port_priv *port_priv)
{
dpaa2_switch_fdb_iterate(port_priv,
dpaa2_switch_fdb_entry_fast_age, NULL);
}
static int dpaa2_switch_port_vlan_add(struct net_device *netdev, __be16 proto,
u16 vid)
{
struct switchdev_obj_port_vlan vlan = {
.obj.id = SWITCHDEV_OBJ_ID_PORT_VLAN,
.vid = vid,
.obj.orig_dev = netdev,
/* This API only allows programming tagged, non-PVID VIDs */
.flags = 0,
};
return dpaa2_switch_port_vlans_add(netdev, &vlan);
}
static int dpaa2_switch_port_vlan_kill(struct net_device *netdev, __be16 proto,
u16 vid)
{
struct switchdev_obj_port_vlan vlan = {
.obj.id = SWITCHDEV_OBJ_ID_PORT_VLAN,
.vid = vid,
.obj.orig_dev = netdev,
/* This API only allows programming tagged, non-PVID VIDs */
.flags = 0,
};
return dpaa2_switch_port_vlans_del(netdev, &vlan);
}
static int dpaa2_switch_port_set_mac_addr(struct ethsw_port_priv *port_priv)
{
struct ethsw_core *ethsw = port_priv->ethsw_data;
struct net_device *net_dev = port_priv->netdev;
struct device *dev = net_dev->dev.parent;
u8 mac_addr[ETH_ALEN];
int err;
if (!(ethsw->features & ETHSW_FEATURE_MAC_ADDR))
return 0;
/* Get firmware address, if any */
err = dpsw_if_get_port_mac_addr(ethsw->mc_io, 0, ethsw->dpsw_handle,
port_priv->idx, mac_addr);
if (err) {
dev_err(dev, "dpsw_if_get_port_mac_addr() failed\n");
return err;
}
/* First check if firmware has any address configured by bootloader */
if (!is_zero_ether_addr(mac_addr)) {
memcpy(net_dev->dev_addr, mac_addr, net_dev->addr_len);
} else {
/* No MAC address configured, fill in net_dev->dev_addr
* with a random one
*/
eth_hw_addr_random(net_dev);
dev_dbg_once(dev, "device(s) have all-zero hwaddr, replaced with random\n");
/* Override NET_ADDR_RANDOM set by eth_hw_addr_random(); for all
* practical purposes, this will be our "permanent" mac address,
* at least until the next reboot. This move will also permit
* register_netdevice() to properly fill up net_dev->perm_addr.
*/
net_dev->addr_assign_type = NET_ADDR_PERM;
}
return 0;
}
static void dpaa2_switch_free_fd(const struct ethsw_core *ethsw,
const struct dpaa2_fd *fd)
{
struct device *dev = ethsw->dev;
unsigned char *buffer_start;
struct sk_buff **skbh, *skb;
dma_addr_t fd_addr;
fd_addr = dpaa2_fd_get_addr(fd);
skbh = dpaa2_iova_to_virt(ethsw->iommu_domain, fd_addr);
skb = *skbh;
buffer_start = (unsigned char *)skbh;
dma_unmap_single(dev, fd_addr,
skb_tail_pointer(skb) - buffer_start,
DMA_TO_DEVICE);
/* Move on with skb release */
dev_kfree_skb(skb);
}
static int dpaa2_switch_build_single_fd(struct ethsw_core *ethsw,
struct sk_buff *skb,
struct dpaa2_fd *fd)
{
struct device *dev = ethsw->dev;
struct sk_buff **skbh;
dma_addr_t addr;
u8 *buff_start;
void *hwa;
buff_start = PTR_ALIGN(skb->data - DPAA2_SWITCH_TX_DATA_OFFSET -
DPAA2_SWITCH_TX_BUF_ALIGN,
DPAA2_SWITCH_TX_BUF_ALIGN);
/* Clear FAS to have consistent values for TX confirmation. It is
* located in the first 8 bytes of the buffer's hardware annotation
* area
*/
hwa = buff_start + DPAA2_SWITCH_SWA_SIZE;
memset(hwa, 0, 8);
/* Store a backpointer to the skb at the beginning of the buffer
* (in the private data area) such that we can release it
* on Tx confirm
*/
skbh = (struct sk_buff **)buff_start;
*skbh = skb;
addr = dma_map_single(dev, buff_start,
skb_tail_pointer(skb) - buff_start,
DMA_TO_DEVICE);
if (unlikely(dma_mapping_error(dev, addr)))
return -ENOMEM;
/* Setup the FD fields */
memset(fd, 0, sizeof(*fd));
dpaa2_fd_set_addr(fd, addr);
dpaa2_fd_set_offset(fd, (u16)(skb->data - buff_start));
dpaa2_fd_set_len(fd, skb->len);
dpaa2_fd_set_format(fd, dpaa2_fd_single);
return 0;
}
static netdev_tx_t dpaa2_switch_port_tx(struct sk_buff *skb,
struct net_device *net_dev)
{
struct ethsw_port_priv *port_priv = netdev_priv(net_dev);
struct ethsw_core *ethsw = port_priv->ethsw_data;
int retries = DPAA2_SWITCH_SWP_BUSY_RETRIES;
struct dpaa2_fd fd;
int err;
if (unlikely(skb_headroom(skb) < DPAA2_SWITCH_NEEDED_HEADROOM)) {
struct sk_buff *ns;
ns = skb_realloc_headroom(skb, DPAA2_SWITCH_NEEDED_HEADROOM);
if (unlikely(!ns)) {
net_err_ratelimited("%s: Error reallocating skb headroom\n", net_dev->name);
goto err_free_skb;
}
dev_consume_skb_any(skb);
skb = ns;
}
/* We'll be holding a back-reference to the skb until Tx confirmation */
skb = skb_unshare(skb, GFP_ATOMIC);
if (unlikely(!skb)) {
/* skb_unshare() has already freed the skb */
net_err_ratelimited("%s: Error copying the socket buffer\n", net_dev->name);
goto err_exit;
}
/* At this stage, we do not support non-linear skbs so just try to
* linearize the skb and if that's not working, just drop the packet.
*/
err = skb_linearize(skb);
if (err) {
net_err_ratelimited("%s: skb_linearize error (%d)!\n", net_dev->name, err);
goto err_free_skb;
}
err = dpaa2_switch_build_single_fd(ethsw, skb, &fd);
if (unlikely(err)) {
net_err_ratelimited("%s: ethsw_build_*_fd() %d\n", net_dev->name, err);
goto err_free_skb;
}
do {
err = dpaa2_io_service_enqueue_qd(NULL,
port_priv->tx_qdid,
8, 0, &fd);
retries--;
} while (err == -EBUSY && retries);
if (unlikely(err < 0)) {
dpaa2_switch_free_fd(ethsw, &fd);
goto err_exit;
}
return NETDEV_TX_OK;
err_free_skb:
dev_kfree_skb(skb);
err_exit:
return NETDEV_TX_OK;
}
static int
dpaa2_switch_setup_tc_cls_flower(struct dpaa2_switch_acl_tbl *acl_tbl,
struct flow_cls_offload *f)
{
switch (f->command) {
case FLOW_CLS_REPLACE:
return dpaa2_switch_cls_flower_replace(acl_tbl, f);
case FLOW_CLS_DESTROY:
return dpaa2_switch_cls_flower_destroy(acl_tbl, f);
default:
return -EOPNOTSUPP;
}
}
static int
dpaa2_switch_setup_tc_cls_matchall(struct dpaa2_switch_acl_tbl *acl_tbl,
struct tc_cls_matchall_offload *f)
{
switch (f->command) {
case TC_CLSMATCHALL_REPLACE:
return dpaa2_switch_cls_matchall_replace(acl_tbl, f);
case TC_CLSMATCHALL_DESTROY:
return dpaa2_switch_cls_matchall_destroy(acl_tbl, f);
default:
return -EOPNOTSUPP;
}
}
static int dpaa2_switch_port_setup_tc_block_cb_ig(enum tc_setup_type type,
void *type_data,
void *cb_priv)
{
switch (type) {
case TC_SETUP_CLSFLOWER:
return dpaa2_switch_setup_tc_cls_flower(cb_priv, type_data);
case TC_SETUP_CLSMATCHALL:
return dpaa2_switch_setup_tc_cls_matchall(cb_priv, type_data);
default:
return -EOPNOTSUPP;
}
}
static LIST_HEAD(dpaa2_switch_block_cb_list);
static int dpaa2_switch_port_acl_tbl_bind(struct ethsw_port_priv *port_priv,
struct dpaa2_switch_acl_tbl *acl_tbl)
{
struct ethsw_core *ethsw = port_priv->ethsw_data;
struct net_device *netdev = port_priv->netdev;
struct dpsw_acl_if_cfg acl_if_cfg;
int err;
if (port_priv->acl_tbl)
return -EINVAL;
acl_if_cfg.if_id[0] = port_priv->idx;
acl_if_cfg.num_ifs = 1;
err = dpsw_acl_add_if(ethsw->mc_io, 0, ethsw->dpsw_handle,
acl_tbl->id, &acl_if_cfg);
if (err) {
netdev_err(netdev, "dpsw_acl_add_if err %d\n", err);
return err;
}
acl_tbl->ports |= BIT(port_priv->idx);
port_priv->acl_tbl = acl_tbl;
return 0;
}
static int
dpaa2_switch_port_acl_tbl_unbind(struct ethsw_port_priv *port_priv,
struct dpaa2_switch_acl_tbl *acl_tbl)
{
struct ethsw_core *ethsw = port_priv->ethsw_data;
struct net_device *netdev = port_priv->netdev;
struct dpsw_acl_if_cfg acl_if_cfg;
int err;
if (port_priv->acl_tbl != acl_tbl)
return -EINVAL;
acl_if_cfg.if_id[0] = port_priv->idx;
acl_if_cfg.num_ifs = 1;
err = dpsw_acl_remove_if(ethsw->mc_io, 0, ethsw->dpsw_handle,
acl_tbl->id, &acl_if_cfg);
if (err) {
netdev_err(netdev, "dpsw_acl_add_if err %d\n", err);
return err;
}
acl_tbl->ports &= ~BIT(port_priv->idx);
port_priv->acl_tbl = NULL;
return 0;
}
static int dpaa2_switch_port_block_bind(struct ethsw_port_priv *port_priv,
struct dpaa2_switch_acl_tbl *acl_tbl)
{
struct dpaa2_switch_acl_tbl *old_acl_tbl = port_priv->acl_tbl;
int err;
/* If the port is already bound to this ACL table then do nothing. This
* can happen when this port is the first one to join a tc block
*/
if (port_priv->acl_tbl == acl_tbl)
return 0;
err = dpaa2_switch_port_acl_tbl_unbind(port_priv, old_acl_tbl);
if (err)
return err;
/* Mark the previous ACL table as being unused if this was the last
* port that was using it.
*/
if (old_acl_tbl->ports == 0)
old_acl_tbl->in_use = false;
return dpaa2_switch_port_acl_tbl_bind(port_priv, acl_tbl);
}
static int dpaa2_switch_port_block_unbind(struct ethsw_port_priv *port_priv,
struct dpaa2_switch_acl_tbl *acl_tbl)
{
struct ethsw_core *ethsw = port_priv->ethsw_data;
struct dpaa2_switch_acl_tbl *new_acl_tbl;
int err;
/* We are the last port that leaves a block (an ACL table).
* We'll continue to use this table.
*/
if (acl_tbl->ports == BIT(port_priv->idx))
return 0;
err = dpaa2_switch_port_acl_tbl_unbind(port_priv, acl_tbl);
if (err)
return err;
if (acl_tbl->ports == 0)
acl_tbl->in_use = false;
new_acl_tbl = dpaa2_switch_acl_tbl_get_unused(ethsw);
new_acl_tbl->in_use = true;
return dpaa2_switch_port_acl_tbl_bind(port_priv, new_acl_tbl);
}
static int dpaa2_switch_setup_tc_block_bind(struct net_device *netdev,
struct flow_block_offload *f)
{
struct ethsw_port_priv *port_priv = netdev_priv(netdev);
struct ethsw_core *ethsw = port_priv->ethsw_data;
struct dpaa2_switch_acl_tbl *acl_tbl;
struct flow_block_cb *block_cb;
bool register_block = false;
int err;
block_cb = flow_block_cb_lookup(f->block,
dpaa2_switch_port_setup_tc_block_cb_ig,
ethsw);
if (!block_cb) {
/* If the ACL table is not already known, then this port must
* be the first to join it. In this case, we can just continue
* to use our private table
*/
acl_tbl = port_priv->acl_tbl;
block_cb = flow_block_cb_alloc(dpaa2_switch_port_setup_tc_block_cb_ig,
ethsw, acl_tbl, NULL);
if (IS_ERR(block_cb))
return PTR_ERR(block_cb);
register_block = true;
} else {
acl_tbl = flow_block_cb_priv(block_cb);
}
flow_block_cb_incref(block_cb);
err = dpaa2_switch_port_block_bind(port_priv, acl_tbl);
if (err)
goto err_block_bind;
if (register_block) {
flow_block_cb_add(block_cb, f);
list_add_tail(&block_cb->driver_list,
&dpaa2_switch_block_cb_list);
}
return 0;
err_block_bind:
if (!flow_block_cb_decref(block_cb))
flow_block_cb_free(block_cb);
return err;
}
static void dpaa2_switch_setup_tc_block_unbind(struct net_device *netdev,
struct flow_block_offload *f)
{
struct ethsw_port_priv *port_priv = netdev_priv(netdev);
struct ethsw_core *ethsw = port_priv->ethsw_data;
struct dpaa2_switch_acl_tbl *acl_tbl;
struct flow_block_cb *block_cb;
int err;
block_cb = flow_block_cb_lookup(f->block,
dpaa2_switch_port_setup_tc_block_cb_ig,
ethsw);
if (!block_cb)
return;
acl_tbl = flow_block_cb_priv(block_cb);
err = dpaa2_switch_port_block_unbind(port_priv, acl_tbl);
if (!err && !flow_block_cb_decref(block_cb)) {
flow_block_cb_remove(block_cb, f);
list_del(&block_cb->driver_list);
}
}
static int dpaa2_switch_setup_tc_block(struct net_device *netdev,
struct flow_block_offload *f)
{
if (f->binder_type != FLOW_BLOCK_BINDER_TYPE_CLSACT_INGRESS)
return -EOPNOTSUPP;
f->driver_block_list = &dpaa2_switch_block_cb_list;
switch (f->command) {
case FLOW_BLOCK_BIND:
return dpaa2_switch_setup_tc_block_bind(netdev, f);
case FLOW_BLOCK_UNBIND:
dpaa2_switch_setup_tc_block_unbind(netdev, f);
return 0;
default:
return -EOPNOTSUPP;
}
}
static int dpaa2_switch_port_setup_tc(struct net_device *netdev,
enum tc_setup_type type,
void *type_data)
{
switch (type) {
case TC_SETUP_BLOCK: {
return dpaa2_switch_setup_tc_block(netdev, type_data);
}
default:
return -EOPNOTSUPP;
}
return 0;
}
static const struct net_device_ops dpaa2_switch_port_ops = {
.ndo_open = dpaa2_switch_port_open,
.ndo_stop = dpaa2_switch_port_stop,
.ndo_set_mac_address = eth_mac_addr,
.ndo_get_stats64 = dpaa2_switch_port_get_stats,
.ndo_change_mtu = dpaa2_switch_port_change_mtu,
.ndo_has_offload_stats = dpaa2_switch_port_has_offload_stats,
.ndo_get_offload_stats = dpaa2_switch_port_get_offload_stats,
.ndo_fdb_dump = dpaa2_switch_port_fdb_dump,
.ndo_vlan_rx_add_vid = dpaa2_switch_port_vlan_add,
.ndo_vlan_rx_kill_vid = dpaa2_switch_port_vlan_kill,
.ndo_start_xmit = dpaa2_switch_port_tx,
.ndo_get_port_parent_id = dpaa2_switch_port_parent_id,
.ndo_get_phys_port_name = dpaa2_switch_port_get_phys_name,
.ndo_setup_tc = dpaa2_switch_port_setup_tc,
};
bool dpaa2_switch_port_dev_check(const struct net_device *netdev)
{
return netdev->netdev_ops == &dpaa2_switch_port_ops;
}
static void dpaa2_switch_links_state_update(struct ethsw_core *ethsw)
{
int i;
for (i = 0; i < ethsw->sw_attr.num_ifs; i++) {
dpaa2_switch_port_carrier_state_sync(ethsw->ports[i]->netdev);
dpaa2_switch_port_set_mac_addr(ethsw->ports[i]);
}
}
static irqreturn_t dpaa2_switch_irq0_handler_thread(int irq_num, void *arg)
{
struct device *dev = (struct device *)arg;
struct ethsw_core *ethsw = dev_get_drvdata(dev);
/* Mask the events and the if_id reserved bits to be cleared on read */
u32 status = DPSW_IRQ_EVENT_LINK_CHANGED | 0xFFFF0000;
int err;
err = dpsw_get_irq_status(ethsw->mc_io, 0, ethsw->dpsw_handle,
DPSW_IRQ_INDEX_IF, &status);
if (err) {
dev_err(dev, "Can't get irq status (err %d)\n", err);
err = dpsw_clear_irq_status(ethsw->mc_io, 0, ethsw->dpsw_handle,
DPSW_IRQ_INDEX_IF, 0xFFFFFFFF);
if (err)
dev_err(dev, "Can't clear irq status (err %d)\n", err);
goto out;
}
if (status & DPSW_IRQ_EVENT_LINK_CHANGED)
dpaa2_switch_links_state_update(ethsw);
out:
return IRQ_HANDLED;
}
static int dpaa2_switch_setup_irqs(struct fsl_mc_device *sw_dev)
{
struct device *dev = &sw_dev->dev;
struct ethsw_core *ethsw = dev_get_drvdata(dev);
u32 mask = DPSW_IRQ_EVENT_LINK_CHANGED;
struct fsl_mc_device_irq *irq;
int err;
err = fsl_mc_allocate_irqs(sw_dev);
if (err) {
dev_err(dev, "MC irqs allocation failed\n");
return err;
}
if (WARN_ON(sw_dev->obj_desc.irq_count != DPSW_IRQ_NUM)) {
err = -EINVAL;
goto free_irq;
}
err = dpsw_set_irq_enable(ethsw->mc_io, 0, ethsw->dpsw_handle,
DPSW_IRQ_INDEX_IF, 0);
if (err) {
dev_err(dev, "dpsw_set_irq_enable err %d\n", err);
goto free_irq;
}
irq = sw_dev->irqs[DPSW_IRQ_INDEX_IF];
err = devm_request_threaded_irq(dev, irq->msi_desc->irq,
NULL,
dpaa2_switch_irq0_handler_thread,
IRQF_NO_SUSPEND | IRQF_ONESHOT,
dev_name(dev), dev);
if (err) {
dev_err(dev, "devm_request_threaded_irq(): %d\n", err);
goto free_irq;
}
err = dpsw_set_irq_mask(ethsw->mc_io, 0, ethsw->dpsw_handle,
DPSW_IRQ_INDEX_IF, mask);
if (err) {
dev_err(dev, "dpsw_set_irq_mask(): %d\n", err);
goto free_devm_irq;
}
err = dpsw_set_irq_enable(ethsw->mc_io, 0, ethsw->dpsw_handle,
DPSW_IRQ_INDEX_IF, 1);
if (err) {
dev_err(dev, "dpsw_set_irq_enable(): %d\n", err);
goto free_devm_irq;
}
return 0;
free_devm_irq:
devm_free_irq(dev, irq->msi_desc->irq, dev);
free_irq:
fsl_mc_free_irqs(sw_dev);
return err;
}
static void dpaa2_switch_teardown_irqs(struct fsl_mc_device *sw_dev)
{
struct device *dev = &sw_dev->dev;
struct ethsw_core *ethsw = dev_get_drvdata(dev);
int err;
err = dpsw_set_irq_enable(ethsw->mc_io, 0, ethsw->dpsw_handle,
DPSW_IRQ_INDEX_IF, 0);
if (err)
dev_err(dev, "dpsw_set_irq_enable err %d\n", err);
fsl_mc_free_irqs(sw_dev);
}
static int dpaa2_switch_port_set_learning(struct ethsw_port_priv *port_priv, bool enable)
{
struct ethsw_core *ethsw = port_priv->ethsw_data;
enum dpsw_learning_mode learn_mode;
int err;
if (enable)
learn_mode = DPSW_LEARNING_MODE_HW;
else
learn_mode = DPSW_LEARNING_MODE_DIS;
err = dpsw_if_set_learning_mode(ethsw->mc_io, 0, ethsw->dpsw_handle,
port_priv->idx, learn_mode);
if (err)
netdev_err(port_priv->netdev, "dpsw_if_set_learning_mode err %d\n", err);
if (!enable)
dpaa2_switch_port_fast_age(port_priv);
return err;
}
static int dpaa2_switch_port_attr_stp_state_set(struct net_device *netdev,
u8 state)
{
struct ethsw_port_priv *port_priv = netdev_priv(netdev);
int err;
err = dpaa2_switch_port_set_stp_state(port_priv, state);
if (err)
return err;
switch (state) {
case BR_STATE_DISABLED:
case BR_STATE_BLOCKING:
case BR_STATE_LISTENING:
err = dpaa2_switch_port_set_learning(port_priv, false);
break;
case BR_STATE_LEARNING:
case BR_STATE_FORWARDING:
err = dpaa2_switch_port_set_learning(port_priv,
port_priv->learn_ena);
break;
}
return err;
}
static int dpaa2_switch_port_flood(struct ethsw_port_priv *port_priv,
struct switchdev_brport_flags flags)
{
struct ethsw_core *ethsw = port_priv->ethsw_data;
if (flags.mask & BR_BCAST_FLOOD)
port_priv->bcast_flood = !!(flags.val & BR_BCAST_FLOOD);
if (flags.mask & BR_FLOOD)
port_priv->ucast_flood = !!(flags.val & BR_FLOOD);
return dpaa2_switch_fdb_set_egress_flood(ethsw, port_priv->fdb->fdb_id);
}
static int dpaa2_switch_port_pre_bridge_flags(struct net_device *netdev,
struct switchdev_brport_flags flags,
struct netlink_ext_ack *extack)
{
if (flags.mask & ~(BR_LEARNING | BR_BCAST_FLOOD | BR_FLOOD |
BR_MCAST_FLOOD))
return -EINVAL;
if (flags.mask & (BR_FLOOD | BR_MCAST_FLOOD)) {
bool multicast = !!(flags.val & BR_MCAST_FLOOD);
bool unicast = !!(flags.val & BR_FLOOD);
if (unicast != multicast) {
NL_SET_ERR_MSG_MOD(extack,
"Cannot configure multicast flooding independently of unicast");
return -EINVAL;
}
}
return 0;
}
static int dpaa2_switch_port_bridge_flags(struct net_device *netdev,
struct switchdev_brport_flags flags,
struct netlink_ext_ack *extack)
{
struct ethsw_port_priv *port_priv = netdev_priv(netdev);
int err;
if (flags.mask & BR_LEARNING) {
bool learn_ena = !!(flags.val & BR_LEARNING);
err = dpaa2_switch_port_set_learning(port_priv, learn_ena);
if (err)
return err;
port_priv->learn_ena = learn_ena;
}
if (flags.mask & (BR_BCAST_FLOOD | BR_FLOOD | BR_MCAST_FLOOD)) {
err = dpaa2_switch_port_flood(port_priv, flags);
if (err)
return err;
}
return 0;
}
static int dpaa2_switch_port_attr_set(struct net_device *netdev,
const struct switchdev_attr *attr,
struct netlink_ext_ack *extack)
{
int err = 0;
switch (attr->id) {
case SWITCHDEV_ATTR_ID_PORT_STP_STATE:
err = dpaa2_switch_port_attr_stp_state_set(netdev,
attr->u.stp_state);
break;
case SWITCHDEV_ATTR_ID_BRIDGE_VLAN_FILTERING:
if (!attr->u.vlan_filtering) {
NL_SET_ERR_MSG_MOD(extack,
"The DPAA2 switch does not support VLAN-unaware operation");
return -EOPNOTSUPP;
}
break;
case SWITCHDEV_ATTR_ID_PORT_PRE_BRIDGE_FLAGS:
err = dpaa2_switch_port_pre_bridge_flags(netdev, attr->u.brport_flags, extack);
break;
case SWITCHDEV_ATTR_ID_PORT_BRIDGE_FLAGS:
err = dpaa2_switch_port_bridge_flags(netdev, attr->u.brport_flags, extack);
break;
default:
err = -EOPNOTSUPP;
break;
}
return err;
}
int dpaa2_switch_port_vlans_add(struct net_device *netdev,
const struct switchdev_obj_port_vlan *vlan)
{
struct ethsw_port_priv *port_priv = netdev_priv(netdev);
struct ethsw_core *ethsw = port_priv->ethsw_data;
struct dpsw_attr *attr = &ethsw->sw_attr;
int err = 0;
/* Make sure that the VLAN is not already configured
* on the switch port
*/
if (port_priv->vlans[vlan->vid] & ETHSW_VLAN_MEMBER)
return -EEXIST;
/* Check if there is space for a new VLAN */
err = dpsw_get_attributes(ethsw->mc_io, 0, ethsw->dpsw_handle,
&ethsw->sw_attr);
if (err) {
netdev_err(netdev, "dpsw_get_attributes err %d\n", err);
return err;
}
if (attr->max_vlans - attr->num_vlans < 1)
return -ENOSPC;
/* Check if there is space for a new VLAN */
err = dpsw_get_attributes(ethsw->mc_io, 0, ethsw->dpsw_handle,
&ethsw->sw_attr);
if (err) {
netdev_err(netdev, "dpsw_get_attributes err %d\n", err);
return err;
}
if (attr->max_vlans - attr->num_vlans < 1)
return -ENOSPC;
if (!port_priv->ethsw_data->vlans[vlan->vid]) {
/* this is a new VLAN */
err = dpaa2_switch_add_vlan(port_priv, vlan->vid);
if (err)
return err;
port_priv->ethsw_data->vlans[vlan->vid] |= ETHSW_VLAN_GLOBAL;
}
return dpaa2_switch_port_add_vlan(port_priv, vlan->vid, vlan->flags);
}
static int dpaa2_switch_port_lookup_address(struct net_device *netdev, int is_uc,
const unsigned char *addr)
{
struct netdev_hw_addr_list *list = (is_uc) ? &netdev->uc : &netdev->mc;
struct netdev_hw_addr *ha;
netif_addr_lock_bh(netdev);
list_for_each_entry(ha, &list->list, list) {
if (ether_addr_equal(ha->addr, addr)) {
netif_addr_unlock_bh(netdev);
return 1;
}
}
netif_addr_unlock_bh(netdev);
return 0;
}
static int dpaa2_switch_port_mdb_add(struct net_device *netdev,
const struct switchdev_obj_port_mdb *mdb)
{
struct ethsw_port_priv *port_priv = netdev_priv(netdev);
int err;
/* Check if address is already set on this port */
if (dpaa2_switch_port_lookup_address(netdev, 0, mdb->addr))
return -EEXIST;
err = dpaa2_switch_port_fdb_add_mc(port_priv, mdb->addr);
if (err)
return err;
err = dev_mc_add(netdev, mdb->addr);
if (err) {
netdev_err(netdev, "dev_mc_add err %d\n", err);
dpaa2_switch_port_fdb_del_mc(port_priv, mdb->addr);
}
return err;
}
static int dpaa2_switch_port_obj_add(struct net_device *netdev,
const struct switchdev_obj *obj)
{
int err;
switch (obj->id) {
case SWITCHDEV_OBJ_ID_PORT_VLAN:
err = dpaa2_switch_port_vlans_add(netdev,
SWITCHDEV_OBJ_PORT_VLAN(obj));
break;
case SWITCHDEV_OBJ_ID_PORT_MDB:
err = dpaa2_switch_port_mdb_add(netdev,
SWITCHDEV_OBJ_PORT_MDB(obj));
break;
default:
err = -EOPNOTSUPP;
break;
}
return err;
}
static int dpaa2_switch_port_del_vlan(struct ethsw_port_priv *port_priv, u16 vid)
{
struct ethsw_core *ethsw = port_priv->ethsw_data;
struct net_device *netdev = port_priv->netdev;
struct dpsw_vlan_if_cfg vcfg;
int i, err;
if (!port_priv->vlans[vid])
return -ENOENT;
if (port_priv->vlans[vid] & ETHSW_VLAN_PVID) {
/* If we are deleting the PVID of a port, use VLAN 4095 instead
* as we are sure that neither the bridge nor the 8021q module
* will use it
*/
err = dpaa2_switch_port_set_pvid(port_priv, 4095);
if (err)
return err;
}
vcfg.num_ifs = 1;
vcfg.if_id[0] = port_priv->idx;
if (port_priv->vlans[vid] & ETHSW_VLAN_UNTAGGED) {
err = dpsw_vlan_remove_if_untagged(ethsw->mc_io, 0,
ethsw->dpsw_handle,
vid, &vcfg);
if (err) {
netdev_err(netdev,
"dpsw_vlan_remove_if_untagged err %d\n",
err);
}
port_priv->vlans[vid] &= ~ETHSW_VLAN_UNTAGGED;
}
if (port_priv->vlans[vid] & ETHSW_VLAN_MEMBER) {
err = dpsw_vlan_remove_if(ethsw->mc_io, 0, ethsw->dpsw_handle,
vid, &vcfg);
if (err) {
netdev_err(netdev,
"dpsw_vlan_remove_if err %d\n", err);
return err;
}
port_priv->vlans[vid] &= ~ETHSW_VLAN_MEMBER;
/* Delete VLAN from switch if it is no longer configured on
* any port
*/
for (i = 0; i < ethsw->sw_attr.num_ifs; i++)
if (ethsw->ports[i]->vlans[vid] & ETHSW_VLAN_MEMBER)
return 0; /* Found a port member in VID */
ethsw->vlans[vid] &= ~ETHSW_VLAN_GLOBAL;
err = dpaa2_switch_dellink(ethsw, vid);
if (err)
return err;
}
return 0;
}
int dpaa2_switch_port_vlans_del(struct net_device *netdev,
const struct switchdev_obj_port_vlan *vlan)
{
struct ethsw_port_priv *port_priv = netdev_priv(netdev);
if (netif_is_bridge_master(vlan->obj.orig_dev))
return -EOPNOTSUPP;
return dpaa2_switch_port_del_vlan(port_priv, vlan->vid);
}
static int dpaa2_switch_port_mdb_del(struct net_device *netdev,
const struct switchdev_obj_port_mdb *mdb)
{
struct ethsw_port_priv *port_priv = netdev_priv(netdev);
int err;
if (!dpaa2_switch_port_lookup_address(netdev, 0, mdb->addr))
return -ENOENT;
err = dpaa2_switch_port_fdb_del_mc(port_priv, mdb->addr);
if (err)
return err;
err = dev_mc_del(netdev, mdb->addr);
if (err) {
netdev_err(netdev, "dev_mc_del err %d\n", err);
return err;
}
return err;
}
static int dpaa2_switch_port_obj_del(struct net_device *netdev,
const struct switchdev_obj *obj)
{
int err;
switch (obj->id) {
case SWITCHDEV_OBJ_ID_PORT_VLAN:
err = dpaa2_switch_port_vlans_del(netdev, SWITCHDEV_OBJ_PORT_VLAN(obj));
break;
case SWITCHDEV_OBJ_ID_PORT_MDB:
err = dpaa2_switch_port_mdb_del(netdev, SWITCHDEV_OBJ_PORT_MDB(obj));
break;
default:
err = -EOPNOTSUPP;
break;
}
return err;
}
static int dpaa2_switch_port_attr_set_event(struct net_device *netdev,
struct switchdev_notifier_port_attr_info *ptr)
{
int err;
err = switchdev_handle_port_attr_set(netdev, ptr,
dpaa2_switch_port_dev_check,
dpaa2_switch_port_attr_set);
return notifier_from_errno(err);
}
static int dpaa2_switch_port_bridge_join(struct net_device *netdev,
struct net_device *upper_dev)
{
struct ethsw_port_priv *port_priv = netdev_priv(netdev);
struct ethsw_core *ethsw = port_priv->ethsw_data;
struct ethsw_port_priv *other_port_priv;
struct net_device *other_dev;
struct list_head *iter;
bool learn_ena;
int err;
netdev_for_each_lower_dev(upper_dev, other_dev, iter) {
if (!dpaa2_switch_port_dev_check(other_dev))
continue;
other_port_priv = netdev_priv(other_dev);
if (other_port_priv->ethsw_data != port_priv->ethsw_data) {
netdev_err(netdev,
"Interface from a different DPSW is in the bridge already!\n");
return -EINVAL;
}
}
/* Delete the previously manually installed VLAN 1 */
err = dpaa2_switch_port_del_vlan(port_priv, 1);
if (err)
return err;
dpaa2_switch_port_set_fdb(port_priv, upper_dev);
/* Inherit the initial bridge port learning state */
learn_ena = br_port_flag_is_set(netdev, BR_LEARNING);
err = dpaa2_switch_port_set_learning(port_priv, learn_ena);
port_priv->learn_ena = learn_ena;
/* Setup the egress flood policy (broadcast, unknown unicast) */
err = dpaa2_switch_fdb_set_egress_flood(ethsw, port_priv->fdb->fdb_id);
if (err)
goto err_egress_flood;
return 0;
err_egress_flood:
dpaa2_switch_port_set_fdb(port_priv, NULL);
return err;
}
static int dpaa2_switch_port_clear_rxvlan(struct net_device *vdev, int vid, void *arg)
{
__be16 vlan_proto = htons(ETH_P_8021Q);
if (vdev)
vlan_proto = vlan_dev_vlan_proto(vdev);
return dpaa2_switch_port_vlan_kill(arg, vlan_proto, vid);
}
static int dpaa2_switch_port_restore_rxvlan(struct net_device *vdev, int vid, void *arg)
{
__be16 vlan_proto = htons(ETH_P_8021Q);
if (vdev)
vlan_proto = vlan_dev_vlan_proto(vdev);
return dpaa2_switch_port_vlan_add(arg, vlan_proto, vid);
}
static int dpaa2_switch_port_bridge_leave(struct net_device *netdev)
{
struct ethsw_port_priv *port_priv = netdev_priv(netdev);
struct dpaa2_switch_fdb *old_fdb = port_priv->fdb;
struct ethsw_core *ethsw = port_priv->ethsw_data;
int err;
/* First of all, fast age any learn FDB addresses on this switch port */
dpaa2_switch_port_fast_age(port_priv);
/* Clear all RX VLANs installed through vlan_vid_add() either as VLAN
* upper devices or otherwise from the FDB table that we are about to
* leave
*/
err = vlan_for_each(netdev, dpaa2_switch_port_clear_rxvlan, netdev);
if (err)
netdev_err(netdev, "Unable to clear RX VLANs from old FDB table, err (%d)\n", err);
dpaa2_switch_port_set_fdb(port_priv, NULL);
/* Restore all RX VLANs into the new FDB table that we just joined */
err = vlan_for_each(netdev, dpaa2_switch_port_restore_rxvlan, netdev);
if (err)
netdev_err(netdev, "Unable to restore RX VLANs to the new FDB, err (%d)\n", err);
/* Reset the flooding state to denote that this port can send any
* packet in standalone mode. With this, we are also ensuring that any
* later bridge join will have the flooding flag on.
*/
port_priv->bcast_flood = true;
port_priv->ucast_flood = true;
/* Setup the egress flood policy (broadcast, unknown unicast).
* When the port is not under a bridge, only the CTRL interface is part
* of the flooding domain besides the actual port
*/
err = dpaa2_switch_fdb_set_egress_flood(ethsw, port_priv->fdb->fdb_id);
if (err)
return err;
/* Recreate the egress flood domain of the FDB that we just left */
err = dpaa2_switch_fdb_set_egress_flood(ethsw, old_fdb->fdb_id);
if (err)
return err;
/* No HW learning when not under a bridge */
err = dpaa2_switch_port_set_learning(port_priv, false);
if (err)
return err;
port_priv->learn_ena = false;
/* Add the VLAN 1 as PVID when not under a bridge. We need this since
* the dpaa2 switch interfaces are not capable to be VLAN unaware
*/
return dpaa2_switch_port_add_vlan(port_priv, DEFAULT_VLAN_ID,
BRIDGE_VLAN_INFO_UNTAGGED | BRIDGE_VLAN_INFO_PVID);
}
static int dpaa2_switch_prevent_bridging_with_8021q_upper(struct net_device *netdev)
{
struct net_device *upper_dev;
struct list_head *iter;
/* RCU read lock not necessary because we have write-side protection
* (rtnl_mutex), however a non-rcu iterator does not exist.
*/
netdev_for_each_upper_dev_rcu(netdev, upper_dev, iter)
if (is_vlan_dev(upper_dev))
return -EOPNOTSUPP;
return 0;
}
static int dpaa2_switch_port_netdevice_event(struct notifier_block *nb,
unsigned long event, void *ptr)
{
struct net_device *netdev = netdev_notifier_info_to_dev(ptr);
struct netdev_notifier_changeupper_info *info = ptr;
struct netlink_ext_ack *extack;
struct net_device *upper_dev;
int err = 0;
if (!dpaa2_switch_port_dev_check(netdev))
return NOTIFY_DONE;
extack = netdev_notifier_info_to_extack(&info->info);
switch (event) {
case NETDEV_PRECHANGEUPPER:
upper_dev = info->upper_dev;
if (!netif_is_bridge_master(upper_dev))
break;
if (!br_vlan_enabled(upper_dev)) {
NL_SET_ERR_MSG_MOD(extack, "Cannot join a VLAN-unaware bridge");
err = -EOPNOTSUPP;
goto out;
}
err = dpaa2_switch_prevent_bridging_with_8021q_upper(netdev);
if (err) {
NL_SET_ERR_MSG_MOD(extack,
"Cannot join a bridge while VLAN uppers are present");
goto out;
}
break;
case NETDEV_CHANGEUPPER:
upper_dev = info->upper_dev;
if (netif_is_bridge_master(upper_dev)) {
if (info->linking)
err = dpaa2_switch_port_bridge_join(netdev, upper_dev);
else
err = dpaa2_switch_port_bridge_leave(netdev);
}
break;
}
out:
return notifier_from_errno(err);
}
struct ethsw_switchdev_event_work {
struct work_struct work;
struct switchdev_notifier_fdb_info fdb_info;
struct net_device *dev;
unsigned long event;
};
static void dpaa2_switch_event_work(struct work_struct *work)
{
struct ethsw_switchdev_event_work *switchdev_work =
container_of(work, struct ethsw_switchdev_event_work, work);
struct net_device *dev = switchdev_work->dev;
struct switchdev_notifier_fdb_info *fdb_info;
int err;
rtnl_lock();
fdb_info = &switchdev_work->fdb_info;
switch (switchdev_work->event) {
case SWITCHDEV_FDB_ADD_TO_DEVICE:
if (!fdb_info->added_by_user)
break;
if (is_unicast_ether_addr(fdb_info->addr))
err = dpaa2_switch_port_fdb_add_uc(netdev_priv(dev),
fdb_info->addr);
else
err = dpaa2_switch_port_fdb_add_mc(netdev_priv(dev),
fdb_info->addr);
if (err)
break;
fdb_info->offloaded = true;
call_switchdev_notifiers(SWITCHDEV_FDB_OFFLOADED, dev,
&fdb_info->info, NULL);
break;
case SWITCHDEV_FDB_DEL_TO_DEVICE:
if (!fdb_info->added_by_user)
break;
if (is_unicast_ether_addr(fdb_info->addr))
dpaa2_switch_port_fdb_del_uc(netdev_priv(dev), fdb_info->addr);
else
dpaa2_switch_port_fdb_del_mc(netdev_priv(dev), fdb_info->addr);
break;
}
rtnl_unlock();
kfree(switchdev_work->fdb_info.addr);
kfree(switchdev_work);
dev_put(dev);
}
/* Called under rcu_read_lock() */
static int dpaa2_switch_port_event(struct notifier_block *nb,
unsigned long event, void *ptr)
{
struct net_device *dev = switchdev_notifier_info_to_dev(ptr);
struct ethsw_port_priv *port_priv = netdev_priv(dev);
struct ethsw_switchdev_event_work *switchdev_work;
struct switchdev_notifier_fdb_info *fdb_info = ptr;
struct ethsw_core *ethsw = port_priv->ethsw_data;
if (event == SWITCHDEV_PORT_ATTR_SET)
return dpaa2_switch_port_attr_set_event(dev, ptr);
if (!dpaa2_switch_port_dev_check(dev))
return NOTIFY_DONE;
switchdev_work = kzalloc(sizeof(*switchdev_work), GFP_ATOMIC);
if (!switchdev_work)
return NOTIFY_BAD;
INIT_WORK(&switchdev_work->work, dpaa2_switch_event_work);
switchdev_work->dev = dev;
switchdev_work->event = event;
switch (event) {
case SWITCHDEV_FDB_ADD_TO_DEVICE:
case SWITCHDEV_FDB_DEL_TO_DEVICE:
memcpy(&switchdev_work->fdb_info, ptr,
sizeof(switchdev_work->fdb_info));
switchdev_work->fdb_info.addr = kzalloc(ETH_ALEN, GFP_ATOMIC);
if (!switchdev_work->fdb_info.addr)
goto err_addr_alloc;
ether_addr_copy((u8 *)switchdev_work->fdb_info.addr,
fdb_info->addr);
/* Take a reference on the device to avoid being freed. */
dev_hold(dev);
break;
default:
kfree(switchdev_work);
return NOTIFY_DONE;
}
queue_work(ethsw->workqueue, &switchdev_work->work);
return NOTIFY_DONE;
err_addr_alloc:
kfree(switchdev_work);
return NOTIFY_BAD;
}
static int dpaa2_switch_port_obj_event(unsigned long event,
struct net_device *netdev,
struct switchdev_notifier_port_obj_info *port_obj_info)
{
int err = -EOPNOTSUPP;
if (!dpaa2_switch_port_dev_check(netdev))
return NOTIFY_DONE;
switch (event) {
case SWITCHDEV_PORT_OBJ_ADD:
err = dpaa2_switch_port_obj_add(netdev, port_obj_info->obj);
break;
case SWITCHDEV_PORT_OBJ_DEL:
err = dpaa2_switch_port_obj_del(netdev, port_obj_info->obj);
break;
}
port_obj_info->handled = true;
return notifier_from_errno(err);
}
static int dpaa2_switch_port_blocking_event(struct notifier_block *nb,
unsigned long event, void *ptr)
{
struct net_device *dev = switchdev_notifier_info_to_dev(ptr);
switch (event) {
case SWITCHDEV_PORT_OBJ_ADD:
case SWITCHDEV_PORT_OBJ_DEL:
return dpaa2_switch_port_obj_event(event, dev, ptr);
case SWITCHDEV_PORT_ATTR_SET:
return dpaa2_switch_port_attr_set_event(dev, ptr);
}
return NOTIFY_DONE;
}
/* Build a linear skb based on a single-buffer frame descriptor */
static struct sk_buff *dpaa2_switch_build_linear_skb(struct ethsw_core *ethsw,
const struct dpaa2_fd *fd)
{
u16 fd_offset = dpaa2_fd_get_offset(fd);
dma_addr_t addr = dpaa2_fd_get_addr(fd);
u32 fd_length = dpaa2_fd_get_len(fd);
struct device *dev = ethsw->dev;
struct sk_buff *skb = NULL;
void *fd_vaddr;
fd_vaddr = dpaa2_iova_to_virt(ethsw->iommu_domain, addr);
dma_unmap_page(dev, addr, DPAA2_SWITCH_RX_BUF_SIZE,
DMA_FROM_DEVICE);
skb = build_skb(fd_vaddr, DPAA2_SWITCH_RX_BUF_SIZE +
SKB_DATA_ALIGN(sizeof(struct skb_shared_info)));
if (unlikely(!skb)) {
dev_err(dev, "build_skb() failed\n");
return NULL;
}
skb_reserve(skb, fd_offset);
skb_put(skb, fd_length);
ethsw->buf_count--;
return skb;
}
static void dpaa2_switch_tx_conf(struct dpaa2_switch_fq *fq,
const struct dpaa2_fd *fd)
{
dpaa2_switch_free_fd(fq->ethsw, fd);
}
static void dpaa2_switch_rx(struct dpaa2_switch_fq *fq,
const struct dpaa2_fd *fd)
{
struct ethsw_core *ethsw = fq->ethsw;
struct ethsw_port_priv *port_priv;
struct net_device *netdev;
struct vlan_ethhdr *hdr;
struct sk_buff *skb;
u16 vlan_tci, vid;
int if_id, err;
/* get switch ingress interface ID */
if_id = upper_32_bits(dpaa2_fd_get_flc(fd)) & 0x0000FFFF;
if (if_id >= ethsw->sw_attr.num_ifs) {
dev_err(ethsw->dev, "Frame received from unknown interface!\n");
goto err_free_fd;
}
port_priv = ethsw->ports[if_id];
netdev = port_priv->netdev;
/* build the SKB based on the FD received */
if (dpaa2_fd_get_format(fd) != dpaa2_fd_single) {
if (net_ratelimit()) {
netdev_err(netdev, "Received invalid frame format\n");
goto err_free_fd;
}
}
skb = dpaa2_switch_build_linear_skb(ethsw, fd);
if (unlikely(!skb))
goto err_free_fd;
skb_reset_mac_header(skb);
/* Remove the VLAN header if the packet that we just received has a vid
* equal to the port PVIDs. Since the dpaa2-switch can operate only in
* VLAN-aware mode and no alterations are made on the packet when it's
* redirected/mirrored to the control interface, we are sure that there
* will always be a VLAN header present.
*/
hdr = vlan_eth_hdr(skb);
vid = ntohs(hdr->h_vlan_TCI) & VLAN_VID_MASK;
if (vid == port_priv->pvid) {
err = __skb_vlan_pop(skb, &vlan_tci);
if (err) {
dev_info(ethsw->dev, "__skb_vlan_pop() returned %d", err);
goto err_free_fd;
}
}
skb->dev = netdev;
skb->protocol = eth_type_trans(skb, skb->dev);
/* Setup the offload_fwd_mark only if the port is under a bridge */
skb->offload_fwd_mark = !!(port_priv->fdb->bridge_dev);
netif_receive_skb(skb);
return;
err_free_fd:
dpaa2_switch_free_fd(ethsw, fd);
}
static void dpaa2_switch_detect_features(struct ethsw_core *ethsw)
{
ethsw->features = 0;
if (ethsw->major > 8 || (ethsw->major == 8 && ethsw->minor >= 6))
ethsw->features |= ETHSW_FEATURE_MAC_ADDR;
}
static int dpaa2_switch_setup_fqs(struct ethsw_core *ethsw)
{
struct dpsw_ctrl_if_attr ctrl_if_attr;
struct device *dev = ethsw->dev;
int i = 0;
int err;
err = dpsw_ctrl_if_get_attributes(ethsw->mc_io, 0, ethsw->dpsw_handle,
&ctrl_if_attr);
if (err) {
dev_err(dev, "dpsw_ctrl_if_get_attributes() = %d\n", err);
return err;
}
ethsw->fq[i].fqid = ctrl_if_attr.rx_fqid;
ethsw->fq[i].ethsw = ethsw;
ethsw->fq[i++].type = DPSW_QUEUE_RX;
ethsw->fq[i].fqid = ctrl_if_attr.tx_err_conf_fqid;
ethsw->fq[i].ethsw = ethsw;
ethsw->fq[i++].type = DPSW_QUEUE_TX_ERR_CONF;
return 0;
}
/* Free buffers acquired from the buffer pool or which were meant to
* be released in the pool
*/
static void dpaa2_switch_free_bufs(struct ethsw_core *ethsw, u64 *buf_array, int count)
{
struct device *dev = ethsw->dev;
void *vaddr;
int i;
for (i = 0; i < count; i++) {
vaddr = dpaa2_iova_to_virt(ethsw->iommu_domain, buf_array[i]);
dma_unmap_page(dev, buf_array[i], DPAA2_SWITCH_RX_BUF_SIZE,
DMA_FROM_DEVICE);
free_pages((unsigned long)vaddr, 0);
}
}
/* Perform a single release command to add buffers
* to the specified buffer pool
*/
static int dpaa2_switch_add_bufs(struct ethsw_core *ethsw, u16 bpid)
{
struct device *dev = ethsw->dev;
u64 buf_array[BUFS_PER_CMD];
struct page *page;
int retries = 0;
dma_addr_t addr;
int err;
int i;
for (i = 0; i < BUFS_PER_CMD; i++) {
/* Allocate one page for each Rx buffer. WRIOP sees
* the entire page except for a tailroom reserved for
* skb shared info
*/
page = dev_alloc_pages(0);
if (!page) {
dev_err(dev, "buffer allocation failed\n");
goto err_alloc;
}
addr = dma_map_page(dev, page, 0, DPAA2_SWITCH_RX_BUF_SIZE,
DMA_FROM_DEVICE);
if (dma_mapping_error(dev, addr)) {
dev_err(dev, "dma_map_single() failed\n");
goto err_map;
}
buf_array[i] = addr;
}
release_bufs:
/* In case the portal is busy, retry until successful or
* max retries hit.
*/
while ((err = dpaa2_io_service_release(NULL, bpid,
buf_array, i)) == -EBUSY) {
if (retries++ >= DPAA2_SWITCH_SWP_BUSY_RETRIES)
break;
cpu_relax();
}
/* If release command failed, clean up and bail out. */
if (err) {
dpaa2_switch_free_bufs(ethsw, buf_array, i);
return 0;
}
return i;
err_map:
__free_pages(page, 0);
err_alloc:
/* If we managed to allocate at least some buffers,
* release them to hardware
*/
if (i)
goto release_bufs;
return 0;
}
static int dpaa2_switch_refill_bp(struct ethsw_core *ethsw)
{
int *count = &ethsw->buf_count;
int new_count;
int err = 0;
if (unlikely(*count < DPAA2_ETHSW_REFILL_THRESH)) {
do {
new_count = dpaa2_switch_add_bufs(ethsw, ethsw->bpid);
if (unlikely(!new_count)) {
/* Out of memory; abort for now, we'll
* try later on
*/
break;
}
*count += new_count;
} while (*count < DPAA2_ETHSW_NUM_BUFS);
if (unlikely(*count < DPAA2_ETHSW_NUM_BUFS))
err = -ENOMEM;
}
return err;
}
static int dpaa2_switch_seed_bp(struct ethsw_core *ethsw)
{
int *count, i;
for (i = 0; i < DPAA2_ETHSW_NUM_BUFS; i += BUFS_PER_CMD) {
count = &ethsw->buf_count;
*count += dpaa2_switch_add_bufs(ethsw, ethsw->bpid);
if (unlikely(*count < BUFS_PER_CMD))
return -ENOMEM;
}
return 0;
}
static void dpaa2_switch_drain_bp(struct ethsw_core *ethsw)
{
u64 buf_array[BUFS_PER_CMD];
int ret;
do {
ret = dpaa2_io_service_acquire(NULL, ethsw->bpid,
buf_array, BUFS_PER_CMD);
if (ret < 0) {
dev_err(ethsw->dev,
"dpaa2_io_service_acquire() = %d\n", ret);
return;
}
dpaa2_switch_free_bufs(ethsw, buf_array, ret);
} while (ret);
}
static int dpaa2_switch_setup_dpbp(struct ethsw_core *ethsw)
{
struct dpsw_ctrl_if_pools_cfg dpsw_ctrl_if_pools_cfg = { 0 };
struct device *dev = ethsw->dev;
struct fsl_mc_device *dpbp_dev;
struct dpbp_attr dpbp_attrs;
int err;
err = fsl_mc_object_allocate(to_fsl_mc_device(dev), FSL_MC_POOL_DPBP,
&dpbp_dev);
if (err) {
if (err == -ENXIO)
err = -EPROBE_DEFER;
else
dev_err(dev, "DPBP device allocation failed\n");
return err;
}
ethsw->dpbp_dev = dpbp_dev;
err = dpbp_open(ethsw->mc_io, 0, dpbp_dev->obj_desc.id,
&dpbp_dev->mc_handle);
if (err) {
dev_err(dev, "dpbp_open() failed\n");
goto err_open;
}
err = dpbp_reset(ethsw->mc_io, 0, dpbp_dev->mc_handle);
if (err) {
dev_err(dev, "dpbp_reset() failed\n");
goto err_reset;
}
err = dpbp_enable(ethsw->mc_io, 0, dpbp_dev->mc_handle);
if (err) {
dev_err(dev, "dpbp_enable() failed\n");
goto err_enable;
}
err = dpbp_get_attributes(ethsw->mc_io, 0, dpbp_dev->mc_handle,
&dpbp_attrs);
if (err) {
dev_err(dev, "dpbp_get_attributes() failed\n");
goto err_get_attr;
}
dpsw_ctrl_if_pools_cfg.num_dpbp = 1;
dpsw_ctrl_if_pools_cfg.pools[0].dpbp_id = dpbp_attrs.id;
dpsw_ctrl_if_pools_cfg.pools[0].buffer_size = DPAA2_SWITCH_RX_BUF_SIZE;
dpsw_ctrl_if_pools_cfg.pools[0].backup_pool = 0;
err = dpsw_ctrl_if_set_pools(ethsw->mc_io, 0, ethsw->dpsw_handle,
&dpsw_ctrl_if_pools_cfg);
if (err) {
dev_err(dev, "dpsw_ctrl_if_set_pools() failed\n");
goto err_get_attr;
}
ethsw->bpid = dpbp_attrs.id;
return 0;
err_get_attr:
dpbp_disable(ethsw->mc_io, 0, dpbp_dev->mc_handle);
err_enable:
err_reset:
dpbp_close(ethsw->mc_io, 0, dpbp_dev->mc_handle);
err_open:
fsl_mc_object_free(dpbp_dev);
return err;
}
static void dpaa2_switch_free_dpbp(struct ethsw_core *ethsw)
{
dpbp_disable(ethsw->mc_io, 0, ethsw->dpbp_dev->mc_handle);
dpbp_close(ethsw->mc_io, 0, ethsw->dpbp_dev->mc_handle);
fsl_mc_object_free(ethsw->dpbp_dev);
}
static int dpaa2_switch_alloc_rings(struct ethsw_core *ethsw)
{
int i;
for (i = 0; i < DPAA2_SWITCH_RX_NUM_FQS; i++) {
ethsw->fq[i].store =
dpaa2_io_store_create(DPAA2_SWITCH_STORE_SIZE,
ethsw->dev);
if (!ethsw->fq[i].store) {
dev_err(ethsw->dev, "dpaa2_io_store_create failed\n");
while (--i >= 0)
dpaa2_io_store_destroy(ethsw->fq[i].store);
return -ENOMEM;
}
}
return 0;
}
static void dpaa2_switch_destroy_rings(struct ethsw_core *ethsw)
{
int i;
for (i = 0; i < DPAA2_SWITCH_RX_NUM_FQS; i++)
dpaa2_io_store_destroy(ethsw->fq[i].store);
}
static int dpaa2_switch_pull_fq(struct dpaa2_switch_fq *fq)
{
int err, retries = 0;
/* Try to pull from the FQ while the portal is busy and we didn't hit
* the maximum number fo retries
*/
do {
err = dpaa2_io_service_pull_fq(NULL, fq->fqid, fq->store);
cpu_relax();
} while (err == -EBUSY && retries++ < DPAA2_SWITCH_SWP_BUSY_RETRIES);
if (unlikely(err))
dev_err(fq->ethsw->dev, "dpaa2_io_service_pull err %d", err);
return err;
}
/* Consume all frames pull-dequeued into the store */
static int dpaa2_switch_store_consume(struct dpaa2_switch_fq *fq)
{
struct ethsw_core *ethsw = fq->ethsw;
int cleaned = 0, is_last;
struct dpaa2_dq *dq;
int retries = 0;
do {
/* Get the next available FD from the store */
dq = dpaa2_io_store_next(fq->store, &is_last);
if (unlikely(!dq)) {
if (retries++ >= DPAA2_SWITCH_SWP_BUSY_RETRIES) {
dev_err_once(ethsw->dev,
"No valid dequeue response\n");
return -ETIMEDOUT;
}
continue;
}
if (fq->type == DPSW_QUEUE_RX)
dpaa2_switch_rx(fq, dpaa2_dq_fd(dq));
else
dpaa2_switch_tx_conf(fq, dpaa2_dq_fd(dq));
cleaned++;
} while (!is_last);
return cleaned;
}
/* NAPI poll routine */
static int dpaa2_switch_poll(struct napi_struct *napi, int budget)
{
int err, cleaned = 0, store_cleaned, work_done;
struct dpaa2_switch_fq *fq;
int retries = 0;
fq = container_of(napi, struct dpaa2_switch_fq, napi);
do {
err = dpaa2_switch_pull_fq(fq);
if (unlikely(err))
break;
/* Refill pool if appropriate */
dpaa2_switch_refill_bp(fq->ethsw);
store_cleaned = dpaa2_switch_store_consume(fq);
cleaned += store_cleaned;
if (cleaned >= budget) {
work_done = budget;
goto out;
}
} while (store_cleaned);
/* We didn't consume the entire budget, so finish napi and re-enable
* data availability notifications
*/
napi_complete_done(napi, cleaned);
do {
err = dpaa2_io_service_rearm(NULL, &fq->nctx);
cpu_relax();
} while (err == -EBUSY && retries++ < DPAA2_SWITCH_SWP_BUSY_RETRIES);
work_done = max(cleaned, 1);
out:
return work_done;
}
static void dpaa2_switch_fqdan_cb(struct dpaa2_io_notification_ctx *nctx)
{
struct dpaa2_switch_fq *fq;
fq = container_of(nctx, struct dpaa2_switch_fq, nctx);
napi_schedule(&fq->napi);
}
static int dpaa2_switch_setup_dpio(struct ethsw_core *ethsw)
{
struct dpsw_ctrl_if_queue_cfg queue_cfg;
struct dpaa2_io_notification_ctx *nctx;
int err, i, j;
for (i = 0; i < DPAA2_SWITCH_RX_NUM_FQS; i++) {
nctx = &ethsw->fq[i].nctx;
/* Register a new software context for the FQID.
* By using NULL as the first parameter, we specify that we do
* not care on which cpu are interrupts received for this queue
*/
nctx->is_cdan = 0;
nctx->id = ethsw->fq[i].fqid;
nctx->desired_cpu = DPAA2_IO_ANY_CPU;
nctx->cb = dpaa2_switch_fqdan_cb;
err = dpaa2_io_service_register(NULL, nctx, ethsw->dev);
if (err) {
err = -EPROBE_DEFER;
goto err_register;
}
queue_cfg.options = DPSW_CTRL_IF_QUEUE_OPT_DEST |
DPSW_CTRL_IF_QUEUE_OPT_USER_CTX;
queue_cfg.dest_cfg.dest_type = DPSW_CTRL_IF_DEST_DPIO;
queue_cfg.dest_cfg.dest_id = nctx->dpio_id;
queue_cfg.dest_cfg.priority = 0;
queue_cfg.user_ctx = nctx->qman64;
err = dpsw_ctrl_if_set_queue(ethsw->mc_io, 0,
ethsw->dpsw_handle,
ethsw->fq[i].type,
&queue_cfg);
if (err)
goto err_set_queue;
}
return 0;
err_set_queue:
dpaa2_io_service_deregister(NULL, nctx, ethsw->dev);
err_register:
for (j = 0; j < i; j++)
dpaa2_io_service_deregister(NULL, &ethsw->fq[j].nctx,
ethsw->dev);
return err;
}
static void dpaa2_switch_free_dpio(struct ethsw_core *ethsw)
{
int i;
for (i = 0; i < DPAA2_SWITCH_RX_NUM_FQS; i++)
dpaa2_io_service_deregister(NULL, &ethsw->fq[i].nctx,
ethsw->dev);
}
static int dpaa2_switch_ctrl_if_setup(struct ethsw_core *ethsw)
{
int err;
/* setup FQs for Rx and Tx Conf */
err = dpaa2_switch_setup_fqs(ethsw);
if (err)
return err;
/* setup the buffer pool needed on the Rx path */
err = dpaa2_switch_setup_dpbp(ethsw);
if (err)
return err;
err = dpaa2_switch_seed_bp(ethsw);
if (err)
goto err_free_dpbp;
err = dpaa2_switch_alloc_rings(ethsw);
if (err)
goto err_drain_dpbp;
err = dpaa2_switch_setup_dpio(ethsw);
if (err)
goto err_destroy_rings;
err = dpsw_ctrl_if_enable(ethsw->mc_io, 0, ethsw->dpsw_handle);
if (err) {
dev_err(ethsw->dev, "dpsw_ctrl_if_enable err %d\n", err);
goto err_deregister_dpio;
}
return 0;
err_deregister_dpio:
dpaa2_switch_free_dpio(ethsw);
err_destroy_rings:
dpaa2_switch_destroy_rings(ethsw);
err_drain_dpbp:
dpaa2_switch_drain_bp(ethsw);
err_free_dpbp:
dpaa2_switch_free_dpbp(ethsw);
return err;
}
static int dpaa2_switch_init(struct fsl_mc_device *sw_dev)
{
struct device *dev = &sw_dev->dev;
struct ethsw_core *ethsw = dev_get_drvdata(dev);
struct dpsw_vlan_if_cfg vcfg = {0};
struct dpsw_tci_cfg tci_cfg = {0};
struct dpsw_stp_cfg stp_cfg;
int err;
u16 i;
ethsw->dev_id = sw_dev->obj_desc.id;
err = dpsw_open(ethsw->mc_io, 0, ethsw->dev_id, &ethsw->dpsw_handle);
if (err) {
dev_err(dev, "dpsw_open err %d\n", err);
return err;
}
err = dpsw_get_attributes(ethsw->mc_io, 0, ethsw->dpsw_handle,
&ethsw->sw_attr);
if (err) {
dev_err(dev, "dpsw_get_attributes err %d\n", err);
goto err_close;
}
err = dpsw_get_api_version(ethsw->mc_io, 0,
&ethsw->major,
&ethsw->minor);
if (err) {
dev_err(dev, "dpsw_get_api_version err %d\n", err);
goto err_close;
}
/* Minimum supported DPSW version check */
if (ethsw->major < DPSW_MIN_VER_MAJOR ||
(ethsw->major == DPSW_MIN_VER_MAJOR &&
ethsw->minor < DPSW_MIN_VER_MINOR)) {
dev_err(dev, "DPSW version %d:%d not supported. Use firmware 10.28.0 or greater.\n",
ethsw->major, ethsw->minor);
err = -EOPNOTSUPP;
goto err_close;
}
if (!dpaa2_switch_supports_cpu_traffic(ethsw)) {
err = -EOPNOTSUPP;
goto err_close;
}
dpaa2_switch_detect_features(ethsw);
err = dpsw_reset(ethsw->mc_io, 0, ethsw->dpsw_handle);
if (err) {
dev_err(dev, "dpsw_reset err %d\n", err);
goto err_close;
}
stp_cfg.vlan_id = DEFAULT_VLAN_ID;
stp_cfg.state = DPSW_STP_STATE_FORWARDING;
for (i = 0; i < ethsw->sw_attr.num_ifs; i++) {
err = dpsw_if_disable(ethsw->mc_io, 0, ethsw->dpsw_handle, i);
if (err) {
dev_err(dev, "dpsw_if_disable err %d\n", err);
goto err_close;
}
err = dpsw_if_set_stp(ethsw->mc_io, 0, ethsw->dpsw_handle, i,
&stp_cfg);
if (err) {
dev_err(dev, "dpsw_if_set_stp err %d for port %d\n",
err, i);
goto err_close;
}
/* Switch starts with all ports configured to VLAN 1. Need to
* remove this setting to allow configuration at bridge join
*/
vcfg.num_ifs = 1;
vcfg.if_id[0] = i;
err = dpsw_vlan_remove_if_untagged(ethsw->mc_io, 0, ethsw->dpsw_handle,
DEFAULT_VLAN_ID, &vcfg);
if (err) {
dev_err(dev, "dpsw_vlan_remove_if_untagged err %d\n",
err);
goto err_close;
}
tci_cfg.vlan_id = 4095;
err = dpsw_if_set_tci(ethsw->mc_io, 0, ethsw->dpsw_handle, i, &tci_cfg);
if (err) {
dev_err(dev, "dpsw_if_set_tci err %d\n", err);
goto err_close;
}
err = dpsw_vlan_remove_if(ethsw->mc_io, 0, ethsw->dpsw_handle,
DEFAULT_VLAN_ID, &vcfg);
if (err) {
dev_err(dev, "dpsw_vlan_remove_if err %d\n", err);
goto err_close;
}
}
err = dpsw_vlan_remove(ethsw->mc_io, 0, ethsw->dpsw_handle, DEFAULT_VLAN_ID);
if (err) {
dev_err(dev, "dpsw_vlan_remove err %d\n", err);
goto err_close;
}
ethsw->workqueue = alloc_ordered_workqueue("%s_%d_ordered",
WQ_MEM_RECLAIM, "ethsw",
ethsw->sw_attr.id);
if (!ethsw->workqueue) {
err = -ENOMEM;
goto err_close;
}
err = dpsw_fdb_remove(ethsw->mc_io, 0, ethsw->dpsw_handle, 0);
if (err)
goto err_destroy_ordered_workqueue;
err = dpaa2_switch_ctrl_if_setup(ethsw);
if (err)
goto err_destroy_ordered_workqueue;
return 0;
err_destroy_ordered_workqueue:
destroy_workqueue(ethsw->workqueue);
err_close:
dpsw_close(ethsw->mc_io, 0, ethsw->dpsw_handle);
return err;
}
/* Add an ACL to redirect frames with specific destination MAC address to
* control interface
*/
static int dpaa2_switch_port_trap_mac_addr(struct ethsw_port_priv *port_priv,
const char *mac)
{
struct net_device *netdev = port_priv->netdev;
struct dpsw_acl_entry_cfg acl_entry_cfg;
struct dpsw_acl_fields *acl_h;
struct dpsw_acl_fields *acl_m;
struct dpsw_acl_key acl_key;
struct device *dev;
u8 *cmd_buff;
int err;
dev = port_priv->netdev->dev.parent;
acl_h = &acl_key.match;
acl_m = &acl_key.mask;
memset(&acl_entry_cfg, 0, sizeof(acl_entry_cfg));
memset(&acl_key, 0, sizeof(acl_key));
/* Match on the destination MAC address */
ether_addr_copy(acl_h->l2_dest_mac, mac);
eth_broadcast_addr(acl_m->l2_dest_mac);
cmd_buff = kzalloc(DPAA2_ETHSW_PORT_ACL_CMD_BUF_SIZE, GFP_KERNEL);
if (!cmd_buff)
return -ENOMEM;
dpsw_acl_prepare_entry_cfg(&acl_key, cmd_buff);
memset(&acl_entry_cfg, 0, sizeof(acl_entry_cfg));
acl_entry_cfg.precedence = 0;
acl_entry_cfg.result.action = DPSW_ACL_ACTION_REDIRECT_TO_CTRL_IF;
acl_entry_cfg.key_iova = dma_map_single(dev, cmd_buff,
DPAA2_ETHSW_PORT_ACL_CMD_BUF_SIZE,
DMA_TO_DEVICE);
if (unlikely(dma_mapping_error(dev, acl_entry_cfg.key_iova))) {
netdev_err(netdev, "DMA mapping failed\n");
return -EFAULT;
}
err = dpsw_acl_add_entry(port_priv->ethsw_data->mc_io, 0,
port_priv->ethsw_data->dpsw_handle,
port_priv->acl_tbl->id, &acl_entry_cfg);
dma_unmap_single(dev, acl_entry_cfg.key_iova, sizeof(cmd_buff),
DMA_TO_DEVICE);
if (err) {
netdev_err(netdev, "dpsw_acl_add_entry() failed %d\n", err);
return err;
}
return 0;
}
static int dpaa2_switch_port_init(struct ethsw_port_priv *port_priv, u16 port)
{
const char stpa[ETH_ALEN] = {0x01, 0x80, 0xc2, 0x00, 0x00, 0x00};
struct switchdev_obj_port_vlan vlan = {
.obj.id = SWITCHDEV_OBJ_ID_PORT_VLAN,
.vid = DEFAULT_VLAN_ID,
.flags = BRIDGE_VLAN_INFO_UNTAGGED | BRIDGE_VLAN_INFO_PVID,
};
struct net_device *netdev = port_priv->netdev;
struct ethsw_core *ethsw = port_priv->ethsw_data;
struct dpaa2_switch_acl_tbl *acl_tbl;
struct dpsw_fdb_cfg fdb_cfg = {0};
struct dpsw_if_attr dpsw_if_attr;
struct dpaa2_switch_fdb *fdb;
struct dpsw_acl_cfg acl_cfg;
u16 fdb_id, acl_tbl_id;
int err;
/* Get the Tx queue for this specific port */
err = dpsw_if_get_attributes(ethsw->mc_io, 0, ethsw->dpsw_handle,
port_priv->idx, &dpsw_if_attr);
if (err) {
netdev_err(netdev, "dpsw_if_get_attributes err %d\n", err);
return err;
}
port_priv->tx_qdid = dpsw_if_attr.qdid;
/* Create a FDB table for this particular switch port */
fdb_cfg.num_fdb_entries = ethsw->sw_attr.max_fdb_entries / ethsw->sw_attr.num_ifs;
err = dpsw_fdb_add(ethsw->mc_io, 0, ethsw->dpsw_handle,
&fdb_id, &fdb_cfg);
if (err) {
netdev_err(netdev, "dpsw_fdb_add err %d\n", err);
return err;
}
/* Find an unused dpaa2_switch_fdb structure and use it */
fdb = dpaa2_switch_fdb_get_unused(ethsw);
fdb->fdb_id = fdb_id;
fdb->in_use = true;
fdb->bridge_dev = NULL;
port_priv->fdb = fdb;
/* We need to add VLAN 1 as the PVID on this port until it is under a
* bridge since the DPAA2 switch is not able to handle the traffic in a
* VLAN unaware fashion
*/
err = dpaa2_switch_port_vlans_add(netdev, &vlan);
if (err)
return err;
/* Setup the egress flooding domains (broadcast, unknown unicast */
err = dpaa2_switch_fdb_set_egress_flood(ethsw, port_priv->fdb->fdb_id);
if (err)
return err;
/* Create an ACL table to be used by this switch port */
acl_cfg.max_entries = DPAA2_ETHSW_PORT_MAX_ACL_ENTRIES;
err = dpsw_acl_add(ethsw->mc_io, 0, ethsw->dpsw_handle,
&acl_tbl_id, &acl_cfg);
if (err) {
netdev_err(netdev, "dpsw_acl_add err %d\n", err);
return err;
}
acl_tbl = dpaa2_switch_acl_tbl_get_unused(ethsw);
acl_tbl->ethsw = ethsw;
acl_tbl->id = acl_tbl_id;
acl_tbl->in_use = true;
acl_tbl->num_rules = 0;
INIT_LIST_HEAD(&acl_tbl->entries);
err = dpaa2_switch_port_acl_tbl_bind(port_priv, acl_tbl);
if (err)
return err;
err = dpaa2_switch_port_trap_mac_addr(port_priv, stpa);
if (err)
return err;
return err;
}
static void dpaa2_switch_takedown(struct fsl_mc_device *sw_dev)
{
struct device *dev = &sw_dev->dev;
struct ethsw_core *ethsw = dev_get_drvdata(dev);
int err;
err = dpsw_close(ethsw->mc_io, 0, ethsw->dpsw_handle);
if (err)
dev_warn(dev, "dpsw_close err %d\n", err);
}
static void dpaa2_switch_ctrl_if_teardown(struct ethsw_core *ethsw)
{
dpsw_ctrl_if_disable(ethsw->mc_io, 0, ethsw->dpsw_handle);
dpaa2_switch_free_dpio(ethsw);
dpaa2_switch_destroy_rings(ethsw);
dpaa2_switch_drain_bp(ethsw);
dpaa2_switch_free_dpbp(ethsw);
}
static int dpaa2_switch_remove(struct fsl_mc_device *sw_dev)
{
struct ethsw_port_priv *port_priv;
struct ethsw_core *ethsw;
struct device *dev;
int i;
dev = &sw_dev->dev;
ethsw = dev_get_drvdata(dev);
dpaa2_switch_ctrl_if_teardown(ethsw);
dpaa2_switch_teardown_irqs(sw_dev);
dpsw_disable(ethsw->mc_io, 0, ethsw->dpsw_handle);
for (i = 0; i < ethsw->sw_attr.num_ifs; i++) {
port_priv = ethsw->ports[i];
unregister_netdev(port_priv->netdev);
free_netdev(port_priv->netdev);
}
kfree(ethsw->fdbs);
kfree(ethsw->acls);
kfree(ethsw->ports);
dpaa2_switch_takedown(sw_dev);
destroy_workqueue(ethsw->workqueue);
fsl_mc_portal_free(ethsw->mc_io);
kfree(ethsw);
dev_set_drvdata(dev, NULL);
return 0;
}
static int dpaa2_switch_probe_port(struct ethsw_core *ethsw,
u16 port_idx)
{
struct ethsw_port_priv *port_priv;
struct device *dev = ethsw->dev;
struct net_device *port_netdev;
int err;
port_netdev = alloc_etherdev(sizeof(struct ethsw_port_priv));
if (!port_netdev) {
dev_err(dev, "alloc_etherdev error\n");
return -ENOMEM;
}
port_priv = netdev_priv(port_netdev);
port_priv->netdev = port_netdev;
port_priv->ethsw_data = ethsw;
port_priv->idx = port_idx;
port_priv->stp_state = BR_STATE_FORWARDING;
SET_NETDEV_DEV(port_netdev, dev);
port_netdev->netdev_ops = &dpaa2_switch_port_ops;
port_netdev->ethtool_ops = &dpaa2_switch_port_ethtool_ops;
port_netdev->needed_headroom = DPAA2_SWITCH_NEEDED_HEADROOM;
port_priv->bcast_flood = true;
port_priv->ucast_flood = true;
/* Set MTU limits */
port_netdev->min_mtu = ETH_MIN_MTU;
port_netdev->max_mtu = ETHSW_MAX_FRAME_LENGTH;
/* Populate the private port structure so that later calls to
* dpaa2_switch_port_init() can use it.
*/
ethsw->ports[port_idx] = port_priv;
/* The DPAA2 switch's ingress path depends on the VLAN table,
* thus we are not able to disable VLAN filtering.
*/
port_netdev->features = NETIF_F_HW_VLAN_CTAG_FILTER |
NETIF_F_HW_VLAN_STAG_FILTER |
NETIF_F_HW_TC;
err = dpaa2_switch_port_init(port_priv, port_idx);
if (err)
goto err_port_probe;
err = dpaa2_switch_port_set_mac_addr(port_priv);
if (err)
goto err_port_probe;
err = dpaa2_switch_port_set_learning(port_priv, false);
if (err)
goto err_port_probe;
port_priv->learn_ena = false;
return 0;
err_port_probe:
free_netdev(port_netdev);
ethsw->ports[port_idx] = NULL;
return err;
}
static int dpaa2_switch_probe(struct fsl_mc_device *sw_dev)
{
struct device *dev = &sw_dev->dev;
struct ethsw_core *ethsw;
int i, err;
/* Allocate switch core*/
ethsw = kzalloc(sizeof(*ethsw), GFP_KERNEL);
if (!ethsw)
return -ENOMEM;
ethsw->dev = dev;
ethsw->iommu_domain = iommu_get_domain_for_dev(dev);
dev_set_drvdata(dev, ethsw);
err = fsl_mc_portal_allocate(sw_dev, FSL_MC_IO_ATOMIC_CONTEXT_PORTAL,
&ethsw->mc_io);
if (err) {
if (err == -ENXIO)
err = -EPROBE_DEFER;
else
dev_err(dev, "fsl_mc_portal_allocate err %d\n", err);
goto err_free_drvdata;
}
err = dpaa2_switch_init(sw_dev);
if (err)
goto err_free_cmdport;
ethsw->ports = kcalloc(ethsw->sw_attr.num_ifs, sizeof(*ethsw->ports),
GFP_KERNEL);
if (!(ethsw->ports)) {
err = -ENOMEM;
goto err_takedown;
}
ethsw->fdbs = kcalloc(ethsw->sw_attr.num_ifs, sizeof(*ethsw->fdbs),
GFP_KERNEL);
if (!ethsw->fdbs) {
err = -ENOMEM;
goto err_free_ports;
}
ethsw->acls = kcalloc(ethsw->sw_attr.num_ifs, sizeof(*ethsw->acls),
GFP_KERNEL);
if (!ethsw->acls) {
err = -ENOMEM;
goto err_free_fdbs;
}
for (i = 0; i < ethsw->sw_attr.num_ifs; i++) {
err = dpaa2_switch_probe_port(ethsw, i);
if (err)
goto err_free_netdev;
}
/* Add a NAPI instance for each of the Rx queues. The first port's
* net_device will be associated with the instances since we do not have
* different queues for each switch ports.
*/
for (i = 0; i < DPAA2_SWITCH_RX_NUM_FQS; i++)
netif_napi_add(ethsw->ports[0]->netdev,
&ethsw->fq[i].napi, dpaa2_switch_poll,
NAPI_POLL_WEIGHT);
err = dpsw_enable(ethsw->mc_io, 0, ethsw->dpsw_handle);
if (err) {
dev_err(ethsw->dev, "dpsw_enable err %d\n", err);
goto err_free_netdev;
}
/* Setup IRQs */
err = dpaa2_switch_setup_irqs(sw_dev);
if (err)
goto err_stop;
/* Register the netdev only when the entire setup is done and the
* switch port interfaces are ready to receive traffic
*/
for (i = 0; i < ethsw->sw_attr.num_ifs; i++) {
err = register_netdev(ethsw->ports[i]->netdev);
if (err < 0) {
dev_err(dev, "register_netdev error %d\n", err);
goto err_unregister_ports;
}
}
return 0;
err_unregister_ports:
for (i--; i >= 0; i--)
unregister_netdev(ethsw->ports[i]->netdev);
dpaa2_switch_teardown_irqs(sw_dev);
err_stop:
dpsw_disable(ethsw->mc_io, 0, ethsw->dpsw_handle);
err_free_netdev:
for (i--; i >= 0; i--)
free_netdev(ethsw->ports[i]->netdev);
kfree(ethsw->acls);
err_free_fdbs:
kfree(ethsw->fdbs);
err_free_ports:
kfree(ethsw->ports);
err_takedown:
dpaa2_switch_takedown(sw_dev);
err_free_cmdport:
fsl_mc_portal_free(ethsw->mc_io);
err_free_drvdata:
kfree(ethsw);
dev_set_drvdata(dev, NULL);
return err;
}
static const struct fsl_mc_device_id dpaa2_switch_match_id_table[] = {
{
.vendor = FSL_MC_VENDOR_FREESCALE,
.obj_type = "dpsw",
},
{ .vendor = 0x0 }
};
MODULE_DEVICE_TABLE(fslmc, dpaa2_switch_match_id_table);
static struct fsl_mc_driver dpaa2_switch_drv = {
.driver = {
.name = KBUILD_MODNAME,
.owner = THIS_MODULE,
},
.probe = dpaa2_switch_probe,
.remove = dpaa2_switch_remove,
.match_id_table = dpaa2_switch_match_id_table
};
static struct notifier_block dpaa2_switch_port_nb __read_mostly = {
.notifier_call = dpaa2_switch_port_netdevice_event,
};
static struct notifier_block dpaa2_switch_port_switchdev_nb = {
.notifier_call = dpaa2_switch_port_event,
};
static struct notifier_block dpaa2_switch_port_switchdev_blocking_nb = {
.notifier_call = dpaa2_switch_port_blocking_event,
};
static int dpaa2_switch_register_notifiers(void)
{
int err;
err = register_netdevice_notifier(&dpaa2_switch_port_nb);
if (err) {
pr_err("dpaa2-switch: failed to register net_device notifier (%d)\n", err);
return err;
}
err = register_switchdev_notifier(&dpaa2_switch_port_switchdev_nb);
if (err) {
pr_err("dpaa2-switch: failed to register switchdev notifier (%d)\n", err);
goto err_switchdev_nb;
}
err = register_switchdev_blocking_notifier(&dpaa2_switch_port_switchdev_blocking_nb);
if (err) {
pr_err("dpaa2-switch: failed to register switchdev blocking notifier (%d)\n", err);
goto err_switchdev_blocking_nb;
}
return 0;
err_switchdev_blocking_nb:
unregister_switchdev_notifier(&dpaa2_switch_port_switchdev_nb);
err_switchdev_nb:
unregister_netdevice_notifier(&dpaa2_switch_port_nb);
return err;
}
static void dpaa2_switch_unregister_notifiers(void)
{
int err;
err = unregister_switchdev_blocking_notifier(&dpaa2_switch_port_switchdev_blocking_nb);
if (err)
pr_err("dpaa2-switch: failed to unregister switchdev blocking notifier (%d)\n",
err);
err = unregister_switchdev_notifier(&dpaa2_switch_port_switchdev_nb);
if (err)
pr_err("dpaa2-switch: failed to unregister switchdev notifier (%d)\n", err);
err = unregister_netdevice_notifier(&dpaa2_switch_port_nb);
if (err)
pr_err("dpaa2-switch: failed to unregister net_device notifier (%d)\n", err);
}
static int __init dpaa2_switch_driver_init(void)
{
int err;
err = fsl_mc_driver_register(&dpaa2_switch_drv);
if (err)
return err;
err = dpaa2_switch_register_notifiers();
if (err) {
fsl_mc_driver_unregister(&dpaa2_switch_drv);
return err;
}
return 0;
}
static void __exit dpaa2_switch_driver_exit(void)
{
dpaa2_switch_unregister_notifiers();
fsl_mc_driver_unregister(&dpaa2_switch_drv);
}
module_init(dpaa2_switch_driver_init);
module_exit(dpaa2_switch_driver_exit);
MODULE_LICENSE("GPL v2");
MODULE_DESCRIPTION("DPAA2 Ethernet Switch Driver");