| // SPDX-License-Identifier: GPL-2.0-or-later |
| /* |
| * PowerPC version |
| * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org) |
| * |
| * Derived from "arch/i386/kernel/signal.c" |
| * Copyright (C) 1991, 1992 Linus Torvalds |
| * 1997-11-28 Modified for POSIX.1b signals by Richard Henderson |
| */ |
| |
| #include <linux/sched.h> |
| #include <linux/mm.h> |
| #include <linux/smp.h> |
| #include <linux/kernel.h> |
| #include <linux/signal.h> |
| #include <linux/errno.h> |
| #include <linux/wait.h> |
| #include <linux/unistd.h> |
| #include <linux/stddef.h> |
| #include <linux/elf.h> |
| #include <linux/ptrace.h> |
| #include <linux/ratelimit.h> |
| #include <linux/syscalls.h> |
| #include <linux/pagemap.h> |
| |
| #include <asm/sigcontext.h> |
| #include <asm/ucontext.h> |
| #include <linux/uaccess.h> |
| #include <asm/unistd.h> |
| #include <asm/cacheflush.h> |
| #include <asm/syscalls.h> |
| #include <asm/vdso.h> |
| #include <asm/switch_to.h> |
| #include <asm/tm.h> |
| #include <asm/asm-prototypes.h> |
| |
| #include "signal.h" |
| |
| |
| #define GP_REGS_SIZE min(sizeof(elf_gregset_t), sizeof(struct pt_regs)) |
| #define FP_REGS_SIZE sizeof(elf_fpregset_t) |
| |
| #define TRAMP_TRACEBACK 4 |
| #define TRAMP_SIZE 7 |
| |
| /* |
| * When we have signals to deliver, we set up on the user stack, |
| * going down from the original stack pointer: |
| * 1) a rt_sigframe struct which contains the ucontext |
| * 2) a gap of __SIGNAL_FRAMESIZE bytes which acts as a dummy caller |
| * frame for the signal handler. |
| */ |
| |
| struct rt_sigframe { |
| /* sys_rt_sigreturn requires the ucontext be the first field */ |
| struct ucontext uc; |
| #ifdef CONFIG_PPC_TRANSACTIONAL_MEM |
| struct ucontext uc_transact; |
| #endif |
| unsigned long _unused[2]; |
| unsigned int tramp[TRAMP_SIZE]; |
| struct siginfo __user *pinfo; |
| void __user *puc; |
| struct siginfo info; |
| /* New 64 bit little-endian ABI allows redzone of 512 bytes below sp */ |
| char abigap[USER_REDZONE_SIZE]; |
| } __attribute__ ((aligned (16))); |
| |
| /* |
| * This computes a quad word aligned pointer inside the vmx_reserve array |
| * element. For historical reasons sigcontext might not be quad word aligned, |
| * but the location we write the VMX regs to must be. See the comment in |
| * sigcontext for more detail. |
| */ |
| #ifdef CONFIG_ALTIVEC |
| static elf_vrreg_t __user *sigcontext_vmx_regs(struct sigcontext __user *sc) |
| { |
| return (elf_vrreg_t __user *) (((unsigned long)sc->vmx_reserve + 15) & ~0xful); |
| } |
| #endif |
| |
| static void prepare_setup_sigcontext(struct task_struct *tsk) |
| { |
| #ifdef CONFIG_ALTIVEC |
| /* save altivec registers */ |
| if (tsk->thread.used_vr) |
| flush_altivec_to_thread(tsk); |
| if (cpu_has_feature(CPU_FTR_ALTIVEC)) |
| tsk->thread.vrsave = mfspr(SPRN_VRSAVE); |
| #endif /* CONFIG_ALTIVEC */ |
| |
| flush_fp_to_thread(tsk); |
| |
| #ifdef CONFIG_VSX |
| if (tsk->thread.used_vsr) |
| flush_vsx_to_thread(tsk); |
| #endif /* CONFIG_VSX */ |
| } |
| |
| /* |
| * Set up the sigcontext for the signal frame. |
| */ |
| |
| #define unsafe_setup_sigcontext(sc, tsk, signr, set, handler, ctx_has_vsx_region, label)\ |
| do { \ |
| if (__unsafe_setup_sigcontext(sc, tsk, signr, set, handler, ctx_has_vsx_region))\ |
| goto label; \ |
| } while (0) |
| static long notrace __unsafe_setup_sigcontext(struct sigcontext __user *sc, |
| struct task_struct *tsk, int signr, sigset_t *set, |
| unsigned long handler, int ctx_has_vsx_region) |
| { |
| /* When CONFIG_ALTIVEC is set, we _always_ setup v_regs even if the |
| * process never used altivec yet (MSR_VEC is zero in pt_regs of |
| * the context). This is very important because we must ensure we |
| * don't lose the VRSAVE content that may have been set prior to |
| * the process doing its first vector operation |
| * Userland shall check AT_HWCAP to know whether it can rely on the |
| * v_regs pointer or not |
| */ |
| #ifdef CONFIG_ALTIVEC |
| elf_vrreg_t __user *v_regs = sigcontext_vmx_regs(sc); |
| #endif |
| struct pt_regs *regs = tsk->thread.regs; |
| unsigned long msr = regs->msr; |
| /* Force usr to alway see softe as 1 (interrupts enabled) */ |
| unsigned long softe = 0x1; |
| |
| BUG_ON(tsk != current); |
| |
| #ifdef CONFIG_ALTIVEC |
| unsafe_put_user(v_regs, &sc->v_regs, efault_out); |
| |
| /* save altivec registers */ |
| if (tsk->thread.used_vr) { |
| /* Copy 33 vec registers (vr0..31 and vscr) to the stack */ |
| unsafe_copy_to_user(v_regs, &tsk->thread.vr_state, |
| 33 * sizeof(vector128), efault_out); |
| /* set MSR_VEC in the MSR value in the frame to indicate that sc->v_reg) |
| * contains valid data. |
| */ |
| msr |= MSR_VEC; |
| } |
| /* We always copy to/from vrsave, it's 0 if we don't have or don't |
| * use altivec. |
| */ |
| unsafe_put_user(tsk->thread.vrsave, (u32 __user *)&v_regs[33], efault_out); |
| #else /* CONFIG_ALTIVEC */ |
| unsafe_put_user(0, &sc->v_regs, efault_out); |
| #endif /* CONFIG_ALTIVEC */ |
| /* copy fpr regs and fpscr */ |
| unsafe_copy_fpr_to_user(&sc->fp_regs, tsk, efault_out); |
| |
| /* |
| * Clear the MSR VSX bit to indicate there is no valid state attached |
| * to this context, except in the specific case below where we set it. |
| */ |
| msr &= ~MSR_VSX; |
| #ifdef CONFIG_VSX |
| /* |
| * Copy VSX low doubleword to local buffer for formatting, |
| * then out to userspace. Update v_regs to point after the |
| * VMX data. |
| */ |
| if (tsk->thread.used_vsr && ctx_has_vsx_region) { |
| v_regs += ELF_NVRREG; |
| unsafe_copy_vsx_to_user(v_regs, tsk, efault_out); |
| /* set MSR_VSX in the MSR value in the frame to |
| * indicate that sc->vs_reg) contains valid data. |
| */ |
| msr |= MSR_VSX; |
| } |
| #endif /* CONFIG_VSX */ |
| unsafe_put_user(&sc->gp_regs, &sc->regs, efault_out); |
| unsafe_copy_to_user(&sc->gp_regs, regs, GP_REGS_SIZE, efault_out); |
| unsafe_put_user(msr, &sc->gp_regs[PT_MSR], efault_out); |
| unsafe_put_user(softe, &sc->gp_regs[PT_SOFTE], efault_out); |
| unsafe_put_user(signr, &sc->signal, efault_out); |
| unsafe_put_user(handler, &sc->handler, efault_out); |
| if (set != NULL) |
| unsafe_put_user(set->sig[0], &sc->oldmask, efault_out); |
| |
| return 0; |
| |
| efault_out: |
| return -EFAULT; |
| } |
| |
| #ifdef CONFIG_PPC_TRANSACTIONAL_MEM |
| /* |
| * As above, but Transactional Memory is in use, so deliver sigcontexts |
| * containing checkpointed and transactional register states. |
| * |
| * To do this, we treclaim (done before entering here) to gather both sets of |
| * registers and set up the 'normal' sigcontext registers with rolled-back |
| * register values such that a simple signal handler sees a correct |
| * checkpointed register state. If interested, a TM-aware sighandler can |
| * examine the transactional registers in the 2nd sigcontext to determine the |
| * real origin of the signal. |
| */ |
| static long setup_tm_sigcontexts(struct sigcontext __user *sc, |
| struct sigcontext __user *tm_sc, |
| struct task_struct *tsk, |
| int signr, sigset_t *set, unsigned long handler, |
| unsigned long msr) |
| { |
| /* When CONFIG_ALTIVEC is set, we _always_ setup v_regs even if the |
| * process never used altivec yet (MSR_VEC is zero in pt_regs of |
| * the context). This is very important because we must ensure we |
| * don't lose the VRSAVE content that may have been set prior to |
| * the process doing its first vector operation |
| * Userland shall check AT_HWCAP to know wether it can rely on the |
| * v_regs pointer or not. |
| */ |
| #ifdef CONFIG_ALTIVEC |
| elf_vrreg_t __user *v_regs = sigcontext_vmx_regs(sc); |
| elf_vrreg_t __user *tm_v_regs = sigcontext_vmx_regs(tm_sc); |
| #endif |
| struct pt_regs *regs = tsk->thread.regs; |
| long err = 0; |
| |
| BUG_ON(tsk != current); |
| |
| BUG_ON(!MSR_TM_ACTIVE(msr)); |
| |
| WARN_ON(tm_suspend_disabled); |
| |
| /* Restore checkpointed FP, VEC, and VSX bits from ckpt_regs as |
| * it contains the correct FP, VEC, VSX state after we treclaimed |
| * the transaction and giveup_all() was called on reclaiming. |
| */ |
| msr |= tsk->thread.ckpt_regs.msr & (MSR_FP | MSR_VEC | MSR_VSX); |
| |
| #ifdef CONFIG_ALTIVEC |
| err |= __put_user(v_regs, &sc->v_regs); |
| err |= __put_user(tm_v_regs, &tm_sc->v_regs); |
| |
| /* save altivec registers */ |
| if (tsk->thread.used_vr) { |
| /* Copy 33 vec registers (vr0..31 and vscr) to the stack */ |
| err |= __copy_to_user(v_regs, &tsk->thread.ckvr_state, |
| 33 * sizeof(vector128)); |
| /* If VEC was enabled there are transactional VRs valid too, |
| * else they're a copy of the checkpointed VRs. |
| */ |
| if (msr & MSR_VEC) |
| err |= __copy_to_user(tm_v_regs, |
| &tsk->thread.vr_state, |
| 33 * sizeof(vector128)); |
| else |
| err |= __copy_to_user(tm_v_regs, |
| &tsk->thread.ckvr_state, |
| 33 * sizeof(vector128)); |
| |
| /* set MSR_VEC in the MSR value in the frame to indicate |
| * that sc->v_reg contains valid data. |
| */ |
| msr |= MSR_VEC; |
| } |
| /* We always copy to/from vrsave, it's 0 if we don't have or don't |
| * use altivec. |
| */ |
| if (cpu_has_feature(CPU_FTR_ALTIVEC)) |
| tsk->thread.ckvrsave = mfspr(SPRN_VRSAVE); |
| err |= __put_user(tsk->thread.ckvrsave, (u32 __user *)&v_regs[33]); |
| if (msr & MSR_VEC) |
| err |= __put_user(tsk->thread.vrsave, |
| (u32 __user *)&tm_v_regs[33]); |
| else |
| err |= __put_user(tsk->thread.ckvrsave, |
| (u32 __user *)&tm_v_regs[33]); |
| |
| #else /* CONFIG_ALTIVEC */ |
| err |= __put_user(0, &sc->v_regs); |
| err |= __put_user(0, &tm_sc->v_regs); |
| #endif /* CONFIG_ALTIVEC */ |
| |
| /* copy fpr regs and fpscr */ |
| err |= copy_ckfpr_to_user(&sc->fp_regs, tsk); |
| if (msr & MSR_FP) |
| err |= copy_fpr_to_user(&tm_sc->fp_regs, tsk); |
| else |
| err |= copy_ckfpr_to_user(&tm_sc->fp_regs, tsk); |
| |
| #ifdef CONFIG_VSX |
| /* |
| * Copy VSX low doubleword to local buffer for formatting, |
| * then out to userspace. Update v_regs to point after the |
| * VMX data. |
| */ |
| if (tsk->thread.used_vsr) { |
| v_regs += ELF_NVRREG; |
| tm_v_regs += ELF_NVRREG; |
| |
| err |= copy_ckvsx_to_user(v_regs, tsk); |
| |
| if (msr & MSR_VSX) |
| err |= copy_vsx_to_user(tm_v_regs, tsk); |
| else |
| err |= copy_ckvsx_to_user(tm_v_regs, tsk); |
| |
| /* set MSR_VSX in the MSR value in the frame to |
| * indicate that sc->vs_reg) contains valid data. |
| */ |
| msr |= MSR_VSX; |
| } |
| #endif /* CONFIG_VSX */ |
| |
| err |= __put_user(&sc->gp_regs, &sc->regs); |
| err |= __put_user(&tm_sc->gp_regs, &tm_sc->regs); |
| err |= __copy_to_user(&tm_sc->gp_regs, regs, GP_REGS_SIZE); |
| err |= __copy_to_user(&sc->gp_regs, |
| &tsk->thread.ckpt_regs, GP_REGS_SIZE); |
| err |= __put_user(msr, &tm_sc->gp_regs[PT_MSR]); |
| err |= __put_user(msr, &sc->gp_regs[PT_MSR]); |
| err |= __put_user(signr, &sc->signal); |
| err |= __put_user(handler, &sc->handler); |
| if (set != NULL) |
| err |= __put_user(set->sig[0], &sc->oldmask); |
| |
| return err; |
| } |
| #endif |
| |
| /* |
| * Restore the sigcontext from the signal frame. |
| */ |
| #define unsafe_restore_sigcontext(tsk, set, sig, sc, label) do { \ |
| if (__unsafe_restore_sigcontext(tsk, set, sig, sc)) \ |
| goto label; \ |
| } while (0) |
| static long notrace __unsafe_restore_sigcontext(struct task_struct *tsk, sigset_t *set, |
| int sig, struct sigcontext __user *sc) |
| { |
| #ifdef CONFIG_ALTIVEC |
| elf_vrreg_t __user *v_regs; |
| #endif |
| unsigned long save_r13 = 0; |
| unsigned long msr; |
| struct pt_regs *regs = tsk->thread.regs; |
| #ifdef CONFIG_VSX |
| int i; |
| #endif |
| |
| BUG_ON(tsk != current); |
| |
| /* If this is not a signal return, we preserve the TLS in r13 */ |
| if (!sig) |
| save_r13 = regs->gpr[13]; |
| |
| /* copy the GPRs */ |
| unsafe_copy_from_user(regs->gpr, sc->gp_regs, sizeof(regs->gpr), efault_out); |
| unsafe_get_user(regs->nip, &sc->gp_regs[PT_NIP], efault_out); |
| /* get MSR separately, transfer the LE bit if doing signal return */ |
| unsafe_get_user(msr, &sc->gp_regs[PT_MSR], efault_out); |
| if (sig) |
| regs_set_return_msr(regs, (regs->msr & ~MSR_LE) | (msr & MSR_LE)); |
| unsafe_get_user(regs->orig_gpr3, &sc->gp_regs[PT_ORIG_R3], efault_out); |
| unsafe_get_user(regs->ctr, &sc->gp_regs[PT_CTR], efault_out); |
| unsafe_get_user(regs->link, &sc->gp_regs[PT_LNK], efault_out); |
| unsafe_get_user(regs->xer, &sc->gp_regs[PT_XER], efault_out); |
| unsafe_get_user(regs->ccr, &sc->gp_regs[PT_CCR], efault_out); |
| /* Don't allow userspace to set SOFTE */ |
| set_trap_norestart(regs); |
| unsafe_get_user(regs->dar, &sc->gp_regs[PT_DAR], efault_out); |
| unsafe_get_user(regs->dsisr, &sc->gp_regs[PT_DSISR], efault_out); |
| unsafe_get_user(regs->result, &sc->gp_regs[PT_RESULT], efault_out); |
| |
| if (!sig) |
| regs->gpr[13] = save_r13; |
| if (set != NULL) |
| unsafe_get_user(set->sig[0], &sc->oldmask, efault_out); |
| |
| /* |
| * Force reload of FP/VEC. |
| * This has to be done before copying stuff into tsk->thread.fpr/vr |
| * for the reasons explained in the previous comment. |
| */ |
| regs_set_return_msr(regs, regs->msr & ~(MSR_FP | MSR_FE0 | MSR_FE1 | MSR_VEC | MSR_VSX)); |
| |
| #ifdef CONFIG_ALTIVEC |
| unsafe_get_user(v_regs, &sc->v_regs, efault_out); |
| if (v_regs && !access_ok(v_regs, 34 * sizeof(vector128))) |
| return -EFAULT; |
| /* Copy 33 vec registers (vr0..31 and vscr) from the stack */ |
| if (v_regs != NULL && (msr & MSR_VEC) != 0) { |
| unsafe_copy_from_user(&tsk->thread.vr_state, v_regs, |
| 33 * sizeof(vector128), efault_out); |
| tsk->thread.used_vr = true; |
| } else if (tsk->thread.used_vr) { |
| memset(&tsk->thread.vr_state, 0, 33 * sizeof(vector128)); |
| } |
| /* Always get VRSAVE back */ |
| if (v_regs != NULL) |
| unsafe_get_user(tsk->thread.vrsave, (u32 __user *)&v_regs[33], efault_out); |
| else |
| tsk->thread.vrsave = 0; |
| if (cpu_has_feature(CPU_FTR_ALTIVEC)) |
| mtspr(SPRN_VRSAVE, tsk->thread.vrsave); |
| #endif /* CONFIG_ALTIVEC */ |
| /* restore floating point */ |
| unsafe_copy_fpr_from_user(tsk, &sc->fp_regs, efault_out); |
| #ifdef CONFIG_VSX |
| /* |
| * Get additional VSX data. Update v_regs to point after the |
| * VMX data. Copy VSX low doubleword from userspace to local |
| * buffer for formatting, then into the taskstruct. |
| */ |
| v_regs += ELF_NVRREG; |
| if ((msr & MSR_VSX) != 0) { |
| unsafe_copy_vsx_from_user(tsk, v_regs, efault_out); |
| tsk->thread.used_vsr = true; |
| } else { |
| for (i = 0; i < 32 ; i++) |
| tsk->thread.fp_state.fpr[i][TS_VSRLOWOFFSET] = 0; |
| } |
| #endif |
| return 0; |
| |
| efault_out: |
| return -EFAULT; |
| } |
| |
| #ifdef CONFIG_PPC_TRANSACTIONAL_MEM |
| /* |
| * Restore the two sigcontexts from the frame of a transactional processes. |
| */ |
| |
| static long restore_tm_sigcontexts(struct task_struct *tsk, |
| struct sigcontext __user *sc, |
| struct sigcontext __user *tm_sc) |
| { |
| #ifdef CONFIG_ALTIVEC |
| elf_vrreg_t __user *v_regs, *tm_v_regs; |
| #endif |
| unsigned long err = 0; |
| unsigned long msr; |
| struct pt_regs *regs = tsk->thread.regs; |
| #ifdef CONFIG_VSX |
| int i; |
| #endif |
| |
| BUG_ON(tsk != current); |
| |
| if (tm_suspend_disabled) |
| return -EINVAL; |
| |
| /* copy the GPRs */ |
| err |= __copy_from_user(regs->gpr, tm_sc->gp_regs, sizeof(regs->gpr)); |
| err |= __copy_from_user(&tsk->thread.ckpt_regs, sc->gp_regs, |
| sizeof(regs->gpr)); |
| |
| /* |
| * TFHAR is restored from the checkpointed 'wound-back' ucontext's NIP. |
| * TEXASR was set by the signal delivery reclaim, as was TFIAR. |
| * Users doing anything abhorrent like thread-switching w/ signals for |
| * TM-Suspended code will have to back TEXASR/TFIAR up themselves. |
| * For the case of getting a signal and simply returning from it, |
| * we don't need to re-copy them here. |
| */ |
| err |= __get_user(regs->nip, &tm_sc->gp_regs[PT_NIP]); |
| err |= __get_user(tsk->thread.tm_tfhar, &sc->gp_regs[PT_NIP]); |
| |
| /* get MSR separately, transfer the LE bit if doing signal return */ |
| err |= __get_user(msr, &sc->gp_regs[PT_MSR]); |
| /* Don't allow reserved mode. */ |
| if (MSR_TM_RESV(msr)) |
| return -EINVAL; |
| |
| /* pull in MSR LE from user context */ |
| regs_set_return_msr(regs, (regs->msr & ~MSR_LE) | (msr & MSR_LE)); |
| |
| /* The following non-GPR non-FPR non-VR state is also checkpointed: */ |
| err |= __get_user(regs->ctr, &tm_sc->gp_regs[PT_CTR]); |
| err |= __get_user(regs->link, &tm_sc->gp_regs[PT_LNK]); |
| err |= __get_user(regs->xer, &tm_sc->gp_regs[PT_XER]); |
| err |= __get_user(regs->ccr, &tm_sc->gp_regs[PT_CCR]); |
| err |= __get_user(tsk->thread.ckpt_regs.ctr, |
| &sc->gp_regs[PT_CTR]); |
| err |= __get_user(tsk->thread.ckpt_regs.link, |
| &sc->gp_regs[PT_LNK]); |
| err |= __get_user(tsk->thread.ckpt_regs.xer, |
| &sc->gp_regs[PT_XER]); |
| err |= __get_user(tsk->thread.ckpt_regs.ccr, |
| &sc->gp_regs[PT_CCR]); |
| /* Don't allow userspace to set SOFTE */ |
| set_trap_norestart(regs); |
| /* These regs are not checkpointed; they can go in 'regs'. */ |
| err |= __get_user(regs->dar, &sc->gp_regs[PT_DAR]); |
| err |= __get_user(regs->dsisr, &sc->gp_regs[PT_DSISR]); |
| err |= __get_user(regs->result, &sc->gp_regs[PT_RESULT]); |
| |
| /* |
| * Force reload of FP/VEC. |
| * This has to be done before copying stuff into tsk->thread.fpr/vr |
| * for the reasons explained in the previous comment. |
| */ |
| regs_set_return_msr(regs, regs->msr & ~(MSR_FP | MSR_FE0 | MSR_FE1 | MSR_VEC | MSR_VSX)); |
| |
| #ifdef CONFIG_ALTIVEC |
| err |= __get_user(v_regs, &sc->v_regs); |
| err |= __get_user(tm_v_regs, &tm_sc->v_regs); |
| if (err) |
| return err; |
| if (v_regs && !access_ok(v_regs, 34 * sizeof(vector128))) |
| return -EFAULT; |
| if (tm_v_regs && !access_ok(tm_v_regs, 34 * sizeof(vector128))) |
| return -EFAULT; |
| /* Copy 33 vec registers (vr0..31 and vscr) from the stack */ |
| if (v_regs != NULL && tm_v_regs != NULL && (msr & MSR_VEC) != 0) { |
| err |= __copy_from_user(&tsk->thread.ckvr_state, v_regs, |
| 33 * sizeof(vector128)); |
| err |= __copy_from_user(&tsk->thread.vr_state, tm_v_regs, |
| 33 * sizeof(vector128)); |
| current->thread.used_vr = true; |
| } |
| else if (tsk->thread.used_vr) { |
| memset(&tsk->thread.vr_state, 0, 33 * sizeof(vector128)); |
| memset(&tsk->thread.ckvr_state, 0, 33 * sizeof(vector128)); |
| } |
| /* Always get VRSAVE back */ |
| if (v_regs != NULL && tm_v_regs != NULL) { |
| err |= __get_user(tsk->thread.ckvrsave, |
| (u32 __user *)&v_regs[33]); |
| err |= __get_user(tsk->thread.vrsave, |
| (u32 __user *)&tm_v_regs[33]); |
| } |
| else { |
| tsk->thread.vrsave = 0; |
| tsk->thread.ckvrsave = 0; |
| } |
| if (cpu_has_feature(CPU_FTR_ALTIVEC)) |
| mtspr(SPRN_VRSAVE, tsk->thread.vrsave); |
| #endif /* CONFIG_ALTIVEC */ |
| /* restore floating point */ |
| err |= copy_fpr_from_user(tsk, &tm_sc->fp_regs); |
| err |= copy_ckfpr_from_user(tsk, &sc->fp_regs); |
| #ifdef CONFIG_VSX |
| /* |
| * Get additional VSX data. Update v_regs to point after the |
| * VMX data. Copy VSX low doubleword from userspace to local |
| * buffer for formatting, then into the taskstruct. |
| */ |
| if (v_regs && ((msr & MSR_VSX) != 0)) { |
| v_regs += ELF_NVRREG; |
| tm_v_regs += ELF_NVRREG; |
| err |= copy_vsx_from_user(tsk, tm_v_regs); |
| err |= copy_ckvsx_from_user(tsk, v_regs); |
| tsk->thread.used_vsr = true; |
| } else { |
| for (i = 0; i < 32 ; i++) { |
| tsk->thread.fp_state.fpr[i][TS_VSRLOWOFFSET] = 0; |
| tsk->thread.ckfp_state.fpr[i][TS_VSRLOWOFFSET] = 0; |
| } |
| } |
| #endif |
| tm_enable(); |
| /* Make sure the transaction is marked as failed */ |
| tsk->thread.tm_texasr |= TEXASR_FS; |
| |
| /* |
| * Disabling preemption, since it is unsafe to be preempted |
| * with MSR[TS] set without recheckpointing. |
| */ |
| preempt_disable(); |
| |
| /* pull in MSR TS bits from user context */ |
| regs_set_return_msr(regs, regs->msr | (msr & MSR_TS_MASK)); |
| |
| /* |
| * Ensure that TM is enabled in regs->msr before we leave the signal |
| * handler. It could be the case that (a) user disabled the TM bit |
| * through the manipulation of the MSR bits in uc_mcontext or (b) the |
| * TM bit was disabled because a sufficient number of context switches |
| * happened whilst in the signal handler and load_tm overflowed, |
| * disabling the TM bit. In either case we can end up with an illegal |
| * TM state leading to a TM Bad Thing when we return to userspace. |
| * |
| * CAUTION: |
| * After regs->MSR[TS] being updated, make sure that get_user(), |
| * put_user() or similar functions are *not* called. These |
| * functions can generate page faults which will cause the process |
| * to be de-scheduled with MSR[TS] set but without calling |
| * tm_recheckpoint(). This can cause a bug. |
| */ |
| regs_set_return_msr(regs, regs->msr | MSR_TM); |
| |
| /* This loads the checkpointed FP/VEC state, if used */ |
| tm_recheckpoint(&tsk->thread); |
| |
| msr_check_and_set(msr & (MSR_FP | MSR_VEC)); |
| if (msr & MSR_FP) { |
| load_fp_state(&tsk->thread.fp_state); |
| regs_set_return_msr(regs, regs->msr | (MSR_FP | tsk->thread.fpexc_mode)); |
| } |
| if (msr & MSR_VEC) { |
| load_vr_state(&tsk->thread.vr_state); |
| regs_set_return_msr(regs, regs->msr | MSR_VEC); |
| } |
| |
| preempt_enable(); |
| |
| return err; |
| } |
| #else /* !CONFIG_PPC_TRANSACTIONAL_MEM */ |
| static long restore_tm_sigcontexts(struct task_struct *tsk, struct sigcontext __user *sc, |
| struct sigcontext __user *tm_sc) |
| { |
| return -EINVAL; |
| } |
| #endif |
| |
| /* |
| * Setup the trampoline code on the stack |
| */ |
| static long setup_trampoline(unsigned int syscall, unsigned int __user *tramp) |
| { |
| int i; |
| long err = 0; |
| |
| /* Call the handler and pop the dummy stackframe*/ |
| err |= __put_user(PPC_RAW_BCTRL(), &tramp[0]); |
| err |= __put_user(PPC_RAW_ADDI(_R1, _R1, __SIGNAL_FRAMESIZE), &tramp[1]); |
| |
| err |= __put_user(PPC_RAW_LI(_R0, syscall), &tramp[2]); |
| err |= __put_user(PPC_RAW_SC(), &tramp[3]); |
| |
| /* Minimal traceback info */ |
| for (i=TRAMP_TRACEBACK; i < TRAMP_SIZE ;i++) |
| err |= __put_user(0, &tramp[i]); |
| |
| if (!err) |
| flush_icache_range((unsigned long) &tramp[0], |
| (unsigned long) &tramp[TRAMP_SIZE]); |
| |
| return err; |
| } |
| |
| /* |
| * Userspace code may pass a ucontext which doesn't include VSX added |
| * at the end. We need to check for this case. |
| */ |
| #define UCONTEXTSIZEWITHOUTVSX \ |
| (sizeof(struct ucontext) - 32*sizeof(long)) |
| |
| /* |
| * Handle {get,set,swap}_context operations |
| */ |
| SYSCALL_DEFINE3(swapcontext, struct ucontext __user *, old_ctx, |
| struct ucontext __user *, new_ctx, long, ctx_size) |
| { |
| sigset_t set; |
| unsigned long new_msr = 0; |
| int ctx_has_vsx_region = 0; |
| |
| if (new_ctx && |
| get_user(new_msr, &new_ctx->uc_mcontext.gp_regs[PT_MSR])) |
| return -EFAULT; |
| /* |
| * Check that the context is not smaller than the original |
| * size (with VMX but without VSX) |
| */ |
| if (ctx_size < UCONTEXTSIZEWITHOUTVSX) |
| return -EINVAL; |
| /* |
| * If the new context state sets the MSR VSX bits but |
| * it doesn't provide VSX state. |
| */ |
| if ((ctx_size < sizeof(struct ucontext)) && |
| (new_msr & MSR_VSX)) |
| return -EINVAL; |
| /* Does the context have enough room to store VSX data? */ |
| if (ctx_size >= sizeof(struct ucontext)) |
| ctx_has_vsx_region = 1; |
| |
| if (old_ctx != NULL) { |
| prepare_setup_sigcontext(current); |
| if (!user_write_access_begin(old_ctx, ctx_size)) |
| return -EFAULT; |
| |
| unsafe_setup_sigcontext(&old_ctx->uc_mcontext, current, 0, NULL, |
| 0, ctx_has_vsx_region, efault_out); |
| unsafe_copy_to_user(&old_ctx->uc_sigmask, ¤t->blocked, |
| sizeof(sigset_t), efault_out); |
| |
| user_write_access_end(); |
| } |
| if (new_ctx == NULL) |
| return 0; |
| if (!access_ok(new_ctx, ctx_size) || |
| fault_in_readable((char __user *)new_ctx, ctx_size)) |
| return -EFAULT; |
| |
| /* |
| * If we get a fault copying the context into the kernel's |
| * image of the user's registers, we can't just return -EFAULT |
| * because the user's registers will be corrupted. For instance |
| * the NIP value may have been updated but not some of the |
| * other registers. Given that we have done the access_ok |
| * and successfully read the first and last bytes of the region |
| * above, this should only happen in an out-of-memory situation |
| * or if another thread unmaps the region containing the context. |
| * We kill the task with a SIGSEGV in this situation. |
| */ |
| |
| if (__get_user_sigset(&set, &new_ctx->uc_sigmask)) |
| do_exit(SIGSEGV); |
| set_current_blocked(&set); |
| |
| if (!user_read_access_begin(new_ctx, ctx_size)) |
| return -EFAULT; |
| if (__unsafe_restore_sigcontext(current, NULL, 0, &new_ctx->uc_mcontext)) { |
| user_read_access_end(); |
| do_exit(SIGSEGV); |
| } |
| user_read_access_end(); |
| |
| /* This returns like rt_sigreturn */ |
| set_thread_flag(TIF_RESTOREALL); |
| |
| return 0; |
| |
| efault_out: |
| user_write_access_end(); |
| return -EFAULT; |
| } |
| |
| |
| /* |
| * Do a signal return; undo the signal stack. |
| */ |
| |
| SYSCALL_DEFINE0(rt_sigreturn) |
| { |
| struct pt_regs *regs = current_pt_regs(); |
| struct ucontext __user *uc = (struct ucontext __user *)regs->gpr[1]; |
| sigset_t set; |
| unsigned long msr; |
| |
| /* Always make any pending restarted system calls return -EINTR */ |
| current->restart_block.fn = do_no_restart_syscall; |
| |
| if (!access_ok(uc, sizeof(*uc))) |
| goto badframe; |
| |
| if (__get_user_sigset(&set, &uc->uc_sigmask)) |
| goto badframe; |
| set_current_blocked(&set); |
| |
| if (IS_ENABLED(CONFIG_PPC_TRANSACTIONAL_MEM)) { |
| /* |
| * If there is a transactional state then throw it away. |
| * The purpose of a sigreturn is to destroy all traces of the |
| * signal frame, this includes any transactional state created |
| * within in. We only check for suspended as we can never be |
| * active in the kernel, we are active, there is nothing better to |
| * do than go ahead and Bad Thing later. |
| * The cause is not important as there will never be a |
| * recheckpoint so it's not user visible. |
| */ |
| if (MSR_TM_SUSPENDED(mfmsr())) |
| tm_reclaim_current(0); |
| |
| /* |
| * Disable MSR[TS] bit also, so, if there is an exception in the |
| * code below (as a page fault in copy_ckvsx_to_user()), it does |
| * not recheckpoint this task if there was a context switch inside |
| * the exception. |
| * |
| * A major page fault can indirectly call schedule(). A reschedule |
| * process in the middle of an exception can have a side effect |
| * (Changing the CPU MSR[TS] state), since schedule() is called |
| * with the CPU MSR[TS] disable and returns with MSR[TS]=Suspended |
| * (switch_to() calls tm_recheckpoint() for the 'new' process). In |
| * this case, the process continues to be the same in the CPU, but |
| * the CPU state just changed. |
| * |
| * This can cause a TM Bad Thing, since the MSR in the stack will |
| * have the MSR[TS]=0, and this is what will be used to RFID. |
| * |
| * Clearing MSR[TS] state here will avoid a recheckpoint if there |
| * is any process reschedule in kernel space. The MSR[TS] state |
| * does not need to be saved also, since it will be replaced with |
| * the MSR[TS] that came from user context later, at |
| * restore_tm_sigcontexts. |
| */ |
| regs_set_return_msr(regs, regs->msr & ~MSR_TS_MASK); |
| |
| if (__get_user(msr, &uc->uc_mcontext.gp_regs[PT_MSR])) |
| goto badframe; |
| } |
| |
| if (IS_ENABLED(CONFIG_PPC_TRANSACTIONAL_MEM) && MSR_TM_ACTIVE(msr)) { |
| /* We recheckpoint on return. */ |
| struct ucontext __user *uc_transact; |
| |
| /* Trying to start TM on non TM system */ |
| if (!cpu_has_feature(CPU_FTR_TM)) |
| goto badframe; |
| |
| if (__get_user(uc_transact, &uc->uc_link)) |
| goto badframe; |
| if (restore_tm_sigcontexts(current, &uc->uc_mcontext, |
| &uc_transact->uc_mcontext)) |
| goto badframe; |
| } else { |
| /* |
| * Fall through, for non-TM restore |
| * |
| * Unset MSR[TS] on the thread regs since MSR from user |
| * context does not have MSR active, and recheckpoint was |
| * not called since restore_tm_sigcontexts() was not called |
| * also. |
| * |
| * If not unsetting it, the code can RFID to userspace with |
| * MSR[TS] set, but without CPU in the proper state, |
| * causing a TM bad thing. |
| */ |
| regs_set_return_msr(current->thread.regs, |
| current->thread.regs->msr & ~MSR_TS_MASK); |
| if (!user_read_access_begin(&uc->uc_mcontext, sizeof(uc->uc_mcontext))) |
| goto badframe; |
| |
| unsafe_restore_sigcontext(current, NULL, 1, &uc->uc_mcontext, |
| badframe_block); |
| |
| user_read_access_end(); |
| } |
| |
| if (restore_altstack(&uc->uc_stack)) |
| goto badframe; |
| |
| set_thread_flag(TIF_RESTOREALL); |
| |
| return 0; |
| |
| badframe_block: |
| user_read_access_end(); |
| badframe: |
| signal_fault(current, regs, "rt_sigreturn", uc); |
| |
| force_sig(SIGSEGV); |
| return 0; |
| } |
| |
| int handle_rt_signal64(struct ksignal *ksig, sigset_t *set, |
| struct task_struct *tsk) |
| { |
| struct rt_sigframe __user *frame; |
| unsigned long newsp = 0; |
| long err = 0; |
| struct pt_regs *regs = tsk->thread.regs; |
| /* Save the thread's msr before get_tm_stackpointer() changes it */ |
| unsigned long msr = regs->msr; |
| |
| frame = get_sigframe(ksig, tsk, sizeof(*frame), 0); |
| |
| /* |
| * This only applies when calling unsafe_setup_sigcontext() and must be |
| * called before opening the uaccess window. |
| */ |
| if (!MSR_TM_ACTIVE(msr)) |
| prepare_setup_sigcontext(tsk); |
| |
| if (!user_write_access_begin(frame, sizeof(*frame))) |
| goto badframe; |
| |
| unsafe_put_user(&frame->info, &frame->pinfo, badframe_block); |
| unsafe_put_user(&frame->uc, &frame->puc, badframe_block); |
| |
| /* Create the ucontext. */ |
| unsafe_put_user(0, &frame->uc.uc_flags, badframe_block); |
| unsafe_save_altstack(&frame->uc.uc_stack, regs->gpr[1], badframe_block); |
| |
| if (MSR_TM_ACTIVE(msr)) { |
| #ifdef CONFIG_PPC_TRANSACTIONAL_MEM |
| /* The ucontext_t passed to userland points to the second |
| * ucontext_t (for transactional state) with its uc_link ptr. |
| */ |
| unsafe_put_user(&frame->uc_transact, &frame->uc.uc_link, badframe_block); |
| |
| user_write_access_end(); |
| |
| err |= setup_tm_sigcontexts(&frame->uc.uc_mcontext, |
| &frame->uc_transact.uc_mcontext, |
| tsk, ksig->sig, NULL, |
| (unsigned long)ksig->ka.sa.sa_handler, |
| msr); |
| |
| if (!user_write_access_begin(&frame->uc.uc_sigmask, |
| sizeof(frame->uc.uc_sigmask))) |
| goto badframe; |
| |
| #endif |
| } else { |
| unsafe_put_user(0, &frame->uc.uc_link, badframe_block); |
| unsafe_setup_sigcontext(&frame->uc.uc_mcontext, tsk, ksig->sig, |
| NULL, (unsigned long)ksig->ka.sa.sa_handler, |
| 1, badframe_block); |
| } |
| |
| unsafe_copy_to_user(&frame->uc.uc_sigmask, set, sizeof(*set), badframe_block); |
| user_write_access_end(); |
| |
| /* Save the siginfo outside of the unsafe block. */ |
| if (copy_siginfo_to_user(&frame->info, &ksig->info)) |
| goto badframe; |
| |
| /* Make sure signal handler doesn't get spurious FP exceptions */ |
| tsk->thread.fp_state.fpscr = 0; |
| |
| /* Set up to return from userspace. */ |
| if (tsk->mm->context.vdso) { |
| regs_set_return_ip(regs, VDSO64_SYMBOL(tsk->mm->context.vdso, sigtramp_rt64)); |
| } else { |
| err |= setup_trampoline(__NR_rt_sigreturn, &frame->tramp[0]); |
| if (err) |
| goto badframe; |
| regs_set_return_ip(regs, (unsigned long) &frame->tramp[0]); |
| } |
| |
| /* Allocate a dummy caller frame for the signal handler. */ |
| newsp = ((unsigned long)frame) - __SIGNAL_FRAMESIZE; |
| err |= put_user(regs->gpr[1], (unsigned long __user *)newsp); |
| |
| /* Set up "regs" so we "return" to the signal handler. */ |
| if (is_elf2_task()) { |
| regs->ctr = (unsigned long) ksig->ka.sa.sa_handler; |
| regs->gpr[12] = regs->ctr; |
| } else { |
| /* Handler is *really* a pointer to the function descriptor for |
| * the signal routine. The first entry in the function |
| * descriptor is the entry address of signal and the second |
| * entry is the TOC value we need to use. |
| */ |
| func_descr_t __user *funct_desc_ptr = |
| (func_descr_t __user *) ksig->ka.sa.sa_handler; |
| |
| err |= get_user(regs->ctr, &funct_desc_ptr->entry); |
| err |= get_user(regs->gpr[2], &funct_desc_ptr->toc); |
| } |
| |
| /* enter the signal handler in native-endian mode */ |
| regs_set_return_msr(regs, (regs->msr & ~MSR_LE) | (MSR_KERNEL & MSR_LE)); |
| regs->gpr[1] = newsp; |
| regs->gpr[3] = ksig->sig; |
| regs->result = 0; |
| if (ksig->ka.sa.sa_flags & SA_SIGINFO) { |
| regs->gpr[4] = (unsigned long)&frame->info; |
| regs->gpr[5] = (unsigned long)&frame->uc; |
| regs->gpr[6] = (unsigned long) frame; |
| } else { |
| regs->gpr[4] = (unsigned long)&frame->uc.uc_mcontext; |
| } |
| if (err) |
| goto badframe; |
| |
| return 0; |
| |
| badframe_block: |
| user_write_access_end(); |
| badframe: |
| signal_fault(current, regs, "handle_rt_signal64", frame); |
| |
| return 1; |
| } |