| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * Copyright (c) 2016-present, Facebook, Inc. |
| * All rights reserved. |
| * |
| */ |
| |
| #include <linux/bio.h> |
| #include <linux/bitmap.h> |
| #include <linux/err.h> |
| #include <linux/init.h> |
| #include <linux/kernel.h> |
| #include <linux/mm.h> |
| #include <linux/sched/mm.h> |
| #include <linux/pagemap.h> |
| #include <linux/refcount.h> |
| #include <linux/sched.h> |
| #include <linux/slab.h> |
| #include <linux/zstd.h> |
| #include "misc.h" |
| #include "compression.h" |
| #include "ctree.h" |
| |
| #define ZSTD_BTRFS_MAX_WINDOWLOG 17 |
| #define ZSTD_BTRFS_MAX_INPUT (1 << ZSTD_BTRFS_MAX_WINDOWLOG) |
| #define ZSTD_BTRFS_DEFAULT_LEVEL 3 |
| #define ZSTD_BTRFS_MAX_LEVEL 15 |
| /* 307s to avoid pathologically clashing with transaction commit */ |
| #define ZSTD_BTRFS_RECLAIM_JIFFIES (307 * HZ) |
| |
| static ZSTD_parameters zstd_get_btrfs_parameters(unsigned int level, |
| size_t src_len) |
| { |
| ZSTD_parameters params = ZSTD_getParams(level, src_len, 0); |
| |
| if (params.cParams.windowLog > ZSTD_BTRFS_MAX_WINDOWLOG) |
| params.cParams.windowLog = ZSTD_BTRFS_MAX_WINDOWLOG; |
| WARN_ON(src_len > ZSTD_BTRFS_MAX_INPUT); |
| return params; |
| } |
| |
| struct workspace { |
| void *mem; |
| size_t size; |
| char *buf; |
| unsigned int level; |
| unsigned int req_level; |
| unsigned long last_used; /* jiffies */ |
| struct list_head list; |
| struct list_head lru_list; |
| ZSTD_inBuffer in_buf; |
| ZSTD_outBuffer out_buf; |
| }; |
| |
| /* |
| * Zstd Workspace Management |
| * |
| * Zstd workspaces have different memory requirements depending on the level. |
| * The zstd workspaces are managed by having individual lists for each level |
| * and a global lru. Forward progress is maintained by protecting a max level |
| * workspace. |
| * |
| * Getting a workspace is done by using the bitmap to identify the levels that |
| * have available workspaces and scans up. This lets us recycle higher level |
| * workspaces because of the monotonic memory guarantee. A workspace's |
| * last_used is only updated if it is being used by the corresponding memory |
| * level. Putting a workspace involves adding it back to the appropriate places |
| * and adding it back to the lru if necessary. |
| * |
| * A timer is used to reclaim workspaces if they have not been used for |
| * ZSTD_BTRFS_RECLAIM_JIFFIES. This helps keep only active workspaces around. |
| * The upper bound is provided by the workqueue limit which is 2 (percpu limit). |
| */ |
| |
| struct zstd_workspace_manager { |
| const struct btrfs_compress_op *ops; |
| spinlock_t lock; |
| struct list_head lru_list; |
| struct list_head idle_ws[ZSTD_BTRFS_MAX_LEVEL]; |
| unsigned long active_map; |
| wait_queue_head_t wait; |
| struct timer_list timer; |
| }; |
| |
| static struct zstd_workspace_manager wsm; |
| |
| static size_t zstd_ws_mem_sizes[ZSTD_BTRFS_MAX_LEVEL]; |
| |
| static inline struct workspace *list_to_workspace(struct list_head *list) |
| { |
| return container_of(list, struct workspace, list); |
| } |
| |
| void zstd_free_workspace(struct list_head *ws); |
| struct list_head *zstd_alloc_workspace(unsigned int level); |
| /* |
| * zstd_reclaim_timer_fn - reclaim timer |
| * @t: timer |
| * |
| * This scans the lru_list and attempts to reclaim any workspace that hasn't |
| * been used for ZSTD_BTRFS_RECLAIM_JIFFIES. |
| */ |
| static void zstd_reclaim_timer_fn(struct timer_list *timer) |
| { |
| unsigned long reclaim_threshold = jiffies - ZSTD_BTRFS_RECLAIM_JIFFIES; |
| struct list_head *pos, *next; |
| |
| spin_lock_bh(&wsm.lock); |
| |
| if (list_empty(&wsm.lru_list)) { |
| spin_unlock_bh(&wsm.lock); |
| return; |
| } |
| |
| list_for_each_prev_safe(pos, next, &wsm.lru_list) { |
| struct workspace *victim = container_of(pos, struct workspace, |
| lru_list); |
| unsigned int level; |
| |
| if (time_after(victim->last_used, reclaim_threshold)) |
| break; |
| |
| /* workspace is in use */ |
| if (victim->req_level) |
| continue; |
| |
| level = victim->level; |
| list_del(&victim->lru_list); |
| list_del(&victim->list); |
| zstd_free_workspace(&victim->list); |
| |
| if (list_empty(&wsm.idle_ws[level - 1])) |
| clear_bit(level - 1, &wsm.active_map); |
| |
| } |
| |
| if (!list_empty(&wsm.lru_list)) |
| mod_timer(&wsm.timer, jiffies + ZSTD_BTRFS_RECLAIM_JIFFIES); |
| |
| spin_unlock_bh(&wsm.lock); |
| } |
| |
| /* |
| * zstd_calc_ws_mem_sizes - calculate monotonic memory bounds |
| * |
| * It is possible based on the level configurations that a higher level |
| * workspace uses less memory than a lower level workspace. In order to reuse |
| * workspaces, this must be made a monotonic relationship. This precomputes |
| * the required memory for each level and enforces the monotonicity between |
| * level and memory required. |
| */ |
| static void zstd_calc_ws_mem_sizes(void) |
| { |
| size_t max_size = 0; |
| unsigned int level; |
| |
| for (level = 1; level <= ZSTD_BTRFS_MAX_LEVEL; level++) { |
| ZSTD_parameters params = |
| zstd_get_btrfs_parameters(level, ZSTD_BTRFS_MAX_INPUT); |
| size_t level_size = |
| max_t(size_t, |
| ZSTD_CStreamWorkspaceBound(params.cParams), |
| ZSTD_DStreamWorkspaceBound(ZSTD_BTRFS_MAX_INPUT)); |
| |
| max_size = max_t(size_t, max_size, level_size); |
| zstd_ws_mem_sizes[level - 1] = max_size; |
| } |
| } |
| |
| void zstd_init_workspace_manager(void) |
| { |
| struct list_head *ws; |
| int i; |
| |
| zstd_calc_ws_mem_sizes(); |
| |
| wsm.ops = &btrfs_zstd_compress; |
| spin_lock_init(&wsm.lock); |
| init_waitqueue_head(&wsm.wait); |
| timer_setup(&wsm.timer, zstd_reclaim_timer_fn, 0); |
| |
| INIT_LIST_HEAD(&wsm.lru_list); |
| for (i = 0; i < ZSTD_BTRFS_MAX_LEVEL; i++) |
| INIT_LIST_HEAD(&wsm.idle_ws[i]); |
| |
| ws = zstd_alloc_workspace(ZSTD_BTRFS_MAX_LEVEL); |
| if (IS_ERR(ws)) { |
| pr_warn( |
| "BTRFS: cannot preallocate zstd compression workspace\n"); |
| } else { |
| set_bit(ZSTD_BTRFS_MAX_LEVEL - 1, &wsm.active_map); |
| list_add(ws, &wsm.idle_ws[ZSTD_BTRFS_MAX_LEVEL - 1]); |
| } |
| } |
| |
| void zstd_cleanup_workspace_manager(void) |
| { |
| struct workspace *workspace; |
| int i; |
| |
| spin_lock_bh(&wsm.lock); |
| for (i = 0; i < ZSTD_BTRFS_MAX_LEVEL; i++) { |
| while (!list_empty(&wsm.idle_ws[i])) { |
| workspace = container_of(wsm.idle_ws[i].next, |
| struct workspace, list); |
| list_del(&workspace->list); |
| list_del(&workspace->lru_list); |
| zstd_free_workspace(&workspace->list); |
| } |
| } |
| spin_unlock_bh(&wsm.lock); |
| |
| del_timer_sync(&wsm.timer); |
| } |
| |
| /* |
| * zstd_find_workspace - find workspace |
| * @level: compression level |
| * |
| * This iterates over the set bits in the active_map beginning at the requested |
| * compression level. This lets us utilize already allocated workspaces before |
| * allocating a new one. If the workspace is of a larger size, it is used, but |
| * the place in the lru_list and last_used times are not updated. This is to |
| * offer the opportunity to reclaim the workspace in favor of allocating an |
| * appropriately sized one in the future. |
| */ |
| static struct list_head *zstd_find_workspace(unsigned int level) |
| { |
| struct list_head *ws; |
| struct workspace *workspace; |
| int i = level - 1; |
| |
| spin_lock_bh(&wsm.lock); |
| for_each_set_bit_from(i, &wsm.active_map, ZSTD_BTRFS_MAX_LEVEL) { |
| if (!list_empty(&wsm.idle_ws[i])) { |
| ws = wsm.idle_ws[i].next; |
| workspace = list_to_workspace(ws); |
| list_del_init(ws); |
| /* keep its place if it's a lower level using this */ |
| workspace->req_level = level; |
| if (level == workspace->level) |
| list_del(&workspace->lru_list); |
| if (list_empty(&wsm.idle_ws[i])) |
| clear_bit(i, &wsm.active_map); |
| spin_unlock_bh(&wsm.lock); |
| return ws; |
| } |
| } |
| spin_unlock_bh(&wsm.lock); |
| |
| return NULL; |
| } |
| |
| /* |
| * zstd_get_workspace - zstd's get_workspace |
| * @level: compression level |
| * |
| * If @level is 0, then any compression level can be used. Therefore, we begin |
| * scanning from 1. We first scan through possible workspaces and then after |
| * attempt to allocate a new workspace. If we fail to allocate one due to |
| * memory pressure, go to sleep waiting for the max level workspace to free up. |
| */ |
| struct list_head *zstd_get_workspace(unsigned int level) |
| { |
| struct list_head *ws; |
| unsigned int nofs_flag; |
| |
| /* level == 0 means we can use any workspace */ |
| if (!level) |
| level = 1; |
| |
| again: |
| ws = zstd_find_workspace(level); |
| if (ws) |
| return ws; |
| |
| nofs_flag = memalloc_nofs_save(); |
| ws = zstd_alloc_workspace(level); |
| memalloc_nofs_restore(nofs_flag); |
| |
| if (IS_ERR(ws)) { |
| DEFINE_WAIT(wait); |
| |
| prepare_to_wait(&wsm.wait, &wait, TASK_UNINTERRUPTIBLE); |
| schedule(); |
| finish_wait(&wsm.wait, &wait); |
| |
| goto again; |
| } |
| |
| return ws; |
| } |
| |
| /* |
| * zstd_put_workspace - zstd put_workspace |
| * @ws: list_head for the workspace |
| * |
| * When putting back a workspace, we only need to update the LRU if we are of |
| * the requested compression level. Here is where we continue to protect the |
| * max level workspace or update last_used accordingly. If the reclaim timer |
| * isn't set, it is also set here. Only the max level workspace tries and wakes |
| * up waiting workspaces. |
| */ |
| void zstd_put_workspace(struct list_head *ws) |
| { |
| struct workspace *workspace = list_to_workspace(ws); |
| |
| spin_lock_bh(&wsm.lock); |
| |
| /* A node is only taken off the lru if we are the corresponding level */ |
| if (workspace->req_level == workspace->level) { |
| /* Hide a max level workspace from reclaim */ |
| if (list_empty(&wsm.idle_ws[ZSTD_BTRFS_MAX_LEVEL - 1])) { |
| INIT_LIST_HEAD(&workspace->lru_list); |
| } else { |
| workspace->last_used = jiffies; |
| list_add(&workspace->lru_list, &wsm.lru_list); |
| if (!timer_pending(&wsm.timer)) |
| mod_timer(&wsm.timer, |
| jiffies + ZSTD_BTRFS_RECLAIM_JIFFIES); |
| } |
| } |
| |
| set_bit(workspace->level - 1, &wsm.active_map); |
| list_add(&workspace->list, &wsm.idle_ws[workspace->level - 1]); |
| workspace->req_level = 0; |
| |
| spin_unlock_bh(&wsm.lock); |
| |
| if (workspace->level == ZSTD_BTRFS_MAX_LEVEL) |
| cond_wake_up(&wsm.wait); |
| } |
| |
| void zstd_free_workspace(struct list_head *ws) |
| { |
| struct workspace *workspace = list_entry(ws, struct workspace, list); |
| |
| kvfree(workspace->mem); |
| kfree(workspace->buf); |
| kfree(workspace); |
| } |
| |
| struct list_head *zstd_alloc_workspace(unsigned int level) |
| { |
| struct workspace *workspace; |
| |
| workspace = kzalloc(sizeof(*workspace), GFP_KERNEL); |
| if (!workspace) |
| return ERR_PTR(-ENOMEM); |
| |
| workspace->size = zstd_ws_mem_sizes[level - 1]; |
| workspace->level = level; |
| workspace->req_level = level; |
| workspace->last_used = jiffies; |
| workspace->mem = kvmalloc(workspace->size, GFP_KERNEL); |
| workspace->buf = kmalloc(PAGE_SIZE, GFP_KERNEL); |
| if (!workspace->mem || !workspace->buf) |
| goto fail; |
| |
| INIT_LIST_HEAD(&workspace->list); |
| INIT_LIST_HEAD(&workspace->lru_list); |
| |
| return &workspace->list; |
| fail: |
| zstd_free_workspace(&workspace->list); |
| return ERR_PTR(-ENOMEM); |
| } |
| |
| int zstd_compress_pages(struct list_head *ws, struct address_space *mapping, |
| u64 start, struct page **pages, unsigned long *out_pages, |
| unsigned long *total_in, unsigned long *total_out) |
| { |
| struct workspace *workspace = list_entry(ws, struct workspace, list); |
| ZSTD_CStream *stream; |
| int ret = 0; |
| int nr_pages = 0; |
| struct page *in_page = NULL; /* The current page to read */ |
| struct page *out_page = NULL; /* The current page to write to */ |
| unsigned long tot_in = 0; |
| unsigned long tot_out = 0; |
| unsigned long len = *total_out; |
| const unsigned long nr_dest_pages = *out_pages; |
| unsigned long max_out = nr_dest_pages * PAGE_SIZE; |
| ZSTD_parameters params = zstd_get_btrfs_parameters(workspace->req_level, |
| len); |
| |
| *out_pages = 0; |
| *total_out = 0; |
| *total_in = 0; |
| |
| /* Initialize the stream */ |
| stream = ZSTD_initCStream(params, len, workspace->mem, |
| workspace->size); |
| if (!stream) { |
| pr_warn("BTRFS: ZSTD_initCStream failed\n"); |
| ret = -EIO; |
| goto out; |
| } |
| |
| /* map in the first page of input data */ |
| in_page = find_get_page(mapping, start >> PAGE_SHIFT); |
| workspace->in_buf.src = kmap(in_page); |
| workspace->in_buf.pos = 0; |
| workspace->in_buf.size = min_t(size_t, len, PAGE_SIZE); |
| |
| |
| /* Allocate and map in the output buffer */ |
| out_page = alloc_page(GFP_NOFS); |
| if (out_page == NULL) { |
| ret = -ENOMEM; |
| goto out; |
| } |
| pages[nr_pages++] = out_page; |
| workspace->out_buf.dst = kmap(out_page); |
| workspace->out_buf.pos = 0; |
| workspace->out_buf.size = min_t(size_t, max_out, PAGE_SIZE); |
| |
| while (1) { |
| size_t ret2; |
| |
| ret2 = ZSTD_compressStream(stream, &workspace->out_buf, |
| &workspace->in_buf); |
| if (ZSTD_isError(ret2)) { |
| pr_debug("BTRFS: ZSTD_compressStream returned %d\n", |
| ZSTD_getErrorCode(ret2)); |
| ret = -EIO; |
| goto out; |
| } |
| |
| /* Check to see if we are making it bigger */ |
| if (tot_in + workspace->in_buf.pos > 8192 && |
| tot_in + workspace->in_buf.pos < |
| tot_out + workspace->out_buf.pos) { |
| ret = -E2BIG; |
| goto out; |
| } |
| |
| /* We've reached the end of our output range */ |
| if (workspace->out_buf.pos >= max_out) { |
| tot_out += workspace->out_buf.pos; |
| ret = -E2BIG; |
| goto out; |
| } |
| |
| /* Check if we need more output space */ |
| if (workspace->out_buf.pos == workspace->out_buf.size) { |
| tot_out += PAGE_SIZE; |
| max_out -= PAGE_SIZE; |
| kunmap(out_page); |
| if (nr_pages == nr_dest_pages) { |
| out_page = NULL; |
| ret = -E2BIG; |
| goto out; |
| } |
| out_page = alloc_page(GFP_NOFS); |
| if (out_page == NULL) { |
| ret = -ENOMEM; |
| goto out; |
| } |
| pages[nr_pages++] = out_page; |
| workspace->out_buf.dst = kmap(out_page); |
| workspace->out_buf.pos = 0; |
| workspace->out_buf.size = min_t(size_t, max_out, |
| PAGE_SIZE); |
| } |
| |
| /* We've reached the end of the input */ |
| if (workspace->in_buf.pos >= len) { |
| tot_in += workspace->in_buf.pos; |
| break; |
| } |
| |
| /* Check if we need more input */ |
| if (workspace->in_buf.pos == workspace->in_buf.size) { |
| tot_in += PAGE_SIZE; |
| kunmap(in_page); |
| put_page(in_page); |
| |
| start += PAGE_SIZE; |
| len -= PAGE_SIZE; |
| in_page = find_get_page(mapping, start >> PAGE_SHIFT); |
| workspace->in_buf.src = kmap(in_page); |
| workspace->in_buf.pos = 0; |
| workspace->in_buf.size = min_t(size_t, len, PAGE_SIZE); |
| } |
| } |
| while (1) { |
| size_t ret2; |
| |
| ret2 = ZSTD_endStream(stream, &workspace->out_buf); |
| if (ZSTD_isError(ret2)) { |
| pr_debug("BTRFS: ZSTD_endStream returned %d\n", |
| ZSTD_getErrorCode(ret2)); |
| ret = -EIO; |
| goto out; |
| } |
| if (ret2 == 0) { |
| tot_out += workspace->out_buf.pos; |
| break; |
| } |
| if (workspace->out_buf.pos >= max_out) { |
| tot_out += workspace->out_buf.pos; |
| ret = -E2BIG; |
| goto out; |
| } |
| |
| tot_out += PAGE_SIZE; |
| max_out -= PAGE_SIZE; |
| kunmap(out_page); |
| if (nr_pages == nr_dest_pages) { |
| out_page = NULL; |
| ret = -E2BIG; |
| goto out; |
| } |
| out_page = alloc_page(GFP_NOFS); |
| if (out_page == NULL) { |
| ret = -ENOMEM; |
| goto out; |
| } |
| pages[nr_pages++] = out_page; |
| workspace->out_buf.dst = kmap(out_page); |
| workspace->out_buf.pos = 0; |
| workspace->out_buf.size = min_t(size_t, max_out, PAGE_SIZE); |
| } |
| |
| if (tot_out >= tot_in) { |
| ret = -E2BIG; |
| goto out; |
| } |
| |
| ret = 0; |
| *total_in = tot_in; |
| *total_out = tot_out; |
| out: |
| *out_pages = nr_pages; |
| /* Cleanup */ |
| if (in_page) { |
| kunmap(in_page); |
| put_page(in_page); |
| } |
| if (out_page) |
| kunmap(out_page); |
| return ret; |
| } |
| |
| int zstd_decompress_bio(struct list_head *ws, struct compressed_bio *cb) |
| { |
| struct workspace *workspace = list_entry(ws, struct workspace, list); |
| struct page **pages_in = cb->compressed_pages; |
| size_t srclen = cb->compressed_len; |
| ZSTD_DStream *stream; |
| int ret = 0; |
| unsigned long page_in_index = 0; |
| unsigned long total_pages_in = DIV_ROUND_UP(srclen, PAGE_SIZE); |
| unsigned long buf_start; |
| unsigned long total_out = 0; |
| |
| stream = ZSTD_initDStream( |
| ZSTD_BTRFS_MAX_INPUT, workspace->mem, workspace->size); |
| if (!stream) { |
| pr_debug("BTRFS: ZSTD_initDStream failed\n"); |
| ret = -EIO; |
| goto done; |
| } |
| |
| workspace->in_buf.src = kmap(pages_in[page_in_index]); |
| workspace->in_buf.pos = 0; |
| workspace->in_buf.size = min_t(size_t, srclen, PAGE_SIZE); |
| |
| workspace->out_buf.dst = workspace->buf; |
| workspace->out_buf.pos = 0; |
| workspace->out_buf.size = PAGE_SIZE; |
| |
| while (1) { |
| size_t ret2; |
| |
| ret2 = ZSTD_decompressStream(stream, &workspace->out_buf, |
| &workspace->in_buf); |
| if (ZSTD_isError(ret2)) { |
| pr_debug("BTRFS: ZSTD_decompressStream returned %d\n", |
| ZSTD_getErrorCode(ret2)); |
| ret = -EIO; |
| goto done; |
| } |
| buf_start = total_out; |
| total_out += workspace->out_buf.pos; |
| workspace->out_buf.pos = 0; |
| |
| ret = btrfs_decompress_buf2page(workspace->out_buf.dst, |
| total_out - buf_start, cb, buf_start); |
| if (ret == 0) |
| break; |
| |
| if (workspace->in_buf.pos >= srclen) |
| break; |
| |
| /* Check if we've hit the end of a frame */ |
| if (ret2 == 0) |
| break; |
| |
| if (workspace->in_buf.pos == workspace->in_buf.size) { |
| kunmap(pages_in[page_in_index++]); |
| if (page_in_index >= total_pages_in) { |
| workspace->in_buf.src = NULL; |
| ret = -EIO; |
| goto done; |
| } |
| srclen -= PAGE_SIZE; |
| workspace->in_buf.src = kmap(pages_in[page_in_index]); |
| workspace->in_buf.pos = 0; |
| workspace->in_buf.size = min_t(size_t, srclen, PAGE_SIZE); |
| } |
| } |
| ret = 0; |
| zero_fill_bio(cb->orig_bio); |
| done: |
| if (workspace->in_buf.src) |
| kunmap(pages_in[page_in_index]); |
| return ret; |
| } |
| |
| int zstd_decompress(struct list_head *ws, unsigned char *data_in, |
| struct page *dest_page, unsigned long start_byte, size_t srclen, |
| size_t destlen) |
| { |
| struct workspace *workspace = list_entry(ws, struct workspace, list); |
| ZSTD_DStream *stream; |
| int ret = 0; |
| size_t ret2; |
| unsigned long total_out = 0; |
| unsigned long pg_offset = 0; |
| |
| stream = ZSTD_initDStream( |
| ZSTD_BTRFS_MAX_INPUT, workspace->mem, workspace->size); |
| if (!stream) { |
| pr_warn("BTRFS: ZSTD_initDStream failed\n"); |
| ret = -EIO; |
| goto finish; |
| } |
| |
| destlen = min_t(size_t, destlen, PAGE_SIZE); |
| |
| workspace->in_buf.src = data_in; |
| workspace->in_buf.pos = 0; |
| workspace->in_buf.size = srclen; |
| |
| workspace->out_buf.dst = workspace->buf; |
| workspace->out_buf.pos = 0; |
| workspace->out_buf.size = PAGE_SIZE; |
| |
| ret2 = 1; |
| while (pg_offset < destlen |
| && workspace->in_buf.pos < workspace->in_buf.size) { |
| unsigned long buf_start; |
| unsigned long buf_offset; |
| unsigned long bytes; |
| |
| /* Check if the frame is over and we still need more input */ |
| if (ret2 == 0) { |
| pr_debug("BTRFS: ZSTD_decompressStream ended early\n"); |
| ret = -EIO; |
| goto finish; |
| } |
| ret2 = ZSTD_decompressStream(stream, &workspace->out_buf, |
| &workspace->in_buf); |
| if (ZSTD_isError(ret2)) { |
| pr_debug("BTRFS: ZSTD_decompressStream returned %d\n", |
| ZSTD_getErrorCode(ret2)); |
| ret = -EIO; |
| goto finish; |
| } |
| |
| buf_start = total_out; |
| total_out += workspace->out_buf.pos; |
| workspace->out_buf.pos = 0; |
| |
| if (total_out <= start_byte) |
| continue; |
| |
| if (total_out > start_byte && buf_start < start_byte) |
| buf_offset = start_byte - buf_start; |
| else |
| buf_offset = 0; |
| |
| bytes = min_t(unsigned long, destlen - pg_offset, |
| workspace->out_buf.size - buf_offset); |
| |
| memcpy_to_page(dest_page, pg_offset, |
| workspace->out_buf.dst + buf_offset, bytes); |
| |
| pg_offset += bytes; |
| } |
| ret = 0; |
| finish: |
| if (pg_offset < destlen) { |
| memzero_page(dest_page, pg_offset, destlen - pg_offset); |
| } |
| return ret; |
| } |
| |
| const struct btrfs_compress_op btrfs_zstd_compress = { |
| /* ZSTD uses own workspace manager */ |
| .workspace_manager = NULL, |
| .max_level = ZSTD_BTRFS_MAX_LEVEL, |
| .default_level = ZSTD_BTRFS_DEFAULT_LEVEL, |
| }; |