| /* |
| * Copyright (C) 1991, 1992 Linus Torvalds |
| * Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs |
| * |
| * Pentium III FXSR, SSE support |
| * Gareth Hughes <gareth@valinux.com>, May 2000 |
| */ |
| |
| /* |
| * Handle hardware traps and faults. |
| */ |
| |
| #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt |
| |
| #include <linux/context_tracking.h> |
| #include <linux/interrupt.h> |
| #include <linux/kallsyms.h> |
| #include <linux/spinlock.h> |
| #include <linux/kprobes.h> |
| #include <linux/uaccess.h> |
| #include <linux/kdebug.h> |
| #include <linux/kgdb.h> |
| #include <linux/kernel.h> |
| #include <linux/export.h> |
| #include <linux/ptrace.h> |
| #include <linux/uprobes.h> |
| #include <linux/string.h> |
| #include <linux/delay.h> |
| #include <linux/errno.h> |
| #include <linux/kexec.h> |
| #include <linux/sched.h> |
| #include <linux/sched/task_stack.h> |
| #include <linux/timer.h> |
| #include <linux/init.h> |
| #include <linux/bug.h> |
| #include <linux/nmi.h> |
| #include <linux/mm.h> |
| #include <linux/smp.h> |
| #include <linux/io.h> |
| #include <linux/hardirq.h> |
| #include <linux/atomic.h> |
| |
| #include <asm/stacktrace.h> |
| #include <asm/processor.h> |
| #include <asm/debugreg.h> |
| #include <asm/text-patching.h> |
| #include <asm/ftrace.h> |
| #include <asm/traps.h> |
| #include <asm/desc.h> |
| #include <asm/fpu/internal.h> |
| #include <asm/cpu.h> |
| #include <asm/cpu_entry_area.h> |
| #include <asm/mce.h> |
| #include <asm/fixmap.h> |
| #include <asm/mach_traps.h> |
| #include <asm/alternative.h> |
| #include <asm/fpu/xstate.h> |
| #include <asm/vm86.h> |
| #include <asm/umip.h> |
| #include <asm/insn.h> |
| #include <asm/insn-eval.h> |
| |
| #ifdef CONFIG_X86_64 |
| #include <asm/x86_init.h> |
| #include <asm/pgalloc.h> |
| #include <asm/proto.h> |
| #else |
| #include <asm/processor-flags.h> |
| #include <asm/setup.h> |
| #include <asm/proto.h> |
| #endif |
| |
| DECLARE_BITMAP(system_vectors, NR_VECTORS); |
| |
| static inline void cond_local_irq_enable(struct pt_regs *regs) |
| { |
| if (regs->flags & X86_EFLAGS_IF) |
| local_irq_enable(); |
| } |
| |
| static inline void cond_local_irq_disable(struct pt_regs *regs) |
| { |
| if (regs->flags & X86_EFLAGS_IF) |
| local_irq_disable(); |
| } |
| |
| int is_valid_bugaddr(unsigned long addr) |
| { |
| unsigned short ud; |
| |
| if (addr < TASK_SIZE_MAX) |
| return 0; |
| |
| if (probe_kernel_address((unsigned short *)addr, ud)) |
| return 0; |
| |
| return ud == INSN_UD0 || ud == INSN_UD2; |
| } |
| |
| int fixup_bug(struct pt_regs *regs, int trapnr) |
| { |
| if (trapnr != X86_TRAP_UD) |
| return 0; |
| |
| switch (report_bug(regs->ip, regs)) { |
| case BUG_TRAP_TYPE_NONE: |
| case BUG_TRAP_TYPE_BUG: |
| break; |
| |
| case BUG_TRAP_TYPE_WARN: |
| regs->ip += LEN_UD2; |
| return 1; |
| } |
| |
| return 0; |
| } |
| |
| static nokprobe_inline int |
| do_trap_no_signal(struct task_struct *tsk, int trapnr, const char *str, |
| struct pt_regs *regs, long error_code) |
| { |
| if (v8086_mode(regs)) { |
| /* |
| * Traps 0, 1, 3, 4, and 5 should be forwarded to vm86. |
| * On nmi (interrupt 2), do_trap should not be called. |
| */ |
| if (trapnr < X86_TRAP_UD) { |
| if (!handle_vm86_trap((struct kernel_vm86_regs *) regs, |
| error_code, trapnr)) |
| return 0; |
| } |
| } else if (!user_mode(regs)) { |
| if (fixup_exception(regs, trapnr, error_code, 0)) |
| return 0; |
| |
| tsk->thread.error_code = error_code; |
| tsk->thread.trap_nr = trapnr; |
| die(str, regs, error_code); |
| } |
| |
| /* |
| * We want error_code and trap_nr set for userspace faults and |
| * kernelspace faults which result in die(), but not |
| * kernelspace faults which are fixed up. die() gives the |
| * process no chance to handle the signal and notice the |
| * kernel fault information, so that won't result in polluting |
| * the information about previously queued, but not yet |
| * delivered, faults. See also exc_general_protection below. |
| */ |
| tsk->thread.error_code = error_code; |
| tsk->thread.trap_nr = trapnr; |
| |
| return -1; |
| } |
| |
| static void show_signal(struct task_struct *tsk, int signr, |
| const char *type, const char *desc, |
| struct pt_regs *regs, long error_code) |
| { |
| if (show_unhandled_signals && unhandled_signal(tsk, signr) && |
| printk_ratelimit()) { |
| pr_info("%s[%d] %s%s ip:%lx sp:%lx error:%lx", |
| tsk->comm, task_pid_nr(tsk), type, desc, |
| regs->ip, regs->sp, error_code); |
| print_vma_addr(KERN_CONT " in ", regs->ip); |
| pr_cont("\n"); |
| } |
| } |
| |
| static void |
| do_trap(int trapnr, int signr, char *str, struct pt_regs *regs, |
| long error_code, int sicode, void __user *addr) |
| { |
| struct task_struct *tsk = current; |
| |
| if (!do_trap_no_signal(tsk, trapnr, str, regs, error_code)) |
| return; |
| |
| show_signal(tsk, signr, "trap ", str, regs, error_code); |
| |
| if (!sicode) |
| force_sig(signr); |
| else |
| force_sig_fault(signr, sicode, addr); |
| } |
| NOKPROBE_SYMBOL(do_trap); |
| |
| static void do_error_trap(struct pt_regs *regs, long error_code, char *str, |
| unsigned long trapnr, int signr, int sicode, void __user *addr) |
| { |
| RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU"); |
| |
| /* |
| * WARN*()s end up here; fix them up before we call the |
| * notifier chain. |
| */ |
| if (!user_mode(regs) && fixup_bug(regs, trapnr)) |
| return; |
| |
| if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) != |
| NOTIFY_STOP) { |
| cond_local_irq_enable(regs); |
| do_trap(trapnr, signr, str, regs, error_code, sicode, addr); |
| cond_local_irq_disable(regs); |
| } |
| } |
| |
| /* |
| * Posix requires to provide the address of the faulting instruction for |
| * SIGILL (#UD) and SIGFPE (#DE) in the si_addr member of siginfo_t. |
| * |
| * This address is usually regs->ip, but when an uprobe moved the code out |
| * of line then regs->ip points to the XOL code which would confuse |
| * anything which analyzes the fault address vs. the unmodified binary. If |
| * a trap happened in XOL code then uprobe maps regs->ip back to the |
| * original instruction address. |
| */ |
| static __always_inline void __user *error_get_trap_addr(struct pt_regs *regs) |
| { |
| return (void __user *)uprobe_get_trap_addr(regs); |
| } |
| |
| DEFINE_IDTENTRY(exc_divide_error) |
| { |
| do_error_trap(regs, 0, "divide_error", X86_TRAP_DE, SIGFPE, |
| FPE_INTDIV, error_get_trap_addr(regs)); |
| } |
| |
| DEFINE_IDTENTRY(exc_overflow) |
| { |
| do_error_trap(regs, 0, "overflow", X86_TRAP_OF, SIGSEGV, 0, NULL); |
| } |
| |
| #ifdef CONFIG_X86_F00F_BUG |
| void handle_invalid_op(struct pt_regs *regs) |
| #else |
| static inline void handle_invalid_op(struct pt_regs *regs) |
| #endif |
| { |
| do_error_trap(regs, 0, "invalid opcode", X86_TRAP_UD, SIGILL, |
| ILL_ILLOPN, error_get_trap_addr(regs)); |
| } |
| |
| DEFINE_IDTENTRY(exc_invalid_op) |
| { |
| handle_invalid_op(regs); |
| } |
| |
| DEFINE_IDTENTRY(exc_coproc_segment_overrun) |
| { |
| do_error_trap(regs, 0, "coprocessor segment overrun", |
| X86_TRAP_OLD_MF, SIGFPE, 0, NULL); |
| } |
| |
| DEFINE_IDTENTRY_ERRORCODE(exc_invalid_tss) |
| { |
| do_error_trap(regs, error_code, "invalid TSS", X86_TRAP_TS, SIGSEGV, |
| 0, NULL); |
| } |
| |
| DEFINE_IDTENTRY_ERRORCODE(exc_segment_not_present) |
| { |
| do_error_trap(regs, error_code, "segment not present", X86_TRAP_NP, |
| SIGBUS, 0, NULL); |
| } |
| |
| DEFINE_IDTENTRY_ERRORCODE(exc_stack_segment) |
| { |
| do_error_trap(regs, error_code, "stack segment", X86_TRAP_SS, SIGBUS, |
| 0, NULL); |
| } |
| |
| DEFINE_IDTENTRY_ERRORCODE(exc_alignment_check) |
| { |
| char *str = "alignment check"; |
| |
| if (notify_die(DIE_TRAP, str, regs, error_code, X86_TRAP_AC, SIGBUS) == NOTIFY_STOP) |
| return; |
| |
| if (!user_mode(regs)) |
| die("Split lock detected\n", regs, error_code); |
| |
| local_irq_enable(); |
| |
| if (handle_user_split_lock(regs, error_code)) |
| return; |
| |
| do_trap(X86_TRAP_AC, SIGBUS, "alignment check", regs, |
| error_code, BUS_ADRALN, NULL); |
| } |
| |
| #ifdef CONFIG_VMAP_STACK |
| __visible void __noreturn handle_stack_overflow(const char *message, |
| struct pt_regs *regs, |
| unsigned long fault_address) |
| { |
| printk(KERN_EMERG "BUG: stack guard page was hit at %p (stack is %p..%p)\n", |
| (void *)fault_address, current->stack, |
| (char *)current->stack + THREAD_SIZE - 1); |
| die(message, regs, 0); |
| |
| /* Be absolutely certain we don't return. */ |
| panic("%s", message); |
| } |
| #endif |
| |
| /* |
| * Runs on an IST stack for x86_64 and on a special task stack for x86_32. |
| * |
| * On x86_64, this is more or less a normal kernel entry. Notwithstanding the |
| * SDM's warnings about double faults being unrecoverable, returning works as |
| * expected. Presumably what the SDM actually means is that the CPU may get |
| * the register state wrong on entry, so returning could be a bad idea. |
| * |
| * Various CPU engineers have promised that double faults due to an IRET fault |
| * while the stack is read-only are, in fact, recoverable. |
| * |
| * On x86_32, this is entered through a task gate, and regs are synthesized |
| * from the TSS. Returning is, in principle, okay, but changes to regs will |
| * be lost. If, for some reason, we need to return to a context with modified |
| * regs, the shim code could be adjusted to synchronize the registers. |
| */ |
| dotraplinkage void do_double_fault(struct pt_regs *regs, long error_code, unsigned long cr2) |
| { |
| static const char str[] = "double fault"; |
| struct task_struct *tsk = current; |
| |
| #ifdef CONFIG_X86_ESPFIX64 |
| extern unsigned char native_irq_return_iret[]; |
| |
| /* |
| * If IRET takes a non-IST fault on the espfix64 stack, then we |
| * end up promoting it to a doublefault. In that case, take |
| * advantage of the fact that we're not using the normal (TSS.sp0) |
| * stack right now. We can write a fake #GP(0) frame at TSS.sp0 |
| * and then modify our own IRET frame so that, when we return, |
| * we land directly at the #GP(0) vector with the stack already |
| * set up according to its expectations. |
| * |
| * The net result is that our #GP handler will think that we |
| * entered from usermode with the bad user context. |
| * |
| * No need for nmi_enter() here because we don't use RCU. |
| */ |
| if (((long)regs->sp >> P4D_SHIFT) == ESPFIX_PGD_ENTRY && |
| regs->cs == __KERNEL_CS && |
| regs->ip == (unsigned long)native_irq_return_iret) |
| { |
| struct pt_regs *gpregs = (struct pt_regs *)this_cpu_read(cpu_tss_rw.x86_tss.sp0) - 1; |
| unsigned long *p = (unsigned long *)regs->sp; |
| |
| /* |
| * regs->sp points to the failing IRET frame on the |
| * ESPFIX64 stack. Copy it to the entry stack. This fills |
| * in gpregs->ss through gpregs->ip. |
| * |
| */ |
| gpregs->ip = p[0]; |
| gpregs->cs = p[1]; |
| gpregs->flags = p[2]; |
| gpregs->sp = p[3]; |
| gpregs->ss = p[4]; |
| gpregs->orig_ax = 0; /* Missing (lost) #GP error code */ |
| |
| /* |
| * Adjust our frame so that we return straight to the #GP |
| * vector with the expected RSP value. This is safe because |
| * we won't enable interupts or schedule before we invoke |
| * general_protection, so nothing will clobber the stack |
| * frame we just set up. |
| * |
| * We will enter general_protection with kernel GSBASE, |
| * which is what the stub expects, given that the faulting |
| * RIP will be the IRET instruction. |
| */ |
| regs->ip = (unsigned long)asm_exc_general_protection; |
| regs->sp = (unsigned long)&gpregs->orig_ax; |
| |
| return; |
| } |
| #endif |
| |
| nmi_enter(); |
| notify_die(DIE_TRAP, str, regs, error_code, X86_TRAP_DF, SIGSEGV); |
| |
| tsk->thread.error_code = error_code; |
| tsk->thread.trap_nr = X86_TRAP_DF; |
| |
| #ifdef CONFIG_VMAP_STACK |
| /* |
| * If we overflow the stack into a guard page, the CPU will fail |
| * to deliver #PF and will send #DF instead. Similarly, if we |
| * take any non-IST exception while too close to the bottom of |
| * the stack, the processor will get a page fault while |
| * delivering the exception and will generate a double fault. |
| * |
| * According to the SDM (footnote in 6.15 under "Interrupt 14 - |
| * Page-Fault Exception (#PF): |
| * |
| * Processors update CR2 whenever a page fault is detected. If a |
| * second page fault occurs while an earlier page fault is being |
| * delivered, the faulting linear address of the second fault will |
| * overwrite the contents of CR2 (replacing the previous |
| * address). These updates to CR2 occur even if the page fault |
| * results in a double fault or occurs during the delivery of a |
| * double fault. |
| * |
| * The logic below has a small possibility of incorrectly diagnosing |
| * some errors as stack overflows. For example, if the IDT or GDT |
| * gets corrupted such that #GP delivery fails due to a bad descriptor |
| * causing #GP and we hit this condition while CR2 coincidentally |
| * points to the stack guard page, we'll think we overflowed the |
| * stack. Given that we're going to panic one way or another |
| * if this happens, this isn't necessarily worth fixing. |
| * |
| * If necessary, we could improve the test by only diagnosing |
| * a stack overflow if the saved RSP points within 47 bytes of |
| * the bottom of the stack: if RSP == tsk_stack + 48 and we |
| * take an exception, the stack is already aligned and there |
| * will be enough room SS, RSP, RFLAGS, CS, RIP, and a |
| * possible error code, so a stack overflow would *not* double |
| * fault. With any less space left, exception delivery could |
| * fail, and, as a practical matter, we've overflowed the |
| * stack even if the actual trigger for the double fault was |
| * something else. |
| */ |
| if ((unsigned long)task_stack_page(tsk) - 1 - cr2 < PAGE_SIZE) |
| handle_stack_overflow("kernel stack overflow (double-fault)", regs, cr2); |
| #endif |
| |
| pr_emerg("PANIC: double fault, error_code: 0x%lx\n", error_code); |
| die("double fault", regs, error_code); |
| panic("Machine halted."); |
| } |
| |
| DEFINE_IDTENTRY(exc_bounds) |
| { |
| if (notify_die(DIE_TRAP, "bounds", regs, 0, |
| X86_TRAP_BR, SIGSEGV) == NOTIFY_STOP) |
| return; |
| cond_local_irq_enable(regs); |
| |
| if (!user_mode(regs)) |
| die("bounds", regs, 0); |
| |
| do_trap(X86_TRAP_BR, SIGSEGV, "bounds", regs, 0, 0, NULL); |
| |
| cond_local_irq_disable(regs); |
| } |
| |
| enum kernel_gp_hint { |
| GP_NO_HINT, |
| GP_NON_CANONICAL, |
| GP_CANONICAL |
| }; |
| |
| /* |
| * When an uncaught #GP occurs, try to determine the memory address accessed by |
| * the instruction and return that address to the caller. Also, try to figure |
| * out whether any part of the access to that address was non-canonical. |
| */ |
| static enum kernel_gp_hint get_kernel_gp_address(struct pt_regs *regs, |
| unsigned long *addr) |
| { |
| u8 insn_buf[MAX_INSN_SIZE]; |
| struct insn insn; |
| |
| if (probe_kernel_read(insn_buf, (void *)regs->ip, MAX_INSN_SIZE)) |
| return GP_NO_HINT; |
| |
| kernel_insn_init(&insn, insn_buf, MAX_INSN_SIZE); |
| insn_get_modrm(&insn); |
| insn_get_sib(&insn); |
| |
| *addr = (unsigned long)insn_get_addr_ref(&insn, regs); |
| if (*addr == -1UL) |
| return GP_NO_HINT; |
| |
| #ifdef CONFIG_X86_64 |
| /* |
| * Check that: |
| * - the operand is not in the kernel half |
| * - the last byte of the operand is not in the user canonical half |
| */ |
| if (*addr < ~__VIRTUAL_MASK && |
| *addr + insn.opnd_bytes - 1 > __VIRTUAL_MASK) |
| return GP_NON_CANONICAL; |
| #endif |
| |
| return GP_CANONICAL; |
| } |
| |
| #define GPFSTR "general protection fault" |
| |
| DEFINE_IDTENTRY_ERRORCODE(exc_general_protection) |
| { |
| char desc[sizeof(GPFSTR) + 50 + 2*sizeof(unsigned long) + 1] = GPFSTR; |
| enum kernel_gp_hint hint = GP_NO_HINT; |
| struct task_struct *tsk; |
| unsigned long gp_addr; |
| int ret; |
| |
| cond_local_irq_enable(regs); |
| |
| if (static_cpu_has(X86_FEATURE_UMIP)) { |
| if (user_mode(regs) && fixup_umip_exception(regs)) |
| goto exit; |
| } |
| |
| if (v8086_mode(regs)) { |
| local_irq_enable(); |
| handle_vm86_fault((struct kernel_vm86_regs *) regs, error_code); |
| local_irq_disable(); |
| return; |
| } |
| |
| tsk = current; |
| |
| if (user_mode(regs)) { |
| tsk->thread.error_code = error_code; |
| tsk->thread.trap_nr = X86_TRAP_GP; |
| |
| show_signal(tsk, SIGSEGV, "", desc, regs, error_code); |
| force_sig(SIGSEGV); |
| goto exit; |
| } |
| |
| if (fixup_exception(regs, X86_TRAP_GP, error_code, 0)) |
| goto exit; |
| |
| tsk->thread.error_code = error_code; |
| tsk->thread.trap_nr = X86_TRAP_GP; |
| |
| /* |
| * To be potentially processing a kprobe fault and to trust the result |
| * from kprobe_running(), we have to be non-preemptible. |
| */ |
| if (!preemptible() && |
| kprobe_running() && |
| kprobe_fault_handler(regs, X86_TRAP_GP)) |
| goto exit; |
| |
| ret = notify_die(DIE_GPF, desc, regs, error_code, X86_TRAP_GP, SIGSEGV); |
| if (ret == NOTIFY_STOP) |
| goto exit; |
| |
| if (error_code) |
| snprintf(desc, sizeof(desc), "segment-related " GPFSTR); |
| else |
| hint = get_kernel_gp_address(regs, &gp_addr); |
| |
| if (hint != GP_NO_HINT) |
| snprintf(desc, sizeof(desc), GPFSTR ", %s 0x%lx", |
| (hint == GP_NON_CANONICAL) ? "probably for non-canonical address" |
| : "maybe for address", |
| gp_addr); |
| |
| /* |
| * KASAN is interested only in the non-canonical case, clear it |
| * otherwise. |
| */ |
| if (hint != GP_NON_CANONICAL) |
| gp_addr = 0; |
| |
| die_addr(desc, regs, error_code, gp_addr); |
| |
| exit: |
| cond_local_irq_disable(regs); |
| } |
| |
| dotraplinkage void notrace do_int3(struct pt_regs *regs, long error_code) |
| { |
| if (poke_int3_handler(regs)) |
| return; |
| |
| /* |
| * Unlike any other non-IST entry, we can be called from pretty much |
| * any location in the kernel through kprobes -- text_poke() will most |
| * likely be handled by poke_int3_handler() above. This means this |
| * handler is effectively NMI-like. |
| */ |
| if (!user_mode(regs)) |
| nmi_enter(); |
| |
| #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP |
| if (kgdb_ll_trap(DIE_INT3, "int3", regs, error_code, X86_TRAP_BP, |
| SIGTRAP) == NOTIFY_STOP) |
| goto exit; |
| #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */ |
| |
| #ifdef CONFIG_KPROBES |
| if (kprobe_int3_handler(regs)) |
| goto exit; |
| #endif |
| |
| if (notify_die(DIE_INT3, "int3", regs, error_code, X86_TRAP_BP, |
| SIGTRAP) == NOTIFY_STOP) |
| goto exit; |
| |
| cond_local_irq_enable(regs); |
| do_trap(X86_TRAP_BP, SIGTRAP, "int3", regs, error_code, 0, NULL); |
| cond_local_irq_disable(regs); |
| |
| exit: |
| if (!user_mode(regs)) |
| nmi_exit(); |
| } |
| NOKPROBE_SYMBOL(do_int3); |
| |
| #ifdef CONFIG_X86_64 |
| /* |
| * Help handler running on a per-cpu (IST or entry trampoline) stack |
| * to switch to the normal thread stack if the interrupted code was in |
| * user mode. The actual stack switch is done in entry_64.S |
| */ |
| asmlinkage __visible noinstr struct pt_regs *sync_regs(struct pt_regs *eregs) |
| { |
| struct pt_regs *regs = (struct pt_regs *)this_cpu_read(cpu_current_top_of_stack) - 1; |
| if (regs != eregs) |
| *regs = *eregs; |
| return regs; |
| } |
| |
| struct bad_iret_stack { |
| void *error_entry_ret; |
| struct pt_regs regs; |
| }; |
| |
| asmlinkage __visible noinstr |
| struct bad_iret_stack *fixup_bad_iret(struct bad_iret_stack *s) |
| { |
| /* |
| * This is called from entry_64.S early in handling a fault |
| * caused by a bad iret to user mode. To handle the fault |
| * correctly, we want to move our stack frame to where it would |
| * be had we entered directly on the entry stack (rather than |
| * just below the IRET frame) and we want to pretend that the |
| * exception came from the IRET target. |
| */ |
| struct bad_iret_stack tmp, *new_stack = |
| (struct bad_iret_stack *)__this_cpu_read(cpu_tss_rw.x86_tss.sp0) - 1; |
| |
| /* Copy the IRET target to the temporary storage. */ |
| memcpy(&tmp.regs.ip, (void *)s->regs.sp, 5*8); |
| |
| /* Copy the remainder of the stack from the current stack. */ |
| memcpy(&tmp, s, offsetof(struct bad_iret_stack, regs.ip)); |
| |
| /* Update the entry stack */ |
| memcpy(new_stack, &tmp, sizeof(tmp)); |
| |
| BUG_ON(!user_mode(&new_stack->regs)); |
| return new_stack; |
| } |
| #endif |
| |
| static bool is_sysenter_singlestep(struct pt_regs *regs) |
| { |
| /* |
| * We don't try for precision here. If we're anywhere in the region of |
| * code that can be single-stepped in the SYSENTER entry path, then |
| * assume that this is a useless single-step trap due to SYSENTER |
| * being invoked with TF set. (We don't know in advance exactly |
| * which instructions will be hit because BTF could plausibly |
| * be set.) |
| */ |
| #ifdef CONFIG_X86_32 |
| return (regs->ip - (unsigned long)__begin_SYSENTER_singlestep_region) < |
| (unsigned long)__end_SYSENTER_singlestep_region - |
| (unsigned long)__begin_SYSENTER_singlestep_region; |
| #elif defined(CONFIG_IA32_EMULATION) |
| return (regs->ip - (unsigned long)entry_SYSENTER_compat) < |
| (unsigned long)__end_entry_SYSENTER_compat - |
| (unsigned long)entry_SYSENTER_compat; |
| #else |
| return false; |
| #endif |
| } |
| |
| /* |
| * Our handling of the processor debug registers is non-trivial. |
| * We do not clear them on entry and exit from the kernel. Therefore |
| * it is possible to get a watchpoint trap here from inside the kernel. |
| * However, the code in ./ptrace.c has ensured that the user can |
| * only set watchpoints on userspace addresses. Therefore the in-kernel |
| * watchpoint trap can only occur in code which is reading/writing |
| * from user space. Such code must not hold kernel locks (since it |
| * can equally take a page fault), therefore it is safe to call |
| * force_sig_info even though that claims and releases locks. |
| * |
| * Code in ./signal.c ensures that the debug control register |
| * is restored before we deliver any signal, and therefore that |
| * user code runs with the correct debug control register even though |
| * we clear it here. |
| * |
| * Being careful here means that we don't have to be as careful in a |
| * lot of more complicated places (task switching can be a bit lazy |
| * about restoring all the debug state, and ptrace doesn't have to |
| * find every occurrence of the TF bit that could be saved away even |
| * by user code) |
| * |
| * May run on IST stack. |
| */ |
| dotraplinkage void do_debug(struct pt_regs *regs, long error_code) |
| { |
| struct task_struct *tsk = current; |
| int user_icebp = 0; |
| unsigned long dr6; |
| int si_code; |
| |
| nmi_enter(); |
| |
| get_debugreg(dr6, 6); |
| /* |
| * The Intel SDM says: |
| * |
| * Certain debug exceptions may clear bits 0-3. The remaining |
| * contents of the DR6 register are never cleared by the |
| * processor. To avoid confusion in identifying debug |
| * exceptions, debug handlers should clear the register before |
| * returning to the interrupted task. |
| * |
| * Keep it simple: clear DR6 immediately. |
| */ |
| set_debugreg(0, 6); |
| |
| /* Filter out all the reserved bits which are preset to 1 */ |
| dr6 &= ~DR6_RESERVED; |
| |
| /* |
| * The SDM says "The processor clears the BTF flag when it |
| * generates a debug exception." Clear TIF_BLOCKSTEP to keep |
| * TIF_BLOCKSTEP in sync with the hardware BTF flag. |
| */ |
| clear_tsk_thread_flag(tsk, TIF_BLOCKSTEP); |
| |
| if (unlikely(!user_mode(regs) && (dr6 & DR_STEP) && |
| is_sysenter_singlestep(regs))) { |
| dr6 &= ~DR_STEP; |
| if (!dr6) |
| goto exit; |
| /* |
| * else we might have gotten a single-step trap and hit a |
| * watchpoint at the same time, in which case we should fall |
| * through and handle the watchpoint. |
| */ |
| } |
| |
| /* |
| * If dr6 has no reason to give us about the origin of this trap, |
| * then it's very likely the result of an icebp/int01 trap. |
| * User wants a sigtrap for that. |
| */ |
| if (!dr6 && user_mode(regs)) |
| user_icebp = 1; |
| |
| /* Store the virtualized DR6 value */ |
| tsk->thread.debugreg6 = dr6; |
| |
| #ifdef CONFIG_KPROBES |
| if (kprobe_debug_handler(regs)) |
| goto exit; |
| #endif |
| |
| if (notify_die(DIE_DEBUG, "debug", regs, (long)&dr6, error_code, |
| SIGTRAP) == NOTIFY_STOP) |
| goto exit; |
| |
| /* |
| * Let others (NMI) know that the debug stack is in use |
| * as we may switch to the interrupt stack. |
| */ |
| debug_stack_usage_inc(); |
| |
| /* It's safe to allow irq's after DR6 has been saved */ |
| cond_local_irq_enable(regs); |
| |
| if (v8086_mode(regs)) { |
| handle_vm86_trap((struct kernel_vm86_regs *) regs, error_code, |
| X86_TRAP_DB); |
| cond_local_irq_disable(regs); |
| debug_stack_usage_dec(); |
| goto exit; |
| } |
| |
| if (WARN_ON_ONCE((dr6 & DR_STEP) && !user_mode(regs))) { |
| /* |
| * Historical junk that used to handle SYSENTER single-stepping. |
| * This should be unreachable now. If we survive for a while |
| * without anyone hitting this warning, we'll turn this into |
| * an oops. |
| */ |
| tsk->thread.debugreg6 &= ~DR_STEP; |
| set_tsk_thread_flag(tsk, TIF_SINGLESTEP); |
| regs->flags &= ~X86_EFLAGS_TF; |
| } |
| si_code = get_si_code(tsk->thread.debugreg6); |
| if (tsk->thread.debugreg6 & (DR_STEP | DR_TRAP_BITS) || user_icebp) |
| send_sigtrap(regs, error_code, si_code); |
| cond_local_irq_disable(regs); |
| debug_stack_usage_dec(); |
| |
| exit: |
| nmi_exit(); |
| } |
| NOKPROBE_SYMBOL(do_debug); |
| |
| /* |
| * Note that we play around with the 'TS' bit in an attempt to get |
| * the correct behaviour even in the presence of the asynchronous |
| * IRQ13 behaviour |
| */ |
| static void math_error(struct pt_regs *regs, int error_code, int trapnr) |
| { |
| struct task_struct *task = current; |
| struct fpu *fpu = &task->thread.fpu; |
| int si_code; |
| char *str = (trapnr == X86_TRAP_MF) ? "fpu exception" : |
| "simd exception"; |
| |
| cond_local_irq_enable(regs); |
| |
| if (!user_mode(regs)) { |
| if (fixup_exception(regs, trapnr, error_code, 0)) |
| goto exit; |
| |
| task->thread.error_code = error_code; |
| task->thread.trap_nr = trapnr; |
| |
| if (notify_die(DIE_TRAP, str, regs, error_code, |
| trapnr, SIGFPE) != NOTIFY_STOP) |
| die(str, regs, error_code); |
| goto exit; |
| } |
| |
| /* |
| * Save the info for the exception handler and clear the error. |
| */ |
| fpu__save(fpu); |
| |
| task->thread.trap_nr = trapnr; |
| task->thread.error_code = error_code; |
| |
| si_code = fpu__exception_code(fpu, trapnr); |
| /* Retry when we get spurious exceptions: */ |
| if (!si_code) |
| goto exit; |
| |
| force_sig_fault(SIGFPE, si_code, |
| (void __user *)uprobe_get_trap_addr(regs)); |
| exit: |
| cond_local_irq_disable(regs); |
| } |
| |
| DEFINE_IDTENTRY(exc_coprocessor_error) |
| { |
| math_error(regs, 0, X86_TRAP_MF); |
| } |
| |
| dotraplinkage void |
| do_simd_coprocessor_error(struct pt_regs *regs, long error_code) |
| { |
| RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU"); |
| math_error(regs, error_code, X86_TRAP_XF); |
| } |
| |
| DEFINE_IDTENTRY(exc_spurious_interrupt_bug) |
| { |
| /* |
| * This addresses a Pentium Pro Erratum: |
| * |
| * PROBLEM: If the APIC subsystem is configured in mixed mode with |
| * Virtual Wire mode implemented through the local APIC, an |
| * interrupt vector of 0Fh (Intel reserved encoding) may be |
| * generated by the local APIC (Int 15). This vector may be |
| * generated upon receipt of a spurious interrupt (an interrupt |
| * which is removed before the system receives the INTA sequence) |
| * instead of the programmed 8259 spurious interrupt vector. |
| * |
| * IMPLICATION: The spurious interrupt vector programmed in the |
| * 8259 is normally handled by an operating system's spurious |
| * interrupt handler. However, a vector of 0Fh is unknown to some |
| * operating systems, which would crash if this erratum occurred. |
| * |
| * In theory this could be limited to 32bit, but the handler is not |
| * hurting and who knows which other CPUs suffer from this. |
| */ |
| } |
| |
| DEFINE_IDTENTRY(exc_device_not_available) |
| { |
| unsigned long cr0 = read_cr0(); |
| |
| #ifdef CONFIG_MATH_EMULATION |
| if (!boot_cpu_has(X86_FEATURE_FPU) && (cr0 & X86_CR0_EM)) { |
| struct math_emu_info info = { }; |
| |
| cond_local_irq_enable(regs); |
| |
| info.regs = regs; |
| math_emulate(&info); |
| |
| cond_local_irq_disable(regs); |
| return; |
| } |
| #endif |
| |
| /* This should not happen. */ |
| if (WARN(cr0 & X86_CR0_TS, "CR0.TS was set")) { |
| /* Try to fix it up and carry on. */ |
| write_cr0(cr0 & ~X86_CR0_TS); |
| } else { |
| /* |
| * Something terrible happened, and we're better off trying |
| * to kill the task than getting stuck in a never-ending |
| * loop of #NM faults. |
| */ |
| die("unexpected #NM exception", regs, 0); |
| } |
| } |
| |
| #ifdef CONFIG_X86_32 |
| dotraplinkage void do_iret_error(struct pt_regs *regs, long error_code) |
| { |
| RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU"); |
| local_irq_enable(); |
| |
| if (notify_die(DIE_TRAP, "iret exception", regs, error_code, |
| X86_TRAP_IRET, SIGILL) != NOTIFY_STOP) { |
| do_trap(X86_TRAP_IRET, SIGILL, "iret exception", regs, error_code, |
| ILL_BADSTK, (void __user *)NULL); |
| } |
| local_irq_disable(); |
| } |
| #endif |
| |
| void __init trap_init(void) |
| { |
| /* Init cpu_entry_area before IST entries are set up */ |
| setup_cpu_entry_areas(); |
| |
| idt_setup_traps(); |
| |
| /* |
| * Set the IDT descriptor to a fixed read-only location, so that the |
| * "sidt" instruction will not leak the location of the kernel, and |
| * to defend the IDT against arbitrary memory write vulnerabilities. |
| * It will be reloaded in cpu_init() */ |
| cea_set_pte(CPU_ENTRY_AREA_RO_IDT_VADDR, __pa_symbol(idt_table), |
| PAGE_KERNEL_RO); |
| idt_descr.address = CPU_ENTRY_AREA_RO_IDT; |
| |
| /* |
| * Should be a barrier for any external CPU state: |
| */ |
| cpu_init(); |
| |
| idt_setup_ist_traps(); |
| |
| idt_setup_debugidt_traps(); |
| } |