| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * Versatile Express SPC CPUFreq Interface driver |
| * |
| * Copyright (C) 2013 - 2019 ARM Ltd. |
| * Sudeep Holla <sudeep.holla@arm.com> |
| * |
| * Copyright (C) 2013 Linaro. |
| * Viresh Kumar <viresh.kumar@linaro.org> |
| */ |
| |
| #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt |
| |
| #include <linux/clk.h> |
| #include <linux/cpu.h> |
| #include <linux/cpufreq.h> |
| #include <linux/cpumask.h> |
| #include <linux/cpu_cooling.h> |
| #include <linux/device.h> |
| #include <linux/module.h> |
| #include <linux/mutex.h> |
| #include <linux/of_platform.h> |
| #include <linux/platform_device.h> |
| #include <linux/pm_opp.h> |
| #include <linux/slab.h> |
| #include <linux/topology.h> |
| #include <linux/types.h> |
| |
| /* Currently we support only two clusters */ |
| #define A15_CLUSTER 0 |
| #define A7_CLUSTER 1 |
| #define MAX_CLUSTERS 2 |
| |
| #ifdef CONFIG_BL_SWITCHER |
| #include <asm/bL_switcher.h> |
| static bool bL_switching_enabled; |
| #define is_bL_switching_enabled() bL_switching_enabled |
| #define set_switching_enabled(x) (bL_switching_enabled = (x)) |
| #else |
| #define is_bL_switching_enabled() false |
| #define set_switching_enabled(x) do { } while (0) |
| #define bL_switch_request(...) do { } while (0) |
| #define bL_switcher_put_enabled() do { } while (0) |
| #define bL_switcher_get_enabled() do { } while (0) |
| #endif |
| |
| #define ACTUAL_FREQ(cluster, freq) ((cluster == A7_CLUSTER) ? freq << 1 : freq) |
| #define VIRT_FREQ(cluster, freq) ((cluster == A7_CLUSTER) ? freq >> 1 : freq) |
| |
| static struct thermal_cooling_device *cdev[MAX_CLUSTERS]; |
| static struct clk *clk[MAX_CLUSTERS]; |
| static struct cpufreq_frequency_table *freq_table[MAX_CLUSTERS + 1]; |
| static atomic_t cluster_usage[MAX_CLUSTERS + 1]; |
| |
| static unsigned int clk_big_min; /* (Big) clock frequencies */ |
| static unsigned int clk_little_max; /* Maximum clock frequency (Little) */ |
| |
| static DEFINE_PER_CPU(unsigned int, physical_cluster); |
| static DEFINE_PER_CPU(unsigned int, cpu_last_req_freq); |
| |
| static struct mutex cluster_lock[MAX_CLUSTERS]; |
| |
| static inline int raw_cpu_to_cluster(int cpu) |
| { |
| return topology_physical_package_id(cpu); |
| } |
| |
| static inline int cpu_to_cluster(int cpu) |
| { |
| return is_bL_switching_enabled() ? |
| MAX_CLUSTERS : raw_cpu_to_cluster(cpu); |
| } |
| |
| static unsigned int find_cluster_maxfreq(int cluster) |
| { |
| int j; |
| u32 max_freq = 0, cpu_freq; |
| |
| for_each_online_cpu(j) { |
| cpu_freq = per_cpu(cpu_last_req_freq, j); |
| |
| if (cluster == per_cpu(physical_cluster, j) && |
| max_freq < cpu_freq) |
| max_freq = cpu_freq; |
| } |
| |
| return max_freq; |
| } |
| |
| static unsigned int clk_get_cpu_rate(unsigned int cpu) |
| { |
| u32 cur_cluster = per_cpu(physical_cluster, cpu); |
| u32 rate = clk_get_rate(clk[cur_cluster]) / 1000; |
| |
| /* For switcher we use virtual A7 clock rates */ |
| if (is_bL_switching_enabled()) |
| rate = VIRT_FREQ(cur_cluster, rate); |
| |
| return rate; |
| } |
| |
| static unsigned int ve_spc_cpufreq_get_rate(unsigned int cpu) |
| { |
| if (is_bL_switching_enabled()) |
| return per_cpu(cpu_last_req_freq, cpu); |
| else |
| return clk_get_cpu_rate(cpu); |
| } |
| |
| static unsigned int |
| ve_spc_cpufreq_set_rate(u32 cpu, u32 old_cluster, u32 new_cluster, u32 rate) |
| { |
| u32 new_rate, prev_rate; |
| int ret; |
| bool bLs = is_bL_switching_enabled(); |
| |
| mutex_lock(&cluster_lock[new_cluster]); |
| |
| if (bLs) { |
| prev_rate = per_cpu(cpu_last_req_freq, cpu); |
| per_cpu(cpu_last_req_freq, cpu) = rate; |
| per_cpu(physical_cluster, cpu) = new_cluster; |
| |
| new_rate = find_cluster_maxfreq(new_cluster); |
| new_rate = ACTUAL_FREQ(new_cluster, new_rate); |
| } else { |
| new_rate = rate; |
| } |
| |
| ret = clk_set_rate(clk[new_cluster], new_rate * 1000); |
| if (!ret) { |
| /* |
| * FIXME: clk_set_rate hasn't returned an error here however it |
| * may be that clk_change_rate failed due to hardware or |
| * firmware issues and wasn't able to report that due to the |
| * current design of the clk core layer. To work around this |
| * problem we will read back the clock rate and check it is |
| * correct. This needs to be removed once clk core is fixed. |
| */ |
| if (clk_get_rate(clk[new_cluster]) != new_rate * 1000) |
| ret = -EIO; |
| } |
| |
| if (WARN_ON(ret)) { |
| if (bLs) { |
| per_cpu(cpu_last_req_freq, cpu) = prev_rate; |
| per_cpu(physical_cluster, cpu) = old_cluster; |
| } |
| |
| mutex_unlock(&cluster_lock[new_cluster]); |
| |
| return ret; |
| } |
| |
| mutex_unlock(&cluster_lock[new_cluster]); |
| |
| /* Recalc freq for old cluster when switching clusters */ |
| if (old_cluster != new_cluster) { |
| /* Switch cluster */ |
| bL_switch_request(cpu, new_cluster); |
| |
| mutex_lock(&cluster_lock[old_cluster]); |
| |
| /* Set freq of old cluster if there are cpus left on it */ |
| new_rate = find_cluster_maxfreq(old_cluster); |
| new_rate = ACTUAL_FREQ(old_cluster, new_rate); |
| |
| if (new_rate && |
| clk_set_rate(clk[old_cluster], new_rate * 1000)) { |
| pr_err("%s: clk_set_rate failed: %d, old cluster: %d\n", |
| __func__, ret, old_cluster); |
| } |
| mutex_unlock(&cluster_lock[old_cluster]); |
| } |
| |
| return 0; |
| } |
| |
| /* Set clock frequency */ |
| static int ve_spc_cpufreq_set_target(struct cpufreq_policy *policy, |
| unsigned int index) |
| { |
| u32 cpu = policy->cpu, cur_cluster, new_cluster, actual_cluster; |
| unsigned int freqs_new; |
| int ret; |
| |
| cur_cluster = cpu_to_cluster(cpu); |
| new_cluster = actual_cluster = per_cpu(physical_cluster, cpu); |
| |
| freqs_new = freq_table[cur_cluster][index].frequency; |
| |
| if (is_bL_switching_enabled()) { |
| if (actual_cluster == A15_CLUSTER && freqs_new < clk_big_min) |
| new_cluster = A7_CLUSTER; |
| else if (actual_cluster == A7_CLUSTER && |
| freqs_new > clk_little_max) |
| new_cluster = A15_CLUSTER; |
| } |
| |
| ret = ve_spc_cpufreq_set_rate(cpu, actual_cluster, new_cluster, |
| freqs_new); |
| |
| if (!ret) { |
| arch_set_freq_scale(policy->related_cpus, freqs_new, |
| policy->cpuinfo.max_freq); |
| } |
| |
| return ret; |
| } |
| |
| static inline u32 get_table_count(struct cpufreq_frequency_table *table) |
| { |
| int count; |
| |
| for (count = 0; table[count].frequency != CPUFREQ_TABLE_END; count++) |
| ; |
| |
| return count; |
| } |
| |
| /* get the minimum frequency in the cpufreq_frequency_table */ |
| static inline u32 get_table_min(struct cpufreq_frequency_table *table) |
| { |
| struct cpufreq_frequency_table *pos; |
| u32 min_freq = ~0; |
| |
| cpufreq_for_each_entry(pos, table) |
| if (pos->frequency < min_freq) |
| min_freq = pos->frequency; |
| return min_freq; |
| } |
| |
| /* get the maximum frequency in the cpufreq_frequency_table */ |
| static inline u32 get_table_max(struct cpufreq_frequency_table *table) |
| { |
| struct cpufreq_frequency_table *pos; |
| u32 max_freq = 0; |
| |
| cpufreq_for_each_entry(pos, table) |
| if (pos->frequency > max_freq) |
| max_freq = pos->frequency; |
| return max_freq; |
| } |
| |
| static int merge_cluster_tables(void) |
| { |
| int i, j, k = 0, count = 1; |
| struct cpufreq_frequency_table *table; |
| |
| for (i = 0; i < MAX_CLUSTERS; i++) |
| count += get_table_count(freq_table[i]); |
| |
| table = kcalloc(count, sizeof(*table), GFP_KERNEL); |
| if (!table) |
| return -ENOMEM; |
| |
| freq_table[MAX_CLUSTERS] = table; |
| |
| /* Add in reverse order to get freqs in increasing order */ |
| for (i = MAX_CLUSTERS - 1; i >= 0; i--) { |
| for (j = 0; freq_table[i][j].frequency != CPUFREQ_TABLE_END; |
| j++, k++) { |
| table[k].frequency = |
| VIRT_FREQ(i, freq_table[i][j].frequency); |
| } |
| } |
| |
| table[k].driver_data = k; |
| table[k].frequency = CPUFREQ_TABLE_END; |
| |
| return 0; |
| } |
| |
| static void _put_cluster_clk_and_freq_table(struct device *cpu_dev, |
| const struct cpumask *cpumask) |
| { |
| u32 cluster = raw_cpu_to_cluster(cpu_dev->id); |
| |
| if (!freq_table[cluster]) |
| return; |
| |
| clk_put(clk[cluster]); |
| dev_pm_opp_free_cpufreq_table(cpu_dev, &freq_table[cluster]); |
| } |
| |
| static void put_cluster_clk_and_freq_table(struct device *cpu_dev, |
| const struct cpumask *cpumask) |
| { |
| u32 cluster = cpu_to_cluster(cpu_dev->id); |
| int i; |
| |
| if (atomic_dec_return(&cluster_usage[cluster])) |
| return; |
| |
| if (cluster < MAX_CLUSTERS) |
| return _put_cluster_clk_and_freq_table(cpu_dev, cpumask); |
| |
| for_each_present_cpu(i) { |
| struct device *cdev = get_cpu_device(i); |
| |
| if (!cdev) |
| return; |
| |
| _put_cluster_clk_and_freq_table(cdev, cpumask); |
| } |
| |
| /* free virtual table */ |
| kfree(freq_table[cluster]); |
| } |
| |
| static int _get_cluster_clk_and_freq_table(struct device *cpu_dev, |
| const struct cpumask *cpumask) |
| { |
| u32 cluster = raw_cpu_to_cluster(cpu_dev->id); |
| int ret; |
| |
| if (freq_table[cluster]) |
| return 0; |
| |
| /* |
| * platform specific SPC code must initialise the opp table |
| * so just check if the OPP count is non-zero |
| */ |
| ret = dev_pm_opp_get_opp_count(cpu_dev) <= 0; |
| if (ret) |
| goto out; |
| |
| ret = dev_pm_opp_init_cpufreq_table(cpu_dev, &freq_table[cluster]); |
| if (ret) |
| goto out; |
| |
| clk[cluster] = clk_get(cpu_dev, NULL); |
| if (!IS_ERR(clk[cluster])) |
| return 0; |
| |
| dev_err(cpu_dev, "%s: Failed to get clk for cpu: %d, cluster: %d\n", |
| __func__, cpu_dev->id, cluster); |
| ret = PTR_ERR(clk[cluster]); |
| dev_pm_opp_free_cpufreq_table(cpu_dev, &freq_table[cluster]); |
| |
| out: |
| dev_err(cpu_dev, "%s: Failed to get data for cluster: %d\n", __func__, |
| cluster); |
| return ret; |
| } |
| |
| static int get_cluster_clk_and_freq_table(struct device *cpu_dev, |
| const struct cpumask *cpumask) |
| { |
| u32 cluster = cpu_to_cluster(cpu_dev->id); |
| int i, ret; |
| |
| if (atomic_inc_return(&cluster_usage[cluster]) != 1) |
| return 0; |
| |
| if (cluster < MAX_CLUSTERS) { |
| ret = _get_cluster_clk_and_freq_table(cpu_dev, cpumask); |
| if (ret) |
| atomic_dec(&cluster_usage[cluster]); |
| return ret; |
| } |
| |
| /* |
| * Get data for all clusters and fill virtual cluster with a merge of |
| * both |
| */ |
| for_each_present_cpu(i) { |
| struct device *cdev = get_cpu_device(i); |
| |
| if (!cdev) |
| return -ENODEV; |
| |
| ret = _get_cluster_clk_and_freq_table(cdev, cpumask); |
| if (ret) |
| goto put_clusters; |
| } |
| |
| ret = merge_cluster_tables(); |
| if (ret) |
| goto put_clusters; |
| |
| /* Assuming 2 cluster, set clk_big_min and clk_little_max */ |
| clk_big_min = get_table_min(freq_table[A15_CLUSTER]); |
| clk_little_max = VIRT_FREQ(A7_CLUSTER, |
| get_table_max(freq_table[A7_CLUSTER])); |
| |
| return 0; |
| |
| put_clusters: |
| for_each_present_cpu(i) { |
| struct device *cdev = get_cpu_device(i); |
| |
| if (!cdev) |
| return -ENODEV; |
| |
| _put_cluster_clk_and_freq_table(cdev, cpumask); |
| } |
| |
| atomic_dec(&cluster_usage[cluster]); |
| |
| return ret; |
| } |
| |
| /* Per-CPU initialization */ |
| static int ve_spc_cpufreq_init(struct cpufreq_policy *policy) |
| { |
| u32 cur_cluster = cpu_to_cluster(policy->cpu); |
| struct device *cpu_dev; |
| int ret; |
| |
| cpu_dev = get_cpu_device(policy->cpu); |
| if (!cpu_dev) { |
| pr_err("%s: failed to get cpu%d device\n", __func__, |
| policy->cpu); |
| return -ENODEV; |
| } |
| |
| if (cur_cluster < MAX_CLUSTERS) { |
| int cpu; |
| |
| cpumask_copy(policy->cpus, topology_core_cpumask(policy->cpu)); |
| |
| for_each_cpu(cpu, policy->cpus) |
| per_cpu(physical_cluster, cpu) = cur_cluster; |
| } else { |
| /* Assumption: during init, we are always running on A15 */ |
| per_cpu(physical_cluster, policy->cpu) = A15_CLUSTER; |
| } |
| |
| ret = get_cluster_clk_and_freq_table(cpu_dev, policy->cpus); |
| if (ret) |
| return ret; |
| |
| policy->freq_table = freq_table[cur_cluster]; |
| policy->cpuinfo.transition_latency = 1000000; /* 1 ms */ |
| |
| dev_pm_opp_of_register_em(policy->cpus); |
| |
| if (is_bL_switching_enabled()) |
| per_cpu(cpu_last_req_freq, policy->cpu) = |
| clk_get_cpu_rate(policy->cpu); |
| |
| dev_info(cpu_dev, "%s: CPU %d initialized\n", __func__, policy->cpu); |
| return 0; |
| } |
| |
| static int ve_spc_cpufreq_exit(struct cpufreq_policy *policy) |
| { |
| struct device *cpu_dev; |
| int cur_cluster = cpu_to_cluster(policy->cpu); |
| |
| if (cur_cluster < MAX_CLUSTERS) { |
| cpufreq_cooling_unregister(cdev[cur_cluster]); |
| cdev[cur_cluster] = NULL; |
| } |
| |
| cpu_dev = get_cpu_device(policy->cpu); |
| if (!cpu_dev) { |
| pr_err("%s: failed to get cpu%d device\n", __func__, |
| policy->cpu); |
| return -ENODEV; |
| } |
| |
| put_cluster_clk_and_freq_table(cpu_dev, policy->related_cpus); |
| return 0; |
| } |
| |
| static void ve_spc_cpufreq_ready(struct cpufreq_policy *policy) |
| { |
| int cur_cluster = cpu_to_cluster(policy->cpu); |
| |
| /* Do not register a cpu_cooling device if we are in IKS mode */ |
| if (cur_cluster >= MAX_CLUSTERS) |
| return; |
| |
| cdev[cur_cluster] = of_cpufreq_cooling_register(policy); |
| } |
| |
| static struct cpufreq_driver ve_spc_cpufreq_driver = { |
| .name = "vexpress-spc", |
| .flags = CPUFREQ_STICKY | |
| CPUFREQ_HAVE_GOVERNOR_PER_POLICY | |
| CPUFREQ_NEED_INITIAL_FREQ_CHECK, |
| .verify = cpufreq_generic_frequency_table_verify, |
| .target_index = ve_spc_cpufreq_set_target, |
| .get = ve_spc_cpufreq_get_rate, |
| .init = ve_spc_cpufreq_init, |
| .exit = ve_spc_cpufreq_exit, |
| .ready = ve_spc_cpufreq_ready, |
| .attr = cpufreq_generic_attr, |
| }; |
| |
| #ifdef CONFIG_BL_SWITCHER |
| static int bL_cpufreq_switcher_notifier(struct notifier_block *nfb, |
| unsigned long action, void *_arg) |
| { |
| pr_debug("%s: action: %ld\n", __func__, action); |
| |
| switch (action) { |
| case BL_NOTIFY_PRE_ENABLE: |
| case BL_NOTIFY_PRE_DISABLE: |
| cpufreq_unregister_driver(&ve_spc_cpufreq_driver); |
| break; |
| |
| case BL_NOTIFY_POST_ENABLE: |
| set_switching_enabled(true); |
| cpufreq_register_driver(&ve_spc_cpufreq_driver); |
| break; |
| |
| case BL_NOTIFY_POST_DISABLE: |
| set_switching_enabled(false); |
| cpufreq_register_driver(&ve_spc_cpufreq_driver); |
| break; |
| |
| default: |
| return NOTIFY_DONE; |
| } |
| |
| return NOTIFY_OK; |
| } |
| |
| static struct notifier_block bL_switcher_notifier = { |
| .notifier_call = bL_cpufreq_switcher_notifier, |
| }; |
| |
| static int __bLs_register_notifier(void) |
| { |
| return bL_switcher_register_notifier(&bL_switcher_notifier); |
| } |
| |
| static int __bLs_unregister_notifier(void) |
| { |
| return bL_switcher_unregister_notifier(&bL_switcher_notifier); |
| } |
| #else |
| static int __bLs_register_notifier(void) { return 0; } |
| static int __bLs_unregister_notifier(void) { return 0; } |
| #endif |
| |
| static int ve_spc_cpufreq_probe(struct platform_device *pdev) |
| { |
| int ret, i; |
| |
| set_switching_enabled(bL_switcher_get_enabled()); |
| |
| for (i = 0; i < MAX_CLUSTERS; i++) |
| mutex_init(&cluster_lock[i]); |
| |
| ret = cpufreq_register_driver(&ve_spc_cpufreq_driver); |
| if (ret) { |
| pr_info("%s: Failed registering platform driver: %s, err: %d\n", |
| __func__, ve_spc_cpufreq_driver.name, ret); |
| } else { |
| ret = __bLs_register_notifier(); |
| if (ret) |
| cpufreq_unregister_driver(&ve_spc_cpufreq_driver); |
| else |
| pr_info("%s: Registered platform driver: %s\n", |
| __func__, ve_spc_cpufreq_driver.name); |
| } |
| |
| bL_switcher_put_enabled(); |
| return ret; |
| } |
| |
| static int ve_spc_cpufreq_remove(struct platform_device *pdev) |
| { |
| bL_switcher_get_enabled(); |
| __bLs_unregister_notifier(); |
| cpufreq_unregister_driver(&ve_spc_cpufreq_driver); |
| bL_switcher_put_enabled(); |
| pr_info("%s: Un-registered platform driver: %s\n", __func__, |
| ve_spc_cpufreq_driver.name); |
| return 0; |
| } |
| |
| static struct platform_driver ve_spc_cpufreq_platdrv = { |
| .driver = { |
| .name = "vexpress-spc-cpufreq", |
| }, |
| .probe = ve_spc_cpufreq_probe, |
| .remove = ve_spc_cpufreq_remove, |
| }; |
| module_platform_driver(ve_spc_cpufreq_platdrv); |
| |
| MODULE_AUTHOR("Viresh Kumar <viresh.kumar@linaro.org>"); |
| MODULE_AUTHOR("Sudeep Holla <sudeep.holla@arm.com>"); |
| MODULE_DESCRIPTION("Vexpress SPC ARM big LITTLE cpufreq driver"); |
| MODULE_LICENSE("GPL v2"); |