| /* |
| * Copyright 2009 Red Hat Inc. |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a |
| * copy of this software and associated documentation files (the "Software"), |
| * to deal in the Software without restriction, including without limitation |
| * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| * and/or sell copies of the Software, and to permit persons to whom the |
| * Software is furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice shall be included in |
| * all copies or substantial portions of the Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR |
| * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, |
| * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR |
| * OTHER DEALINGS IN THE SOFTWARE. |
| * |
| * Authors: Ben Skeggs |
| */ |
| |
| #include "drmP.h" |
| |
| #include "nouveau_drv.h" |
| #include "nouveau_i2c.h" |
| #include "nouveau_connector.h" |
| #include "nouveau_encoder.h" |
| #include "nouveau_crtc.h" |
| |
| /****************************************************************************** |
| * aux channel util functions |
| *****************************************************************************/ |
| #define AUX_DBG(fmt, args...) do { \ |
| if (nouveau_reg_debug & NOUVEAU_REG_DEBUG_AUXCH) { \ |
| NV_PRINTK(KERN_DEBUG, dev, "AUXCH(%d): " fmt, ch, ##args); \ |
| } \ |
| } while (0) |
| #define AUX_ERR(fmt, args...) NV_ERROR(dev, "AUXCH(%d): " fmt, ch, ##args) |
| |
| static void |
| auxch_fini(struct drm_device *dev, int ch) |
| { |
| nv_mask(dev, 0x00e4e4 + (ch * 0x50), 0x00310000, 0x00000000); |
| } |
| |
| static int |
| auxch_init(struct drm_device *dev, int ch) |
| { |
| const u32 unksel = 1; /* nfi which to use, or if it matters.. */ |
| const u32 ureq = unksel ? 0x00100000 : 0x00200000; |
| const u32 urep = unksel ? 0x01000000 : 0x02000000; |
| u32 ctrl, timeout; |
| |
| /* wait up to 1ms for any previous transaction to be done... */ |
| timeout = 1000; |
| do { |
| ctrl = nv_rd32(dev, 0x00e4e4 + (ch * 0x50)); |
| udelay(1); |
| if (!timeout--) { |
| AUX_ERR("begin idle timeout 0x%08x", ctrl); |
| return -EBUSY; |
| } |
| } while (ctrl & 0x03010000); |
| |
| /* set some magic, and wait up to 1ms for it to appear */ |
| nv_mask(dev, 0x00e4e4 + (ch * 0x50), 0x00300000, ureq); |
| timeout = 1000; |
| do { |
| ctrl = nv_rd32(dev, 0x00e4e4 + (ch * 0x50)); |
| udelay(1); |
| if (!timeout--) { |
| AUX_ERR("magic wait 0x%08x\n", ctrl); |
| auxch_fini(dev, ch); |
| return -EBUSY; |
| } |
| } while ((ctrl & 0x03000000) != urep); |
| |
| return 0; |
| } |
| |
| static int |
| auxch_tx(struct drm_device *dev, int ch, u8 type, u32 addr, u8 *data, u8 size) |
| { |
| u32 ctrl, stat, timeout, retries; |
| u32 xbuf[4] = {}; |
| int ret, i; |
| |
| AUX_DBG("%d: 0x%08x %d\n", type, addr, size); |
| |
| ret = auxch_init(dev, ch); |
| if (ret) |
| goto out; |
| |
| stat = nv_rd32(dev, 0x00e4e8 + (ch * 0x50)); |
| if (!(stat & 0x10000000)) { |
| AUX_DBG("sink not detected\n"); |
| ret = -ENXIO; |
| goto out; |
| } |
| |
| if (!(type & 1)) { |
| memcpy(xbuf, data, size); |
| for (i = 0; i < 16; i += 4) { |
| AUX_DBG("wr 0x%08x\n", xbuf[i / 4]); |
| nv_wr32(dev, 0x00e4c0 + (ch * 0x50) + i, xbuf[i / 4]); |
| } |
| } |
| |
| ctrl = nv_rd32(dev, 0x00e4e4 + (ch * 0x50)); |
| ctrl &= ~0x0001f0ff; |
| ctrl |= type << 12; |
| ctrl |= size - 1; |
| nv_wr32(dev, 0x00e4e0 + (ch * 0x50), addr); |
| |
| /* retry transaction a number of times on failure... */ |
| ret = -EREMOTEIO; |
| for (retries = 0; retries < 32; retries++) { |
| /* reset, and delay a while if this is a retry */ |
| nv_wr32(dev, 0x00e4e4 + (ch * 0x50), 0x80000000 | ctrl); |
| nv_wr32(dev, 0x00e4e4 + (ch * 0x50), 0x00000000 | ctrl); |
| if (retries) |
| udelay(400); |
| |
| /* transaction request, wait up to 1ms for it to complete */ |
| nv_wr32(dev, 0x00e4e4 + (ch * 0x50), 0x00010000 | ctrl); |
| |
| timeout = 1000; |
| do { |
| ctrl = nv_rd32(dev, 0x00e4e4 + (ch * 0x50)); |
| udelay(1); |
| if (!timeout--) { |
| AUX_ERR("tx req timeout 0x%08x\n", ctrl); |
| goto out; |
| } |
| } while (ctrl & 0x00010000); |
| |
| /* read status, and check if transaction completed ok */ |
| stat = nv_mask(dev, 0x00e4e8 + (ch * 0x50), 0, 0); |
| if (!(stat & 0x000f0f00)) { |
| ret = 0; |
| break; |
| } |
| |
| AUX_DBG("%02d 0x%08x 0x%08x\n", retries, ctrl, stat); |
| } |
| |
| if (type & 1) { |
| for (i = 0; i < 16; i += 4) { |
| xbuf[i / 4] = nv_rd32(dev, 0x00e4d0 + (ch * 0x50) + i); |
| AUX_DBG("rd 0x%08x\n", xbuf[i / 4]); |
| } |
| memcpy(data, xbuf, size); |
| } |
| |
| out: |
| auxch_fini(dev, ch); |
| return ret; |
| } |
| |
| static u32 |
| dp_link_bw_get(struct drm_device *dev, int or, int link) |
| { |
| u32 ctrl = nv_rd32(dev, 0x614300 + (or * 0x800)); |
| if (!(ctrl & 0x000c0000)) |
| return 162000; |
| return 270000; |
| } |
| |
| static int |
| dp_lane_count_get(struct drm_device *dev, int or, int link) |
| { |
| u32 ctrl = nv_rd32(dev, NV50_SOR_DP_CTRL(or, link)); |
| switch (ctrl & 0x000f0000) { |
| case 0x00010000: return 1; |
| case 0x00030000: return 2; |
| default: |
| return 4; |
| } |
| } |
| |
| void |
| nouveau_dp_tu_update(struct drm_device *dev, int or, int link, u32 clk, u32 bpp) |
| { |
| const u32 symbol = 100000; |
| int bestTU = 0, bestVTUi = 0, bestVTUf = 0, bestVTUa = 0; |
| int TU, VTUi, VTUf, VTUa; |
| u64 link_data_rate, link_ratio, unk; |
| u32 best_diff = 64 * symbol; |
| u32 link_nr, link_bw, r; |
| |
| /* calculate packed data rate for each lane */ |
| link_nr = dp_lane_count_get(dev, or, link); |
| link_data_rate = (clk * bpp / 8) / link_nr; |
| |
| /* calculate ratio of packed data rate to link symbol rate */ |
| link_bw = dp_link_bw_get(dev, or, link); |
| link_ratio = link_data_rate * symbol; |
| r = do_div(link_ratio, link_bw); |
| |
| for (TU = 64; TU >= 32; TU--) { |
| /* calculate average number of valid symbols in each TU */ |
| u32 tu_valid = link_ratio * TU; |
| u32 calc, diff; |
| |
| /* find a hw representation for the fraction.. */ |
| VTUi = tu_valid / symbol; |
| calc = VTUi * symbol; |
| diff = tu_valid - calc; |
| if (diff) { |
| if (diff >= (symbol / 2)) { |
| VTUf = symbol / (symbol - diff); |
| if (symbol - (VTUf * diff)) |
| VTUf++; |
| |
| if (VTUf <= 15) { |
| VTUa = 1; |
| calc += symbol - (symbol / VTUf); |
| } else { |
| VTUa = 0; |
| VTUf = 1; |
| calc += symbol; |
| } |
| } else { |
| VTUa = 0; |
| VTUf = min((int)(symbol / diff), 15); |
| calc += symbol / VTUf; |
| } |
| |
| diff = calc - tu_valid; |
| } else { |
| /* no remainder, but the hw doesn't like the fractional |
| * part to be zero. decrement the integer part and |
| * have the fraction add a whole symbol back |
| */ |
| VTUa = 0; |
| VTUf = 1; |
| VTUi--; |
| } |
| |
| if (diff < best_diff) { |
| best_diff = diff; |
| bestTU = TU; |
| bestVTUa = VTUa; |
| bestVTUf = VTUf; |
| bestVTUi = VTUi; |
| if (diff == 0) |
| break; |
| } |
| } |
| |
| if (!bestTU) { |
| NV_ERROR(dev, "DP: unable to find suitable config\n"); |
| return; |
| } |
| |
| /* XXX close to vbios numbers, but not right */ |
| unk = (symbol - link_ratio) * bestTU; |
| unk *= link_ratio; |
| r = do_div(unk, symbol); |
| r = do_div(unk, symbol); |
| unk += 6; |
| |
| nv_mask(dev, NV50_SOR_DP_CTRL(or, link), 0x000001fc, bestTU << 2); |
| nv_mask(dev, NV50_SOR_DP_SCFG(or, link), 0x010f7f3f, bestVTUa << 24 | |
| bestVTUf << 16 | |
| bestVTUi << 8 | |
| unk); |
| } |
| |
| u8 * |
| nouveau_dp_bios_data(struct drm_device *dev, struct dcb_entry *dcb, u8 **entry) |
| { |
| struct bit_entry d; |
| u8 *table; |
| int i; |
| |
| if (bit_table(dev, 'd', &d)) { |
| NV_ERROR(dev, "BIT 'd' table not found\n"); |
| return NULL; |
| } |
| |
| if (d.version != 1) { |
| NV_ERROR(dev, "BIT 'd' table version %d unknown\n", d.version); |
| return NULL; |
| } |
| |
| table = ROMPTR(dev, d.data[0]); |
| if (!table) { |
| NV_ERROR(dev, "displayport table pointer invalid\n"); |
| return NULL; |
| } |
| |
| switch (table[0]) { |
| case 0x20: |
| case 0x21: |
| case 0x30: |
| break; |
| default: |
| NV_ERROR(dev, "displayport table 0x%02x unknown\n", table[0]); |
| return NULL; |
| } |
| |
| for (i = 0; i < table[3]; i++) { |
| *entry = ROMPTR(dev, table[table[1] + (i * table[2])]); |
| if (*entry && bios_encoder_match(dcb, ROM32((*entry)[0]))) |
| return table; |
| } |
| |
| NV_ERROR(dev, "displayport encoder table not found\n"); |
| return NULL; |
| } |
| |
| /****************************************************************************** |
| * link training |
| *****************************************************************************/ |
| struct dp_state { |
| struct dcb_entry *dcb; |
| u8 *table; |
| u8 *entry; |
| int auxch; |
| int crtc; |
| int or; |
| int link; |
| u8 *dpcd; |
| int link_nr; |
| u32 link_bw; |
| u8 stat[6]; |
| u8 conf[4]; |
| }; |
| |
| static void |
| dp_set_link_config(struct drm_device *dev, struct dp_state *dp) |
| { |
| int or = dp->or, link = dp->link; |
| u8 *entry, sink[2]; |
| u32 dp_ctrl; |
| u16 script; |
| |
| NV_DEBUG_KMS(dev, "%d lanes at %d KB/s\n", dp->link_nr, dp->link_bw); |
| |
| /* set selected link rate on source */ |
| switch (dp->link_bw) { |
| case 270000: |
| nv_mask(dev, 0x614300 + (or * 0x800), 0x000c0000, 0x00040000); |
| sink[0] = DP_LINK_BW_2_7; |
| break; |
| default: |
| nv_mask(dev, 0x614300 + (or * 0x800), 0x000c0000, 0x00000000); |
| sink[0] = DP_LINK_BW_1_62; |
| break; |
| } |
| |
| /* offset +0x0a of each dp encoder table entry is a pointer to another |
| * table, that has (among other things) pointers to more scripts that |
| * need to be executed, this time depending on link speed. |
| */ |
| entry = ROMPTR(dev, dp->entry[10]); |
| if (entry) { |
| if (dp->table[0] < 0x30) { |
| while (dp->link_bw < (ROM16(entry[0]) * 10)) |
| entry += 4; |
| script = ROM16(entry[2]); |
| } else { |
| while (dp->link_bw < (entry[0] * 27000)) |
| entry += 3; |
| script = ROM16(entry[1]); |
| } |
| |
| nouveau_bios_run_init_table(dev, script, dp->dcb, dp->crtc); |
| } |
| |
| /* configure lane count on the source */ |
| dp_ctrl = ((1 << dp->link_nr) - 1) << 16; |
| sink[1] = dp->link_nr; |
| if (dp->dpcd[2] & DP_ENHANCED_FRAME_CAP) { |
| dp_ctrl |= 0x00004000; |
| sink[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN; |
| } |
| |
| nv_mask(dev, NV50_SOR_DP_CTRL(or, link), 0x001f4000, dp_ctrl); |
| |
| /* inform the sink of the new configuration */ |
| auxch_tx(dev, dp->auxch, 8, DP_LINK_BW_SET, sink, 2); |
| } |
| |
| static void |
| dp_set_training_pattern(struct drm_device *dev, struct dp_state *dp, u8 tp) |
| { |
| u8 sink_tp; |
| |
| NV_DEBUG_KMS(dev, "training pattern %d\n", tp); |
| |
| nv_mask(dev, NV50_SOR_DP_CTRL(dp->or, dp->link), 0x0f000000, tp << 24); |
| |
| auxch_tx(dev, dp->auxch, 9, DP_TRAINING_PATTERN_SET, &sink_tp, 1); |
| sink_tp &= ~DP_TRAINING_PATTERN_MASK; |
| sink_tp |= tp; |
| auxch_tx(dev, dp->auxch, 8, DP_TRAINING_PATTERN_SET, &sink_tp, 1); |
| } |
| |
| static const u8 nv50_lane_map[] = { 16, 8, 0, 24 }; |
| static const u8 nvaf_lane_map[] = { 24, 16, 8, 0 }; |
| |
| static int |
| dp_link_train_commit(struct drm_device *dev, struct dp_state *dp) |
| { |
| struct drm_nouveau_private *dev_priv = dev->dev_private; |
| u32 mask = 0, drv = 0, pre = 0, unk = 0; |
| const u8 *shifts; |
| int link = dp->link; |
| int or = dp->or; |
| int i; |
| |
| if (dev_priv->chipset != 0xaf) |
| shifts = nv50_lane_map; |
| else |
| shifts = nvaf_lane_map; |
| |
| for (i = 0; i < dp->link_nr; i++) { |
| u8 *conf = dp->entry + dp->table[4]; |
| u8 lane = (dp->stat[4 + (i >> 1)] >> ((i & 1) * 4)) & 0xf; |
| u8 lpre = (lane & 0x0c) >> 2; |
| u8 lvsw = (lane & 0x03) >> 0; |
| |
| mask |= 0xff << shifts[i]; |
| unk |= 1 << (shifts[i] >> 3); |
| |
| dp->conf[i] = (lpre << 3) | lvsw; |
| if (lvsw == DP_TRAIN_VOLTAGE_SWING_1200) |
| dp->conf[i] |= DP_TRAIN_MAX_SWING_REACHED; |
| if (lpre == DP_TRAIN_PRE_EMPHASIS_9_5) |
| dp->conf[i] |= DP_TRAIN_MAX_PRE_EMPHASIS_REACHED; |
| |
| NV_DEBUG_KMS(dev, "config lane %d %02x\n", i, dp->conf[i]); |
| |
| if (dp->table[0] < 0x30) { |
| u8 *last = conf + (dp->entry[4] * dp->table[5]); |
| while (lvsw != conf[0] || lpre != conf[1]) { |
| conf += dp->table[5]; |
| if (conf >= last) |
| return -EINVAL; |
| } |
| |
| conf += 2; |
| } else { |
| /* no lookup table anymore, set entries for each |
| * combination of voltage swing and pre-emphasis |
| * level allowed by the DP spec. |
| */ |
| switch (lvsw) { |
| case 0: lpre += 0; break; |
| case 1: lpre += 4; break; |
| case 2: lpre += 7; break; |
| case 3: lpre += 9; break; |
| } |
| |
| conf = conf + (lpre * dp->table[5]); |
| conf++; |
| } |
| |
| drv |= conf[0] << shifts[i]; |
| pre |= conf[1] << shifts[i]; |
| unk = (unk & ~0x0000ff00) | (conf[2] << 8); |
| } |
| |
| nv_mask(dev, NV50_SOR_DP_UNK118(or, link), mask, drv); |
| nv_mask(dev, NV50_SOR_DP_UNK120(or, link), mask, pre); |
| nv_mask(dev, NV50_SOR_DP_UNK130(or, link), 0x0000ff0f, unk); |
| |
| return auxch_tx(dev, dp->auxch, 8, DP_TRAINING_LANE0_SET, dp->conf, 4); |
| } |
| |
| static int |
| dp_link_train_update(struct drm_device *dev, struct dp_state *dp, u32 delay) |
| { |
| int ret; |
| |
| udelay(delay); |
| |
| ret = auxch_tx(dev, dp->auxch, 9, DP_LANE0_1_STATUS, dp->stat, 6); |
| if (ret) |
| return ret; |
| |
| NV_DEBUG_KMS(dev, "status %02x %02x %02x %02x %02x %02x\n", |
| dp->stat[0], dp->stat[1], dp->stat[2], dp->stat[3], |
| dp->stat[4], dp->stat[5]); |
| return 0; |
| } |
| |
| static int |
| dp_link_train_cr(struct drm_device *dev, struct dp_state *dp) |
| { |
| bool cr_done = false, abort = false; |
| int voltage = dp->conf[0] & DP_TRAIN_VOLTAGE_SWING_MASK; |
| int tries = 0, i; |
| |
| dp_set_training_pattern(dev, dp, DP_TRAINING_PATTERN_1); |
| |
| do { |
| if (dp_link_train_commit(dev, dp) || |
| dp_link_train_update(dev, dp, 100)) |
| break; |
| |
| cr_done = true; |
| for (i = 0; i < dp->link_nr; i++) { |
| u8 lane = (dp->stat[i >> 1] >> ((i & 1) * 4)) & 0xf; |
| if (!(lane & DP_LANE_CR_DONE)) { |
| cr_done = false; |
| if (dp->conf[i] & DP_TRAIN_MAX_SWING_REACHED) |
| abort = true; |
| break; |
| } |
| } |
| |
| if ((dp->conf[0] & DP_TRAIN_VOLTAGE_SWING_MASK) != voltage) { |
| voltage = dp->conf[0] & DP_TRAIN_VOLTAGE_SWING_MASK; |
| tries = 0; |
| } |
| } while (!cr_done && !abort && ++tries < 5); |
| |
| return cr_done ? 0 : -1; |
| } |
| |
| static int |
| dp_link_train_eq(struct drm_device *dev, struct dp_state *dp) |
| { |
| bool eq_done, cr_done = true; |
| int tries = 0, i; |
| |
| dp_set_training_pattern(dev, dp, DP_TRAINING_PATTERN_2); |
| |
| do { |
| if (dp_link_train_update(dev, dp, 400)) |
| break; |
| |
| eq_done = !!(dp->stat[2] & DP_INTERLANE_ALIGN_DONE); |
| for (i = 0; i < dp->link_nr && eq_done; i++) { |
| u8 lane = (dp->stat[i >> 1] >> ((i & 1) * 4)) & 0xf; |
| if (!(lane & DP_LANE_CR_DONE)) |
| cr_done = false; |
| if (!(lane & DP_LANE_CHANNEL_EQ_DONE) || |
| !(lane & DP_LANE_SYMBOL_LOCKED)) |
| eq_done = false; |
| } |
| |
| if (dp_link_train_commit(dev, dp)) |
| break; |
| } while (!eq_done && cr_done && ++tries <= 5); |
| |
| return eq_done ? 0 : -1; |
| } |
| |
| bool |
| nouveau_dp_link_train(struct drm_encoder *encoder, u32 datarate) |
| { |
| struct drm_nouveau_private *dev_priv = encoder->dev->dev_private; |
| struct nouveau_gpio_engine *pgpio = &dev_priv->engine.gpio; |
| struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); |
| struct nouveau_crtc *nv_crtc = nouveau_crtc(encoder->crtc); |
| struct nouveau_connector *nv_connector = |
| nouveau_encoder_connector_get(nv_encoder); |
| struct drm_device *dev = encoder->dev; |
| struct nouveau_i2c_chan *auxch; |
| const u32 bw_list[] = { 270000, 162000, 0 }; |
| const u32 *link_bw = bw_list; |
| struct dp_state dp; |
| |
| auxch = nouveau_i2c_find(dev, nv_encoder->dcb->i2c_index); |
| if (!auxch) |
| return false; |
| |
| dp.table = nouveau_dp_bios_data(dev, nv_encoder->dcb, &dp.entry); |
| if (!dp.table) |
| return -EINVAL; |
| |
| dp.dcb = nv_encoder->dcb; |
| dp.crtc = nv_crtc->index; |
| dp.auxch = auxch->rd; |
| dp.or = nv_encoder->or; |
| dp.link = !(nv_encoder->dcb->sorconf.link & 1); |
| dp.dpcd = nv_encoder->dp.dpcd; |
| |
| /* some sinks toggle hotplug in response to some of the actions |
| * we take during link training (DP_SET_POWER is one), we need |
| * to ignore them for the moment to avoid races. |
| */ |
| pgpio->irq_enable(dev, nv_connector->dcb->gpio_tag, false); |
| |
| /* enable down-spreading, if possible */ |
| if (dp.table[1] >= 16) { |
| u16 script = ROM16(dp.entry[14]); |
| if (nv_encoder->dp.dpcd[3] & 1) |
| script = ROM16(dp.entry[12]); |
| |
| nouveau_bios_run_init_table(dev, script, dp.dcb, dp.crtc); |
| } |
| |
| /* execute pre-train script from vbios */ |
| nouveau_bios_run_init_table(dev, ROM16(dp.entry[6]), dp.dcb, dp.crtc); |
| |
| /* start off at highest link rate supported by encoder and display */ |
| while (*link_bw > nv_encoder->dp.link_bw) |
| link_bw++; |
| |
| while (link_bw[0]) { |
| /* find minimum required lane count at this link rate */ |
| dp.link_nr = nv_encoder->dp.link_nr; |
| while ((dp.link_nr >> 1) * link_bw[0] > datarate) |
| dp.link_nr >>= 1; |
| |
| /* drop link rate to minimum with this lane count */ |
| while ((link_bw[1] * dp.link_nr) > datarate) |
| link_bw++; |
| dp.link_bw = link_bw[0]; |
| |
| /* program selected link configuration */ |
| dp_set_link_config(dev, &dp); |
| |
| /* attempt to train the link at this configuration */ |
| memset(dp.stat, 0x00, sizeof(dp.stat)); |
| if (!dp_link_train_cr(dev, &dp) && |
| !dp_link_train_eq(dev, &dp)) |
| break; |
| |
| /* retry at lower rate */ |
| link_bw++; |
| } |
| |
| /* finish link training */ |
| dp_set_training_pattern(dev, &dp, DP_TRAINING_PATTERN_DISABLE); |
| |
| /* execute post-train script from vbios */ |
| nouveau_bios_run_init_table(dev, ROM16(dp.entry[8]), dp.dcb, dp.crtc); |
| |
| /* re-enable hotplug detect */ |
| pgpio->irq_enable(dev, nv_connector->dcb->gpio_tag, true); |
| return true; |
| } |
| |
| bool |
| nouveau_dp_detect(struct drm_encoder *encoder) |
| { |
| struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); |
| struct drm_device *dev = encoder->dev; |
| struct nouveau_i2c_chan *auxch; |
| u8 *dpcd = nv_encoder->dp.dpcd; |
| int ret; |
| |
| auxch = nouveau_i2c_find(dev, nv_encoder->dcb->i2c_index); |
| if (!auxch) |
| return false; |
| |
| ret = auxch_tx(dev, auxch->rd, 9, DP_DPCD_REV, dpcd, 8); |
| if (ret) |
| return false; |
| |
| nv_encoder->dp.link_bw = 27000 * dpcd[1]; |
| nv_encoder->dp.link_nr = dpcd[2] & DP_MAX_LANE_COUNT_MASK; |
| |
| NV_DEBUG_KMS(dev, "display: %dx%d dpcd 0x%02x\n", |
| nv_encoder->dp.link_nr, nv_encoder->dp.link_bw, dpcd[0]); |
| NV_DEBUG_KMS(dev, "encoder: %dx%d\n", |
| nv_encoder->dcb->dpconf.link_nr, |
| nv_encoder->dcb->dpconf.link_bw); |
| |
| if (nv_encoder->dcb->dpconf.link_nr < nv_encoder->dp.link_nr) |
| nv_encoder->dp.link_nr = nv_encoder->dcb->dpconf.link_nr; |
| if (nv_encoder->dcb->dpconf.link_bw < nv_encoder->dp.link_bw) |
| nv_encoder->dp.link_bw = nv_encoder->dcb->dpconf.link_bw; |
| |
| NV_DEBUG_KMS(dev, "maximum: %dx%d\n", |
| nv_encoder->dp.link_nr, nv_encoder->dp.link_bw); |
| |
| return true; |
| } |
| |
| int |
| nouveau_dp_auxch(struct nouveau_i2c_chan *auxch, int cmd, int addr, |
| uint8_t *data, int data_nr) |
| { |
| return auxch_tx(auxch->dev, auxch->rd, cmd, addr, data, data_nr); |
| } |
| |
| static int |
| nouveau_dp_i2c_xfer(struct i2c_adapter *adap, struct i2c_msg *msgs, int num) |
| { |
| struct nouveau_i2c_chan *auxch = (struct nouveau_i2c_chan *)adap; |
| struct i2c_msg *msg = msgs; |
| int ret, mcnt = num; |
| |
| while (mcnt--) { |
| u8 remaining = msg->len; |
| u8 *ptr = msg->buf; |
| |
| while (remaining) { |
| u8 cnt = (remaining > 16) ? 16 : remaining; |
| u8 cmd; |
| |
| if (msg->flags & I2C_M_RD) |
| cmd = AUX_I2C_READ; |
| else |
| cmd = AUX_I2C_WRITE; |
| |
| if (mcnt || remaining > 16) |
| cmd |= AUX_I2C_MOT; |
| |
| ret = nouveau_dp_auxch(auxch, cmd, msg->addr, ptr, cnt); |
| if (ret < 0) |
| return ret; |
| |
| ptr += cnt; |
| remaining -= cnt; |
| } |
| |
| msg++; |
| } |
| |
| return num; |
| } |
| |
| static u32 |
| nouveau_dp_i2c_func(struct i2c_adapter *adap) |
| { |
| return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL; |
| } |
| |
| const struct i2c_algorithm nouveau_dp_i2c_algo = { |
| .master_xfer = nouveau_dp_i2c_xfer, |
| .functionality = nouveau_dp_i2c_func |
| }; |