| // SPDX-License-Identifier: GPL-2.0+ |
| /* |
| * Copyright (C) 2016 Oracle. All Rights Reserved. |
| * Author: Darrick J. Wong <darrick.wong@oracle.com> |
| */ |
| #include "xfs.h" |
| #include "xfs_fs.h" |
| #include "xfs_format.h" |
| #include "xfs_log_format.h" |
| #include "xfs_trans_resv.h" |
| #include "xfs_bit.h" |
| #include "xfs_shared.h" |
| #include "xfs_mount.h" |
| #include "xfs_defer.h" |
| #include "xfs_trans.h" |
| #include "xfs_trans_priv.h" |
| #include "xfs_refcount_item.h" |
| #include "xfs_log.h" |
| #include "xfs_refcount.h" |
| #include "xfs_error.h" |
| #include "xfs_log_priv.h" |
| #include "xfs_log_recover.h" |
| |
| kmem_zone_t *xfs_cui_zone; |
| kmem_zone_t *xfs_cud_zone; |
| |
| static const struct xfs_item_ops xfs_cui_item_ops; |
| |
| static inline struct xfs_cui_log_item *CUI_ITEM(struct xfs_log_item *lip) |
| { |
| return container_of(lip, struct xfs_cui_log_item, cui_item); |
| } |
| |
| STATIC void |
| xfs_cui_item_free( |
| struct xfs_cui_log_item *cuip) |
| { |
| if (cuip->cui_format.cui_nextents > XFS_CUI_MAX_FAST_EXTENTS) |
| kmem_free(cuip); |
| else |
| kmem_cache_free(xfs_cui_zone, cuip); |
| } |
| |
| /* |
| * Freeing the CUI requires that we remove it from the AIL if it has already |
| * been placed there. However, the CUI may not yet have been placed in the AIL |
| * when called by xfs_cui_release() from CUD processing due to the ordering of |
| * committed vs unpin operations in bulk insert operations. Hence the reference |
| * count to ensure only the last caller frees the CUI. |
| */ |
| STATIC void |
| xfs_cui_release( |
| struct xfs_cui_log_item *cuip) |
| { |
| ASSERT(atomic_read(&cuip->cui_refcount) > 0); |
| if (atomic_dec_and_test(&cuip->cui_refcount)) { |
| xfs_trans_ail_delete(&cuip->cui_item, SHUTDOWN_LOG_IO_ERROR); |
| xfs_cui_item_free(cuip); |
| } |
| } |
| |
| |
| STATIC void |
| xfs_cui_item_size( |
| struct xfs_log_item *lip, |
| int *nvecs, |
| int *nbytes) |
| { |
| struct xfs_cui_log_item *cuip = CUI_ITEM(lip); |
| |
| *nvecs += 1; |
| *nbytes += xfs_cui_log_format_sizeof(cuip->cui_format.cui_nextents); |
| } |
| |
| /* |
| * This is called to fill in the vector of log iovecs for the |
| * given cui log item. We use only 1 iovec, and we point that |
| * at the cui_log_format structure embedded in the cui item. |
| * It is at this point that we assert that all of the extent |
| * slots in the cui item have been filled. |
| */ |
| STATIC void |
| xfs_cui_item_format( |
| struct xfs_log_item *lip, |
| struct xfs_log_vec *lv) |
| { |
| struct xfs_cui_log_item *cuip = CUI_ITEM(lip); |
| struct xfs_log_iovec *vecp = NULL; |
| |
| ASSERT(atomic_read(&cuip->cui_next_extent) == |
| cuip->cui_format.cui_nextents); |
| |
| cuip->cui_format.cui_type = XFS_LI_CUI; |
| cuip->cui_format.cui_size = 1; |
| |
| xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_CUI_FORMAT, &cuip->cui_format, |
| xfs_cui_log_format_sizeof(cuip->cui_format.cui_nextents)); |
| } |
| |
| /* |
| * The unpin operation is the last place an CUI is manipulated in the log. It is |
| * either inserted in the AIL or aborted in the event of a log I/O error. In |
| * either case, the CUI transaction has been successfully committed to make it |
| * this far. Therefore, we expect whoever committed the CUI to either construct |
| * and commit the CUD or drop the CUD's reference in the event of error. Simply |
| * drop the log's CUI reference now that the log is done with it. |
| */ |
| STATIC void |
| xfs_cui_item_unpin( |
| struct xfs_log_item *lip, |
| int remove) |
| { |
| struct xfs_cui_log_item *cuip = CUI_ITEM(lip); |
| |
| xfs_cui_release(cuip); |
| } |
| |
| /* |
| * The CUI has been either committed or aborted if the transaction has been |
| * cancelled. If the transaction was cancelled, an CUD isn't going to be |
| * constructed and thus we free the CUI here directly. |
| */ |
| STATIC void |
| xfs_cui_item_release( |
| struct xfs_log_item *lip) |
| { |
| xfs_cui_release(CUI_ITEM(lip)); |
| } |
| |
| /* |
| * Allocate and initialize an cui item with the given number of extents. |
| */ |
| STATIC struct xfs_cui_log_item * |
| xfs_cui_init( |
| struct xfs_mount *mp, |
| uint nextents) |
| |
| { |
| struct xfs_cui_log_item *cuip; |
| |
| ASSERT(nextents > 0); |
| if (nextents > XFS_CUI_MAX_FAST_EXTENTS) |
| cuip = kmem_zalloc(xfs_cui_log_item_sizeof(nextents), |
| 0); |
| else |
| cuip = kmem_cache_zalloc(xfs_cui_zone, |
| GFP_KERNEL | __GFP_NOFAIL); |
| |
| xfs_log_item_init(mp, &cuip->cui_item, XFS_LI_CUI, &xfs_cui_item_ops); |
| cuip->cui_format.cui_nextents = nextents; |
| cuip->cui_format.cui_id = (uintptr_t)(void *)cuip; |
| atomic_set(&cuip->cui_next_extent, 0); |
| atomic_set(&cuip->cui_refcount, 2); |
| |
| return cuip; |
| } |
| |
| static inline struct xfs_cud_log_item *CUD_ITEM(struct xfs_log_item *lip) |
| { |
| return container_of(lip, struct xfs_cud_log_item, cud_item); |
| } |
| |
| STATIC void |
| xfs_cud_item_size( |
| struct xfs_log_item *lip, |
| int *nvecs, |
| int *nbytes) |
| { |
| *nvecs += 1; |
| *nbytes += sizeof(struct xfs_cud_log_format); |
| } |
| |
| /* |
| * This is called to fill in the vector of log iovecs for the |
| * given cud log item. We use only 1 iovec, and we point that |
| * at the cud_log_format structure embedded in the cud item. |
| * It is at this point that we assert that all of the extent |
| * slots in the cud item have been filled. |
| */ |
| STATIC void |
| xfs_cud_item_format( |
| struct xfs_log_item *lip, |
| struct xfs_log_vec *lv) |
| { |
| struct xfs_cud_log_item *cudp = CUD_ITEM(lip); |
| struct xfs_log_iovec *vecp = NULL; |
| |
| cudp->cud_format.cud_type = XFS_LI_CUD; |
| cudp->cud_format.cud_size = 1; |
| |
| xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_CUD_FORMAT, &cudp->cud_format, |
| sizeof(struct xfs_cud_log_format)); |
| } |
| |
| /* |
| * The CUD is either committed or aborted if the transaction is cancelled. If |
| * the transaction is cancelled, drop our reference to the CUI and free the |
| * CUD. |
| */ |
| STATIC void |
| xfs_cud_item_release( |
| struct xfs_log_item *lip) |
| { |
| struct xfs_cud_log_item *cudp = CUD_ITEM(lip); |
| |
| xfs_cui_release(cudp->cud_cuip); |
| kmem_cache_free(xfs_cud_zone, cudp); |
| } |
| |
| static const struct xfs_item_ops xfs_cud_item_ops = { |
| .flags = XFS_ITEM_RELEASE_WHEN_COMMITTED, |
| .iop_size = xfs_cud_item_size, |
| .iop_format = xfs_cud_item_format, |
| .iop_release = xfs_cud_item_release, |
| }; |
| |
| static struct xfs_cud_log_item * |
| xfs_trans_get_cud( |
| struct xfs_trans *tp, |
| struct xfs_cui_log_item *cuip) |
| { |
| struct xfs_cud_log_item *cudp; |
| |
| cudp = kmem_cache_zalloc(xfs_cud_zone, GFP_KERNEL | __GFP_NOFAIL); |
| xfs_log_item_init(tp->t_mountp, &cudp->cud_item, XFS_LI_CUD, |
| &xfs_cud_item_ops); |
| cudp->cud_cuip = cuip; |
| cudp->cud_format.cud_cui_id = cuip->cui_format.cui_id; |
| |
| xfs_trans_add_item(tp, &cudp->cud_item); |
| return cudp; |
| } |
| |
| /* |
| * Finish an refcount update and log it to the CUD. Note that the |
| * transaction is marked dirty regardless of whether the refcount |
| * update succeeds or fails to support the CUI/CUD lifecycle rules. |
| */ |
| static int |
| xfs_trans_log_finish_refcount_update( |
| struct xfs_trans *tp, |
| struct xfs_cud_log_item *cudp, |
| enum xfs_refcount_intent_type type, |
| xfs_fsblock_t startblock, |
| xfs_extlen_t blockcount, |
| xfs_fsblock_t *new_fsb, |
| xfs_extlen_t *new_len, |
| struct xfs_btree_cur **pcur) |
| { |
| int error; |
| |
| error = xfs_refcount_finish_one(tp, type, startblock, |
| blockcount, new_fsb, new_len, pcur); |
| |
| /* |
| * Mark the transaction dirty, even on error. This ensures the |
| * transaction is aborted, which: |
| * |
| * 1.) releases the CUI and frees the CUD |
| * 2.) shuts down the filesystem |
| */ |
| tp->t_flags |= XFS_TRANS_DIRTY; |
| set_bit(XFS_LI_DIRTY, &cudp->cud_item.li_flags); |
| |
| return error; |
| } |
| |
| /* Sort refcount intents by AG. */ |
| static int |
| xfs_refcount_update_diff_items( |
| void *priv, |
| const struct list_head *a, |
| const struct list_head *b) |
| { |
| struct xfs_mount *mp = priv; |
| struct xfs_refcount_intent *ra; |
| struct xfs_refcount_intent *rb; |
| |
| ra = container_of(a, struct xfs_refcount_intent, ri_list); |
| rb = container_of(b, struct xfs_refcount_intent, ri_list); |
| return XFS_FSB_TO_AGNO(mp, ra->ri_startblock) - |
| XFS_FSB_TO_AGNO(mp, rb->ri_startblock); |
| } |
| |
| /* Set the phys extent flags for this reverse mapping. */ |
| static void |
| xfs_trans_set_refcount_flags( |
| struct xfs_phys_extent *refc, |
| enum xfs_refcount_intent_type type) |
| { |
| refc->pe_flags = 0; |
| switch (type) { |
| case XFS_REFCOUNT_INCREASE: |
| case XFS_REFCOUNT_DECREASE: |
| case XFS_REFCOUNT_ALLOC_COW: |
| case XFS_REFCOUNT_FREE_COW: |
| refc->pe_flags |= type; |
| break; |
| default: |
| ASSERT(0); |
| } |
| } |
| |
| /* Log refcount updates in the intent item. */ |
| STATIC void |
| xfs_refcount_update_log_item( |
| struct xfs_trans *tp, |
| struct xfs_cui_log_item *cuip, |
| struct xfs_refcount_intent *refc) |
| { |
| uint next_extent; |
| struct xfs_phys_extent *ext; |
| |
| tp->t_flags |= XFS_TRANS_DIRTY; |
| set_bit(XFS_LI_DIRTY, &cuip->cui_item.li_flags); |
| |
| /* |
| * atomic_inc_return gives us the value after the increment; |
| * we want to use it as an array index so we need to subtract 1 from |
| * it. |
| */ |
| next_extent = atomic_inc_return(&cuip->cui_next_extent) - 1; |
| ASSERT(next_extent < cuip->cui_format.cui_nextents); |
| ext = &cuip->cui_format.cui_extents[next_extent]; |
| ext->pe_startblock = refc->ri_startblock; |
| ext->pe_len = refc->ri_blockcount; |
| xfs_trans_set_refcount_flags(ext, refc->ri_type); |
| } |
| |
| static struct xfs_log_item * |
| xfs_refcount_update_create_intent( |
| struct xfs_trans *tp, |
| struct list_head *items, |
| unsigned int count, |
| bool sort) |
| { |
| struct xfs_mount *mp = tp->t_mountp; |
| struct xfs_cui_log_item *cuip = xfs_cui_init(mp, count); |
| struct xfs_refcount_intent *refc; |
| |
| ASSERT(count > 0); |
| |
| xfs_trans_add_item(tp, &cuip->cui_item); |
| if (sort) |
| list_sort(mp, items, xfs_refcount_update_diff_items); |
| list_for_each_entry(refc, items, ri_list) |
| xfs_refcount_update_log_item(tp, cuip, refc); |
| return &cuip->cui_item; |
| } |
| |
| /* Get an CUD so we can process all the deferred refcount updates. */ |
| static struct xfs_log_item * |
| xfs_refcount_update_create_done( |
| struct xfs_trans *tp, |
| struct xfs_log_item *intent, |
| unsigned int count) |
| { |
| return &xfs_trans_get_cud(tp, CUI_ITEM(intent))->cud_item; |
| } |
| |
| /* Process a deferred refcount update. */ |
| STATIC int |
| xfs_refcount_update_finish_item( |
| struct xfs_trans *tp, |
| struct xfs_log_item *done, |
| struct list_head *item, |
| struct xfs_btree_cur **state) |
| { |
| struct xfs_refcount_intent *refc; |
| xfs_fsblock_t new_fsb; |
| xfs_extlen_t new_aglen; |
| int error; |
| |
| refc = container_of(item, struct xfs_refcount_intent, ri_list); |
| error = xfs_trans_log_finish_refcount_update(tp, CUD_ITEM(done), |
| refc->ri_type, refc->ri_startblock, refc->ri_blockcount, |
| &new_fsb, &new_aglen, state); |
| |
| /* Did we run out of reservation? Requeue what we didn't finish. */ |
| if (!error && new_aglen > 0) { |
| ASSERT(refc->ri_type == XFS_REFCOUNT_INCREASE || |
| refc->ri_type == XFS_REFCOUNT_DECREASE); |
| refc->ri_startblock = new_fsb; |
| refc->ri_blockcount = new_aglen; |
| return -EAGAIN; |
| } |
| kmem_free(refc); |
| return error; |
| } |
| |
| /* Abort all pending CUIs. */ |
| STATIC void |
| xfs_refcount_update_abort_intent( |
| struct xfs_log_item *intent) |
| { |
| xfs_cui_release(CUI_ITEM(intent)); |
| } |
| |
| /* Cancel a deferred refcount update. */ |
| STATIC void |
| xfs_refcount_update_cancel_item( |
| struct list_head *item) |
| { |
| struct xfs_refcount_intent *refc; |
| |
| refc = container_of(item, struct xfs_refcount_intent, ri_list); |
| kmem_free(refc); |
| } |
| |
| const struct xfs_defer_op_type xfs_refcount_update_defer_type = { |
| .max_items = XFS_CUI_MAX_FAST_EXTENTS, |
| .create_intent = xfs_refcount_update_create_intent, |
| .abort_intent = xfs_refcount_update_abort_intent, |
| .create_done = xfs_refcount_update_create_done, |
| .finish_item = xfs_refcount_update_finish_item, |
| .finish_cleanup = xfs_refcount_finish_one_cleanup, |
| .cancel_item = xfs_refcount_update_cancel_item, |
| }; |
| |
| /* Is this recovered CUI ok? */ |
| static inline bool |
| xfs_cui_validate_phys( |
| struct xfs_mount *mp, |
| struct xfs_phys_extent *refc) |
| { |
| if (!xfs_sb_version_hasreflink(&mp->m_sb)) |
| return false; |
| |
| if (refc->pe_flags & ~XFS_REFCOUNT_EXTENT_FLAGS) |
| return false; |
| |
| switch (refc->pe_flags & XFS_REFCOUNT_EXTENT_TYPE_MASK) { |
| case XFS_REFCOUNT_INCREASE: |
| case XFS_REFCOUNT_DECREASE: |
| case XFS_REFCOUNT_ALLOC_COW: |
| case XFS_REFCOUNT_FREE_COW: |
| break; |
| default: |
| return false; |
| } |
| |
| return xfs_verify_fsbext(mp, refc->pe_startblock, refc->pe_len); |
| } |
| |
| /* |
| * Process a refcount update intent item that was recovered from the log. |
| * We need to update the refcountbt. |
| */ |
| STATIC int |
| xfs_cui_item_recover( |
| struct xfs_log_item *lip, |
| struct list_head *capture_list) |
| { |
| struct xfs_bmbt_irec irec; |
| struct xfs_cui_log_item *cuip = CUI_ITEM(lip); |
| struct xfs_phys_extent *refc; |
| struct xfs_cud_log_item *cudp; |
| struct xfs_trans *tp; |
| struct xfs_btree_cur *rcur = NULL; |
| struct xfs_mount *mp = lip->li_mountp; |
| xfs_fsblock_t new_fsb; |
| xfs_extlen_t new_len; |
| unsigned int refc_type; |
| bool requeue_only = false; |
| enum xfs_refcount_intent_type type; |
| int i; |
| int error = 0; |
| |
| /* |
| * First check the validity of the extents described by the |
| * CUI. If any are bad, then assume that all are bad and |
| * just toss the CUI. |
| */ |
| for (i = 0; i < cuip->cui_format.cui_nextents; i++) { |
| if (!xfs_cui_validate_phys(mp, |
| &cuip->cui_format.cui_extents[i])) { |
| XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp, |
| &cuip->cui_format, |
| sizeof(cuip->cui_format)); |
| return -EFSCORRUPTED; |
| } |
| } |
| |
| /* |
| * Under normal operation, refcount updates are deferred, so we |
| * wouldn't be adding them directly to a transaction. All |
| * refcount updates manage reservation usage internally and |
| * dynamically by deferring work that won't fit in the |
| * transaction. Normally, any work that needs to be deferred |
| * gets attached to the same defer_ops that scheduled the |
| * refcount update. However, we're in log recovery here, so we |
| * use the passed in defer_ops and to finish up any work that |
| * doesn't fit. We need to reserve enough blocks to handle a |
| * full btree split on either end of the refcount range. |
| */ |
| error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, |
| mp->m_refc_maxlevels * 2, 0, XFS_TRANS_RESERVE, &tp); |
| if (error) |
| return error; |
| |
| cudp = xfs_trans_get_cud(tp, cuip); |
| |
| for (i = 0; i < cuip->cui_format.cui_nextents; i++) { |
| refc = &cuip->cui_format.cui_extents[i]; |
| refc_type = refc->pe_flags & XFS_REFCOUNT_EXTENT_TYPE_MASK; |
| switch (refc_type) { |
| case XFS_REFCOUNT_INCREASE: |
| case XFS_REFCOUNT_DECREASE: |
| case XFS_REFCOUNT_ALLOC_COW: |
| case XFS_REFCOUNT_FREE_COW: |
| type = refc_type; |
| break; |
| default: |
| XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, mp); |
| error = -EFSCORRUPTED; |
| goto abort_error; |
| } |
| if (requeue_only) { |
| new_fsb = refc->pe_startblock; |
| new_len = refc->pe_len; |
| } else |
| error = xfs_trans_log_finish_refcount_update(tp, cudp, |
| type, refc->pe_startblock, refc->pe_len, |
| &new_fsb, &new_len, &rcur); |
| if (error == -EFSCORRUPTED) |
| XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp, |
| refc, sizeof(*refc)); |
| if (error) |
| goto abort_error; |
| |
| /* Requeue what we didn't finish. */ |
| if (new_len > 0) { |
| irec.br_startblock = new_fsb; |
| irec.br_blockcount = new_len; |
| switch (type) { |
| case XFS_REFCOUNT_INCREASE: |
| xfs_refcount_increase_extent(tp, &irec); |
| break; |
| case XFS_REFCOUNT_DECREASE: |
| xfs_refcount_decrease_extent(tp, &irec); |
| break; |
| case XFS_REFCOUNT_ALLOC_COW: |
| xfs_refcount_alloc_cow_extent(tp, |
| irec.br_startblock, |
| irec.br_blockcount); |
| break; |
| case XFS_REFCOUNT_FREE_COW: |
| xfs_refcount_free_cow_extent(tp, |
| irec.br_startblock, |
| irec.br_blockcount); |
| break; |
| default: |
| ASSERT(0); |
| } |
| requeue_only = true; |
| } |
| } |
| |
| xfs_refcount_finish_one_cleanup(tp, rcur, error); |
| return xfs_defer_ops_capture_and_commit(tp, NULL, capture_list); |
| |
| abort_error: |
| xfs_refcount_finish_one_cleanup(tp, rcur, error); |
| xfs_trans_cancel(tp); |
| return error; |
| } |
| |
| STATIC bool |
| xfs_cui_item_match( |
| struct xfs_log_item *lip, |
| uint64_t intent_id) |
| { |
| return CUI_ITEM(lip)->cui_format.cui_id == intent_id; |
| } |
| |
| /* Relog an intent item to push the log tail forward. */ |
| static struct xfs_log_item * |
| xfs_cui_item_relog( |
| struct xfs_log_item *intent, |
| struct xfs_trans *tp) |
| { |
| struct xfs_cud_log_item *cudp; |
| struct xfs_cui_log_item *cuip; |
| struct xfs_phys_extent *extp; |
| unsigned int count; |
| |
| count = CUI_ITEM(intent)->cui_format.cui_nextents; |
| extp = CUI_ITEM(intent)->cui_format.cui_extents; |
| |
| tp->t_flags |= XFS_TRANS_DIRTY; |
| cudp = xfs_trans_get_cud(tp, CUI_ITEM(intent)); |
| set_bit(XFS_LI_DIRTY, &cudp->cud_item.li_flags); |
| |
| cuip = xfs_cui_init(tp->t_mountp, count); |
| memcpy(cuip->cui_format.cui_extents, extp, count * sizeof(*extp)); |
| atomic_set(&cuip->cui_next_extent, count); |
| xfs_trans_add_item(tp, &cuip->cui_item); |
| set_bit(XFS_LI_DIRTY, &cuip->cui_item.li_flags); |
| return &cuip->cui_item; |
| } |
| |
| static const struct xfs_item_ops xfs_cui_item_ops = { |
| .iop_size = xfs_cui_item_size, |
| .iop_format = xfs_cui_item_format, |
| .iop_unpin = xfs_cui_item_unpin, |
| .iop_release = xfs_cui_item_release, |
| .iop_recover = xfs_cui_item_recover, |
| .iop_match = xfs_cui_item_match, |
| .iop_relog = xfs_cui_item_relog, |
| }; |
| |
| /* |
| * Copy an CUI format buffer from the given buf, and into the destination |
| * CUI format structure. The CUI/CUD items were designed not to need any |
| * special alignment handling. |
| */ |
| static int |
| xfs_cui_copy_format( |
| struct xfs_log_iovec *buf, |
| struct xfs_cui_log_format *dst_cui_fmt) |
| { |
| struct xfs_cui_log_format *src_cui_fmt; |
| uint len; |
| |
| src_cui_fmt = buf->i_addr; |
| len = xfs_cui_log_format_sizeof(src_cui_fmt->cui_nextents); |
| |
| if (buf->i_len == len) { |
| memcpy(dst_cui_fmt, src_cui_fmt, len); |
| return 0; |
| } |
| XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, NULL); |
| return -EFSCORRUPTED; |
| } |
| |
| /* |
| * This routine is called to create an in-core extent refcount update |
| * item from the cui format structure which was logged on disk. |
| * It allocates an in-core cui, copies the extents from the format |
| * structure into it, and adds the cui to the AIL with the given |
| * LSN. |
| */ |
| STATIC int |
| xlog_recover_cui_commit_pass2( |
| struct xlog *log, |
| struct list_head *buffer_list, |
| struct xlog_recover_item *item, |
| xfs_lsn_t lsn) |
| { |
| int error; |
| struct xfs_mount *mp = log->l_mp; |
| struct xfs_cui_log_item *cuip; |
| struct xfs_cui_log_format *cui_formatp; |
| |
| cui_formatp = item->ri_buf[0].i_addr; |
| |
| cuip = xfs_cui_init(mp, cui_formatp->cui_nextents); |
| error = xfs_cui_copy_format(&item->ri_buf[0], &cuip->cui_format); |
| if (error) { |
| xfs_cui_item_free(cuip); |
| return error; |
| } |
| atomic_set(&cuip->cui_next_extent, cui_formatp->cui_nextents); |
| /* |
| * Insert the intent into the AIL directly and drop one reference so |
| * that finishing or canceling the work will drop the other. |
| */ |
| xfs_trans_ail_insert(log->l_ailp, &cuip->cui_item, lsn); |
| xfs_cui_release(cuip); |
| return 0; |
| } |
| |
| const struct xlog_recover_item_ops xlog_cui_item_ops = { |
| .item_type = XFS_LI_CUI, |
| .commit_pass2 = xlog_recover_cui_commit_pass2, |
| }; |
| |
| /* |
| * This routine is called when an CUD format structure is found in a committed |
| * transaction in the log. Its purpose is to cancel the corresponding CUI if it |
| * was still in the log. To do this it searches the AIL for the CUI with an id |
| * equal to that in the CUD format structure. If we find it we drop the CUD |
| * reference, which removes the CUI from the AIL and frees it. |
| */ |
| STATIC int |
| xlog_recover_cud_commit_pass2( |
| struct xlog *log, |
| struct list_head *buffer_list, |
| struct xlog_recover_item *item, |
| xfs_lsn_t lsn) |
| { |
| struct xfs_cud_log_format *cud_formatp; |
| |
| cud_formatp = item->ri_buf[0].i_addr; |
| if (item->ri_buf[0].i_len != sizeof(struct xfs_cud_log_format)) { |
| XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, log->l_mp); |
| return -EFSCORRUPTED; |
| } |
| |
| xlog_recover_release_intent(log, XFS_LI_CUI, cud_formatp->cud_cui_id); |
| return 0; |
| } |
| |
| const struct xlog_recover_item_ops xlog_cud_item_ops = { |
| .item_type = XFS_LI_CUD, |
| .commit_pass2 = xlog_recover_cud_commit_pass2, |
| }; |