blob: 42e494a7106cdddd2887d4ee7c256e54fe3e58c2 [file] [log] [blame]
/*
*******************************************************************************
** O.S : Linux
** FILE NAME : arcmsr_hba.c
** BY : Nick Cheng, C.L. Huang
** Description: SCSI RAID Device Driver for Areca RAID Controller
*******************************************************************************
** Copyright (C) 2002 - 2014, Areca Technology Corporation All rights reserved
**
** Web site: www.areca.com.tw
** E-mail: support@areca.com.tw
**
** This program is free software; you can redistribute it and/or modify
** it under the terms of the GNU General Public License version 2 as
** published by the Free Software Foundation.
** This program is distributed in the hope that it will be useful,
** but WITHOUT ANY WARRANTY; without even the implied warranty of
** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
** GNU General Public License for more details.
*******************************************************************************
** Redistribution and use in source and binary forms, with or without
** modification, are permitted provided that the following conditions
** are met:
** 1. Redistributions of source code must retain the above copyright
** notice, this list of conditions and the following disclaimer.
** 2. Redistributions in binary form must reproduce the above copyright
** notice, this list of conditions and the following disclaimer in the
** documentation and/or other materials provided with the distribution.
** 3. The name of the author may not be used to endorse or promote products
** derived from this software without specific prior written permission.
**
** THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
** IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
** OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
** IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
** INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES(INCLUDING,BUT
** NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
** DATA, OR PROFITS; OR BUSINESS INTERRUPTION)HOWEVER CAUSED AND ON ANY
** THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
** (INCLUDING NEGLIGENCE OR OTHERWISE)ARISING IN ANY WAY OUT OF THE USE OF
** THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*******************************************************************************
** For history of changes, see Documentation/scsi/ChangeLog.arcmsr
** Firmware Specification, see Documentation/scsi/arcmsr_spec.rst
*******************************************************************************
*/
#include <linux/module.h>
#include <linux/reboot.h>
#include <linux/spinlock.h>
#include <linux/pci_ids.h>
#include <linux/interrupt.h>
#include <linux/moduleparam.h>
#include <linux/errno.h>
#include <linux/types.h>
#include <linux/delay.h>
#include <linux/dma-mapping.h>
#include <linux/timer.h>
#include <linux/slab.h>
#include <linux/pci.h>
#include <linux/aer.h>
#include <linux/circ_buf.h>
#include <asm/dma.h>
#include <asm/io.h>
#include <linux/uaccess.h>
#include <scsi/scsi_host.h>
#include <scsi/scsi.h>
#include <scsi/scsi_cmnd.h>
#include <scsi/scsi_tcq.h>
#include <scsi/scsi_device.h>
#include <scsi/scsi_transport.h>
#include <scsi/scsicam.h>
#include "arcmsr.h"
MODULE_AUTHOR("Nick Cheng, C.L. Huang <support@areca.com.tw>");
MODULE_DESCRIPTION("Areca ARC11xx/12xx/16xx/188x SAS/SATA RAID Controller Driver");
MODULE_LICENSE("Dual BSD/GPL");
MODULE_VERSION(ARCMSR_DRIVER_VERSION);
static int msix_enable = 1;
module_param(msix_enable, int, S_IRUGO);
MODULE_PARM_DESC(msix_enable, "Enable MSI-X interrupt(0 ~ 1), msix_enable=1(enable), =0(disable)");
static int msi_enable = 1;
module_param(msi_enable, int, S_IRUGO);
MODULE_PARM_DESC(msi_enable, "Enable MSI interrupt(0 ~ 1), msi_enable=1(enable), =0(disable)");
static int host_can_queue = ARCMSR_DEFAULT_OUTSTANDING_CMD;
module_param(host_can_queue, int, S_IRUGO);
MODULE_PARM_DESC(host_can_queue, " adapter queue depth(32 ~ 1024), default is 128");
static int cmd_per_lun = ARCMSR_DEFAULT_CMD_PERLUN;
module_param(cmd_per_lun, int, S_IRUGO);
MODULE_PARM_DESC(cmd_per_lun, " device queue depth(1 ~ 128), default is 32");
static int dma_mask_64 = 0;
module_param(dma_mask_64, int, S_IRUGO);
MODULE_PARM_DESC(dma_mask_64, " set DMA mask to 64 bits(0 ~ 1), dma_mask_64=1(64 bits), =0(32 bits)");
static int set_date_time = 0;
module_param(set_date_time, int, S_IRUGO);
MODULE_PARM_DESC(set_date_time, " send date, time to iop(0 ~ 1), set_date_time=1(enable), default(=0) is disable");
static int cmd_timeout = ARCMSR_DEFAULT_TIMEOUT;
module_param(cmd_timeout, int, S_IRUGO);
MODULE_PARM_DESC(cmd_timeout, " scsi cmd timeout(0 ~ 120 sec.), default is 90");
#define ARCMSR_SLEEPTIME 10
#define ARCMSR_RETRYCOUNT 12
static wait_queue_head_t wait_q;
static int arcmsr_iop_message_xfer(struct AdapterControlBlock *acb,
struct scsi_cmnd *cmd);
static int arcmsr_iop_confirm(struct AdapterControlBlock *acb);
static int arcmsr_abort(struct scsi_cmnd *);
static int arcmsr_bus_reset(struct scsi_cmnd *);
static int arcmsr_bios_param(struct scsi_device *sdev,
struct block_device *bdev, sector_t capacity, int *info);
static int arcmsr_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
static int arcmsr_probe(struct pci_dev *pdev,
const struct pci_device_id *id);
static int __maybe_unused arcmsr_suspend(struct device *dev);
static int __maybe_unused arcmsr_resume(struct device *dev);
static void arcmsr_remove(struct pci_dev *pdev);
static void arcmsr_shutdown(struct pci_dev *pdev);
static void arcmsr_iop_init(struct AdapterControlBlock *acb);
static void arcmsr_free_ccb_pool(struct AdapterControlBlock *acb);
static u32 arcmsr_disable_outbound_ints(struct AdapterControlBlock *acb);
static void arcmsr_enable_outbound_ints(struct AdapterControlBlock *acb,
u32 intmask_org);
static void arcmsr_stop_adapter_bgrb(struct AdapterControlBlock *acb);
static void arcmsr_hbaA_flush_cache(struct AdapterControlBlock *acb);
static void arcmsr_hbaB_flush_cache(struct AdapterControlBlock *acb);
static void arcmsr_request_device_map(struct timer_list *t);
static void arcmsr_message_isr_bh_fn(struct work_struct *work);
static bool arcmsr_get_firmware_spec(struct AdapterControlBlock *acb);
static void arcmsr_start_adapter_bgrb(struct AdapterControlBlock *acb);
static void arcmsr_hbaC_message_isr(struct AdapterControlBlock *pACB);
static void arcmsr_hbaD_message_isr(struct AdapterControlBlock *acb);
static void arcmsr_hbaE_message_isr(struct AdapterControlBlock *acb);
static void arcmsr_hbaE_postqueue_isr(struct AdapterControlBlock *acb);
static void arcmsr_hbaF_postqueue_isr(struct AdapterControlBlock *acb);
static void arcmsr_hardware_reset(struct AdapterControlBlock *acb);
static const char *arcmsr_info(struct Scsi_Host *);
static irqreturn_t arcmsr_interrupt(struct AdapterControlBlock *acb);
static void arcmsr_free_irq(struct pci_dev *, struct AdapterControlBlock *);
static void arcmsr_wait_firmware_ready(struct AdapterControlBlock *acb);
static void arcmsr_set_iop_datetime(struct timer_list *);
static int arcmsr_slave_config(struct scsi_device *sdev);
static int arcmsr_adjust_disk_queue_depth(struct scsi_device *sdev, int queue_depth)
{
if (queue_depth > ARCMSR_MAX_CMD_PERLUN)
queue_depth = ARCMSR_MAX_CMD_PERLUN;
return scsi_change_queue_depth(sdev, queue_depth);
}
static struct scsi_host_template arcmsr_scsi_host_template = {
.module = THIS_MODULE,
.name = "Areca SAS/SATA RAID driver",
.info = arcmsr_info,
.queuecommand = arcmsr_queue_command,
.eh_abort_handler = arcmsr_abort,
.eh_bus_reset_handler = arcmsr_bus_reset,
.bios_param = arcmsr_bios_param,
.slave_configure = arcmsr_slave_config,
.change_queue_depth = arcmsr_adjust_disk_queue_depth,
.can_queue = ARCMSR_DEFAULT_OUTSTANDING_CMD,
.this_id = ARCMSR_SCSI_INITIATOR_ID,
.sg_tablesize = ARCMSR_DEFAULT_SG_ENTRIES,
.max_sectors = ARCMSR_MAX_XFER_SECTORS_C,
.cmd_per_lun = ARCMSR_DEFAULT_CMD_PERLUN,
.shost_attrs = arcmsr_host_attrs,
.no_write_same = 1,
};
static struct pci_device_id arcmsr_device_id_table[] = {
{PCI_DEVICE(PCI_VENDOR_ID_ARECA, PCI_DEVICE_ID_ARECA_1110),
.driver_data = ACB_ADAPTER_TYPE_A},
{PCI_DEVICE(PCI_VENDOR_ID_ARECA, PCI_DEVICE_ID_ARECA_1120),
.driver_data = ACB_ADAPTER_TYPE_A},
{PCI_DEVICE(PCI_VENDOR_ID_ARECA, PCI_DEVICE_ID_ARECA_1130),
.driver_data = ACB_ADAPTER_TYPE_A},
{PCI_DEVICE(PCI_VENDOR_ID_ARECA, PCI_DEVICE_ID_ARECA_1160),
.driver_data = ACB_ADAPTER_TYPE_A},
{PCI_DEVICE(PCI_VENDOR_ID_ARECA, PCI_DEVICE_ID_ARECA_1170),
.driver_data = ACB_ADAPTER_TYPE_A},
{PCI_DEVICE(PCI_VENDOR_ID_ARECA, PCI_DEVICE_ID_ARECA_1200),
.driver_data = ACB_ADAPTER_TYPE_B},
{PCI_DEVICE(PCI_VENDOR_ID_ARECA, PCI_DEVICE_ID_ARECA_1201),
.driver_data = ACB_ADAPTER_TYPE_B},
{PCI_DEVICE(PCI_VENDOR_ID_ARECA, PCI_DEVICE_ID_ARECA_1202),
.driver_data = ACB_ADAPTER_TYPE_B},
{PCI_DEVICE(PCI_VENDOR_ID_ARECA, PCI_DEVICE_ID_ARECA_1203),
.driver_data = ACB_ADAPTER_TYPE_B},
{PCI_DEVICE(PCI_VENDOR_ID_ARECA, PCI_DEVICE_ID_ARECA_1210),
.driver_data = ACB_ADAPTER_TYPE_A},
{PCI_DEVICE(PCI_VENDOR_ID_ARECA, PCI_DEVICE_ID_ARECA_1214),
.driver_data = ACB_ADAPTER_TYPE_D},
{PCI_DEVICE(PCI_VENDOR_ID_ARECA, PCI_DEVICE_ID_ARECA_1220),
.driver_data = ACB_ADAPTER_TYPE_A},
{PCI_DEVICE(PCI_VENDOR_ID_ARECA, PCI_DEVICE_ID_ARECA_1230),
.driver_data = ACB_ADAPTER_TYPE_A},
{PCI_DEVICE(PCI_VENDOR_ID_ARECA, PCI_DEVICE_ID_ARECA_1260),
.driver_data = ACB_ADAPTER_TYPE_A},
{PCI_DEVICE(PCI_VENDOR_ID_ARECA, PCI_DEVICE_ID_ARECA_1270),
.driver_data = ACB_ADAPTER_TYPE_A},
{PCI_DEVICE(PCI_VENDOR_ID_ARECA, PCI_DEVICE_ID_ARECA_1280),
.driver_data = ACB_ADAPTER_TYPE_A},
{PCI_DEVICE(PCI_VENDOR_ID_ARECA, PCI_DEVICE_ID_ARECA_1380),
.driver_data = ACB_ADAPTER_TYPE_A},
{PCI_DEVICE(PCI_VENDOR_ID_ARECA, PCI_DEVICE_ID_ARECA_1381),
.driver_data = ACB_ADAPTER_TYPE_A},
{PCI_DEVICE(PCI_VENDOR_ID_ARECA, PCI_DEVICE_ID_ARECA_1680),
.driver_data = ACB_ADAPTER_TYPE_A},
{PCI_DEVICE(PCI_VENDOR_ID_ARECA, PCI_DEVICE_ID_ARECA_1681),
.driver_data = ACB_ADAPTER_TYPE_A},
{PCI_DEVICE(PCI_VENDOR_ID_ARECA, PCI_DEVICE_ID_ARECA_1880),
.driver_data = ACB_ADAPTER_TYPE_C},
{PCI_DEVICE(PCI_VENDOR_ID_ARECA, PCI_DEVICE_ID_ARECA_1884),
.driver_data = ACB_ADAPTER_TYPE_E},
{PCI_DEVICE(PCI_VENDOR_ID_ARECA, PCI_DEVICE_ID_ARECA_1886),
.driver_data = ACB_ADAPTER_TYPE_F},
{0, 0}, /* Terminating entry */
};
MODULE_DEVICE_TABLE(pci, arcmsr_device_id_table);
static SIMPLE_DEV_PM_OPS(arcmsr_pm_ops, arcmsr_suspend, arcmsr_resume);
static struct pci_driver arcmsr_pci_driver = {
.name = "arcmsr",
.id_table = arcmsr_device_id_table,
.probe = arcmsr_probe,
.remove = arcmsr_remove,
.driver.pm = &arcmsr_pm_ops,
.shutdown = arcmsr_shutdown,
};
/*
****************************************************************************
****************************************************************************
*/
static void arcmsr_free_io_queue(struct AdapterControlBlock *acb)
{
switch (acb->adapter_type) {
case ACB_ADAPTER_TYPE_B:
case ACB_ADAPTER_TYPE_D:
case ACB_ADAPTER_TYPE_E:
case ACB_ADAPTER_TYPE_F:
dma_free_coherent(&acb->pdev->dev, acb->ioqueue_size,
acb->dma_coherent2, acb->dma_coherent_handle2);
break;
}
}
static bool arcmsr_remap_pciregion(struct AdapterControlBlock *acb)
{
struct pci_dev *pdev = acb->pdev;
switch (acb->adapter_type){
case ACB_ADAPTER_TYPE_A:{
acb->pmuA = ioremap(pci_resource_start(pdev,0), pci_resource_len(pdev,0));
if (!acb->pmuA) {
printk(KERN_NOTICE "arcmsr%d: memory mapping region fail \n", acb->host->host_no);
return false;
}
break;
}
case ACB_ADAPTER_TYPE_B:{
void __iomem *mem_base0, *mem_base1;
mem_base0 = ioremap(pci_resource_start(pdev, 0), pci_resource_len(pdev, 0));
if (!mem_base0) {
printk(KERN_NOTICE "arcmsr%d: memory mapping region fail \n", acb->host->host_no);
return false;
}
mem_base1 = ioremap(pci_resource_start(pdev, 2), pci_resource_len(pdev, 2));
if (!mem_base1) {
iounmap(mem_base0);
printk(KERN_NOTICE "arcmsr%d: memory mapping region fail \n", acb->host->host_no);
return false;
}
acb->mem_base0 = mem_base0;
acb->mem_base1 = mem_base1;
break;
}
case ACB_ADAPTER_TYPE_C:{
acb->pmuC = ioremap(pci_resource_start(pdev, 1), pci_resource_len(pdev, 1));
if (!acb->pmuC) {
printk(KERN_NOTICE "arcmsr%d: memory mapping region fail \n", acb->host->host_no);
return false;
}
if (readl(&acb->pmuC->outbound_doorbell) & ARCMSR_HBCMU_IOP2DRV_MESSAGE_CMD_DONE) {
writel(ARCMSR_HBCMU_IOP2DRV_MESSAGE_CMD_DONE_DOORBELL_CLEAR, &acb->pmuC->outbound_doorbell_clear);/*clear interrupt*/
return true;
}
break;
}
case ACB_ADAPTER_TYPE_D: {
void __iomem *mem_base0;
unsigned long addr, range;
addr = (unsigned long)pci_resource_start(pdev, 0);
range = pci_resource_len(pdev, 0);
mem_base0 = ioremap(addr, range);
if (!mem_base0) {
pr_notice("arcmsr%d: memory mapping region fail\n",
acb->host->host_no);
return false;
}
acb->mem_base0 = mem_base0;
break;
}
case ACB_ADAPTER_TYPE_E: {
acb->pmuE = ioremap(pci_resource_start(pdev, 1),
pci_resource_len(pdev, 1));
if (!acb->pmuE) {
pr_notice("arcmsr%d: memory mapping region fail \n",
acb->host->host_no);
return false;
}
writel(0, &acb->pmuE->host_int_status); /*clear interrupt*/
writel(ARCMSR_HBEMU_DOORBELL_SYNC, &acb->pmuE->iobound_doorbell); /* synchronize doorbell to 0 */
acb->in_doorbell = 0;
acb->out_doorbell = 0;
break;
}
case ACB_ADAPTER_TYPE_F: {
acb->pmuF = ioremap(pci_resource_start(pdev, 0), pci_resource_len(pdev, 0));
if (!acb->pmuF) {
pr_notice("arcmsr%d: memory mapping region fail\n",
acb->host->host_no);
return false;
}
writel(0, &acb->pmuF->host_int_status); /* clear interrupt */
writel(ARCMSR_HBFMU_DOORBELL_SYNC, &acb->pmuF->iobound_doorbell);
acb->in_doorbell = 0;
acb->out_doorbell = 0;
break;
}
}
return true;
}
static void arcmsr_unmap_pciregion(struct AdapterControlBlock *acb)
{
switch (acb->adapter_type) {
case ACB_ADAPTER_TYPE_A:
iounmap(acb->pmuA);
break;
case ACB_ADAPTER_TYPE_B:
iounmap(acb->mem_base0);
iounmap(acb->mem_base1);
break;
case ACB_ADAPTER_TYPE_C:
iounmap(acb->pmuC);
break;
case ACB_ADAPTER_TYPE_D:
iounmap(acb->mem_base0);
break;
case ACB_ADAPTER_TYPE_E:
iounmap(acb->pmuE);
break;
case ACB_ADAPTER_TYPE_F:
iounmap(acb->pmuF);
break;
}
}
static irqreturn_t arcmsr_do_interrupt(int irq, void *dev_id)
{
irqreturn_t handle_state;
struct AdapterControlBlock *acb = dev_id;
handle_state = arcmsr_interrupt(acb);
return handle_state;
}
static int arcmsr_bios_param(struct scsi_device *sdev,
struct block_device *bdev, sector_t capacity, int *geom)
{
int heads, sectors, cylinders, total_capacity;
if (scsi_partsize(bdev, capacity, geom))
return 0;
total_capacity = capacity;
heads = 64;
sectors = 32;
cylinders = total_capacity / (heads * sectors);
if (cylinders > 1024) {
heads = 255;
sectors = 63;
cylinders = total_capacity / (heads * sectors);
}
geom[0] = heads;
geom[1] = sectors;
geom[2] = cylinders;
return 0;
}
static uint8_t arcmsr_hbaA_wait_msgint_ready(struct AdapterControlBlock *acb)
{
struct MessageUnit_A __iomem *reg = acb->pmuA;
int i;
for (i = 0; i < 2000; i++) {
if (readl(&reg->outbound_intstatus) &
ARCMSR_MU_OUTBOUND_MESSAGE0_INT) {
writel(ARCMSR_MU_OUTBOUND_MESSAGE0_INT,
&reg->outbound_intstatus);
return true;
}
msleep(10);
} /* max 20 seconds */
return false;
}
static uint8_t arcmsr_hbaB_wait_msgint_ready(struct AdapterControlBlock *acb)
{
struct MessageUnit_B *reg = acb->pmuB;
int i;
for (i = 0; i < 2000; i++) {
if (readl(reg->iop2drv_doorbell)
& ARCMSR_IOP2DRV_MESSAGE_CMD_DONE) {
writel(ARCMSR_MESSAGE_INT_CLEAR_PATTERN,
reg->iop2drv_doorbell);
writel(ARCMSR_DRV2IOP_END_OF_INTERRUPT,
reg->drv2iop_doorbell);
return true;
}
msleep(10);
} /* max 20 seconds */
return false;
}
static uint8_t arcmsr_hbaC_wait_msgint_ready(struct AdapterControlBlock *pACB)
{
struct MessageUnit_C __iomem *phbcmu = pACB->pmuC;
int i;
for (i = 0; i < 2000; i++) {
if (readl(&phbcmu->outbound_doorbell)
& ARCMSR_HBCMU_IOP2DRV_MESSAGE_CMD_DONE) {
writel(ARCMSR_HBCMU_IOP2DRV_MESSAGE_CMD_DONE_DOORBELL_CLEAR,
&phbcmu->outbound_doorbell_clear); /*clear interrupt*/
return true;
}
msleep(10);
} /* max 20 seconds */
return false;
}
static bool arcmsr_hbaD_wait_msgint_ready(struct AdapterControlBlock *pACB)
{
struct MessageUnit_D *reg = pACB->pmuD;
int i;
for (i = 0; i < 2000; i++) {
if (readl(reg->outbound_doorbell)
& ARCMSR_ARC1214_IOP2DRV_MESSAGE_CMD_DONE) {
writel(ARCMSR_ARC1214_IOP2DRV_MESSAGE_CMD_DONE,
reg->outbound_doorbell);
return true;
}
msleep(10);
} /* max 20 seconds */
return false;
}
static bool arcmsr_hbaE_wait_msgint_ready(struct AdapterControlBlock *pACB)
{
int i;
uint32_t read_doorbell;
struct MessageUnit_E __iomem *phbcmu = pACB->pmuE;
for (i = 0; i < 2000; i++) {
read_doorbell = readl(&phbcmu->iobound_doorbell);
if ((read_doorbell ^ pACB->in_doorbell) & ARCMSR_HBEMU_IOP2DRV_MESSAGE_CMD_DONE) {
writel(0, &phbcmu->host_int_status); /*clear interrupt*/
pACB->in_doorbell = read_doorbell;
return true;
}
msleep(10);
} /* max 20 seconds */
return false;
}
static void arcmsr_hbaA_flush_cache(struct AdapterControlBlock *acb)
{
struct MessageUnit_A __iomem *reg = acb->pmuA;
int retry_count = 30;
writel(ARCMSR_INBOUND_MESG0_FLUSH_CACHE, &reg->inbound_msgaddr0);
do {
if (arcmsr_hbaA_wait_msgint_ready(acb))
break;
else {
retry_count--;
printk(KERN_NOTICE "arcmsr%d: wait 'flush adapter cache' \
timeout, retry count down = %d \n", acb->host->host_no, retry_count);
}
} while (retry_count != 0);
}
static void arcmsr_hbaB_flush_cache(struct AdapterControlBlock *acb)
{
struct MessageUnit_B *reg = acb->pmuB;
int retry_count = 30;
writel(ARCMSR_MESSAGE_FLUSH_CACHE, reg->drv2iop_doorbell);
do {
if (arcmsr_hbaB_wait_msgint_ready(acb))
break;
else {
retry_count--;
printk(KERN_NOTICE "arcmsr%d: wait 'flush adapter cache' \
timeout,retry count down = %d \n", acb->host->host_no, retry_count);
}
} while (retry_count != 0);
}
static void arcmsr_hbaC_flush_cache(struct AdapterControlBlock *pACB)
{
struct MessageUnit_C __iomem *reg = pACB->pmuC;
int retry_count = 30;/* enlarge wait flush adapter cache time: 10 minute */
writel(ARCMSR_INBOUND_MESG0_FLUSH_CACHE, &reg->inbound_msgaddr0);
writel(ARCMSR_HBCMU_DRV2IOP_MESSAGE_CMD_DONE, &reg->inbound_doorbell);
do {
if (arcmsr_hbaC_wait_msgint_ready(pACB)) {
break;
} else {
retry_count--;
printk(KERN_NOTICE "arcmsr%d: wait 'flush adapter cache' \
timeout,retry count down = %d \n", pACB->host->host_no, retry_count);
}
} while (retry_count != 0);
return;
}
static void arcmsr_hbaD_flush_cache(struct AdapterControlBlock *pACB)
{
int retry_count = 15;
struct MessageUnit_D *reg = pACB->pmuD;
writel(ARCMSR_INBOUND_MESG0_FLUSH_CACHE, reg->inbound_msgaddr0);
do {
if (arcmsr_hbaD_wait_msgint_ready(pACB))
break;
retry_count--;
pr_notice("arcmsr%d: wait 'flush adapter "
"cache' timeout, retry count down = %d\n",
pACB->host->host_no, retry_count);
} while (retry_count != 0);
}
static void arcmsr_hbaE_flush_cache(struct AdapterControlBlock *pACB)
{
int retry_count = 30;
struct MessageUnit_E __iomem *reg = pACB->pmuE;
writel(ARCMSR_INBOUND_MESG0_FLUSH_CACHE, &reg->inbound_msgaddr0);
pACB->out_doorbell ^= ARCMSR_HBEMU_DRV2IOP_MESSAGE_CMD_DONE;
writel(pACB->out_doorbell, &reg->iobound_doorbell);
do {
if (arcmsr_hbaE_wait_msgint_ready(pACB))
break;
retry_count--;
pr_notice("arcmsr%d: wait 'flush adapter "
"cache' timeout, retry count down = %d\n",
pACB->host->host_no, retry_count);
} while (retry_count != 0);
}
static void arcmsr_flush_adapter_cache(struct AdapterControlBlock *acb)
{
switch (acb->adapter_type) {
case ACB_ADAPTER_TYPE_A:
arcmsr_hbaA_flush_cache(acb);
break;
case ACB_ADAPTER_TYPE_B:
arcmsr_hbaB_flush_cache(acb);
break;
case ACB_ADAPTER_TYPE_C:
arcmsr_hbaC_flush_cache(acb);
break;
case ACB_ADAPTER_TYPE_D:
arcmsr_hbaD_flush_cache(acb);
break;
case ACB_ADAPTER_TYPE_E:
case ACB_ADAPTER_TYPE_F:
arcmsr_hbaE_flush_cache(acb);
break;
}
}
static void arcmsr_hbaB_assign_regAddr(struct AdapterControlBlock *acb)
{
struct MessageUnit_B *reg = acb->pmuB;
if (acb->pdev->device == PCI_DEVICE_ID_ARECA_1203) {
reg->drv2iop_doorbell = MEM_BASE0(ARCMSR_DRV2IOP_DOORBELL_1203);
reg->drv2iop_doorbell_mask = MEM_BASE0(ARCMSR_DRV2IOP_DOORBELL_MASK_1203);
reg->iop2drv_doorbell = MEM_BASE0(ARCMSR_IOP2DRV_DOORBELL_1203);
reg->iop2drv_doorbell_mask = MEM_BASE0(ARCMSR_IOP2DRV_DOORBELL_MASK_1203);
} else {
reg->drv2iop_doorbell= MEM_BASE0(ARCMSR_DRV2IOP_DOORBELL);
reg->drv2iop_doorbell_mask = MEM_BASE0(ARCMSR_DRV2IOP_DOORBELL_MASK);
reg->iop2drv_doorbell = MEM_BASE0(ARCMSR_IOP2DRV_DOORBELL);
reg->iop2drv_doorbell_mask = MEM_BASE0(ARCMSR_IOP2DRV_DOORBELL_MASK);
}
reg->message_wbuffer = MEM_BASE1(ARCMSR_MESSAGE_WBUFFER);
reg->message_rbuffer = MEM_BASE1(ARCMSR_MESSAGE_RBUFFER);
reg->message_rwbuffer = MEM_BASE1(ARCMSR_MESSAGE_RWBUFFER);
}
static void arcmsr_hbaD_assign_regAddr(struct AdapterControlBlock *acb)
{
struct MessageUnit_D *reg = acb->pmuD;
reg->chip_id = MEM_BASE0(ARCMSR_ARC1214_CHIP_ID);
reg->cpu_mem_config = MEM_BASE0(ARCMSR_ARC1214_CPU_MEMORY_CONFIGURATION);
reg->i2o_host_interrupt_mask = MEM_BASE0(ARCMSR_ARC1214_I2_HOST_INTERRUPT_MASK);
reg->sample_at_reset = MEM_BASE0(ARCMSR_ARC1214_SAMPLE_RESET);
reg->reset_request = MEM_BASE0(ARCMSR_ARC1214_RESET_REQUEST);
reg->host_int_status = MEM_BASE0(ARCMSR_ARC1214_MAIN_INTERRUPT_STATUS);
reg->pcief0_int_enable = MEM_BASE0(ARCMSR_ARC1214_PCIE_F0_INTERRUPT_ENABLE);
reg->inbound_msgaddr0 = MEM_BASE0(ARCMSR_ARC1214_INBOUND_MESSAGE0);
reg->inbound_msgaddr1 = MEM_BASE0(ARCMSR_ARC1214_INBOUND_MESSAGE1);
reg->outbound_msgaddr0 = MEM_BASE0(ARCMSR_ARC1214_OUTBOUND_MESSAGE0);
reg->outbound_msgaddr1 = MEM_BASE0(ARCMSR_ARC1214_OUTBOUND_MESSAGE1);
reg->inbound_doorbell = MEM_BASE0(ARCMSR_ARC1214_INBOUND_DOORBELL);
reg->outbound_doorbell = MEM_BASE0(ARCMSR_ARC1214_OUTBOUND_DOORBELL);
reg->outbound_doorbell_enable = MEM_BASE0(ARCMSR_ARC1214_OUTBOUND_DOORBELL_ENABLE);
reg->inboundlist_base_low = MEM_BASE0(ARCMSR_ARC1214_INBOUND_LIST_BASE_LOW);
reg->inboundlist_base_high = MEM_BASE0(ARCMSR_ARC1214_INBOUND_LIST_BASE_HIGH);
reg->inboundlist_write_pointer = MEM_BASE0(ARCMSR_ARC1214_INBOUND_LIST_WRITE_POINTER);
reg->outboundlist_base_low = MEM_BASE0(ARCMSR_ARC1214_OUTBOUND_LIST_BASE_LOW);
reg->outboundlist_base_high = MEM_BASE0(ARCMSR_ARC1214_OUTBOUND_LIST_BASE_HIGH);
reg->outboundlist_copy_pointer = MEM_BASE0(ARCMSR_ARC1214_OUTBOUND_LIST_COPY_POINTER);
reg->outboundlist_read_pointer = MEM_BASE0(ARCMSR_ARC1214_OUTBOUND_LIST_READ_POINTER);
reg->outboundlist_interrupt_cause = MEM_BASE0(ARCMSR_ARC1214_OUTBOUND_INTERRUPT_CAUSE);
reg->outboundlist_interrupt_enable = MEM_BASE0(ARCMSR_ARC1214_OUTBOUND_INTERRUPT_ENABLE);
reg->message_wbuffer = MEM_BASE0(ARCMSR_ARC1214_MESSAGE_WBUFFER);
reg->message_rbuffer = MEM_BASE0(ARCMSR_ARC1214_MESSAGE_RBUFFER);
reg->msgcode_rwbuffer = MEM_BASE0(ARCMSR_ARC1214_MESSAGE_RWBUFFER);
}
static void arcmsr_hbaF_assign_regAddr(struct AdapterControlBlock *acb)
{
dma_addr_t host_buffer_dma;
struct MessageUnit_F __iomem *pmuF;
memset(acb->dma_coherent2, 0xff, acb->completeQ_size);
acb->message_wbuffer = (uint32_t *)round_up((unsigned long)acb->dma_coherent2 +
acb->completeQ_size, 4);
acb->message_rbuffer = ((void *)acb->message_wbuffer) + 0x100;
acb->msgcode_rwbuffer = ((void *)acb->message_wbuffer) + 0x200;
memset((void *)acb->message_wbuffer, 0, MESG_RW_BUFFER_SIZE);
host_buffer_dma = round_up(acb->dma_coherent_handle2 + acb->completeQ_size, 4);
pmuF = acb->pmuF;
/* host buffer low address, bit0:1 all buffer active */
writel(lower_32_bits(host_buffer_dma | 1), &pmuF->inbound_msgaddr0);
/* host buffer high address */
writel(upper_32_bits(host_buffer_dma), &pmuF->inbound_msgaddr1);
/* set host buffer physical address */
writel(ARCMSR_HBFMU_DOORBELL_SYNC1, &pmuF->iobound_doorbell);
}
static bool arcmsr_alloc_io_queue(struct AdapterControlBlock *acb)
{
bool rtn = true;
void *dma_coherent;
dma_addr_t dma_coherent_handle;
struct pci_dev *pdev = acb->pdev;
switch (acb->adapter_type) {
case ACB_ADAPTER_TYPE_B: {
acb->ioqueue_size = roundup(sizeof(struct MessageUnit_B), 32);
dma_coherent = dma_alloc_coherent(&pdev->dev, acb->ioqueue_size,
&dma_coherent_handle, GFP_KERNEL);
if (!dma_coherent) {
pr_notice("arcmsr%d: DMA allocation failed\n", acb->host->host_no);
return false;
}
acb->dma_coherent_handle2 = dma_coherent_handle;
acb->dma_coherent2 = dma_coherent;
acb->pmuB = (struct MessageUnit_B *)dma_coherent;
arcmsr_hbaB_assign_regAddr(acb);
}
break;
case ACB_ADAPTER_TYPE_D: {
acb->ioqueue_size = roundup(sizeof(struct MessageUnit_D), 32);
dma_coherent = dma_alloc_coherent(&pdev->dev, acb->ioqueue_size,
&dma_coherent_handle, GFP_KERNEL);
if (!dma_coherent) {
pr_notice("arcmsr%d: DMA allocation failed\n", acb->host->host_no);
return false;
}
acb->dma_coherent_handle2 = dma_coherent_handle;
acb->dma_coherent2 = dma_coherent;
acb->pmuD = (struct MessageUnit_D *)dma_coherent;
arcmsr_hbaD_assign_regAddr(acb);
}
break;
case ACB_ADAPTER_TYPE_E: {
uint32_t completeQ_size;
completeQ_size = sizeof(struct deliver_completeQ) * ARCMSR_MAX_HBE_DONEQUEUE + 128;
acb->ioqueue_size = roundup(completeQ_size, 32);
dma_coherent = dma_alloc_coherent(&pdev->dev, acb->ioqueue_size,
&dma_coherent_handle, GFP_KERNEL);
if (!dma_coherent){
pr_notice("arcmsr%d: DMA allocation failed\n", acb->host->host_no);
return false;
}
acb->dma_coherent_handle2 = dma_coherent_handle;
acb->dma_coherent2 = dma_coherent;
acb->pCompletionQ = dma_coherent;
acb->completionQ_entry = acb->ioqueue_size / sizeof(struct deliver_completeQ);
acb->doneq_index = 0;
}
break;
case ACB_ADAPTER_TYPE_F: {
uint32_t QueueDepth;
uint32_t depthTbl[] = {256, 512, 1024, 128, 64, 32};
arcmsr_wait_firmware_ready(acb);
QueueDepth = depthTbl[readl(&acb->pmuF->outbound_msgaddr1) & 7];
acb->completeQ_size = sizeof(struct deliver_completeQ) * QueueDepth + 128;
acb->ioqueue_size = roundup(acb->completeQ_size + MESG_RW_BUFFER_SIZE, 32);
dma_coherent = dma_alloc_coherent(&pdev->dev, acb->ioqueue_size,
&dma_coherent_handle, GFP_KERNEL);
if (!dma_coherent) {
pr_notice("arcmsr%d: DMA allocation failed\n", acb->host->host_no);
return false;
}
acb->dma_coherent_handle2 = dma_coherent_handle;
acb->dma_coherent2 = dma_coherent;
acb->pCompletionQ = dma_coherent;
acb->completionQ_entry = acb->completeQ_size / sizeof(struct deliver_completeQ);
acb->doneq_index = 0;
arcmsr_hbaF_assign_regAddr(acb);
}
break;
default:
break;
}
return rtn;
}
static int arcmsr_alloc_ccb_pool(struct AdapterControlBlock *acb)
{
struct pci_dev *pdev = acb->pdev;
void *dma_coherent;
dma_addr_t dma_coherent_handle;
struct CommandControlBlock *ccb_tmp;
int i = 0, j = 0;
unsigned long cdb_phyaddr, next_ccb_phy;
unsigned long roundup_ccbsize;
unsigned long max_xfer_len;
unsigned long max_sg_entrys;
uint32_t firm_config_version, curr_phy_upper32;
for (i = 0; i < ARCMSR_MAX_TARGETID; i++)
for (j = 0; j < ARCMSR_MAX_TARGETLUN; j++)
acb->devstate[i][j] = ARECA_RAID_GONE;
max_xfer_len = ARCMSR_MAX_XFER_LEN;
max_sg_entrys = ARCMSR_DEFAULT_SG_ENTRIES;
firm_config_version = acb->firm_cfg_version;
if((firm_config_version & 0xFF) >= 3){
max_xfer_len = (ARCMSR_CDB_SG_PAGE_LENGTH << ((firm_config_version >> 8) & 0xFF)) * 1024;/* max 4M byte */
max_sg_entrys = (max_xfer_len/4096);
}
acb->host->max_sectors = max_xfer_len/512;
acb->host->sg_tablesize = max_sg_entrys;
roundup_ccbsize = roundup(sizeof(struct CommandControlBlock) + (max_sg_entrys - 1) * sizeof(struct SG64ENTRY), 32);
acb->uncache_size = roundup_ccbsize * acb->maxFreeCCB;
if (acb->adapter_type != ACB_ADAPTER_TYPE_F)
acb->uncache_size += acb->ioqueue_size;
dma_coherent = dma_alloc_coherent(&pdev->dev, acb->uncache_size, &dma_coherent_handle, GFP_KERNEL);
if(!dma_coherent){
printk(KERN_NOTICE "arcmsr%d: dma_alloc_coherent got error\n", acb->host->host_no);
return -ENOMEM;
}
acb->dma_coherent = dma_coherent;
acb->dma_coherent_handle = dma_coherent_handle;
memset(dma_coherent, 0, acb->uncache_size);
acb->ccbsize = roundup_ccbsize;
ccb_tmp = dma_coherent;
curr_phy_upper32 = upper_32_bits(dma_coherent_handle);
acb->vir2phy_offset = (unsigned long)dma_coherent - (unsigned long)dma_coherent_handle;
for(i = 0; i < acb->maxFreeCCB; i++){
cdb_phyaddr = (unsigned long)dma_coherent_handle + offsetof(struct CommandControlBlock, arcmsr_cdb);
switch (acb->adapter_type) {
case ACB_ADAPTER_TYPE_A:
case ACB_ADAPTER_TYPE_B:
ccb_tmp->cdb_phyaddr = cdb_phyaddr >> 5;
break;
case ACB_ADAPTER_TYPE_C:
case ACB_ADAPTER_TYPE_D:
case ACB_ADAPTER_TYPE_E:
case ACB_ADAPTER_TYPE_F:
ccb_tmp->cdb_phyaddr = cdb_phyaddr;
break;
}
acb->pccb_pool[i] = ccb_tmp;
ccb_tmp->acb = acb;
ccb_tmp->smid = (u32)i << 16;
INIT_LIST_HEAD(&ccb_tmp->list);
next_ccb_phy = dma_coherent_handle + roundup_ccbsize;
if (upper_32_bits(next_ccb_phy) != curr_phy_upper32) {
acb->maxFreeCCB = i;
acb->host->can_queue = i;
break;
}
else
list_add_tail(&ccb_tmp->list, &acb->ccb_free_list);
ccb_tmp = (struct CommandControlBlock *)((unsigned long)ccb_tmp + roundup_ccbsize);
dma_coherent_handle = next_ccb_phy;
}
if (acb->adapter_type != ACB_ADAPTER_TYPE_F) {
acb->dma_coherent_handle2 = dma_coherent_handle;
acb->dma_coherent2 = ccb_tmp;
}
switch (acb->adapter_type) {
case ACB_ADAPTER_TYPE_B:
acb->pmuB = (struct MessageUnit_B *)acb->dma_coherent2;
arcmsr_hbaB_assign_regAddr(acb);
break;
case ACB_ADAPTER_TYPE_D:
acb->pmuD = (struct MessageUnit_D *)acb->dma_coherent2;
arcmsr_hbaD_assign_regAddr(acb);
break;
case ACB_ADAPTER_TYPE_E:
acb->pCompletionQ = acb->dma_coherent2;
acb->completionQ_entry = acb->ioqueue_size / sizeof(struct deliver_completeQ);
acb->doneq_index = 0;
break;
}
return 0;
}
static void arcmsr_message_isr_bh_fn(struct work_struct *work)
{
struct AdapterControlBlock *acb = container_of(work,
struct AdapterControlBlock, arcmsr_do_message_isr_bh);
char *acb_dev_map = (char *)acb->device_map;
uint32_t __iomem *signature = NULL;
char __iomem *devicemap = NULL;
int target, lun;
struct scsi_device *psdev;
char diff, temp;
switch (acb->adapter_type) {
case ACB_ADAPTER_TYPE_A: {
struct MessageUnit_A __iomem *reg = acb->pmuA;
signature = (uint32_t __iomem *)(&reg->message_rwbuffer[0]);
devicemap = (char __iomem *)(&reg->message_rwbuffer[21]);
break;
}
case ACB_ADAPTER_TYPE_B: {
struct MessageUnit_B *reg = acb->pmuB;
signature = (uint32_t __iomem *)(&reg->message_rwbuffer[0]);
devicemap = (char __iomem *)(&reg->message_rwbuffer[21]);
break;
}
case ACB_ADAPTER_TYPE_C: {
struct MessageUnit_C __iomem *reg = acb->pmuC;
signature = (uint32_t __iomem *)(&reg->msgcode_rwbuffer[0]);
devicemap = (char __iomem *)(&reg->msgcode_rwbuffer[21]);
break;
}
case ACB_ADAPTER_TYPE_D: {
struct MessageUnit_D *reg = acb->pmuD;
signature = (uint32_t __iomem *)(&reg->msgcode_rwbuffer[0]);
devicemap = (char __iomem *)(&reg->msgcode_rwbuffer[21]);
break;
}
case ACB_ADAPTER_TYPE_E: {
struct MessageUnit_E __iomem *reg = acb->pmuE;
signature = (uint32_t __iomem *)(&reg->msgcode_rwbuffer[0]);
devicemap = (char __iomem *)(&reg->msgcode_rwbuffer[21]);
break;
}
case ACB_ADAPTER_TYPE_F: {
signature = (uint32_t __iomem *)(&acb->msgcode_rwbuffer[0]);
devicemap = (char __iomem *)(&acb->msgcode_rwbuffer[21]);
break;
}
}
if (readl(signature) != ARCMSR_SIGNATURE_GET_CONFIG)
return;
for (target = 0; target < ARCMSR_MAX_TARGETID - 1;
target++) {
temp = readb(devicemap);
diff = (*acb_dev_map) ^ temp;
if (diff != 0) {
*acb_dev_map = temp;
for (lun = 0; lun < ARCMSR_MAX_TARGETLUN;
lun++) {
if ((diff & 0x01) == 1 &&
(temp & 0x01) == 1) {
scsi_add_device(acb->host,
0, target, lun);
} else if ((diff & 0x01) == 1
&& (temp & 0x01) == 0) {
psdev = scsi_device_lookup(acb->host,
0, target, lun);
if (psdev != NULL) {
scsi_remove_device(psdev);
scsi_device_put(psdev);
}
}
temp >>= 1;
diff >>= 1;
}
}
devicemap++;
acb_dev_map++;
}
acb->acb_flags &= ~ACB_F_MSG_GET_CONFIG;
}
static int
arcmsr_request_irq(struct pci_dev *pdev, struct AdapterControlBlock *acb)
{
unsigned long flags;
int nvec, i;
if (msix_enable == 0)
goto msi_int0;
nvec = pci_alloc_irq_vectors(pdev, 1, ARCMST_NUM_MSIX_VECTORS,
PCI_IRQ_MSIX);
if (nvec > 0) {
pr_info("arcmsr%d: msi-x enabled\n", acb->host->host_no);
flags = 0;
} else {
msi_int0:
if (msi_enable == 1) {
nvec = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_MSI);
if (nvec == 1) {
dev_info(&pdev->dev, "msi enabled\n");
goto msi_int1;
}
}
nvec = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_LEGACY);
if (nvec < 1)
return FAILED;
msi_int1:
flags = IRQF_SHARED;
}
acb->vector_count = nvec;
for (i = 0; i < nvec; i++) {
if (request_irq(pci_irq_vector(pdev, i), arcmsr_do_interrupt,
flags, "arcmsr", acb)) {
pr_warn("arcmsr%d: request_irq =%d failed!\n",
acb->host->host_no, pci_irq_vector(pdev, i));
goto out_free_irq;
}
}
return SUCCESS;
out_free_irq:
while (--i >= 0)
free_irq(pci_irq_vector(pdev, i), acb);
pci_free_irq_vectors(pdev);
return FAILED;
}
static void arcmsr_init_get_devmap_timer(struct AdapterControlBlock *pacb)
{
INIT_WORK(&pacb->arcmsr_do_message_isr_bh, arcmsr_message_isr_bh_fn);
pacb->fw_flag = FW_NORMAL;
timer_setup(&pacb->eternal_timer, arcmsr_request_device_map, 0);
pacb->eternal_timer.expires = jiffies + msecs_to_jiffies(6 * HZ);
add_timer(&pacb->eternal_timer);
}
static void arcmsr_init_set_datetime_timer(struct AdapterControlBlock *pacb)
{
timer_setup(&pacb->refresh_timer, arcmsr_set_iop_datetime, 0);
pacb->refresh_timer.expires = jiffies + msecs_to_jiffies(60 * 1000);
add_timer(&pacb->refresh_timer);
}
static int arcmsr_set_dma_mask(struct AdapterControlBlock *acb)
{
struct pci_dev *pcidev = acb->pdev;
if (IS_DMA64) {
if (((acb->adapter_type == ACB_ADAPTER_TYPE_A) && !dma_mask_64) ||
dma_set_mask(&pcidev->dev, DMA_BIT_MASK(64)))
goto dma32;
if (dma_set_coherent_mask(&pcidev->dev, DMA_BIT_MASK(64)) ||
dma_set_mask_and_coherent(&pcidev->dev, DMA_BIT_MASK(64))) {
printk("arcmsr: set DMA 64 mask failed\n");
return -ENXIO;
}
} else {
dma32:
if (dma_set_mask(&pcidev->dev, DMA_BIT_MASK(32)) ||
dma_set_coherent_mask(&pcidev->dev, DMA_BIT_MASK(32)) ||
dma_set_mask_and_coherent(&pcidev->dev, DMA_BIT_MASK(32))) {
printk("arcmsr: set DMA 32-bit mask failed\n");
return -ENXIO;
}
}
return 0;
}
static int arcmsr_probe(struct pci_dev *pdev, const struct pci_device_id *id)
{
struct Scsi_Host *host;
struct AdapterControlBlock *acb;
uint8_t bus,dev_fun;
int error;
error = pci_enable_device(pdev);
if(error){
return -ENODEV;
}
host = scsi_host_alloc(&arcmsr_scsi_host_template, sizeof(struct AdapterControlBlock));
if(!host){
goto pci_disable_dev;
}
init_waitqueue_head(&wait_q);
bus = pdev->bus->number;
dev_fun = pdev->devfn;
acb = (struct AdapterControlBlock *) host->hostdata;
memset(acb,0,sizeof(struct AdapterControlBlock));
acb->pdev = pdev;
acb->adapter_type = id->driver_data;
if (arcmsr_set_dma_mask(acb))
goto scsi_host_release;
acb->host = host;
host->max_lun = ARCMSR_MAX_TARGETLUN;
host->max_id = ARCMSR_MAX_TARGETID; /*16:8*/
host->max_cmd_len = 16; /*this is issue of 64bit LBA ,over 2T byte*/
if ((host_can_queue < ARCMSR_MIN_OUTSTANDING_CMD) || (host_can_queue > ARCMSR_MAX_OUTSTANDING_CMD))
host_can_queue = ARCMSR_DEFAULT_OUTSTANDING_CMD;
host->can_queue = host_can_queue; /* max simultaneous cmds */
if ((cmd_per_lun < ARCMSR_MIN_CMD_PERLUN) || (cmd_per_lun > ARCMSR_MAX_CMD_PERLUN))
cmd_per_lun = ARCMSR_DEFAULT_CMD_PERLUN;
host->cmd_per_lun = cmd_per_lun;
host->this_id = ARCMSR_SCSI_INITIATOR_ID;
host->unique_id = (bus << 8) | dev_fun;
pci_set_drvdata(pdev, host);
pci_set_master(pdev);
error = pci_request_regions(pdev, "arcmsr");
if(error){
goto scsi_host_release;
}
spin_lock_init(&acb->eh_lock);
spin_lock_init(&acb->ccblist_lock);
spin_lock_init(&acb->postq_lock);
spin_lock_init(&acb->doneq_lock);
spin_lock_init(&acb->rqbuffer_lock);
spin_lock_init(&acb->wqbuffer_lock);
acb->acb_flags |= (ACB_F_MESSAGE_WQBUFFER_CLEARED |
ACB_F_MESSAGE_RQBUFFER_CLEARED |
ACB_F_MESSAGE_WQBUFFER_READED);
acb->acb_flags &= ~ACB_F_SCSISTOPADAPTER;
INIT_LIST_HEAD(&acb->ccb_free_list);
error = arcmsr_remap_pciregion(acb);
if(!error){
goto pci_release_regs;
}
error = arcmsr_alloc_io_queue(acb);
if (!error)
goto unmap_pci_region;
error = arcmsr_get_firmware_spec(acb);
if(!error){
goto free_hbb_mu;
}
if (acb->adapter_type != ACB_ADAPTER_TYPE_F)
arcmsr_free_io_queue(acb);
error = arcmsr_alloc_ccb_pool(acb);
if(error){
goto unmap_pci_region;
}
error = scsi_add_host(host, &pdev->dev);
if(error){
goto free_ccb_pool;
}
if (arcmsr_request_irq(pdev, acb) == FAILED)
goto scsi_host_remove;
arcmsr_iop_init(acb);
arcmsr_init_get_devmap_timer(acb);
if (set_date_time)
arcmsr_init_set_datetime_timer(acb);
if(arcmsr_alloc_sysfs_attr(acb))
goto out_free_sysfs;
scsi_scan_host(host);
return 0;
out_free_sysfs:
if (set_date_time)
del_timer_sync(&acb->refresh_timer);
del_timer_sync(&acb->eternal_timer);
flush_work(&acb->arcmsr_do_message_isr_bh);
arcmsr_stop_adapter_bgrb(acb);
arcmsr_flush_adapter_cache(acb);
arcmsr_free_irq(pdev, acb);
scsi_host_remove:
scsi_remove_host(host);
free_ccb_pool:
arcmsr_free_ccb_pool(acb);
goto unmap_pci_region;
free_hbb_mu:
arcmsr_free_io_queue(acb);
unmap_pci_region:
arcmsr_unmap_pciregion(acb);
pci_release_regs:
pci_release_regions(pdev);
scsi_host_release:
scsi_host_put(host);
pci_disable_dev:
pci_disable_device(pdev);
return -ENODEV;
}
static void arcmsr_free_irq(struct pci_dev *pdev,
struct AdapterControlBlock *acb)
{
int i;
for (i = 0; i < acb->vector_count; i++)
free_irq(pci_irq_vector(pdev, i), acb);
pci_free_irq_vectors(pdev);
}
static int __maybe_unused arcmsr_suspend(struct device *dev)
{
struct pci_dev *pdev = to_pci_dev(dev);
struct Scsi_Host *host = pci_get_drvdata(pdev);
struct AdapterControlBlock *acb =
(struct AdapterControlBlock *)host->hostdata;
arcmsr_disable_outbound_ints(acb);
arcmsr_free_irq(pdev, acb);
del_timer_sync(&acb->eternal_timer);
if (set_date_time)
del_timer_sync(&acb->refresh_timer);
flush_work(&acb->arcmsr_do_message_isr_bh);
arcmsr_stop_adapter_bgrb(acb);
arcmsr_flush_adapter_cache(acb);
return 0;
}
static int __maybe_unused arcmsr_resume(struct device *dev)
{
struct pci_dev *pdev = to_pci_dev(dev);
struct Scsi_Host *host = pci_get_drvdata(pdev);
struct AdapterControlBlock *acb =
(struct AdapterControlBlock *)host->hostdata;
if (arcmsr_set_dma_mask(acb))
goto controller_unregister;
if (arcmsr_request_irq(pdev, acb) == FAILED)
goto controller_stop;
switch (acb->adapter_type) {
case ACB_ADAPTER_TYPE_B: {
struct MessageUnit_B *reg = acb->pmuB;
uint32_t i;
for (i = 0; i < ARCMSR_MAX_HBB_POSTQUEUE; i++) {
reg->post_qbuffer[i] = 0;
reg->done_qbuffer[i] = 0;
}
reg->postq_index = 0;
reg->doneq_index = 0;
break;
}
case ACB_ADAPTER_TYPE_E:
writel(0, &acb->pmuE->host_int_status);
writel(ARCMSR_HBEMU_DOORBELL_SYNC, &acb->pmuE->iobound_doorbell);
acb->in_doorbell = 0;
acb->out_doorbell = 0;
acb->doneq_index = 0;
break;
case ACB_ADAPTER_TYPE_F:
writel(0, &acb->pmuF->host_int_status);
writel(ARCMSR_HBFMU_DOORBELL_SYNC, &acb->pmuF->iobound_doorbell);
acb->in_doorbell = 0;
acb->out_doorbell = 0;
acb->doneq_index = 0;
arcmsr_hbaF_assign_regAddr(acb);
break;
}
arcmsr_iop_init(acb);
arcmsr_init_get_devmap_timer(acb);
if (set_date_time)
arcmsr_init_set_datetime_timer(acb);
return 0;
controller_stop:
arcmsr_stop_adapter_bgrb(acb);
arcmsr_flush_adapter_cache(acb);
controller_unregister:
scsi_remove_host(host);
arcmsr_free_ccb_pool(acb);
if (acb->adapter_type == ACB_ADAPTER_TYPE_F)
arcmsr_free_io_queue(acb);
arcmsr_unmap_pciregion(acb);
scsi_host_put(host);
return -ENODEV;
}
static uint8_t arcmsr_hbaA_abort_allcmd(struct AdapterControlBlock *acb)
{
struct MessageUnit_A __iomem *reg = acb->pmuA;
writel(ARCMSR_INBOUND_MESG0_ABORT_CMD, &reg->inbound_msgaddr0);
if (!arcmsr_hbaA_wait_msgint_ready(acb)) {
printk(KERN_NOTICE
"arcmsr%d: wait 'abort all outstanding command' timeout\n"
, acb->host->host_no);
return false;
}
return true;
}
static uint8_t arcmsr_hbaB_abort_allcmd(struct AdapterControlBlock *acb)
{
struct MessageUnit_B *reg = acb->pmuB;
writel(ARCMSR_MESSAGE_ABORT_CMD, reg->drv2iop_doorbell);
if (!arcmsr_hbaB_wait_msgint_ready(acb)) {
printk(KERN_NOTICE
"arcmsr%d: wait 'abort all outstanding command' timeout\n"
, acb->host->host_no);
return false;
}
return true;
}
static uint8_t arcmsr_hbaC_abort_allcmd(struct AdapterControlBlock *pACB)
{
struct MessageUnit_C __iomem *reg = pACB->pmuC;
writel(ARCMSR_INBOUND_MESG0_ABORT_CMD, &reg->inbound_msgaddr0);
writel(ARCMSR_HBCMU_DRV2IOP_MESSAGE_CMD_DONE, &reg->inbound_doorbell);
if (!arcmsr_hbaC_wait_msgint_ready(pACB)) {
printk(KERN_NOTICE
"arcmsr%d: wait 'abort all outstanding command' timeout\n"
, pACB->host->host_no);
return false;
}
return true;
}
static uint8_t arcmsr_hbaD_abort_allcmd(struct AdapterControlBlock *pACB)
{
struct MessageUnit_D *reg = pACB->pmuD;
writel(ARCMSR_INBOUND_MESG0_ABORT_CMD, reg->inbound_msgaddr0);
if (!arcmsr_hbaD_wait_msgint_ready(pACB)) {
pr_notice("arcmsr%d: wait 'abort all outstanding "
"command' timeout\n", pACB->host->host_no);
return false;
}
return true;
}
static uint8_t arcmsr_hbaE_abort_allcmd(struct AdapterControlBlock *pACB)
{
struct MessageUnit_E __iomem *reg = pACB->pmuE;
writel(ARCMSR_INBOUND_MESG0_ABORT_CMD, &reg->inbound_msgaddr0);
pACB->out_doorbell ^= ARCMSR_HBEMU_DRV2IOP_MESSAGE_CMD_DONE;
writel(pACB->out_doorbell, &reg->iobound_doorbell);
if (!arcmsr_hbaE_wait_msgint_ready(pACB)) {
pr_notice("arcmsr%d: wait 'abort all outstanding "
"command' timeout\n", pACB->host->host_no);
return false;
}
return true;
}
static uint8_t arcmsr_abort_allcmd(struct AdapterControlBlock *acb)
{
uint8_t rtnval = 0;
switch (acb->adapter_type) {
case ACB_ADAPTER_TYPE_A:
rtnval = arcmsr_hbaA_abort_allcmd(acb);
break;
case ACB_ADAPTER_TYPE_B:
rtnval = arcmsr_hbaB_abort_allcmd(acb);
break;
case ACB_ADAPTER_TYPE_C:
rtnval = arcmsr_hbaC_abort_allcmd(acb);
break;
case ACB_ADAPTER_TYPE_D:
rtnval = arcmsr_hbaD_abort_allcmd(acb);
break;
case ACB_ADAPTER_TYPE_E:
case ACB_ADAPTER_TYPE_F:
rtnval = arcmsr_hbaE_abort_allcmd(acb);
break;
}
return rtnval;
}
static void arcmsr_pci_unmap_dma(struct CommandControlBlock *ccb)
{
struct scsi_cmnd *pcmd = ccb->pcmd;
scsi_dma_unmap(pcmd);
}
static void arcmsr_ccb_complete(struct CommandControlBlock *ccb)
{
struct AdapterControlBlock *acb = ccb->acb;
struct scsi_cmnd *pcmd = ccb->pcmd;
unsigned long flags;
atomic_dec(&acb->ccboutstandingcount);
arcmsr_pci_unmap_dma(ccb);
ccb->startdone = ARCMSR_CCB_DONE;
spin_lock_irqsave(&acb->ccblist_lock, flags);
list_add_tail(&ccb->list, &acb->ccb_free_list);
spin_unlock_irqrestore(&acb->ccblist_lock, flags);
pcmd->scsi_done(pcmd);
}
static void arcmsr_report_sense_info(struct CommandControlBlock *ccb)
{
struct scsi_cmnd *pcmd = ccb->pcmd;
struct SENSE_DATA *sensebuffer = (struct SENSE_DATA *)pcmd->sense_buffer;
pcmd->result = (DID_OK << 16) | (CHECK_CONDITION << 1);
if (sensebuffer) {
int sense_data_length =
sizeof(struct SENSE_DATA) < SCSI_SENSE_BUFFERSIZE
? sizeof(struct SENSE_DATA) : SCSI_SENSE_BUFFERSIZE;
memset(sensebuffer, 0, SCSI_SENSE_BUFFERSIZE);
memcpy(sensebuffer, ccb->arcmsr_cdb.SenseData, sense_data_length);
sensebuffer->ErrorCode = SCSI_SENSE_CURRENT_ERRORS;
sensebuffer->Valid = 1;
pcmd->result |= (DRIVER_SENSE << 24);
}
}
static u32 arcmsr_disable_outbound_ints(struct AdapterControlBlock *acb)
{
u32 orig_mask = 0;
switch (acb->adapter_type) {
case ACB_ADAPTER_TYPE_A : {
struct MessageUnit_A __iomem *reg = acb->pmuA;
orig_mask = readl(&reg->outbound_intmask);
writel(orig_mask|ARCMSR_MU_OUTBOUND_ALL_INTMASKENABLE, \
&reg->outbound_intmask);
}
break;
case ACB_ADAPTER_TYPE_B : {
struct MessageUnit_B *reg = acb->pmuB;
orig_mask = readl(reg->iop2drv_doorbell_mask);
writel(0, reg->iop2drv_doorbell_mask);
}
break;
case ACB_ADAPTER_TYPE_C:{
struct MessageUnit_C __iomem *reg = acb->pmuC;
/* disable all outbound interrupt */
orig_mask = readl(&reg->host_int_mask); /* disable outbound message0 int */
writel(orig_mask|ARCMSR_HBCMU_ALL_INTMASKENABLE, &reg->host_int_mask);
}
break;
case ACB_ADAPTER_TYPE_D: {
struct MessageUnit_D *reg = acb->pmuD;
/* disable all outbound interrupt */
writel(ARCMSR_ARC1214_ALL_INT_DISABLE, reg->pcief0_int_enable);
}
break;
case ACB_ADAPTER_TYPE_E:
case ACB_ADAPTER_TYPE_F: {
struct MessageUnit_E __iomem *reg = acb->pmuE;
orig_mask = readl(&reg->host_int_mask);
writel(orig_mask | ARCMSR_HBEMU_OUTBOUND_DOORBELL_ISR | ARCMSR_HBEMU_OUTBOUND_POSTQUEUE_ISR, &reg->host_int_mask);
readl(&reg->host_int_mask); /* Dummy readl to force pci flush */
}
break;
}
return orig_mask;
}
static void arcmsr_report_ccb_state(struct AdapterControlBlock *acb,
struct CommandControlBlock *ccb, bool error)
{
uint8_t id, lun;
id = ccb->pcmd->device->id;
lun = ccb->pcmd->device->lun;
if (!error) {
if (acb->devstate[id][lun] == ARECA_RAID_GONE)
acb->devstate[id][lun] = ARECA_RAID_GOOD;
ccb->pcmd->result = DID_OK << 16;
arcmsr_ccb_complete(ccb);
}else{
switch (ccb->arcmsr_cdb.DeviceStatus) {
case ARCMSR_DEV_SELECT_TIMEOUT: {
acb->devstate[id][lun] = ARECA_RAID_GONE;
ccb->pcmd->result = DID_NO_CONNECT << 16;
arcmsr_ccb_complete(ccb);
}
break;
case ARCMSR_DEV_ABORTED:
case ARCMSR_DEV_INIT_FAIL: {
acb->devstate[id][lun] = ARECA_RAID_GONE;
ccb->pcmd->result = DID_BAD_TARGET << 16;
arcmsr_ccb_complete(ccb);
}
break;
case ARCMSR_DEV_CHECK_CONDITION: {
acb->devstate[id][lun] = ARECA_RAID_GOOD;
arcmsr_report_sense_info(ccb);
arcmsr_ccb_complete(ccb);
}
break;
default:
printk(KERN_NOTICE
"arcmsr%d: scsi id = %d lun = %d isr get command error done, \
but got unknown DeviceStatus = 0x%x \n"
, acb->host->host_no
, id
, lun
, ccb->arcmsr_cdb.DeviceStatus);
acb->devstate[id][lun] = ARECA_RAID_GONE;
ccb->pcmd->result = DID_NO_CONNECT << 16;
arcmsr_ccb_complete(ccb);
break;
}
}
}
static void arcmsr_drain_donequeue(struct AdapterControlBlock *acb, struct CommandControlBlock *pCCB, bool error)
{
if ((pCCB->acb != acb) || (pCCB->startdone != ARCMSR_CCB_START)) {
if (pCCB->startdone == ARCMSR_CCB_ABORTED) {
struct scsi_cmnd *abortcmd = pCCB->pcmd;
if (abortcmd) {
abortcmd->result |= DID_ABORT << 16;
arcmsr_ccb_complete(pCCB);
printk(KERN_NOTICE "arcmsr%d: pCCB ='0x%p' isr got aborted command \n",
acb->host->host_no, pCCB);
}
return;
}
printk(KERN_NOTICE "arcmsr%d: isr get an illegal ccb command \
done acb = '0x%p'"
"ccb = '0x%p' ccbacb = '0x%p' startdone = 0x%x"
" ccboutstandingcount = %d \n"
, acb->host->host_no
, acb
, pCCB
, pCCB->acb
, pCCB->startdone
, atomic_read(&acb->ccboutstandingcount));
return;
}
arcmsr_report_ccb_state(acb, pCCB, error);
}
static void arcmsr_done4abort_postqueue(struct AdapterControlBlock *acb)
{
int i = 0;
uint32_t flag_ccb;
struct ARCMSR_CDB *pARCMSR_CDB;
bool error;
struct CommandControlBlock *pCCB;
unsigned long ccb_cdb_phy;
switch (acb->adapter_type) {
case ACB_ADAPTER_TYPE_A: {
struct MessageUnit_A __iomem *reg = acb->pmuA;
uint32_t outbound_intstatus;
outbound_intstatus = readl(&reg->outbound_intstatus) &
acb->outbound_int_enable;
/*clear and abort all outbound posted Q*/
writel(outbound_intstatus, &reg->outbound_intstatus);/*clear interrupt*/
while(((flag_ccb = readl(&reg->outbound_queueport)) != 0xFFFFFFFF)
&& (i++ < acb->maxOutstanding)) {
ccb_cdb_phy = (flag_ccb << 5) & 0xffffffff;
if (acb->cdb_phyadd_hipart)
ccb_cdb_phy = ccb_cdb_phy | acb->cdb_phyadd_hipart;
pARCMSR_CDB = (struct ARCMSR_CDB *)(acb->vir2phy_offset + ccb_cdb_phy);
pCCB = container_of(pARCMSR_CDB, struct CommandControlBlock, arcmsr_cdb);
error = (flag_ccb & ARCMSR_CCBREPLY_FLAG_ERROR_MODE0) ? true : false;
arcmsr_drain_donequeue(acb, pCCB, error);
}
}
break;
case ACB_ADAPTER_TYPE_B: {
struct MessageUnit_B *reg = acb->pmuB;
/*clear all outbound posted Q*/
writel(ARCMSR_DOORBELL_INT_CLEAR_PATTERN, reg->iop2drv_doorbell); /* clear doorbell interrupt */
for (i = 0; i < ARCMSR_MAX_HBB_POSTQUEUE; i++) {
flag_ccb = reg->done_qbuffer[i];
if (flag_ccb != 0) {
reg->done_qbuffer[i] = 0;
ccb_cdb_phy = (flag_ccb << 5) & 0xffffffff;
if (acb->cdb_phyadd_hipart)
ccb_cdb_phy = ccb_cdb_phy | acb->cdb_phyadd_hipart;
pARCMSR_CDB = (struct ARCMSR_CDB *)(acb->vir2phy_offset + ccb_cdb_phy);
pCCB = container_of(pARCMSR_CDB, struct CommandControlBlock, arcmsr_cdb);
error = (flag_ccb & ARCMSR_CCBREPLY_FLAG_ERROR_MODE0) ? true : false;
arcmsr_drain_donequeue(acb, pCCB, error);
}
reg->post_qbuffer[i] = 0;
}
reg->doneq_index = 0;
reg->postq_index = 0;
}
break;
case ACB_ADAPTER_TYPE_C: {
struct MessageUnit_C __iomem *reg = acb->pmuC;
while ((readl(&reg->host_int_status) & ARCMSR_HBCMU_OUTBOUND_POSTQUEUE_ISR) && (i++ < acb->maxOutstanding)) {
/*need to do*/
flag_ccb = readl(&reg->outbound_queueport_low);
ccb_cdb_phy = (flag_ccb & 0xFFFFFFF0);
if (acb->cdb_phyadd_hipart)
ccb_cdb_phy = ccb_cdb_phy | acb->cdb_phyadd_hipart;
pARCMSR_CDB = (struct ARCMSR_CDB *)(acb->vir2phy_offset + ccb_cdb_phy);
pCCB = container_of(pARCMSR_CDB, struct CommandControlBlock, arcmsr_cdb);
error = (flag_ccb & ARCMSR_CCBREPLY_FLAG_ERROR_MODE1) ? true : false;
arcmsr_drain_donequeue(acb, pCCB, error);
}
}
break;
case ACB_ADAPTER_TYPE_D: {
struct MessageUnit_D *pmu = acb->pmuD;
uint32_t outbound_write_pointer;
uint32_t doneq_index, index_stripped, addressLow, residual, toggle;
unsigned long flags;
residual = atomic_read(&acb->ccboutstandingcount);
for (i = 0; i < residual; i++) {
spin_lock_irqsave(&acb->doneq_lock, flags);
outbound_write_pointer =
pmu->done_qbuffer[0].addressLow + 1;
doneq_index = pmu->doneq_index;
if ((doneq_index & 0xFFF) !=
(outbound_write_pointer & 0xFFF)) {
toggle = doneq_index & 0x4000;
index_stripped = (doneq_index & 0xFFF) + 1;
index_stripped %= ARCMSR_MAX_ARC1214_DONEQUEUE;
pmu->doneq_index = index_stripped ? (index_stripped | toggle) :
((toggle ^ 0x4000) + 1);
doneq_index = pmu->doneq_index;
spin_unlock_irqrestore(&acb->doneq_lock, flags);
addressLow = pmu->done_qbuffer[doneq_index &
0xFFF].addressLow;
ccb_cdb_phy = (addressLow & 0xFFFFFFF0);
if (acb->cdb_phyadd_hipart)
ccb_cdb_phy = ccb_cdb_phy | acb->cdb_phyadd_hipart;
pARCMSR_CDB = (struct ARCMSR_CDB *)
(acb->vir2phy_offset + ccb_cdb_phy);
pCCB = container_of(pARCMSR_CDB,
struct CommandControlBlock, arcmsr_cdb);
error = (addressLow &
ARCMSR_CCBREPLY_FLAG_ERROR_MODE1) ?
true : false;
arcmsr_drain_donequeue(acb, pCCB, error);
writel(doneq_index,
pmu->outboundlist_read_pointer);
} else {
spin_unlock_irqrestore(&acb->doneq_lock, flags);
mdelay(10);
}
}
pmu->postq_index = 0;
pmu->doneq_index = 0x40FF;
}
break;
case ACB_ADAPTER_TYPE_E:
arcmsr_hbaE_postqueue_isr(acb);
break;
case ACB_ADAPTER_TYPE_F:
arcmsr_hbaF_postqueue_isr(acb);
break;
}
}
static void arcmsr_remove_scsi_devices(struct AdapterControlBlock *acb)
{
char *acb_dev_map = (char *)acb->device_map;
int target, lun, i;
struct scsi_device *psdev;
struct CommandControlBlock *ccb;
char temp;
for (i = 0; i < acb->maxFreeCCB; i++) {
ccb = acb->pccb_pool[i];
if (ccb->startdone == ARCMSR_CCB_START) {
ccb->pcmd->result = DID_NO_CONNECT << 16;
arcmsr_pci_unmap_dma(ccb);
ccb->pcmd->scsi_done(ccb->pcmd);
}
}
for (target = 0; target < ARCMSR_MAX_TARGETID; target++) {
temp = *acb_dev_map;
if (temp) {
for (lun = 0; lun < ARCMSR_MAX_TARGETLUN; lun++) {
if (temp & 1) {
psdev = scsi_device_lookup(acb->host,
0, target, lun);
if (psdev != NULL) {
scsi_remove_device(psdev);
scsi_device_put(psdev);
}
}
temp >>= 1;
}
*acb_dev_map = 0;
}
acb_dev_map++;
}
}
static void arcmsr_free_pcidev(struct AdapterControlBlock *acb)
{
struct pci_dev *pdev;
struct Scsi_Host *host;
host = acb->host;
arcmsr_free_sysfs_attr(acb);
scsi_remove_host(host);
flush_work(&acb->arcmsr_do_message_isr_bh);
del_timer_sync(&acb->eternal_timer);
if (set_date_time)
del_timer_sync(&acb->refresh_timer);
pdev = acb->pdev;
arcmsr_free_irq(pdev, acb);
arcmsr_free_ccb_pool(acb);
if (acb->adapter_type == ACB_ADAPTER_TYPE_F)
arcmsr_free_io_queue(acb);
arcmsr_unmap_pciregion(acb);
pci_release_regions(pdev);
scsi_host_put(host);
pci_disable_device(pdev);
}
static void arcmsr_remove(struct pci_dev *pdev)
{
struct Scsi_Host *host = pci_get_drvdata(pdev);
struct AdapterControlBlock *acb =
(struct AdapterControlBlock *) host->hostdata;
int poll_count = 0;
uint16_t dev_id;
pci_read_config_word(pdev, PCI_DEVICE_ID, &dev_id);
if (dev_id == 0xffff) {
acb->acb_flags &= ~ACB_F_IOP_INITED;
acb->acb_flags |= ACB_F_ADAPTER_REMOVED;
arcmsr_remove_scsi_devices(acb);
arcmsr_free_pcidev(acb);
return;
}
arcmsr_free_sysfs_attr(acb);
scsi_remove_host(host);
flush_work(&acb->arcmsr_do_message_isr_bh);
del_timer_sync(&acb->eternal_timer);
if (set_date_time)
del_timer_sync(&acb->refresh_timer);
arcmsr_disable_outbound_ints(acb);
arcmsr_stop_adapter_bgrb(acb);
arcmsr_flush_adapter_cache(acb);
acb->acb_flags |= ACB_F_SCSISTOPADAPTER;
acb->acb_flags &= ~ACB_F_IOP_INITED;
for (poll_count = 0; poll_count < acb->maxOutstanding; poll_count++){
if (!atomic_read(&acb->ccboutstandingcount))
break;
arcmsr_interrupt(acb);/* FIXME: need spinlock */
msleep(25);
}
if (atomic_read(&acb->ccboutstandingcount)) {
int i;
arcmsr_abort_allcmd(acb);
arcmsr_done4abort_postqueue(acb);
for (i = 0; i < acb->maxFreeCCB; i++) {
struct CommandControlBlock *ccb = acb->pccb_pool[i];
if (ccb->startdone == ARCMSR_CCB_START) {
ccb->startdone = ARCMSR_CCB_ABORTED;
ccb->pcmd->result = DID_ABORT << 16;
arcmsr_ccb_complete(ccb);
}
}
}
arcmsr_free_irq(pdev, acb);
arcmsr_free_ccb_pool(acb);
if (acb->adapter_type == ACB_ADAPTER_TYPE_F)
arcmsr_free_io_queue(acb);
arcmsr_unmap_pciregion(acb);
pci_release_regions(pdev);
scsi_host_put(host);
pci_disable_device(pdev);
}
static void arcmsr_shutdown(struct pci_dev *pdev)
{
struct Scsi_Host *host = pci_get_drvdata(pdev);
struct AdapterControlBlock *acb =
(struct AdapterControlBlock *)host->hostdata;
if (acb->acb_flags & ACB_F_ADAPTER_REMOVED)
return;
del_timer_sync(&acb->eternal_timer);
if (set_date_time)
del_timer_sync(&acb->refresh_timer);
arcmsr_disable_outbound_ints(acb);
arcmsr_free_irq(pdev, acb);
flush_work(&acb->arcmsr_do_message_isr_bh);
arcmsr_stop_adapter_bgrb(acb);
arcmsr_flush_adapter_cache(acb);
}
static int arcmsr_module_init(void)
{
int error = 0;
error = pci_register_driver(&arcmsr_pci_driver);
return error;
}
static void arcmsr_module_exit(void)
{
pci_unregister_driver(&arcmsr_pci_driver);
}
module_init(arcmsr_module_init);
module_exit(arcmsr_module_exit);
static void arcmsr_enable_outbound_ints(struct AdapterControlBlock *acb,
u32 intmask_org)
{
u32 mask;
switch (acb->adapter_type) {
case ACB_ADAPTER_TYPE_A: {
struct MessageUnit_A __iomem *reg = acb->pmuA;
mask = intmask_org & ~(ARCMSR_MU_OUTBOUND_POSTQUEUE_INTMASKENABLE |
ARCMSR_MU_OUTBOUND_DOORBELL_INTMASKENABLE|
ARCMSR_MU_OUTBOUND_MESSAGE0_INTMASKENABLE);
writel(mask, &reg->outbound_intmask);
acb->outbound_int_enable = ~(intmask_org & mask) & 0x000000ff;
}
break;
case ACB_ADAPTER_TYPE_B: {
struct MessageUnit_B *reg = acb->pmuB;
mask = intmask_org | (ARCMSR_IOP2DRV_DATA_WRITE_OK |
ARCMSR_IOP2DRV_DATA_READ_OK |
ARCMSR_IOP2DRV_CDB_DONE |
ARCMSR_IOP2DRV_MESSAGE_CMD_DONE);
writel(mask, reg->iop2drv_doorbell_mask);
acb->outbound_int_enable = (intmask_org | mask) & 0x0000000f;
}
break;
case ACB_ADAPTER_TYPE_C: {
struct MessageUnit_C __iomem *reg = acb->pmuC;
mask = ~(ARCMSR_HBCMU_UTILITY_A_ISR_MASK | ARCMSR_HBCMU_OUTBOUND_DOORBELL_ISR_MASK|ARCMSR_HBCMU_OUTBOUND_POSTQUEUE_ISR_MASK);
writel(intmask_org & mask, &reg->host_int_mask);
acb->outbound_int_enable = ~(intmask_org & mask) & 0x0000000f;
}
break;
case ACB_ADAPTER_TYPE_D: {
struct MessageUnit_D *reg = acb->pmuD;
mask = ARCMSR_ARC1214_ALL_INT_ENABLE;
writel(intmask_org | mask, reg->pcief0_int_enable);
break;
}
case ACB_ADAPTER_TYPE_E:
case ACB_ADAPTER_TYPE_F: {
struct MessageUnit_E __iomem *reg = acb->pmuE;
mask = ~(ARCMSR_HBEMU_OUTBOUND_DOORBELL_ISR | ARCMSR_HBEMU_OUTBOUND_POSTQUEUE_ISR);
writel(intmask_org & mask, &reg->host_int_mask);
break;
}
}
}
static int arcmsr_build_ccb(struct AdapterControlBlock *acb,
struct CommandControlBlock *ccb, struct scsi_cmnd *pcmd)
{
struct ARCMSR_CDB *arcmsr_cdb = (struct ARCMSR_CDB *)&ccb->arcmsr_cdb;
int8_t *psge = (int8_t *)&arcmsr_cdb->u;
__le32 address_lo, address_hi;
int arccdbsize = 0x30;
__le32 length = 0;
int i;
struct scatterlist *sg;
int nseg;
ccb->pcmd = pcmd;
memset(arcmsr_cdb, 0, sizeof(struct ARCMSR_CDB));
arcmsr_cdb->TargetID = pcmd->device->id;
arcmsr_cdb->LUN = pcmd->device->lun;
arcmsr_cdb->Function = 1;
arcmsr_cdb->msgContext = 0;
memcpy(arcmsr_cdb->Cdb, pcmd->cmnd, pcmd->cmd_len);
nseg = scsi_dma_map(pcmd);
if (unlikely(nseg > acb->host->sg_tablesize || nseg < 0))
return FAILED;
scsi_for_each_sg(pcmd, sg, nseg, i) {
/* Get the physical address of the current data pointer */
length = cpu_to_le32(sg_dma_len(sg));
address_lo = cpu_to_le32(dma_addr_lo32(sg_dma_address(sg)));
address_hi = cpu_to_le32(dma_addr_hi32(sg_dma_address(sg)));
if (address_hi == 0) {
struct SG32ENTRY *pdma_sg = (struct SG32ENTRY *)psge;
pdma_sg->address = address_lo;
pdma_sg->length = length;
psge += sizeof (struct SG32ENTRY);
arccdbsize += sizeof (struct SG32ENTRY);
} else {
struct SG64ENTRY *pdma_sg = (struct SG64ENTRY *)psge;
pdma_sg->addresshigh = address_hi;
pdma_sg->address = address_lo;
pdma_sg->length = length|cpu_to_le32(IS_SG64_ADDR);
psge += sizeof (struct SG64ENTRY);
arccdbsize += sizeof (struct SG64ENTRY);
}
}
arcmsr_cdb->sgcount = (uint8_t)nseg;
arcmsr_cdb->DataLength = scsi_bufflen(pcmd);
arcmsr_cdb->msgPages = arccdbsize/0x100 + (arccdbsize % 0x100 ? 1 : 0);
if ( arccdbsize > 256)
arcmsr_cdb->Flags |= ARCMSR_CDB_FLAG_SGL_BSIZE;
if (pcmd->sc_data_direction == DMA_TO_DEVICE)
arcmsr_cdb->Flags |= ARCMSR_CDB_FLAG_WRITE;
ccb->arc_cdb_size = arccdbsize;
return SUCCESS;
}
static void arcmsr_post_ccb(struct AdapterControlBlock *acb, struct CommandControlBlock *ccb)
{
uint32_t cdb_phyaddr = ccb->cdb_phyaddr;
struct ARCMSR_CDB *arcmsr_cdb = (struct ARCMSR_CDB *)&ccb->arcmsr_cdb;
atomic_inc(&acb->ccboutstandingcount);
ccb->startdone = ARCMSR_CCB_START;
switch (acb->adapter_type) {
case ACB_ADAPTER_TYPE_A: {
struct MessageUnit_A __iomem *reg = acb->pmuA;
if (arcmsr_cdb->Flags & ARCMSR_CDB_FLAG_SGL_BSIZE)
writel(cdb_phyaddr | ARCMSR_CCBPOST_FLAG_SGL_BSIZE,
&reg->inbound_queueport);
else
writel(cdb_phyaddr, &reg->inbound_queueport);
break;
}
case ACB_ADAPTER_TYPE_B: {
struct MessageUnit_B *reg = acb->pmuB;
uint32_t ending_index, index = reg->postq_index;
ending_index = ((index + 1) % ARCMSR_MAX_HBB_POSTQUEUE);
reg->post_qbuffer[ending_index] = 0;
if (arcmsr_cdb->Flags & ARCMSR_CDB_FLAG_SGL_BSIZE) {
reg->post_qbuffer[index] =
cdb_phyaddr | ARCMSR_CCBPOST_FLAG_SGL_BSIZE;
} else {
reg->post_qbuffer[index] = cdb_phyaddr;
}
index++;
index %= ARCMSR_MAX_HBB_POSTQUEUE;/*if last index number set it to 0 */
reg->postq_index = index;
writel(ARCMSR_DRV2IOP_CDB_POSTED, reg->drv2iop_doorbell);
}
break;
case ACB_ADAPTER_TYPE_C: {
struct MessageUnit_C __iomem *phbcmu = acb->pmuC;
uint32_t ccb_post_stamp, arc_cdb_size;
arc_cdb_size = (ccb->arc_cdb_size > 0x300) ? 0x300 : ccb->arc_cdb_size;
ccb_post_stamp = (cdb_phyaddr | ((arc_cdb_size - 1) >> 6) | 1);
writel(upper_32_bits(ccb->cdb_phyaddr), &phbcmu->inbound_queueport_high);
writel(ccb_post_stamp, &phbcmu->inbound_queueport_low);
}
break;
case ACB_ADAPTER_TYPE_D: {
struct MessageUnit_D *pmu = acb->pmuD;
u16 index_stripped;
u16 postq_index, toggle;
unsigned long flags;
struct InBound_SRB *pinbound_srb;
spin_lock_irqsave(&acb->postq_lock, flags);
postq_index = pmu->postq_index;
pinbound_srb = (struct InBound_SRB *)&(pmu->post_qbuffer[postq_index & 0xFF]);
pinbound_srb->addressHigh = upper_32_bits(ccb->cdb_phyaddr);
pinbound_srb->addressLow = cdb_phyaddr;
pinbound_srb->length = ccb->arc_cdb_size >> 2;
arcmsr_cdb->msgContext = dma_addr_lo32(cdb_phyaddr);
toggle = postq_index & 0x4000;
index_stripped = postq_index + 1;
index_stripped &= (ARCMSR_MAX_ARC1214_POSTQUEUE - 1);
pmu->postq_index = index_stripped ? (index_stripped | toggle) :
(toggle ^ 0x4000);
writel(postq_index, pmu->inboundlist_write_pointer);
spin_unlock_irqrestore(&acb->postq_lock, flags);
break;
}
case ACB_ADAPTER_TYPE_E: {
struct MessageUnit_E __iomem *pmu = acb->pmuE;
u32 ccb_post_stamp, arc_cdb_size;
arc_cdb_size = (ccb->arc_cdb_size > 0x300) ? 0x300 : ccb->arc_cdb_size;
ccb_post_stamp = (ccb->smid | ((arc_cdb_size - 1) >> 6));
writel(0, &pmu->inbound_queueport_high);
writel(ccb_post_stamp, &pmu->inbound_queueport_low);
break;
}
case ACB_ADAPTER_TYPE_F: {
struct MessageUnit_F __iomem *pmu = acb->pmuF;
u32 ccb_post_stamp, arc_cdb_size;
if (ccb->arc_cdb_size <= 0x300)
arc_cdb_size = (ccb->arc_cdb_size - 1) >> 6 | 1;
else {
arc_cdb_size = ((ccb->arc_cdb_size + 0xff) >> 8) + 2;
if (arc_cdb_size > 0xF)
arc_cdb_size = 0xF;
arc_cdb_size = (arc_cdb_size << 1) | 1;
}
ccb_post_stamp = (ccb->smid | arc_cdb_size);
writel(0, &pmu->inbound_queueport_high);
writel(ccb_post_stamp, &pmu->inbound_queueport_low);
break;
}
}
}
static void arcmsr_hbaA_stop_bgrb(struct AdapterControlBlock *acb)
{
struct MessageUnit_A __iomem *reg = acb->pmuA;
acb->acb_flags &= ~ACB_F_MSG_START_BGRB;
writel(ARCMSR_INBOUND_MESG0_STOP_BGRB, &reg->inbound_msgaddr0);
if (!arcmsr_hbaA_wait_msgint_ready(acb)) {
printk(KERN_NOTICE
"arcmsr%d: wait 'stop adapter background rebuild' timeout\n"
, acb->host->host_no);
}
}
static void arcmsr_hbaB_stop_bgrb(struct AdapterControlBlock *acb)
{
struct MessageUnit_B *reg = acb->pmuB;
acb->acb_flags &= ~ACB_F_MSG_START_BGRB;
writel(ARCMSR_MESSAGE_STOP_BGRB, reg->drv2iop_doorbell);
if (!arcmsr_hbaB_wait_msgint_ready(acb)) {
printk(KERN_NOTICE
"arcmsr%d: wait 'stop adapter background rebuild' timeout\n"
, acb->host->host_no);
}
}
static void arcmsr_hbaC_stop_bgrb(struct AdapterControlBlock *pACB)
{
struct MessageUnit_C __iomem *reg = pACB->pmuC;
pACB->acb_flags &= ~ACB_F_MSG_START_BGRB;
writel(ARCMSR_INBOUND_MESG0_STOP_BGRB, &reg->inbound_msgaddr0);
writel(ARCMSR_HBCMU_DRV2IOP_MESSAGE_CMD_DONE, &reg->inbound_doorbell);
if (!arcmsr_hbaC_wait_msgint_ready(pACB)) {
printk(KERN_NOTICE
"arcmsr%d: wait 'stop adapter background rebuild' timeout\n"
, pACB->host->host_no);
}
return;
}
static void arcmsr_hbaD_stop_bgrb(struct AdapterControlBlock *pACB)
{
struct MessageUnit_D *reg = pACB->pmuD;
pACB->acb_flags &= ~ACB_F_MSG_START_BGRB;
writel(ARCMSR_INBOUND_MESG0_STOP_BGRB, reg->inbound_msgaddr0);
if (!arcmsr_hbaD_wait_msgint_ready(pACB))
pr_notice("arcmsr%d: wait 'stop adapter background rebuild' "
"timeout\n", pACB->host->host_no);
}
static void arcmsr_hbaE_stop_bgrb(struct AdapterControlBlock *pACB)
{
struct MessageUnit_E __iomem *reg = pACB->pmuE;
pACB->acb_flags &= ~ACB_F_MSG_START_BGRB;
writel(ARCMSR_INBOUND_MESG0_STOP_BGRB, &reg->inbound_msgaddr0);
pACB->out_doorbell ^= ARCMSR_HBEMU_DRV2IOP_MESSAGE_CMD_DONE;
writel(pACB->out_doorbell, &reg->iobound_doorbell);
if (!arcmsr_hbaE_wait_msgint_ready(pACB)) {
pr_notice("arcmsr%d: wait 'stop adapter background rebuild' "
"timeout\n", pACB->host->host_no);
}
}
static void arcmsr_stop_adapter_bgrb(struct AdapterControlBlock *acb)
{
switch (acb->adapter_type) {
case ACB_ADAPTER_TYPE_A:
arcmsr_hbaA_stop_bgrb(acb);
break;
case ACB_ADAPTER_TYPE_B:
arcmsr_hbaB_stop_bgrb(acb);
break;
case ACB_ADAPTER_TYPE_C:
arcmsr_hbaC_stop_bgrb(acb);
break;
case ACB_ADAPTER_TYPE_D:
arcmsr_hbaD_stop_bgrb(acb);
break;
case ACB_ADAPTER_TYPE_E:
case ACB_ADAPTER_TYPE_F:
arcmsr_hbaE_stop_bgrb(acb);
break;
}
}
static void arcmsr_free_ccb_pool(struct AdapterControlBlock *acb)
{
dma_free_coherent(&acb->pdev->dev, acb->uncache_size, acb->dma_coherent, acb->dma_coherent_handle);
}
static void arcmsr_iop_message_read(struct AdapterControlBlock *acb)
{
switch (acb->adapter_type) {
case ACB_ADAPTER_TYPE_A: {
struct MessageUnit_A __iomem *reg = acb->pmuA;
writel(ARCMSR_INBOUND_DRIVER_DATA_READ_OK, &reg->inbound_doorbell);
}
break;
case ACB_ADAPTER_TYPE_B: {
struct MessageUnit_B *reg = acb->pmuB;
writel(ARCMSR_DRV2IOP_DATA_READ_OK, reg->drv2iop_doorbell);
}
break;
case ACB_ADAPTER_TYPE_C: {
struct MessageUnit_C __iomem *reg = acb->pmuC;
writel(ARCMSR_HBCMU_DRV2IOP_DATA_READ_OK, &reg->inbound_doorbell);
}
break;
case ACB_ADAPTER_TYPE_D: {
struct MessageUnit_D *reg = acb->pmuD;
writel(ARCMSR_ARC1214_DRV2IOP_DATA_OUT_READ,
reg->inbound_doorbell);
}
break;
case ACB_ADAPTER_TYPE_E:
case ACB_ADAPTER_TYPE_F: {
struct MessageUnit_E __iomem *reg = acb->pmuE;
acb->out_doorbell ^= ARCMSR_HBEMU_DRV2IOP_DATA_READ_OK;
writel(acb->out_doorbell, &reg->iobound_doorbell);
}
break;
}
}
static void arcmsr_iop_message_wrote(struct AdapterControlBlock *acb)
{
switch (acb->adapter_type) {
case ACB_ADAPTER_TYPE_A: {
struct MessageUnit_A __iomem *reg = acb->pmuA;
/*
** push inbound doorbell tell iop, driver data write ok
** and wait reply on next hwinterrupt for next Qbuffer post
*/
writel(ARCMSR_INBOUND_DRIVER_DATA_WRITE_OK, &reg->inbound_doorbell);
}
break;
case ACB_ADAPTER_TYPE_B: {
struct MessageUnit_B *reg = acb->pmuB;
/*
** push inbound doorbell tell iop, driver data write ok
** and wait reply on next hwinterrupt for next Qbuffer post
*/
writel(ARCMSR_DRV2IOP_DATA_WRITE_OK, reg->drv2iop_doorbell);
}
break;
case ACB_ADAPTER_TYPE_C: {
struct MessageUnit_C __iomem *reg = acb->pmuC;
/*
** push inbound doorbell tell iop, driver data write ok
** and wait reply on next hwinterrupt for next Qbuffer post
*/
writel(ARCMSR_HBCMU_DRV2IOP_DATA_WRITE_OK, &reg->inbound_doorbell);
}
break;
case ACB_ADAPTER_TYPE_D: {
struct MessageUnit_D *reg = acb->pmuD;
writel(ARCMSR_ARC1214_DRV2IOP_DATA_IN_READY,
reg->inbound_doorbell);
}
break;
case ACB_ADAPTER_TYPE_E:
case ACB_ADAPTER_TYPE_F: {
struct MessageUnit_E __iomem *reg = acb->pmuE;
acb->out_doorbell ^= ARCMSR_HBEMU_DRV2IOP_DATA_WRITE_OK;
writel(acb->out_doorbell, &reg->iobound_doorbell);
}
break;
}
}
struct QBUFFER __iomem *arcmsr_get_iop_rqbuffer(struct AdapterControlBlock *acb)
{
struct QBUFFER __iomem *qbuffer = NULL;
switch (acb->adapter_type) {
case ACB_ADAPTER_TYPE_A: {
struct MessageUnit_A __iomem *reg = acb->pmuA;
qbuffer = (struct QBUFFER __iomem *)&reg->message_rbuffer;
}
break;
case ACB_ADAPTER_TYPE_B: {
struct MessageUnit_B *reg = acb->pmuB;
qbuffer = (struct QBUFFER __iomem *)reg->message_rbuffer;
}
break;
case ACB_ADAPTER_TYPE_C: {
struct MessageUnit_C __iomem *phbcmu = acb->pmuC;
qbuffer = (struct QBUFFER __iomem *)&phbcmu->message_rbuffer;
}
break;
case ACB_ADAPTER_TYPE_D: {
struct MessageUnit_D *reg = acb->pmuD;
qbuffer = (struct QBUFFER __iomem *)reg->message_rbuffer;
}
break;
case ACB_ADAPTER_TYPE_E: {
struct MessageUnit_E __iomem *reg = acb->pmuE;
qbuffer = (struct QBUFFER __iomem *)&reg->message_rbuffer;
}
break;
case ACB_ADAPTER_TYPE_F: {
qbuffer = (struct QBUFFER __iomem *)acb->message_rbuffer;
}
break;
}
return qbuffer;
}
static struct QBUFFER __iomem *arcmsr_get_iop_wqbuffer(struct AdapterControlBlock *acb)
{
struct QBUFFER __iomem *pqbuffer = NULL;
switch (acb->adapter_type) {
case ACB_ADAPTER_TYPE_A: {
struct MessageUnit_A __iomem *reg = acb->pmuA;
pqbuffer = (struct QBUFFER __iomem *) &reg->message_wbuffer;
}
break;
case ACB_ADAPTER_TYPE_B: {
struct MessageUnit_B *reg = acb->pmuB;
pqbuffer = (struct QBUFFER __iomem *)reg->message_wbuffer;
}
break;
case ACB_ADAPTER_TYPE_C: {
struct MessageUnit_C __iomem *reg = acb->pmuC;
pqbuffer = (struct QBUFFER __iomem *)&reg->message_wbuffer;
}
break;
case ACB_ADAPTER_TYPE_D: {
struct MessageUnit_D *reg = acb->pmuD;
pqbuffer = (struct QBUFFER __iomem *)reg->message_wbuffer;
}
break;
case ACB_ADAPTER_TYPE_E: {
struct MessageUnit_E __iomem *reg = acb->pmuE;
pqbuffer = (struct QBUFFER __iomem *)&reg->message_wbuffer;
}
break;
case ACB_ADAPTER_TYPE_F:
pqbuffer = (struct QBUFFER __iomem *)acb->message_wbuffer;
break;
}
return pqbuffer;
}
static uint32_t
arcmsr_Read_iop_rqbuffer_in_DWORD(struct AdapterControlBlock *acb,
struct QBUFFER __iomem *prbuffer)
{
uint8_t *pQbuffer;
uint8_t *buf1 = NULL;
uint32_t __iomem *iop_data;
uint32_t iop_len, data_len, *buf2 = NULL;
iop_data = (uint32_t __iomem *)prbuffer->data;
iop_len = readl(&prbuffer->data_len);
if (iop_len > 0) {
buf1 = kmalloc(128, GFP_ATOMIC);
buf2 = (uint32_t *)buf1;
if (buf1 == NULL)
return 0;
data_len = iop_len;
while (data_len >= 4) {
*buf2++ = readl(iop_data);
iop_data++;
data_len -= 4;
}
if (data_len)
*buf2 = readl(iop_data);
buf2 = (uint32_t *)buf1;
}
while (iop_len > 0) {
pQbuffer = &acb->rqbuffer[acb->rqbuf_putIndex];
*pQbuffer = *buf1;
acb->rqbuf_putIndex++;
/* if last, index number set it to 0 */
acb->rqbuf_putIndex %= ARCMSR_MAX_QBUFFER;
buf1++;
iop_len--;
}
kfree(buf2);
/* let IOP know data has been read */
arcmsr_iop_message_read(acb);
return 1;
}
uint32_t
arcmsr_Read_iop_rqbuffer_data(struct AdapterControlBlock *acb,
struct QBUFFER __iomem *prbuffer) {
uint8_t *pQbuffer;
uint8_t __iomem *iop_data;
uint32_t iop_len;
if (acb->adapter_type > ACB_ADAPTER_TYPE_B)
return arcmsr_Read_iop_rqbuffer_in_DWORD(acb, prbuffer);
iop_data = (uint8_t __iomem *)prbuffer->data;
iop_len = readl(&prbuffer->data_len);
while (iop_len > 0) {
pQbuffer = &acb->rqbuffer[acb->rqbuf_putIndex];
*pQbuffer = readb(iop_data);
acb->rqbuf_putIndex++;
acb->rqbuf_putIndex %= ARCMSR_MAX_QBUFFER;
iop_data++;
iop_len--;
}
arcmsr_iop_message_read(acb);
return 1;
}
static void arcmsr_iop2drv_data_wrote_handle(struct AdapterControlBlock *acb)
{
unsigned long flags;
struct QBUFFER __iomem *prbuffer;
int32_t buf_empty_len;
spin_lock_irqsave(&acb->rqbuffer_lock, flags);
prbuffer = arcmsr_get_iop_rqbuffer(acb);
buf_empty_len = (acb->rqbuf_putIndex - acb->rqbuf_getIndex - 1) &
(ARCMSR_MAX_QBUFFER - 1);
if (buf_empty_len >= readl(&prbuffer->data_len)) {
if (arcmsr_Read_iop_rqbuffer_data(acb, prbuffer) == 0)
acb->acb_flags |= ACB_F_IOPDATA_OVERFLOW;
} else
acb->acb_flags |= ACB_F_IOPDATA_OVERFLOW;
spin_unlock_irqrestore(&acb->rqbuffer_lock, flags);
}
static void arcmsr_write_ioctldata2iop_in_DWORD(struct AdapterControlBlock *acb)
{
uint8_t *pQbuffer;
struct QBUFFER __iomem *pwbuffer;
uint8_t *buf1 = NULL;
uint32_t __iomem *iop_data;
uint32_t allxfer_len = 0, data_len, *buf2 = NULL, data;
if (acb->acb_flags & ACB_F_MESSAGE_WQBUFFER_READED) {
buf1 = kmalloc(128, GFP_ATOMIC);
buf2 = (uint32_t *)buf1;
if (buf1 == NULL)
return;
acb->acb_flags &= (~ACB_F_MESSAGE_WQBUFFER_READED);
pwbuffer = arcmsr_get_iop_wqbuffer(acb);
iop_data = (uint32_t __iomem *)pwbuffer->data;
while ((acb->wqbuf_getIndex != acb->wqbuf_putIndex)
&& (allxfer_len < 124)) {
pQbuffer = &acb->wqbuffer[acb->wqbuf_getIndex];
*buf1 = *pQbuffer;
acb->wqbuf_getIndex++;
acb->wqbuf_getIndex %= ARCMSR_MAX_QBUFFER;
buf1++;
allxfer_len++;
}
data_len = allxfer_len;
buf1 = (uint8_t *)buf2;
while (data_len >= 4) {
data = *buf2++;
writel(data, iop_data);
iop_data++;
data_len -= 4;
}
if (data_len) {
data = *buf2;
writel(data, iop_data);
}
writel(allxfer_len, &pwbuffer->data_len);
kfree(buf1);
arcmsr_iop_message_wrote(acb);
}
}
void
arcmsr_write_ioctldata2iop(struct AdapterControlBlock *acb)
{
uint8_t *pQbuffer;
struct QBUFFER __iomem *pwbuffer;
uint8_t __iomem *iop_data;
int32_t allxfer_len = 0;
if (acb->adapter_type > ACB_ADAPTER_TYPE_B) {
arcmsr_write_ioctldata2iop_in_DWORD(acb);
return;
}
if (acb->acb_flags & ACB_F_MESSAGE_WQBUFFER_READED) {
acb->acb_flags &= (~ACB_F_MESSAGE_WQBUFFER_READED);
pwbuffer = arcmsr_get_iop_wqbuffer(acb);
iop_data = (uint8_t __iomem *)pwbuffer->data;
while ((acb->wqbuf_getIndex != acb->wqbuf_putIndex)
&& (allxfer_len < 124)) {
pQbuffer = &acb->wqbuffer[acb->wqbuf_getIndex];
writeb(*pQbuffer, iop_data);
acb->wqbuf_getIndex++;
acb->wqbuf_getIndex %= ARCMSR_MAX_QBUFFER;
iop_data++;
allxfer_len++;
}
writel(allxfer_len, &pwbuffer->data_len);
arcmsr_iop_message_wrote(acb);
}
}
static void arcmsr_iop2drv_data_read_handle(struct AdapterControlBlock *acb)
{
unsigned long flags;
spin_lock_irqsave(&acb->wqbuffer_lock, flags);
acb->acb_flags |= ACB_F_MESSAGE_WQBUFFER_READED;
if (acb->wqbuf_getIndex != acb->wqbuf_putIndex)
arcmsr_write_ioctldata2iop(acb);
if (acb->wqbuf_getIndex == acb->wqbuf_putIndex)
acb->acb_flags |= ACB_F_MESSAGE_WQBUFFER_CLEARED;
spin_unlock_irqrestore(&acb->wqbuffer_lock, flags);
}
static void arcmsr_hbaA_doorbell_isr(struct AdapterControlBlock *acb)
{
uint32_t outbound_doorbell;
struct MessageUnit_A __iomem *reg = acb->pmuA;
outbound_doorbell = readl(&reg->outbound_doorbell);
do {
writel(outbound_doorbell, &reg->outbound_doorbell);
if (outbound_doorbell & ARCMSR_OUTBOUND_IOP331_DATA_WRITE_OK)
arcmsr_iop2drv_data_wrote_handle(acb);
if (outbound_doorbell & ARCMSR_OUTBOUND_IOP331_DATA_READ_OK)
arcmsr_iop2drv_data_read_handle(acb);
outbound_doorbell = readl(&reg->outbound_doorbell);
} while (outbound_doorbell & (ARCMSR_OUTBOUND_IOP331_DATA_WRITE_OK
| ARCMSR_OUTBOUND_IOP331_DATA_READ_OK));
}
static void arcmsr_hbaC_doorbell_isr(struct AdapterControlBlock *pACB)
{
uint32_t outbound_doorbell;
struct MessageUnit_C __iomem *reg = pACB->pmuC;
/*
*******************************************************************
** Maybe here we need to check wrqbuffer_lock is lock or not
** DOORBELL: din! don!
** check if there are any mail need to pack from firmware
*******************************************************************
*/
outbound_doorbell = readl(&reg->outbound_doorbell);
do {
writel(outbound_doorbell, &reg->outbound_doorbell_clear);
readl(&reg->outbound_doorbell_clear);
if (outbound_doorbell & ARCMSR_HBCMU_IOP2DRV_DATA_WRITE_OK)
arcmsr_iop2drv_data_wrote_handle(pACB);
if (outbound_doorbell & ARCMSR_HBCMU_IOP2DRV_DATA_READ_OK)
arcmsr_iop2drv_data_read_handle(pACB);
if (outbound_doorbell & ARCMSR_HBCMU_IOP2DRV_MESSAGE_CMD_DONE)
arcmsr_hbaC_message_isr(pACB);
outbound_doorbell = readl(&reg->outbound_doorbell);
} while (outbound_doorbell & (ARCMSR_HBCMU_IOP2DRV_DATA_WRITE_OK
| ARCMSR_HBCMU_IOP2DRV_DATA_READ_OK
| ARCMSR_HBCMU_IOP2DRV_MESSAGE_CMD_DONE));
}
static void arcmsr_hbaD_doorbell_isr(struct AdapterControlBlock *pACB)
{
uint32_t outbound_doorbell;
struct MessageUnit_D *pmu = pACB->pmuD;
outbound_doorbell = readl(pmu->outbound_doorbell);
do {
writel(outbound_doorbell, pmu->outbound_doorbell);
if (outbound_doorbell & ARCMSR_ARC1214_IOP2DRV_MESSAGE_CMD_DONE)
arcmsr_hbaD_message_isr(pACB);
if (outbound_doorbell & ARCMSR_ARC1214_IOP2DRV_DATA_WRITE_OK)
arcmsr_iop2drv_data_wrote_handle(pACB);
if (outbound_doorbell & ARCMSR_ARC1214_IOP2DRV_DATA_READ_OK)
arcmsr_iop2drv_data_read_handle(pACB);
outbound_doorbell = readl(pmu->outbound_doorbell);
} while (outbound_doorbell & (ARCMSR_ARC1214_IOP2DRV_DATA_WRITE_OK
| ARCMSR_ARC1214_IOP2DRV_DATA_READ_OK
| ARCMSR_ARC1214_IOP2DRV_MESSAGE_CMD_DONE));
}
static void arcmsr_hbaE_doorbell_isr(struct AdapterControlBlock *pACB)
{
uint32_t outbound_doorbell, in_doorbell, tmp, i;
struct MessageUnit_E __iomem *reg = pACB->pmuE;
if (pACB->adapter_type == ACB_ADAPTER_TYPE_F) {
for (i = 0; i < 5; i++) {
in_doorbell = readl(&reg->iobound_doorbell);
if (in_doorbell != 0)
break;
}
} else
in_doorbell = readl(&reg->iobound_doorbell);
outbound_doorbell = in_doorbell ^ pACB->in_doorbell;
do {
writel(0, &reg->host_int_status); /* clear interrupt */
if (outbound_doorbell & ARCMSR_HBEMU_IOP2DRV_DATA_WRITE_OK) {
arcmsr_iop2drv_data_wrote_handle(pACB);
}
if (outbound_doorbell & ARCMSR_HBEMU_IOP2DRV_DATA_READ_OK) {
arcmsr_iop2drv_data_read_handle(pACB);
}
if (outbound_doorbell & ARCMSR_HBEMU_IOP2DRV_MESSAGE_CMD_DONE) {
arcmsr_hbaE_message_isr(pACB);
}
tmp = in_doorbell;
in_doorbell = readl(&reg->iobound_doorbell);
outbound_doorbell = tmp ^ in_doorbell;
} while (outbound_doorbell & (ARCMSR_HBEMU_IOP2DRV_DATA_WRITE_OK
| ARCMSR_HBEMU_IOP2DRV_DATA_READ_OK
| ARCMSR_HBEMU_IOP2DRV_MESSAGE_CMD_DONE));
pACB->in_doorbell = in_doorbell;
}
static void arcmsr_hbaA_postqueue_isr(struct AdapterControlBlock *acb)
{
uint32_t flag_ccb;
struct MessageUnit_A __iomem *reg = acb->pmuA;
struct ARCMSR_CDB *pARCMSR_CDB;
struct CommandControlBlock *pCCB;
bool error;
unsigned long cdb_phy_addr;
while ((flag_ccb = readl(&reg->outbound_queueport)) != 0xFFFFFFFF) {
cdb_phy_addr = (flag_ccb << 5) & 0xffffffff;
if (acb->cdb_phyadd_hipart)
cdb_phy_addr = cdb_phy_addr | acb->cdb_phyadd_hipart;
pARCMSR_CDB = (struct ARCMSR_CDB *)(acb->vir2phy_offset + cdb_phy_addr);
pCCB = container_of(pARCMSR_CDB, struct CommandControlBlock, arcmsr_cdb);
error = (flag_ccb & ARCMSR_CCBREPLY_FLAG_ERROR_MODE0) ? true : false;
arcmsr_drain_donequeue(acb, pCCB, error);
}
}
static void arcmsr_hbaB_postqueue_isr(struct AdapterControlBlock *acb)
{
uint32_t index;
uint32_t flag_ccb;
struct MessageUnit_B *reg = acb->pmuB;
struct ARCMSR_CDB *pARCMSR_CDB;
struct CommandControlBlock *pCCB;
bool error;
unsigned long cdb_phy_addr;
index = reg->doneq_index;
while ((flag_ccb = reg->done_qbuffer[index]) != 0) {
cdb_phy_addr = (flag_ccb << 5) & 0xffffffff;
if (acb->cdb_phyadd_hipart)
cdb_phy_addr = cdb_phy_addr | acb->cdb_phyadd_hipart;
pARCMSR_CDB = (struct ARCMSR_CDB *)(acb->vir2phy_offset + cdb_phy_addr);
pCCB = container_of(pARCMSR_CDB, struct CommandControlBlock, arcmsr_cdb);
error = (flag_ccb & ARCMSR_CCBREPLY_FLAG_ERROR_MODE0) ? true : false;
arcmsr_drain_donequeue(acb, pCCB, error);
reg->done_qbuffer[index] = 0;
index++;
index %= ARCMSR_MAX_HBB_POSTQUEUE;
reg->doneq_index = index;
}
}
static void arcmsr_hbaC_postqueue_isr(struct AdapterControlBlock *acb)
{
struct MessageUnit_C __iomem *phbcmu;
struct ARCMSR_CDB *arcmsr_cdb;
struct CommandControlBlock *ccb;
uint32_t flag_ccb, throttling = 0;
unsigned long ccb_cdb_phy;
int error;
phbcmu = acb->pmuC;
/* areca cdb command done */
/* Use correct offset and size for syncing */
while ((flag_ccb = readl(&phbcmu->outbound_queueport_low)) !=
0xFFFFFFFF) {
ccb_cdb_phy = (flag_ccb & 0xFFFFFFF0);
if (acb->cdb_phyadd_hipart)
ccb_cdb_phy = ccb_cdb_phy | acb->cdb_phyadd_hipart;
arcmsr_cdb = (struct ARCMSR_CDB *)(acb->vir2phy_offset
+ ccb_cdb_phy);
ccb = container_of(arcmsr_cdb, struct CommandControlBlock,
arcmsr_cdb);
error = (flag_ccb & ARCMSR_CCBREPLY_FLAG_ERROR_MODE1)
? true : false;
/* check if command done with no error */
arcmsr_drain_donequeue(acb, ccb, error);
throttling++;
if (throttling == ARCMSR_HBC_ISR_THROTTLING_LEVEL) {
writel(ARCMSR_HBCMU_DRV2IOP_POSTQUEUE_THROTTLING,
&phbcmu->inbound_doorbell);
throttling = 0;
}
}
}
static void arcmsr_hbaD_postqueue_isr(struct AdapterControlBlock *acb)
{
u32 outbound_write_pointer, doneq_index, index_stripped, toggle;
uint32_t addressLow;
int error;
struct MessageUnit_D *pmu;
struct ARCMSR_CDB *arcmsr_cdb;
struct CommandControlBlock *ccb;
unsigned long flags, ccb_cdb_phy;
spin_lock_irqsave(&acb->doneq_lock, flags);
pmu = acb->pmuD;
outbound_write_pointer = pmu->done_qbuffer[0].addressLow + 1;
doneq_index = pmu->doneq_index;
if ((doneq_index & 0xFFF) != (outbound_write_pointer & 0xFFF)) {
do {
toggle = doneq_index & 0x4000;
index_stripped = (doneq_index & 0xFFF) + 1;
index_stripped %= ARCMSR_MAX_ARC1214_DONEQUEUE;
pmu->doneq_index = index_stripped ? (index_stripped | toggle) :
((toggle ^ 0x4000) + 1);
doneq_index = pmu->doneq_index;
addressLow = pmu->done_qbuffer[doneq_index &
0xFFF].addressLow;
ccb_cdb_phy = (addressLow & 0xFFFFFFF0);
if (acb->cdb_phyadd_hipart)
ccb_cdb_phy = ccb_cdb_phy | acb->cdb_phyadd_hipart;
arcmsr_cdb = (struct ARCMSR_CDB *)(acb->vir2phy_offset
+ ccb_cdb_phy);
ccb = container_of(arcmsr_cdb,
struct CommandControlBlock, arcmsr_cdb);
error = (addressLow & ARCMSR_CCBREPLY_FLAG_ERROR_MODE1)
? true : false;
arcmsr_drain_donequeue(acb, ccb, error);
writel(doneq_index, pmu->outboundlist_read_pointer);
} while ((doneq_index & 0xFFF) !=
(outbound_write_pointer & 0xFFF));
}
writel(ARCMSR_ARC1214_OUTBOUND_LIST_INTERRUPT_CLEAR,
pmu->outboundlist_interrupt_cause);
readl(pmu->outboundlist_interrupt_cause);
spin_unlock_irqrestore(&acb->doneq_lock, flags);
}
static void arcmsr_hbaE_postqueue_isr(struct AdapterControlBlock *acb)
{
uint32_t doneq_index;
uint16_t cmdSMID;
int error;
struct MessageUnit_E __iomem *pmu;
struct CommandControlBlock *ccb;
unsigned long flags;
spin_lock_irqsave(&acb->doneq_lock, flags);
doneq_index = acb->doneq_index;
pmu = acb->pmuE;
while ((readl(&pmu->reply_post_producer_index) & 0xFFFF) != doneq_index) {
cmdSMID = acb->pCompletionQ[doneq_index].cmdSMID;
ccb = acb->pccb_pool[cmdSMID];
error = (acb->pCompletionQ[doneq_index].cmdFlag
& ARCMSR_CCBREPLY_FLAG_ERROR_MODE1) ? true : false;
arcmsr_drain_donequeue(acb, ccb, error);
doneq_index++;
if (doneq_index >= acb->completionQ_entry)
doneq_index = 0;
}
acb->doneq_index = doneq_index;
writel(doneq_index, &pmu->reply_post_consumer_index);
spin_unlock_irqrestore(&acb->doneq_lock, flags);
}
static void arcmsr_hbaF_postqueue_isr(struct AdapterControlBlock *acb)
{
uint32_t doneq_index;
uint16_t cmdSMID;
int error;
struct MessageUnit_F __iomem *phbcmu;
struct CommandControlBlock *ccb;
unsigned long flags;
spin_lock_irqsave(&acb->doneq_lock, flags);
doneq_index = acb->doneq_index;
phbcmu = acb->pmuF;
while (1) {
cmdSMID = acb->pCompletionQ[doneq_index].cmdSMID;
if (cmdSMID == 0xffff)
break;
ccb = acb->pccb_pool[cmdSMID];
error = (acb->pCompletionQ[doneq_index].cmdFlag &
ARCMSR_CCBREPLY_FLAG_ERROR_MODE1) ? true : false;
arcmsr_drain_donequeue(acb, ccb, error);
acb->pCompletionQ[doneq_index].cmdSMID = 0xffff;
doneq_index++;
if (doneq_index >= acb->completionQ_entry)
doneq_index = 0;
}
acb->doneq_index = doneq_index;
writel(doneq_index, &phbcmu->reply_post_consumer_index);
spin_unlock_irqrestore(&acb->doneq_lock, flags);
}
/*
**********************************************************************************
** Handle a message interrupt
**
** The only message interrupt we expect is in response to a query for the current adapter config.
** We want this in order to compare the drivemap so that we can detect newly-attached drives.
**********************************************************************************
*/
static void arcmsr_hbaA_message_isr(struct AdapterControlBlock *acb)
{
struct MessageUnit_A __iomem *reg = acb->pmuA;
/*clear interrupt and message state*/
writel(ARCMSR_MU_OUTBOUND_MESSAGE0_INT, &reg->outbound_intstatus);
if (acb->acb_flags & ACB_F_MSG_GET_CONFIG)
schedule_work(&acb->arcmsr_do_message_isr_bh);
}
static void arcmsr_hbaB_message_isr(struct AdapterControlBlock *acb)
{
struct MessageUnit_B *reg = acb->pmuB;
/*clear interrupt and message state*/
writel(ARCMSR_MESSAGE_INT_CLEAR_PATTERN, reg->iop2drv_doorbell);
if (acb->acb_flags & ACB_F_MSG_GET_CONFIG)
schedule_work(&acb->arcmsr_do_message_isr_bh);
}
/*
**********************************************************************************
** Handle a message interrupt
**
** The only message interrupt we expect is in response to a query for the
** current adapter config.
** We want this in order to compare the drivemap so that we can detect newly-attached drives.
**********************************************************************************
*/
static void arcmsr_hbaC_message_isr(struct AdapterControlBlock *acb)
{
struct MessageUnit_C __iomem *reg = acb->pmuC;
/*clear interrupt and message state*/
writel(ARCMSR_HBCMU_IOP2DRV_MESSAGE_CMD_DONE_DOORBELL_CLEAR, &reg->outbound_doorbell_clear);
if (acb->acb_flags & ACB_F_MSG_GET_CONFIG)
schedule_work(&acb->arcmsr_do_message_isr_bh);
}
static void arcmsr_hbaD_message_isr(struct AdapterControlBlock *acb)
{
struct MessageUnit_D *reg = acb->pmuD;
writel(ARCMSR_ARC1214_IOP2DRV_MESSAGE_CMD_DONE, reg->outbound_doorbell);
readl(reg->outbound_doorbell);
if (acb->acb_flags & ACB_F_MSG_GET_CONFIG)
schedule_work(&acb->arcmsr_do_message_isr_bh);
}
static void arcmsr_hbaE_message_isr(struct AdapterControlBlock *acb)
{
struct MessageUnit_E __iomem *reg = acb->pmuE;
writel(0, &reg->host_int_status);
if (acb->acb_flags & ACB_F_MSG_GET_CONFIG)
schedule_work(&acb->arcmsr_do_message_isr_bh);
}
static int arcmsr_hbaA_handle_isr(struct AdapterControlBlock *acb)
{
uint32_t outbound_intstatus;
struct MessageUnit_A __iomem *reg = acb->pmuA;
outbound_intstatus = readl(&reg->outbound_intstatus) &
acb->outbound_int_enable;
if (!(outbound_intstatus & ARCMSR_MU_OUTBOUND_HANDLE_INT))
return IRQ_NONE;
do {
writel(outbound_intstatus, &reg->outbound_intstatus);
if (outbound_intstatus & ARCMSR_MU_OUTBOUND_DOORBELL_INT)
arcmsr_hbaA_doorbell_isr(acb);
if (outbound_intstatus & ARCMSR_MU_OUTBOUND_POSTQUEUE_INT)
arcmsr_hbaA_postqueue_isr(acb);
if (outbound_intstatus & ARCMSR_MU_OUTBOUND_MESSAGE0_INT)
arcmsr_hbaA_message_isr(acb);
outbound_intstatus = readl(&reg->outbound_intstatus) &
acb->outbound_int_enable;
} while (outbound_intstatus & (ARCMSR_MU_OUTBOUND_DOORBELL_INT
| ARCMSR_MU_OUTBOUND_POSTQUEUE_INT
| ARCMSR_MU_OUTBOUND_MESSAGE0_INT));
return IRQ_HANDLED;
}
static int arcmsr_hbaB_handle_isr(struct AdapterControlBlock *acb)
{
uint32_t outbound_doorbell;
struct MessageUnit_B *reg = acb->pmuB;
outbound_doorbell = readl(reg->iop2drv_doorbell) &
acb->outbound_int_enable;
if (!outbound_doorbell)
return IRQ_NONE;
do {
writel(~outbound_doorbell, reg->iop2drv_doorbell);
writel(ARCMSR_DRV2IOP_END_OF_INTERRUPT, reg->drv2iop_doorbell);
if (outbound_doorbell & ARCMSR_IOP2DRV_DATA_WRITE_OK)
arcmsr_iop2drv_data_wrote_handle(acb);
if (outbound_doorbell & ARCMSR_IOP2DRV_DATA_READ_OK)
arcmsr_iop2drv_data_read_handle(acb);
if (outbound_doorbell & ARCMSR_IOP2DRV_CDB_DONE)
arcmsr_hbaB_postqueue_isr(acb);
if (outbound_doorbell & ARCMSR_IOP2DRV_MESSAGE_CMD_DONE)
arcmsr_hbaB_message_isr(acb);
outbound_doorbell = readl(reg->iop2drv_doorbell) &
acb->outbound_int_enable;
} while (outbound_doorbell & (ARCMSR_IOP2DRV_DATA_WRITE_OK
| ARCMSR_IOP2DRV_DATA_READ_OK
| ARCMSR_IOP2DRV_CDB_DONE
| ARCMSR_IOP2DRV_MESSAGE_CMD_DONE));
return IRQ_HANDLED;
}
static int arcmsr_hbaC_handle_isr(struct AdapterControlBlock *pACB)
{
uint32_t host_interrupt_status;
struct MessageUnit_C __iomem *phbcmu = pACB->pmuC;
/*
*********************************************
** check outbound intstatus
*********************************************
*/
host_interrupt_status = readl(&phbcmu->host_int_status) &
(ARCMSR_HBCMU_OUTBOUND_POSTQUEUE_ISR |
ARCMSR_HBCMU_OUTBOUND_DOORBELL_ISR);
if (!host_interrupt_status)
return IRQ_NONE;
do {
if (host_interrupt_status & ARCMSR_HBCMU_OUTBOUND_DOORBELL_ISR)
arcmsr_hbaC_doorbell_isr(pACB);
/* MU post queue interrupts*/
if (host_interrupt_status & ARCMSR_HBCMU_OUTBOUND_POSTQUEUE_ISR)
arcmsr_hbaC_postqueue_isr(pACB);
host_interrupt_status = readl(&phbcmu->host_int_status);
} while (host_interrupt_status & (ARCMSR_HBCMU_OUTBOUND_POSTQUEUE_ISR |
ARCMSR_HBCMU_OUTBOUND_DOORBELL_ISR));
return IRQ_HANDLED;
}
static irqreturn_t arcmsr_hbaD_handle_isr(struct AdapterControlBlock *pACB)
{
u32 host_interrupt_status;
struct MessageUnit_D *pmu = pACB->pmuD;
host_interrupt_status = readl(pmu->host_int_status) &
(ARCMSR_ARC1214_OUTBOUND_POSTQUEUE_ISR |
ARCMSR_ARC1214_OUTBOUND_DOORBELL_ISR);
if (!host_interrupt_status)
return IRQ_NONE;
do {
/* MU post queue interrupts*/
if (host_interrupt_status &
ARCMSR_ARC1214_OUTBOUND_POSTQUEUE_ISR)
arcmsr_hbaD_postqueue_isr(pACB);
if (host_interrupt_status &
ARCMSR_ARC1214_OUTBOUND_DOORBELL_ISR)
arcmsr_hbaD_doorbell_isr(pACB);
host_interrupt_status = readl(pmu->host_int_status);
} while (host_interrupt_status &
(ARCMSR_ARC1214_OUTBOUND_POSTQUEUE_ISR |
ARCMSR_ARC1214_OUTBOUND_DOORBELL_ISR));
return IRQ_HANDLED;
}
static irqreturn_t arcmsr_hbaE_handle_isr(struct AdapterControlBlock *pACB)
{
uint32_t host_interrupt_status;
struct MessageUnit_E __iomem *pmu = pACB->pmuE;
host_interrupt_status = readl(&pmu->host_int_status) &
(ARCMSR_HBEMU_OUTBOUND_POSTQUEUE_ISR |
ARCMSR_HBEMU_OUTBOUND_DOORBELL_ISR);
if (!host_interrupt_status)
return IRQ_NONE;
do {
/* MU ioctl transfer doorbell interrupts*/
if (host_interrupt_status & ARCMSR_HBEMU_OUTBOUND_DOORBELL_ISR) {
arcmsr_hbaE_doorbell_isr(pACB);
}
/* MU post queue interrupts*/
if (host_interrupt_status & ARCMSR_HBEMU_OUTBOUND_POSTQUEUE_ISR) {
arcmsr_hbaE_postqueue_isr(pACB);
}
host_interrupt_status = readl(&pmu->host_int_status);
} while (host_interrupt_status & (ARCMSR_HBEMU_OUTBOUND_POSTQUEUE_ISR |
ARCMSR_HBEMU_OUTBOUND_DOORBELL_ISR));
return IRQ_HANDLED;
}
static irqreturn_t arcmsr_hbaF_handle_isr(struct AdapterControlBlock *pACB)
{
uint32_t host_interrupt_status;
struct MessageUnit_F __iomem *phbcmu = pACB->pmuF;
host_interrupt_status = readl(&phbcmu->host_int_status) &
(ARCMSR_HBEMU_OUTBOUND_POSTQUEUE_ISR |
ARCMSR_HBEMU_OUTBOUND_DOORBELL_ISR);
if (!host_interrupt_status)
return IRQ_NONE;
do {
/* MU post queue interrupts*/
if (host_interrupt_status & ARCMSR_HBEMU_OUTBOUND_POSTQUEUE_ISR)
arcmsr_hbaF_postqueue_isr(pACB);
/* MU ioctl transfer doorbell interrupts*/
if (host_interrupt_status & ARCMSR_HBEMU_OUTBOUND_DOORBELL_ISR)
arcmsr_hbaE_doorbell_isr(pACB);
host_interrupt_status = readl(&phbcmu->host_int_status);
} while (host_interrupt_status & (ARCMSR_HBEMU_OUTBOUND_POSTQUEUE_ISR |
ARCMSR_HBEMU_OUTBOUND_DOORBELL_ISR));
return IRQ_HANDLED;
}
static irqreturn_t arcmsr_interrupt(struct AdapterControlBlock *acb)
{
switch (acb->adapter_type) {
case ACB_ADAPTER_TYPE_A:
return arcmsr_hbaA_handle_isr(acb);
case ACB_ADAPTER_TYPE_B:
return arcmsr_hbaB_handle_isr(acb);
case ACB_ADAPTER_TYPE_C:
return arcmsr_hbaC_handle_isr(acb);
case ACB_ADAPTER_TYPE_D:
return arcmsr_hbaD_handle_isr(acb);
case ACB_ADAPTER_TYPE_E:
return arcmsr_hbaE_handle_isr(acb);
case ACB_ADAPTER_TYPE_F:
return arcmsr_hbaF_handle_isr(acb);
default:
return IRQ_NONE;
}
}
static void arcmsr_iop_parking(struct AdapterControlBlock *acb)
{
if (acb) {
/* stop adapter background rebuild */
if (acb->acb_flags & ACB_F_MSG_START_BGRB) {
uint32_t intmask_org;
acb->acb_flags &= ~ACB_F_MSG_START_BGRB;
intmask_org = arcmsr_disable_outbound_ints(acb);
arcmsr_stop_adapter_bgrb(acb);
arcmsr_flush_adapter_cache(acb);
arcmsr_enable_outbound_ints(acb, intmask_org);
}
}
}
void arcmsr_clear_iop2drv_rqueue_buffer(struct AdapterControlBlock *acb)
{
uint32_t i;
if (acb->acb_flags & ACB_F_IOPDATA_OVERFLOW) {
for (i = 0; i < 15; i++) {
if (acb->acb_flags & ACB_F_IOPDATA_OVERFLOW) {
acb->acb_flags &= ~ACB_F_IOPDATA_OVERFLOW;
acb->rqbuf_getIndex = 0;
acb->rqbuf_putIndex = 0;
arcmsr_iop_message_read(acb);
mdelay(30);
} else if (acb->rqbuf_getIndex !=
acb->rqbuf_putIndex) {
acb->rqbuf_getIndex = 0;
acb->rqbuf_putIndex = 0;
mdelay(30);
} else
break;
}
}
}
static int arcmsr_iop_message_xfer(struct AdapterControlBlock *acb,
struct scsi_cmnd *cmd)
{
char *buffer;
unsigned short use_sg;
int retvalue = 0, transfer_len = 0;
unsigned long flags;
struct CMD_MESSAGE_FIELD *pcmdmessagefld;
uint32_t controlcode = (uint32_t)cmd->cmnd[5] << 24 |
(uint32_t)cmd->cmnd[6] << 16 |
(uint32_t)cmd->cmnd[7] << 8 |
(uint32_t)cmd->cmnd[8];
struct scatterlist *sg;
use_sg = scsi_sg_count(cmd);
sg = scsi_sglist(cmd);
buffer = kmap_atomic(sg_page(sg)) + sg->offset;
if (use_sg > 1) {
retvalue = ARCMSR_MESSAGE_FAIL;
goto message_out;
}
transfer_len += sg->length;
if (transfer_len > sizeof(struct CMD_MESSAGE_FIELD)) {
retvalue = ARCMSR_MESSAGE_FAIL;
pr_info("%s: ARCMSR_MESSAGE_FAIL!\n", __func__);
goto message_out;
}
pcmdmessagefld = (struct CMD_MESSAGE_FIELD *)buffer;
switch (controlcode) {
case ARCMSR_MESSAGE_READ_RQBUFFER: {
unsigned char *ver_addr;
uint8_t *ptmpQbuffer;
uint32_t allxfer_len = 0;
ver_addr = kmalloc(ARCMSR_API_DATA_BUFLEN, GFP_ATOMIC);
if (!ver_addr) {
retvalue = ARCMSR_MESSAGE_FAIL;
pr_info("%s: memory not enough!\n", __func__);
goto message_out;
}
ptmpQbuffer = ver_addr;
spin_lock_irqsave(&acb->rqbuffer_lock, flags);
if (acb->rqbuf_getIndex != acb->rqbuf_putIndex) {
unsigned int tail = acb->rqbuf_getIndex;
unsigned int head = acb->rqbuf_putIndex;
unsigned int cnt_to_end = CIRC_CNT_TO_END(head, tail, ARCMSR_MAX_QBUFFER);
allxfer_len = CIRC_CNT(head, tail, ARCMSR_MAX_QBUFFER);
if (allxfer_len > ARCMSR_API_DATA_BUFLEN)
allxfer_len = ARCMSR_API_DATA_BUFLEN;
if (allxfer_len <= cnt_to_end)
memcpy(ptmpQbuffer, acb->rqbuffer + tail, allxfer_len);
else {
memcpy(ptmpQbuffer, acb->rqbuffer + tail, cnt_to_end);
memcpy(ptmpQbuffer + cnt_to_end, acb->rqbuffer, allxfer_len - cnt_to_end);
}
acb->rqbuf_getIndex = (acb->rqbuf_getIndex + allxfer_len) % ARCMSR_MAX_QBUFFER;
}
memcpy(pcmdmessagefld->messagedatabuffer, ver_addr,
allxfer_len);
if (acb->acb_flags & ACB_F_IOPDATA_OVERFLOW) {
struct QBUFFER __iomem *prbuffer;
acb->acb_flags &= ~ACB_F_IOPDATA_OVERFLOW;
prbuffer = arcmsr_get_iop_rqbuffer(acb);
if (arcmsr_Read_iop_rqbuffer_data(acb, prbuffer) == 0)
acb->acb_flags |= ACB_F_IOPDATA_OVERFLOW;
}
spin_unlock_irqrestore(&acb->rqbuffer_lock, flags);
kfree(ver_addr);
pcmdmessagefld->cmdmessage.Length = allxfer_len;
if (acb->fw_flag == FW_DEADLOCK)
pcmdmessagefld->cmdmessage.ReturnCode =
ARCMSR_MESSAGE_RETURNCODE_BUS_HANG_ON;
else
pcmdmessagefld->cmdmessage.ReturnCode =
ARCMSR_MESSAGE_RETURNCODE_OK;
break;
}
case ARCMSR_MESSAGE_WRITE_WQBUFFER: {
unsigned char *ver_addr;
uint32_t user_len;
int32_t cnt2end;
uint8_t *pQbuffer, *ptmpuserbuffer;
user_len = pcmdmessagefld->cmdmessage.Length;
if (user_len > ARCMSR_API_DATA_BUFLEN) {
retvalue = ARCMSR_MESSAGE_FAIL;
goto message_out;
}
ver_addr = kmalloc(ARCMSR_API_DATA_BUFLEN, GFP_ATOMIC);
if (!ver_addr) {
retvalue = ARCMSR_MESSAGE_FAIL;
goto message_out;
}
ptmpuserbuffer = ver_addr;
memcpy(ptmpuserbuffer,
pcmdmessagefld->messagedatabuffer, user_len);
spin_lock_irqsave(&acb->wqbuffer_lock, flags);
if (acb->wqbuf_putIndex != acb->wqbuf_getIndex) {
struct SENSE_DATA *sensebuffer =
(struct SENSE_DATA *)cmd->sense_buffer;
arcmsr_write_ioctldata2iop(acb);
/* has error report sensedata */
sensebuffer->ErrorCode = SCSI_SENSE_CURRENT_ERRORS;
sensebuffer->SenseKey = ILLEGAL_REQUEST;
sensebuffer->AdditionalSenseLength = 0x0A;
sensebuffer->AdditionalSenseCode = 0x20;
sensebuffer->Valid = 1;
retvalue = ARCMSR_MESSAGE_FAIL;
} else {
pQbuffer = &acb->wqbuffer[acb->wqbuf_putIndex];
cnt2end = ARCMSR_MAX_QBUFFER - acb->wqbuf_putIndex;
if (user_len > cnt2end) {
memcpy(pQbuffer, ptmpuserbuffer, cnt2end);
ptmpuserbuffer += cnt2end;
user_len -= cnt2end;
acb->wqbuf_putIndex = 0;
pQbuffer = acb->wqbuffer;
}
memcpy(pQbuffer, ptmpuserbuffer, user_len);
acb->wqbuf_putIndex += user_len;
acb->wqbuf_putIndex %= ARCMSR_MAX_QBUFFER;
if (acb->acb_flags & ACB_F_MESSAGE_WQBUFFER_CLEARED) {
acb->acb_flags &=
~ACB_F_MESSAGE_WQBUFFER_CLEARED;
arcmsr_write_ioctldata2iop(acb);
}
}
spin_unlock_irqrestore(&acb->wqbuffer_lock, flags);
kfree(ver_addr);
if (acb->fw_flag == FW_DEADLOCK)
pcmdmessagefld->cmdmessage.ReturnCode =
ARCMSR_MESSAGE_RETURNCODE_BUS_HANG_ON;
else
pcmdmessagefld->cmdmessage.ReturnCode =
ARCMSR_MESSAGE_RETURNCODE_OK;
break;
}
case ARCMSR_MESSAGE_CLEAR_RQBUFFER: {
uint8_t *pQbuffer = acb->rqbuffer;
arcmsr_clear_iop2drv_rqueue_buffer(acb);
spin_lock_irqsave(&acb->rqbuffer_lock, flags);
acb->acb_flags |= ACB_F_MESSAGE_RQBUFFER_CLEARED;
acb->rqbuf_getIndex = 0;
acb->rqbuf_putIndex = 0;
memset(pQbuffer, 0, ARCMSR_MAX_QBUFFER);
spin_unlock_irqrestore(&acb->rqbuffer_lock, flags);
if (acb->fw_flag == FW_DEADLOCK)
pcmdmessagefld->cmdmessage.ReturnCode =
ARCMSR_MESSAGE_RETURNCODE_BUS_HANG_ON;
else
pcmdmessagefld->cmdmessage.ReturnCode =
ARCMSR_MESSAGE_RETURNCODE_OK;
break;
}
case ARCMSR_MESSAGE_CLEAR_WQBUFFER: {
uint8_t *pQbuffer = acb->wqbuffer;
spin_lock_irqsave(&acb->wqbuffer_lock, flags);
acb->acb_flags |= (ACB_F_MESSAGE_WQBUFFER_CLEARED |
ACB_F_MESSAGE_WQBUFFER_READED);
acb->wqbuf_getIndex = 0;
acb->wqbuf_putIndex = 0;
memset(pQbuffer, 0, ARCMSR_MAX_QBUFFER);
spin_unlock_irqrestore(&acb->wqbuffer_lock, flags);
if (acb->fw_flag == FW_DEADLOCK)
pcmdmessagefld->cmdmessage.ReturnCode =
ARCMSR_MESSAGE_RETURNCODE_BUS_HANG_ON;
else
pcmdmessagefld->cmdmessage.ReturnCode =
ARCMSR_MESSAGE_RETURNCODE_OK;
break;
}
case ARCMSR_MESSAGE_CLEAR_ALLQBUFFER: {
uint8_t *pQbuffer;
arcmsr_clear_iop2drv_rqueue_buffer(acb);
spin_lock_irqsave(&acb->rqbuffer_lock, flags);
acb->acb_flags |= ACB_F_MESSAGE_RQBUFFER_CLEARED;
acb->rqbuf_getIndex = 0;
acb->rqbuf_putIndex = 0;
pQbuffer = acb->rqbuffer;
memset(pQbuffer, 0, sizeof(struct QBUFFER));
spin_unlock_irqrestore(&acb->rqbuffer_lock, flags);
spin_lock_irqsave(&acb->wqbuffer_lock, flags);
acb->acb_flags |= (ACB_F_MESSAGE_WQBUFFER_CLEARED |
ACB_F_MESSAGE_WQBUFFER_READED);
acb->wqbuf_getIndex = 0;
acb->wqbuf_putIndex = 0;
pQbuffer = acb->wqbuffer;
memset(pQbuffer, 0, sizeof(struct QBUFFER));
spin_unlock_irqrestore(&acb->wqbuffer_lock, flags);
if (acb->fw_flag == FW_DEADLOCK)
pcmdmessagefld->cmdmessage.ReturnCode =
ARCMSR_MESSAGE_RETURNCODE_BUS_HANG_ON;
else
pcmdmessagefld->cmdmessage.ReturnCode =
ARCMSR_MESSAGE_RETURNCODE_OK;
break;
}
case ARCMSR_MESSAGE_RETURN_CODE_3F: {
if (acb->fw_flag == FW_DEADLOCK)
pcmdmessagefld->cmdmessage.ReturnCode =
ARCMSR_MESSAGE_RETURNCODE_BUS_HANG_ON;
else
pcmdmessagefld->cmdmessage.ReturnCode =
ARCMSR_MESSAGE_RETURNCODE_3F;
break;
}
case ARCMSR_MESSAGE_SAY_HELLO: {
int8_t *hello_string = "Hello! I am ARCMSR";
if (acb->fw_flag == FW_DEADLOCK)
pcmdmessagefld->cmdmessage.ReturnCode =
ARCMSR_MESSAGE_RETURNCODE_BUS_HANG_ON;
else
pcmdmessagefld->cmdmessage.ReturnCode =
ARCMSR_MESSAGE_RETURNCODE_OK;
memcpy(pcmdmessagefld->messagedatabuffer,
hello_string, (int16_t)strlen(hello_string));
break;
}
case ARCMSR_MESSAGE_SAY_GOODBYE: {
if (acb->fw_flag == FW_DEADLOCK)
pcmdmessagefld->cmdmessage.ReturnCode =
ARCMSR_MESSAGE_RETURNCODE_BUS_HANG_ON;
else
pcmdmessagefld->cmdmessage.ReturnCode =
ARCMSR_MESSAGE_RETURNCODE_OK;
arcmsr_iop_parking(acb);
break;
}
case ARCMSR_MESSAGE_FLUSH_ADAPTER_CACHE: {
if (acb->fw_flag == FW_DEADLOCK)
pcmdmessagefld->cmdmessage.ReturnCode =
ARCMSR_MESSAGE_RETURNCODE_BUS_HANG_ON;
else
pcmdmessagefld->cmdmessage.ReturnCode =
ARCMSR_MESSAGE_RETURNCODE_OK;
arcmsr_flush_adapter_cache(acb);
break;
}
default:
retvalue = ARCMSR_MESSAGE_FAIL;
pr_info("%s: unknown controlcode!\n", __func__);
}
message_out:
if (use_sg) {
struct scatterlist *sg = scsi_sglist(cmd);
kunmap_atomic(buffer - sg->offset);
}
return retvalue;
}
static struct CommandControlBlock *arcmsr_get_freeccb(struct AdapterControlBlock *acb)
{
struct list_head *head;
struct CommandControlBlock *ccb = NULL;
unsigned long flags;
spin_lock_irqsave(&acb->ccblist_lock, flags);
head = &acb->ccb_free_list;
if (!list_empty(head)) {
ccb = list_entry(head->next, struct CommandControlBlock, list);
list_del_init(&ccb->list);
}else{
spin_unlock_irqrestore(&acb->ccblist_lock, flags);
return NULL;
}
spin_unlock_irqrestore(&acb->ccblist_lock, flags);
return ccb;
}
static void arcmsr_handle_virtual_command(struct AdapterControlBlock *acb,
struct scsi_cmnd *cmd)
{
switch (cmd->cmnd[0]) {
case INQUIRY: {
unsigned char inqdata[36];
char *buffer;
struct scatterlist *sg;
if (cmd->device->lun) {
cmd->result = (DID_TIME_OUT << 16);
cmd->scsi_done(cmd);
return;
}
inqdata[0] = TYPE_PROCESSOR;
/* Periph Qualifier & Periph Dev Type */
inqdata[1] = 0;
/* rem media bit & Dev Type Modifier */
inqdata[2] = 0;
/* ISO, ECMA, & ANSI versions */
inqdata[4] = 31;
/* length of additional data */
memcpy(&inqdata[8], "Areca ", 8);
/* Vendor Identification */
memcpy(&inqdata[16], "RAID controller ", 16);
/* Product Identification */
memcpy(&inqdata[32], "R001", 4); /* Product Revision */
sg = scsi_sglist(cmd);
buffer = kmap_atomic(sg_page(sg)) + sg->offset;
memcpy(buffer, inqdata, sizeof(inqdata));
sg = scsi_sglist(cmd);
kunmap_atomic(buffer - sg->offset);
cmd->scsi_done(cmd);
}
break;
case WRITE_BUFFER:
case READ_BUFFER: {
if (arcmsr_iop_message_xfer(acb, cmd))
cmd->result = (DID_ERROR << 16);
cmd->scsi_done(cmd);
}
break;
default:
cmd->scsi_done(cmd);
}
}
static int arcmsr_queue_command_lck(struct scsi_cmnd *cmd,
void (* done)(struct scsi_cmnd *))
{
struct Scsi_Host *host = cmd->device->host;
struct AdapterControlBlock *acb = (struct AdapterControlBlock *) host->hostdata;
struct CommandControlBlock *ccb;
int target = cmd->device->id;
if (acb->acb_flags & ACB_F_ADAPTER_REMOVED) {
cmd->result = (DID_NO_CONNECT << 16);
cmd->scsi_done(cmd);
return 0;
}
cmd->scsi_done = done;
cmd->host_scribble = NULL;
cmd->result = 0;
if (target == 16) {
/* virtual device for iop message transfer */
arcmsr_handle_virtual_command(acb, cmd);
return 0;
}
ccb = arcmsr_get_freeccb(acb);
if (!ccb)
return SCSI_MLQUEUE_HOST_BUSY;
if (arcmsr_build_ccb( acb, ccb, cmd ) == FAILED) {
cmd->result = (DID_ERROR << 16) | (RESERVATION_CONFLICT << 1);
cmd->scsi_done(cmd);
return 0;
}
arcmsr_post_ccb(acb, ccb);
return 0;
}
static DEF_SCSI_QCMD(arcmsr_queue_command)
static int arcmsr_slave_config(struct scsi_device *sdev)
{
unsigned int dev_timeout;
dev_timeout = sdev->request_queue->rq_timeout;
if ((cmd_timeout > 0) && ((cmd_timeout * HZ) > dev_timeout))
blk_queue_rq_timeout(sdev->request_queue, cmd_timeout * HZ);
return 0;
}
static void arcmsr_get_adapter_config(struct AdapterControlBlock *pACB, uint32_t *rwbuffer)
{
int count;
uint32_t *acb_firm_model = (uint32_t *)pACB->firm_model;
uint32_t *acb_firm_version = (uint32_t *)pACB->firm_version;
uint32_t *acb_device_map = (uint32_t *)pACB->device_map;
uint32_t *firm_model = &rwbuffer[15];
uint32_t *firm_version = &rwbuffer[17];
uint32_t *device_map = &rwbuffer[21];
count = 2;
while (count) {
*acb_firm_model = readl(firm_model);
acb_firm_model++;
firm_model++;
count--;
}
count = 4;
while (count) {
*acb_firm_version = readl(firm_version);
acb_firm_version++;
firm_version++;
count--;
}
count = 4;
while (count) {
*acb_device_map = readl(device_map);
acb_device_map++;
device_map++;
count--;
}
pACB->signature = readl(&rwbuffer[0]);
pACB->firm_request_len = readl(&rwbuffer[1]);
pACB->firm_numbers_queue = readl(&rwbuffer[2]);
pACB->firm_sdram_size = readl(&rwbuffer[3]);
pACB->firm_hd_channels = readl(&rwbuffer[4]);
pACB->firm_cfg_version = readl(&rwbuffer[25]);
pr_notice("Areca RAID Controller%d: Model %s, F/W %s\n",
pACB->host->host_no,
pACB->firm_model,
pACB->firm_version);
}
static bool arcmsr_hbaA_get_config(struct AdapterControlBlock *acb)
{
struct MessageUnit_A __iomem *reg = acb->pmuA;
arcmsr_wait_firmware_ready(acb);
writel(ARCMSR_INBOUND_MESG0_GET_CONFIG, &reg->inbound_msgaddr0);
if (!arcmsr_hbaA_wait_msgint_ready(acb)) {
printk(KERN_NOTICE "arcmsr%d: wait 'get adapter firmware \
miscellaneous data' timeout \n", acb->host->host_no);
return false;
}
arcmsr_get_adapter_config(acb, reg->message_rwbuffer);
return true;
}
static bool arcmsr_hbaB_get_config(struct AdapterControlBlock *acb)
{
struct MessageUnit_B *reg = acb->pmuB;
arcmsr_wait_firmware_ready(acb);
writel(ARCMSR_MESSAGE_START_DRIVER_MODE, reg->drv2iop_doorbell);
if (!arcmsr_hbaB_wait_msgint_ready(acb)) {
printk(KERN_ERR "arcmsr%d: can't set driver mode.\n", acb->host->host_no);
return false;
}
writel(ARCMSR_MESSAGE_GET_CONFIG, reg->drv2iop_doorbell);
if (!arcmsr_hbaB_wait_msgint_ready(acb)) {
printk(KERN_NOTICE "arcmsr%d: wait 'get adapter firmware \
miscellaneous data' timeout \n", acb->host->host_no);
return false;
}
arcmsr_get_adapter_config(acb, reg->message_rwbuffer);
return true;
}
static bool arcmsr_hbaC_get_config(struct AdapterControlBlock *pACB)
{
uint32_t intmask_org;
struct MessageUnit_C __iomem *reg = pACB->pmuC;
/* disable all outbound interrupt */
intmask_org = readl(&reg->host_int_mask); /* disable outbound message0 int */
writel(intmask_org|ARCMSR_HBCMU_ALL_INTMASKENABLE, &reg->host_int_mask);
/* wait firmware ready */
arcmsr_wait_firmware_ready(pACB);
/* post "get config" instruction */
writel(ARCMSR_INBOUND_MESG0_GET_CONFIG, &reg->inbound_msgaddr0);
writel(ARCMSR_HBCMU_DRV2IOP_MESSAGE_CMD_DONE, &reg->inbound_doorbell);
/* wait message ready */
if (!arcmsr_hbaC_wait_msgint_ready(pACB)) {
printk(KERN_NOTICE "arcmsr%d: wait 'get adapter firmware \
miscellaneous data' timeout \n", pACB->host->host_no);
return false;
}
arcmsr_get_adapter_config(pACB, reg->msgcode_rwbuffer);
return true;
}
static bool arcmsr_hbaD_get_config(struct AdapterControlBlock *acb)
{
struct MessageUnit_D *reg = acb->pmuD;
if (readl(acb->pmuD->outbound_doorbell) &
ARCMSR_ARC1214_IOP2DRV_MESSAGE_CMD_DONE) {
writel(ARCMSR_ARC1214_IOP2DRV_MESSAGE_CMD_DONE,
acb->pmuD->outbound_doorbell);/*clear interrupt*/
}
arcmsr_wait_firmware_ready(acb);
/* post "get config" instruction */
writel(ARCMSR_INBOUND_MESG0_GET_CONFIG, reg->inbound_msgaddr0);
/* wait message ready */
if (!arcmsr_hbaD_wait_msgint_ready(acb)) {
pr_notice("arcmsr%d: wait get adapter firmware "
"miscellaneous data timeout\n", acb->host->host_no);
return false;
}
arcmsr_get_adapter_config(acb, reg->msgcode_rwbuffer);
return true;
}
static bool arcmsr_hbaE_get_config(struct AdapterControlBlock *pACB)
{
struct MessageUnit_E __iomem *reg = pACB->pmuE;
uint32_t intmask_org;
/* disable all outbound interrupt */
intmask_org = readl(&reg->host_int_mask); /* disable outbound message0 int */
writel(intmask_org | ARCMSR_HBEMU_ALL_INTMASKENABLE, &reg->host_int_mask);
/* wait firmware ready */
arcmsr_wait_firmware_ready(pACB);
mdelay(20);
/* post "get config" instruction */
writel(ARCMSR_INBOUND_MESG0_GET_CONFIG, &reg->inbound_msgaddr0);
pACB->out_doorbell ^= ARCMSR_HBEMU_DRV2IOP_MESSAGE_CMD_DONE;
writel(pACB->out_doorbell, &reg->iobound_doorbell);
/* wait message ready */
if (!arcmsr_hbaE_wait_msgint_ready(pACB)) {
pr_notice("arcmsr%d: wait get adapter firmware "
"miscellaneous data timeout\n", pACB->host->host_no);
return false;
}
arcmsr_get_adapter_config(pACB, reg->msgcode_rwbuffer);
return true;
}
static bool arcmsr_hbaF_get_config(struct AdapterControlBlock *pACB)
{
struct MessageUnit_F __iomem *reg = pACB->pmuF;
uint32_t intmask_org;
/* disable all outbound interrupt */
intmask_org = readl(&reg->host_int_mask); /* disable outbound message0 int */
writel(intmask_org | ARCMSR_HBEMU_ALL_INTMASKENABLE, &reg->host_int_mask);
/* wait firmware ready */
arcmsr_wait_firmware_ready(pACB);
/* post "get config" instruction */
writel(ARCMSR_INBOUND_MESG0_GET_CONFIG, &reg->inbound_msgaddr0);
pACB->out_doorbell ^= ARCMSR_HBEMU_DRV2IOP_MESSAGE_CMD_DONE;
writel(pACB->out_doorbell, &reg->iobound_doorbell);
/* wait message ready */
if (!arcmsr_hbaE_wait_msgint_ready(pACB)) {
pr_notice("arcmsr%d: wait get adapter firmware miscellaneous data timeout\n",
pACB->host->host_no);
return false;
}
arcmsr_get_adapter_config(pACB, pACB->msgcode_rwbuffer);
return true;
}
static bool arcmsr_get_firmware_spec(struct AdapterControlBlock *acb)
{
bool rtn = false;
switch (acb->adapter_type) {
case ACB_ADAPTER_TYPE_A:
rtn = arcmsr_hbaA_get_config(acb);
break;
case ACB_ADAPTER_TYPE_B:
rtn = arcmsr_hbaB_get_config(acb);
break;
case ACB_ADAPTER_TYPE_C:
rtn = arcmsr_hbaC_get_config(acb);
break;
case ACB_ADAPTER_TYPE_D:
rtn = arcmsr_hbaD_get_config(acb);
break;
case ACB_ADAPTER_TYPE_E:
rtn = arcmsr_hbaE_get_config(acb);
break;
case ACB_ADAPTER_TYPE_F:
rtn = arcmsr_hbaF_get_config(acb);
break;
default:
break;
}
acb->maxOutstanding = acb->firm_numbers_queue - 1;
if (acb->host->can_queue >= acb->firm_numbers_queue)
acb->host->can_queue = acb->maxOutstanding;
else
acb->maxOutstanding = acb->host->can_queue;
acb->maxFreeCCB = acb->host->can_queue;
if (acb->maxFreeCCB < ARCMSR_MAX_FREECCB_NUM)
acb->maxFreeCCB += 64;
return rtn;
}
static int arcmsr_hbaA_polling_ccbdone(struct AdapterControlBlock *acb,
struct CommandControlBlock *poll_ccb)
{
struct MessageUnit_A __iomem *reg = acb->pmuA;
struct CommandControlBlock *ccb;
struct ARCMSR_CDB *arcmsr_cdb;
uint32_t flag_ccb, outbound_intstatus, poll_ccb_done = 0, poll_count = 0;
int rtn;
bool error;
unsigned long ccb_cdb_phy;
polling_hba_ccb_retry:
poll_count++;
outbound_intstatus = readl(&reg->outbound_intstatus) & acb->outbound_int_enable;
writel(outbound_intstatus, &reg->outbound_intstatus);/*clear interrupt*/
while (1) {
if ((flag_ccb = readl(&reg->outbound_queueport)) == 0xFFFFFFFF) {
if (poll_ccb_done){
rtn = SUCCESS;
break;
}else {
msleep(25);
if (poll_count > 100){
rtn = FAILED;
break;
}
goto polling_hba_ccb_retry;
}
}
ccb_cdb_phy = (flag_ccb << 5) & 0xffffffff;
if (acb->cdb_phyadd_hipart)
ccb_cdb_phy = ccb_cdb_phy | acb->cdb_phyadd_hipart;
arcmsr_cdb = (struct ARCMSR_CDB *)(acb->vir2phy_offset + ccb_cdb_phy);
ccb = container_of(arcmsr_cdb, struct CommandControlBlock, arcmsr_cdb);
poll_ccb_done |= (ccb == poll_ccb) ? 1 : 0;
if ((ccb->acb != acb) || (ccb->startdone != ARCMSR_CCB_START)) {
if ((ccb->startdone == ARCMSR_CCB_ABORTED) || (ccb == poll_ccb)) {
printk(KERN_NOTICE "arcmsr%d: scsi id = %d lun = %d ccb = '0x%p'"
" poll command abort successfully \n"
, acb->host->host_no
, ccb->pcmd->device->id
, (u32)ccb->pcmd->device->lun
, ccb);
ccb->pcmd->result = DID_ABORT << 16;
arcmsr_ccb_complete(ccb);
continue;
}
printk(KERN_NOTICE "arcmsr%d: polling get an illegal ccb"
" command done ccb = '0x%p'"
"ccboutstandingcount = %d \n"
, acb->host->host_no
, ccb
, atomic_read(&acb->ccboutstandingcount));
continue;
}
error = (flag_ccb & ARCMSR_CCBREPLY_FLAG_ERROR_MODE0) ? true : false;
arcmsr_report_ccb_state(acb, ccb, error);
}
return rtn;
}
static int arcmsr_hbaB_polling_ccbdone(struct AdapterControlBlock *acb,
struct CommandControlBlock *poll_ccb)
{
struct MessageUnit_B *reg = acb->pmuB;
struct ARCMSR_CDB *arcmsr_cdb;
struct CommandControlBlock *ccb;
uint32_t flag_ccb, poll_ccb_done = 0, poll_count = 0;
int index, rtn;
bool error;
unsigned long ccb_cdb_phy;
polling_hbb_ccb_retry:
poll_count++;
/* clear doorbell interrupt */
writel(ARCMSR_DOORBELL_INT_CLEAR_PATTERN, reg->iop2drv_doorbell);
while(1){
index = reg->doneq_index;
flag_ccb = reg->done_qbuffer[index];
if (flag_ccb == 0) {
if (poll_ccb_done){
rtn = SUCCESS;
break;
}else {
msleep(25);
if (poll_count > 100){
rtn = FAILED;
break;
}
goto polling_hbb_ccb_retry;
}
}
reg->done_qbuffer[index] = 0;
index++;
/*if last index number set it to 0 */
index %= ARCMSR_MAX_HBB_POSTQUEUE;
reg->doneq_index = index;
/* check if command done with no error*/
ccb_cdb_phy = (flag_ccb << 5) & 0xffffffff;
if (acb->cdb_phyadd_hipart)
ccb_cdb_phy = ccb_cdb_phy | acb->cdb_phyadd_hipart;
arcmsr_cdb = (struct ARCMSR_CDB *)(acb->vir2phy_offset + ccb_cdb_phy);
ccb = container_of(arcmsr_cdb, struct CommandControlBlock, arcmsr_cdb);
poll_ccb_done |= (ccb == poll_ccb) ? 1 : 0;
if ((ccb->acb != acb) || (ccb->startdone != ARCMSR_CCB_START)) {
if ((ccb->startdone == ARCMSR_CCB_ABORTED) || (ccb == poll_ccb)) {
printk(KERN_NOTICE "arcmsr%d: scsi id = %d lun = %d ccb = '0x%p'"
" poll command abort successfully \n"
,acb->host->host_no
,ccb->pcmd->device->id
,(u32)ccb->pcmd->device->lun
,ccb);
ccb->pcmd->result = DID_ABORT << 16;
arcmsr_ccb_complete(ccb);
continue;
}
printk(KERN_NOTICE "arcmsr%d: polling get an illegal ccb"
" command done ccb = '0x%p'"
"ccboutstandingcount = %d \n"
, acb->host->host_no
, ccb
, atomic_read(&acb->ccboutstandingcount));
continue;
}
error = (flag_ccb & ARCMSR_CCBREPLY_FLAG_ERROR_MODE0) ? true : false;
arcmsr_report_ccb_state(acb, ccb, error);
}
return rtn;
}
static int arcmsr_hbaC_polling_ccbdone(struct AdapterControlBlock *acb,
struct CommandControlBlock *poll_ccb)
{
struct MessageUnit_C __iomem *reg = acb->pmuC;
uint32_t flag_ccb;
struct ARCMSR_CDB *arcmsr_cdb;
bool error;
struct CommandControlBlock *pCCB;
uint32_t poll_ccb_done = 0, poll_count = 0;
int rtn;
unsigned long ccb_cdb_phy;
polling_hbc_ccb_retry:
poll_count++;
while (1) {
if ((readl(&reg->host_int_status) & ARCMSR_HBCMU_OUTBOUND_POSTQUEUE_ISR) == 0) {
if (poll_ccb_done) {
rtn = SUCCESS;
break;
} else {
msleep(25);
if (poll_count > 100) {
rtn = FAILED;
break;
}
goto polling_hbc_ccb_retry;
}
}
flag_ccb = readl(&reg->outbound_queueport_low);
ccb_cdb_phy = (flag_ccb & 0xFFFFFFF0);
if (acb->cdb_phyadd_hipart)
ccb_cdb_phy = ccb_cdb_phy | acb->cdb_phyadd_hipart;
arcmsr_cdb = (struct ARCMSR_CDB *)(acb->vir2phy_offset + ccb_cdb_phy);
pCCB = container_of(arcmsr_cdb, struct CommandControlBlock, arcmsr_cdb);
poll_ccb_done |= (pCCB == poll_ccb) ? 1 : 0;
/* check ifcommand done with no error*/
if ((pCCB->acb != acb) || (pCCB->startdone != ARCMSR_CCB_START)) {
if (pCCB->startdone == ARCMSR_CCB_ABORTED) {
printk(KERN_NOTICE "arcmsr%d: scsi id = %d lun = %d ccb = '0x%p'"
" poll command abort successfully \n"
, acb->host->host_no
, pCCB->pcmd->device->id
, (u32)pCCB->pcmd->device->lun
, pCCB);
pCCB->pcmd->result = DID_ABORT << 16;
arcmsr_ccb_complete(pCCB);
continue;
}
printk(KERN_NOTICE "arcmsr%d: polling get an illegal ccb"
" command done ccb = '0x%p'"
"ccboutstandingcount = %d \n"
, acb->host->host_no
, pCCB
, atomic_read(&acb->ccboutstandingcount));
continue;
}
error = (flag_ccb & ARCMSR_CCBREPLY_FLAG_ERROR_MODE1) ? true : false;
arcmsr_report_ccb_state(acb, pCCB, error);
}
return rtn;
}
static int arcmsr_hbaD_polling_ccbdone(struct AdapterControlBlock *acb,
struct CommandControlBlock *poll_ccb)
{
bool error;
uint32_t poll_ccb_done = 0, poll_count = 0, flag_ccb;
int rtn, doneq_index, index_stripped, outbound_write_pointer, toggle;
unsigned long flags, ccb_cdb_phy;
struct ARCMSR_CDB *arcmsr_cdb;
struct CommandControlBlock *pCCB;
struct MessageUnit_D *pmu = acb->pmuD;
polling_hbaD_ccb_retry:
poll_count++;
while (1) {
spin_lock_irqsave(&acb->doneq_lock, flags);
outbound_write_pointer = pmu->done_qbuffer[0].addressLow + 1;
doneq_index = pmu->doneq_index;
if ((outbound_write_pointer & 0xFFF) == (doneq_index & 0xFFF)) {
spin_unlock_irqrestore(&acb->doneq_lock, flags);
if (poll_ccb_done) {
rtn = SUCCESS;
break;
} else {
msleep(25);
if (poll_count > 40) {
rtn = FAILED;
break;
}
goto polling_hbaD_ccb_retry;
}
}
toggle = doneq_index & 0x4000;
index_stripped = (doneq_index & 0xFFF) + 1;
index_stripped %= ARCMSR_MAX_ARC1214_DONEQUEUE;
pmu->doneq_index = index_stripped ? (index_stripped | toggle) :
((toggle ^ 0x4000) + 1);
doneq_index = pmu->doneq_index;
spin_unlock_irqrestore(&acb->doneq_lock, flags);
flag_ccb = pmu->done_qbuffer[doneq_index & 0xFFF].addressLow;
ccb_cdb_phy = (flag_ccb & 0xFFFFFFF0);
if (acb->cdb_phyadd_hipart)
ccb_cdb_phy = ccb_cdb_phy | acb->cdb_phyadd_hipart;
arcmsr_cdb = (struct ARCMSR_CDB *)(acb->vir2phy_offset +
ccb_cdb_phy);
pCCB = container_of(arcmsr_cdb, struct CommandControlBlock,
arcmsr_cdb);
poll_ccb_done |= (pCCB == poll_ccb) ? 1 : 0;
if ((pCCB->acb != acb) ||
(pCCB->startdone != ARCMSR_CCB_START)) {
if (pCCB->startdone == ARCMSR_CCB_ABORTED) {
pr_notice("arcmsr%d: scsi id = %d "
"lun = %d ccb = '0x%p' poll command "
"abort successfully\n"
, acb->host->host_no
, pCCB->pcmd->device->id
, (u32)pCCB->pcmd->device->lun
, pCCB);
pCCB->pcmd->result = DID_ABORT << 16;
arcmsr_ccb_complete(pCCB);
continue;
}
pr_notice("arcmsr%d: polling an illegal "
"ccb command done ccb = '0x%p' "
"ccboutstandingcount = %d\n"
, acb->host->host_no
, pCCB
, atomic_read(&acb->ccboutstandingcount));
continue;
}
error = (flag_ccb & ARCMSR_CCBREPLY_FLAG_ERROR_MODE1)
? true : false;
arcmsr_report_ccb_state(acb, pCCB, error);
}
return rtn;
}
static int arcmsr_hbaE_polling_ccbdone(struct AdapterControlBlock *acb,
struct CommandControlBlock *poll_ccb)
{
bool error;
uint32_t poll_ccb_done = 0, poll_count = 0, doneq_index;
uint16_t cmdSMID;
unsigned long flags;
int rtn;
struct CommandControlBlock *pCCB;
struct MessageUnit_E __iomem *reg = acb->pmuE;
polling_hbaC_ccb_retry:
poll_count++;
while (1) {
spin_lock_irqsave(&acb->doneq_lock, flags);
doneq_index = acb->doneq_index;
if ((readl(&reg->reply_post_producer_index) & 0xFFFF) ==
doneq_index) {
spin_unlock_irqrestore(&acb->doneq_lock, flags);
if (poll_ccb_done) {
rtn = SUCCESS;
break;
} else {
msleep(25);
if (poll_count > 40) {
rtn = FAILED;
break;
}
goto polling_hbaC_ccb_retry;
}
}
cmdSMID = acb->pCompletionQ[doneq_index].cmdSMID;
doneq_index++;
if (doneq_index >= acb->completionQ_entry)
doneq_index = 0;
acb->doneq_index = doneq_index;
spin_unlock_irqrestore(&acb->doneq_lock, flags);
pCCB = acb->pccb_pool[cmdSMID];
poll_ccb_done |= (pCCB == poll_ccb) ? 1 : 0;
/* check if command done with no error*/
if ((pCCB->acb != acb) || (pCCB->startdone != ARCMSR_CCB_START)) {
if (pCCB->startdone == ARCMSR_CCB_ABORTED) {
pr_notice("arcmsr%d: scsi id = %d "
"lun = %d ccb = '0x%p' poll command "
"abort successfully\n"
, acb->host->host_no
, pCCB->pcmd->device->id
, (u32)pCCB->pcmd->device->lun
, pCCB);
pCCB->pcmd->result = DID_ABORT << 16;
arcmsr_ccb_complete(pCCB);
continue;
}
pr_notice("arcmsr%d: polling an illegal "
"ccb command done ccb = '0x%p' "
"ccboutstandingcount = %d\n"
, acb->host->host_no
, pCCB
, atomic_read(&acb->ccboutstandingcount));
continue;
}
error = (acb->pCompletionQ[doneq_index].cmdFlag &
ARCMSR_CCBREPLY_FLAG_ERROR_MODE1) ? true : false;
arcmsr_report_ccb_state(acb, pCCB, error);
}
writel(doneq_index, &reg->reply_post_consumer_index);
return rtn;
}
static int arcmsr_polling_ccbdone(struct AdapterControlBlock *acb,
struct CommandControlBlock *poll_ccb)
{
int rtn = 0;
switch (acb->adapter_type) {
case ACB_ADAPTER_TYPE_A:
rtn = arcmsr_hbaA_polling_ccbdone(acb, poll_ccb);
break;
case ACB_ADAPTER_TYPE_B:
rtn = arcmsr_hbaB_polling_ccbdone(acb, poll_ccb);
break;
case ACB_ADAPTER_TYPE_C:
rtn = arcmsr_hbaC_polling_ccbdone(acb, poll_ccb);
break;
case ACB_ADAPTER_TYPE_D:
rtn = arcmsr_hbaD_polling_ccbdone(acb, poll_ccb);
break;
case ACB_ADAPTER_TYPE_E:
case ACB_ADAPTER_TYPE_F:
rtn = arcmsr_hbaE_polling_ccbdone(acb, poll_ccb);
break;
}
return rtn;
}
static void arcmsr_set_iop_datetime(struct timer_list *t)
{
struct AdapterControlBlock *pacb = from_timer(pacb, t, refresh_timer);
unsigned int next_time;
struct tm tm;
union {
struct {
uint16_t signature;
uint8_t year;
uint8_t month;
uint8_t date;
uint8_t hour;
uint8_t minute;
uint8_t second;
} a;
struct {
uint32_t msg_time[2];
} b;
} datetime;
time64_to_tm(ktime_get_real_seconds(), -sys_tz.tz_minuteswest * 60, &tm);
datetime.a.signature = 0x55AA;
datetime.a.year = tm.tm_year - 100; /* base 2000 instead of 1900 */
datetime.a.month = tm.tm_mon;
datetime.a.date = tm.tm_mday;
datetime.a.hour = tm.tm_hour;
datetime.a.minute = tm.tm_min;
datetime.a.second = tm.tm_sec;
switch (pacb->adapter_type) {
case ACB_ADAPTER_TYPE_A: {
struct MessageUnit_A __iomem *reg = pacb->pmuA;
writel(datetime.b.msg_time[0], &reg->message_rwbuffer[0]);
writel(datetime.b.msg_time[1], &reg->message_rwbuffer[1]);
writel(ARCMSR_INBOUND_MESG0_SYNC_TIMER, &reg->inbound_msgaddr0);
break;
}
case ACB_ADAPTER_TYPE_B: {
uint32_t __iomem *rwbuffer;
struct MessageUnit_B *reg = pacb->pmuB;
rwbuffer = reg->message_rwbuffer;
writel(datetime.b.msg_time[0], rwbuffer++);
writel(datetime.b.msg_time[1], rwbuffer++);
writel(ARCMSR_MESSAGE_SYNC_TIMER, reg->drv2iop_doorbell);
break;
}
case ACB_ADAPTER_TYPE_C: {
struct MessageUnit_C __iomem *reg = pacb->pmuC;
writel(datetime.b.msg_time[0], &reg->msgcode_rwbuffer[0]);
writel(datetime.b.msg_time[1], &reg->msgcode_rwbuffer[1]);
writel(ARCMSR_INBOUND_MESG0_SYNC_TIMER, &reg->inbound_msgaddr0);
writel(ARCMSR_HBCMU_DRV2IOP_MESSAGE_CMD_DONE, &reg->inbound_doorbell);
break;
}
case ACB_ADAPTER_TYPE_D: {
uint32_t __iomem *rwbuffer;
struct MessageUnit_D *reg = pacb->pmuD;
rwbuffer = reg->msgcode_rwbuffer;
writel(datetime.b.msg_time[0], rwbuffer++);
writel(datetime.b.msg_time[1], rwbuffer++);
writel(ARCMSR_INBOUND_MESG0_SYNC_TIMER, reg->inbound_msgaddr0);
break;
}
case ACB_ADAPTER_TYPE_E: {
struct MessageUnit_E __iomem *reg = pacb->pmuE;
writel(datetime.b.msg_time[0], &reg->msgcode_rwbuffer[0]);
writel(datetime.b.msg_time[1], &reg->msgcode_rwbuffer[1]);
writel(ARCMSR_INBOUND_MESG0_SYNC_TIMER, &reg->inbound_msgaddr0);
pacb->out_doorbell ^= ARCMSR_HBEMU_DRV2IOP_MESSAGE_CMD_DONE;
writel(pacb->out_doorbell, &reg->iobound_doorbell);
break;
}
case ACB_ADAPTER_TYPE_F: {
struct MessageUnit_F __iomem *reg = pacb->pmuF;
pacb->msgcode_rwbuffer[0] = datetime.b.msg_time[0];
pacb->msgcode_rwbuffer[1] = datetime.b.msg_time[1];
writel(ARCMSR_INBOUND_MESG0_SYNC_TIMER, &reg->inbound_msgaddr0);
pacb->out_doorbell ^= ARCMSR_HBEMU_DRV2IOP_MESSAGE_CMD_DONE;
writel(pacb->out_doorbell, &reg->iobound_doorbell);
break;
}
}
if (sys_tz.tz_minuteswest)
next_time = ARCMSR_HOURS;
else
next_time = ARCMSR_MINUTES;
mod_timer(&pacb->refresh_timer, jiffies + msecs_to_jiffies(next_time));
}
static int arcmsr_iop_confirm(struct AdapterControlBlock *acb)
{
uint32_t cdb_phyaddr, cdb_phyaddr_hi32;
dma_addr_t dma_coherent_handle;
/*
********************************************************************
** here we need to tell iop 331 our freeccb.HighPart
** if freeccb.HighPart is not zero
********************************************************************
*/
switch (acb->adapter_type) {
case ACB_ADAPTER_TYPE_B:
case ACB_ADAPTER_TYPE_D:
dma_coherent_handle = acb->dma_coherent_handle2;
break;
case ACB_ADAPTER_TYPE_E:
case ACB_ADAPTER_TYPE_F:
dma_coherent_handle = acb->dma_coherent_handle +
offsetof(struct CommandControlBlock, arcmsr_cdb);
break;
default:
dma_coherent_handle = acb->dma_coherent_handle;
break;
}
cdb_phyaddr = lower_32_bits(dma_coherent_handle);
cdb_phyaddr_hi32 = upper_32_bits(dma_coherent_handle);
acb->cdb_phyaddr_hi32 = cdb_phyaddr_hi32;
acb->cdb_phyadd_hipart = ((uint64_t)cdb_phyaddr_hi32) << 32;
/*
***********************************************************************
** if adapter type B, set window of "post command Q"
***********************************************************************
*/
switch (acb->adapter_type) {
case ACB_ADAPTER_TYPE_A: {
if (cdb_phyaddr_hi32 != 0) {
struct MessageUnit_A __iomem *reg = acb->pmuA;
writel(ARCMSR_SIGNATURE_SET_CONFIG, \
&reg->message_rwbuffer[0]);
writel(cdb_phyaddr_hi32, &reg->message_rwbuffer[1]);
writel(ARCMSR_INBOUND_MESG0_SET_CONFIG, \
&reg->inbound_msgaddr0);
if (!arcmsr_hbaA_wait_msgint_ready(acb)) {
printk(KERN_NOTICE "arcmsr%d: ""set ccb high \
part physical address timeout\n",
acb->host->host_no);
return 1;
}
}
}
break;
case ACB_ADAPTER_TYPE_B: {
uint32_t __iomem *rwbuffer;
struct MessageUnit_B *reg = acb->pmuB;
reg->postq_index = 0;
reg->doneq_index = 0;
writel(ARCMSR_MESSAGE_SET_POST_WINDOW, reg->drv2iop_doorbell);
if (!arcmsr_hbaB_wait_msgint_ready(acb)) {
printk(KERN_NOTICE "arcmsr%d: cannot set driver mode\n", \
acb->host->host_no);
return 1;
}
rwbuffer = reg->message_rwbuffer;
/* driver "set config" signature */
writel(ARCMSR_SIGNATURE_SET_CONFIG, rwbuffer++);
/* normal should be zero */
writel(cdb_phyaddr_hi32, rwbuffer++);
/* postQ size (256 + 8)*4 */
writel(cdb_phyaddr, rwbuffer++);
/* doneQ size (256 + 8)*4 */
writel(cdb_phyaddr + 1056, rwbuffer++);
/* ccb maxQ size must be --> [(256 + 8)*4]*/
writel(1056, rwbuffer);
writel(ARCMSR_MESSAGE_SET_CONFIG, reg->drv2iop_doorbell);
if (!arcmsr_hbaB_wait_msgint_ready(acb)) {
printk(KERN_NOTICE "arcmsr%d: 'set command Q window' \
timeout \n",acb->host->host_no);
return 1;
}
writel(ARCMSR_MESSAGE_START_DRIVER_MODE, reg->drv2iop_doorbell);
if (!arcmsr_hbaB_wait_msgint_ready(acb)) {
pr_err("arcmsr%d: can't set driver mode.\n",
acb->host->host_no);
return 1;
}
}
break;
case ACB_ADAPTER_TYPE_C: {
struct MessageUnit_C __iomem *reg = acb->pmuC;
printk(KERN_NOTICE "arcmsr%d: cdb_phyaddr_hi32=0x%x\n",
acb->adapter_index, cdb_phyaddr_hi32);
writel(ARCMSR_SIGNATURE_SET_CONFIG, &reg->msgcode_rwbuffer[0]);
writel(cdb_phyaddr_hi32, &reg->msgcode_rwbuffer[1]);
writel(ARCMSR_INBOUND_MESG0_SET_CONFIG, &reg->inbound_msgaddr0);
writel(ARCMSR_HBCMU_DRV2IOP_MESSAGE_CMD_DONE, &reg->inbound_doorbell);
if (!arcmsr_hbaC_wait_msgint_ready(acb)) {
printk(KERN_NOTICE "arcmsr%d: 'set command Q window' \
timeout \n", acb->host->host_no);
return 1;
}
}
break;
case ACB_ADAPTER_TYPE_D: {
uint32_t __iomem *rwbuffer;
struct MessageUnit_D *reg = acb->pmuD;
reg->postq_index = 0;
reg->doneq_index = 0;
rwbuffer = reg->msgcode_rwbuffer;
writel(ARCMSR_SIGNATURE_SET_CONFIG, rwbuffer++);
writel(cdb_phyaddr_hi32, rwbuffer++);
writel(cdb_phyaddr, rwbuffer++);
writel(cdb_phyaddr + (ARCMSR_MAX_ARC1214_POSTQUEUE *
sizeof(struct InBound_SRB)), rwbuffer++);
writel(0x100, rwbuffer);
writel(ARCMSR_INBOUND_MESG0_SET_CONFIG, reg->inbound_msgaddr0);
if (!arcmsr_hbaD_wait_msgint_ready(acb)) {
pr_notice("arcmsr%d: 'set command Q window' timeout\n",
acb->host->host_no);
return 1;
}
}
break;
case ACB_ADAPTER_TYPE_E: {
struct MessageUnit_E __iomem *reg = acb->pmuE;
writel(ARCMSR_SIGNATURE_SET_CONFIG, &reg->msgcode_rwbuffer[0]);
writel(ARCMSR_SIGNATURE_1884, &reg->msgcode_rwbuffer[1]);
writel(cdb_phyaddr, &reg->msgcode_rwbuffer[2]);
writel(cdb_phyaddr_hi32, &reg->msgcode_rwbuffer[3]);
writel(acb->ccbsize, &reg->msgcode_rwbuffer[4]);
writel(lower_32_bits(acb->dma_coherent_handle2), &reg->msgcode_rwbuffer[5]);
writel(upper_32_bits(acb->dma_coherent_handle2), &reg->msgcode_rwbuffer[6]);
writel(acb->ioqueue_size, &reg->msgcode_rwbuffer[7]);
writel(ARCMSR_INBOUND_MESG0_SET_CONFIG, &reg->inbound_msgaddr0);
acb->out_doorbell ^= ARCMSR_HBEMU_DRV2IOP_MESSAGE_CMD_DONE;
writel(acb->out_doorbell, &reg->iobound_doorbell);
if (!arcmsr_hbaE_wait_msgint_ready(acb)) {
pr_notice("arcmsr%d: 'set command Q window' timeout \n",
acb->host->host_no);
return 1;
}
}
break;
case ACB_ADAPTER_TYPE_F: {
struct MessageUnit_F __iomem *reg = acb->pmuF;
acb->msgcode_rwbuffer[0] = ARCMSR_SIGNATURE_SET_CONFIG;
acb->msgcode_rwbuffer[1] = ARCMSR_SIGNATURE_1886;
acb->msgcode_rwbuffer[2] = cdb_phyaddr;
acb->msgcode_rwbuffer[3] = cdb_phyaddr_hi32;
acb->msgcode_rwbuffer[4] = acb->ccbsize;
acb->msgcode_rwbuffer[5] = lower_32_bits(acb->dma_coherent_handle2);
acb->msgcode_rwbuffer[6] = upper_32_bits(acb->dma_coherent_handle2);
acb->msgcode_rwbuffer[7] = acb->completeQ_size;
writel(ARCMSR_INBOUND_MESG0_SET_CONFIG, &reg->inbound_msgaddr0);
acb->out_doorbell ^= ARCMSR_HBEMU_DRV2IOP_MESSAGE_CMD_DONE;
writel(acb->out_doorbell, &reg->iobound_doorbell);
if (!arcmsr_hbaE_wait_msgint_ready(acb)) {
pr_notice("arcmsr%d: 'set command Q window' timeout\n",
acb->host->host_no);
return 1;
}
}
break;
}
return 0;
}
static void arcmsr_wait_firmware_ready(struct AdapterControlBlock *acb)
{
uint32_t firmware_state = 0;
switch (acb->adapter_type) {
case ACB_ADAPTER_TYPE_A: {
struct MessageUnit_A __iomem *reg = acb->pmuA;
do {
if (!(acb->acb_flags & ACB_F_IOP_INITED))
msleep(20);
firmware_state = readl(&reg->outbound_msgaddr1);
} while ((firmware_state & ARCMSR_OUTBOUND_MESG1_FIRMWARE_OK) == 0);
}
break;
case ACB_ADAPTER_TYPE_B: {
struct MessageUnit_B *reg = acb->pmuB;
do {
if (!(acb->acb_flags & ACB_F_IOP_INITED))
msleep(20);
firmware_state = readl(reg->iop2drv_doorbell);
} while ((firmware_state & ARCMSR_MESSAGE_FIRMWARE_OK) == 0);
writel(ARCMSR_DRV2IOP_END_OF_INTERRUPT, reg->drv2iop_doorbell);
}
break;
case ACB_ADAPTER_TYPE_C: {
struct MessageUnit_C __iomem *reg = acb->pmuC;
do {
if (!(acb->acb_flags & ACB_F_IOP_INITED))
msleep(20);
firmware_state = readl(&reg->outbound_msgaddr1);
} while ((firmware_state & ARCMSR_HBCMU_MESSAGE_FIRMWARE_OK) == 0);
}
break;
case ACB_ADAPTER_TYPE_D: {
struct MessageUnit_D *reg = acb->pmuD;
do {
if (!(acb->acb_flags & ACB_F_IOP_INITED))
msleep(20);
firmware_state = readl(reg->outbound_msgaddr1);
} while ((firmware_state &
ARCMSR_ARC1214_MESSAGE_FIRMWARE_OK) == 0);
}
break;
case ACB_ADAPTER_TYPE_E:
case ACB_ADAPTER_TYPE_F: {
struct MessageUnit_E __iomem *reg = acb->pmuE;
do {
if (!(acb->acb_flags & ACB_F_IOP_INITED))
msleep(20);
firmware_state = readl(&reg->outbound_msgaddr1);
} while ((firmware_state & ARCMSR_HBEMU_MESSAGE_FIRMWARE_OK) == 0);
}
break;
}
}
static void arcmsr_request_device_map(struct timer_list *t)
{
struct AdapterControlBlock *acb = from_timer(acb, t, eternal_timer);
if (acb->acb_flags & (ACB_F_MSG_GET_CONFIG | ACB_F_BUS_RESET | ACB_F_ABORT)) {
mod_timer(&acb->eternal_timer, jiffies + msecs_to_jiffies(6 * HZ));
} else {
acb->fw_flag = FW_NORMAL;
switch (acb->adapter_type) {
case ACB_ADAPTER_TYPE_A: {
struct MessageUnit_A __iomem *reg = acb->pmuA;
writel(ARCMSR_INBOUND_MESG0_GET_CONFIG, &reg->inbound_msgaddr0);
break;
}
case ACB_ADAPTER_TYPE_B: {
struct MessageUnit_B *reg = acb->pmuB;
writel(ARCMSR_MESSAGE_GET_CONFIG, reg->drv2iop_doorbell);
break;
}
case ACB_ADAPTER_TYPE_C: {
struct MessageUnit_C __iomem *reg = acb->pmuC;
writel(ARCMSR_INBOUND_MESG0_GET_CONFIG, &reg->inbound_msgaddr0);
writel(ARCMSR_HBCMU_DRV2IOP_MESSAGE_CMD_DONE, &reg->inbound_doorbell);
break;
}
case ACB_ADAPTER_TYPE_D: {
struct MessageUnit_D *reg = acb->pmuD;
writel(ARCMSR_INBOUND_MESG0_GET_CONFIG, reg->inbound_msgaddr0);
break;
}
case ACB_ADAPTER_TYPE_E: {
struct MessageUnit_E __iomem *reg = acb->pmuE;
writel(ARCMSR_INBOUND_MESG0_GET_CONFIG, &reg->inbound_msgaddr0);
acb->out_doorbell ^= ARCMSR_HBEMU_DRV2IOP_MESSAGE_CMD_DONE;
writel(acb->out_doorbell, &reg->iobound_doorbell);
break;
}
case ACB_ADAPTER_TYPE_F: {
struct MessageUnit_F __iomem *reg = acb->pmuF;
uint32_t outMsg1 = readl(&reg->outbound_msgaddr1);
if (!(outMsg1 & ARCMSR_HBFMU_MESSAGE_FIRMWARE_OK) ||
(outMsg1 & ARCMSR_HBFMU_MESSAGE_NO_VOLUME_CHANGE))
goto nxt6s;
writel(ARCMSR_INBOUND_MESG0_GET_CONFIG, &reg->inbound_msgaddr0);
acb->out_doorbell ^= ARCMSR_HBEMU_DRV2IOP_MESSAGE_CMD_DONE;
writel(acb->out_doorbell, &reg->iobound_doorbell);
break;
}
default:
return;
}
acb->acb_flags |= ACB_F_MSG_GET_CONFIG;
nxt6s:
mod_timer(&acb->eternal_timer, jiffies + msecs_to_jiffies(6 * HZ));
}
}
static void arcmsr_hbaA_start_bgrb(struct AdapterControlBlock *acb)
{
struct MessageUnit_A __iomem *reg = acb->pmuA;
acb->acb_flags |= ACB_F_MSG_START_BGRB;
writel(ARCMSR_INBOUND_MESG0_START_BGRB, &reg->inbound_msgaddr0);
if (!arcmsr_hbaA_wait_msgint_ready(acb)) {
printk(KERN_NOTICE "arcmsr%d: wait 'start adapter background \
rebuild' timeout \n", acb->host->host_no);
}
}
static void arcmsr_hbaB_start_bgrb(struct AdapterControlBlock *acb)
{
struct MessageUnit_B *reg = acb->pmuB;
acb->acb_flags |= ACB_F_MSG_START_BGRB;
writel(ARCMSR_MESSAGE_START_BGRB, reg->drv2iop_doorbell);
if (!arcmsr_hbaB_wait_msgint_ready(acb)) {
printk(KERN_NOTICE "arcmsr%d: wait 'start adapter background \
rebuild' timeout \n",acb->host->host_no);
}
}
static void arcmsr_hbaC_start_bgrb(struct AdapterControlBlock *pACB)
{
struct MessageUnit_C __iomem *phbcmu = pACB->pmuC;
pACB->acb_flags |= ACB_F_MSG_START_BGRB;
writel(ARCMSR_INBOUND_MESG0_START_BGRB, &phbcmu->inbound_msgaddr0);
writel(ARCMSR_HBCMU_DRV2IOP_MESSAGE_CMD_DONE, &phbcmu->inbound_doorbell);
if (!arcmsr_hbaC_wait_msgint_ready(pACB)) {
printk(KERN_NOTICE "arcmsr%d: wait 'start adapter background \
rebuild' timeout \n", pACB->host->host_no);
}
return;
}
static void arcmsr_hbaD_start_bgrb(struct AdapterControlBlock *pACB)
{
struct MessageUnit_D *pmu = pACB->pmuD;
pACB->acb_flags |= ACB_F_MSG_START_BGRB;
writel(ARCMSR_INBOUND_MESG0_START_BGRB, pmu->inbound_msgaddr0);
if (!arcmsr_hbaD_wait_msgint_ready(pACB)) {
pr_notice("arcmsr%d: wait 'start adapter "
"background rebuild' timeout\n", pACB->host->host_no);
}
}
static void arcmsr_hbaE_start_bgrb(struct AdapterControlBlock *pACB)
{
struct MessageUnit_E __iomem *pmu = pACB->pmuE;
pACB->acb_flags |= ACB_F_MSG_START_BGRB;
writel(ARCMSR_INBOUND_MESG0_START_BGRB, &pmu->inbound_msgaddr0);
pACB->out_doorbell ^= ARCMSR_HBEMU_DRV2IOP_MESSAGE_CMD_DONE;
writel(pACB->out_doorbell, &pmu->iobound_doorbell);
if (!arcmsr_hbaE_wait_msgint_ready(pACB)) {
pr_notice("arcmsr%d: wait 'start adapter "
"background rebuild' timeout \n", pACB->host->host_no);
}
}
static void arcmsr_start_adapter_bgrb(struct AdapterControlBlock *acb)
{
switch (acb->adapter_type) {
case ACB_ADAPTER_TYPE_A:
arcmsr_hbaA_start_bgrb(acb);
break;
case ACB_ADAPTER_TYPE_B:
arcmsr_hbaB_start_bgrb(acb);
break;
case ACB_ADAPTER_TYPE_C:
arcmsr_hbaC_start_bgrb(acb);
break;
case ACB_ADAPTER_TYPE_D:
arcmsr_hbaD_start_bgrb(acb);
break;
case ACB_ADAPTER_TYPE_E:
case ACB_ADAPTER_TYPE_F:
arcmsr_hbaE_start_bgrb(acb);
break;
}
}
static void arcmsr_clear_doorbell_queue_buffer(struct AdapterControlBlock *acb)
{
switch (acb->adapter_type) {
case ACB_ADAPTER_TYPE_A: {
struct MessageUnit_A __iomem *reg = acb->pmuA;
uint32_t outbound_doorbell;
/* empty doorbell Qbuffer if door bell ringed */
outbound_doorbell = readl(&reg->outbound_doorbell);
/*clear doorbell interrupt */
writel(outbound_doorbell, &reg->outbound_doorbell);
writel(ARCMSR_INBOUND_DRIVER_DATA_READ_OK, &reg->inbound_doorbell);
}
break;
case ACB_ADAPTER_TYPE_B: {
struct MessageUnit_B *reg = acb->pmuB;
uint32_t outbound_doorbell, i;
writel(ARCMSR_DOORBELL_INT_CLEAR_PATTERN, reg->iop2drv_doorbell);
writel(ARCMSR_DRV2IOP_DATA_READ_OK, reg->drv2iop_doorbell);
/* let IOP know data has been read */
for(i=0; i < 200; i++) {
msleep(20);
outbound_doorbell = readl(reg->iop2drv_doorbell);
if( outbound_doorbell & ARCMSR_IOP2DRV_DATA_WRITE_OK) {
writel(ARCMSR_DOORBELL_INT_CLEAR_PATTERN, reg->iop2drv_doorbell);
writel(ARCMSR_DRV2IOP_DATA_READ_OK, reg->drv2iop_doorbell);
} else
break;
}
}
break;
case ACB_ADAPTER_TYPE_C: {
struct MessageUnit_C __iomem *reg = acb->pmuC;
uint32_t outbound_doorbell, i;
/* empty doorbell Qbuffer if door bell ringed */
outbound_doorbell = readl(&reg->outbound_doorbell);
writel(outbound_doorbell, &reg->outbound_doorbell_clear);
writel(ARCMSR_HBCMU_DRV2IOP_DATA_READ_OK, &reg->inbound_doorbell);
for (i = 0; i < 200; i++) {
msleep(20);
outbound_doorbell = readl(&reg->outbound_doorbell);
if (outbound_doorbell &
ARCMSR_HBCMU_IOP2DRV_DATA_WRITE_OK) {
writel(outbound_doorbell,
&reg->outbound_doorbell_clear);
writel(ARCMSR_HBCMU_DRV2IOP_DATA_READ_OK,
&reg->inbound_doorbell);
} else
break;
}
}
break;
case ACB_ADAPTER_TYPE_D: {
struct MessageUnit_D *reg = acb->pmuD;
uint32_t outbound_doorbell, i;
/* empty doorbell Qbuffer if door bell ringed */
outbound_doorbell = readl(reg->outbound_doorbell);
writel(outbound_doorbell, reg->outbound_doorbell);
writel(ARCMSR_ARC1214_DRV2IOP_DATA_OUT_READ,
reg->inbound_doorbell);
for (i = 0; i < 200; i++) {
msleep(20);
outbound_doorbell = readl(reg->outbound_doorbell);
if (outbound_doorbell &
ARCMSR_ARC1214_IOP2DRV_DATA_WRITE_OK) {
writel(outbound_doorbell,
reg->outbound_doorbell);
writel(ARCMSR_ARC1214_DRV2IOP_DATA_OUT_READ,
reg->inbound_doorbell);
} else
break;
}
}
break;
case ACB_ADAPTER_TYPE_E:
case ACB_ADAPTER_TYPE_F: {
struct MessageUnit_E __iomem *reg = acb->pmuE;
uint32_t i, tmp;
acb->in_doorbell = readl(&reg->iobound_doorbell);
writel(0, &reg->host_int_status); /*clear interrupt*/
acb->out_doorbell ^= ARCMSR_HBEMU_DRV2IOP_DATA_READ_OK;
writel(acb->out_doorbell, &reg->iobound_doorbell);
for(i=0; i < 200; i++) {
msleep(20);
tmp = acb->in_doorbell;
acb->in_doorbell = readl(&reg->iobound_doorbell);
if((tmp ^ acb->in_doorbell) & ARCMSR_HBEMU_IOP2DRV_DATA_WRITE_OK) {
writel(0, &reg->host_int_status); /*clear interrupt*/
acb->out_doorbell ^= ARCMSR_HBEMU_DRV2IOP_DATA_READ_OK;
writel(acb->out_doorbell, &reg->iobound_doorbell);
} else
break;
}
}
break;
}
}
static void arcmsr_enable_eoi_mode(struct AdapterControlBlock *acb)
{
switch (acb->adapter_type) {
case ACB_ADAPTER_TYPE_A:
return;
case ACB_ADAPTER_TYPE_B:
{
struct MessageUnit_B *reg = acb->pmuB;
writel(ARCMSR_MESSAGE_ACTIVE_EOI_MODE, reg->drv2iop_doorbell);
if (!arcmsr_hbaB_wait_msgint_ready(acb)) {
printk(KERN_NOTICE "ARCMSR IOP enables EOI_MODE TIMEOUT");
return;
}
}
break;
case ACB_ADAPTER_TYPE_C:
return;
}
return;
}
static void arcmsr_hardware_reset(struct AdapterControlBlock *acb)
{
uint8_t value[64];
int i, count = 0;
struct MessageUnit_A __iomem *pmuA = acb->pmuA;
struct MessageUnit_C __iomem *pmuC = acb->pmuC;
struct MessageUnit_D *pmuD = acb->pmuD;
/* backup pci config data */
printk(KERN_NOTICE "arcmsr%d: executing hw bus reset .....\n", acb->host->host_no);
for (i = 0; i < 64; i++) {
pci_read_config_byte(acb->pdev, i, &value[i]);
}
/* hardware reset signal */
if (acb->dev_id == 0x1680) {
writel(ARCMSR_ARC1680_BUS_RESET, &pmuA->reserved1[0]);
} else if (acb->dev_id == 0x1880) {
do {
count++;
writel(0xF, &pmuC->write_sequence);
writel(0x4, &pmuC->write_sequence);
writel(0xB, &pmuC->write_sequence);
writel(0x2, &pmuC->write_sequence);
writel(0x7, &pmuC->write_sequence);
writel(0xD, &pmuC->write_sequence);
} while (((readl(&pmuC->host_diagnostic) & ARCMSR_ARC1880_DiagWrite_ENABLE) == 0) && (count < 5));
writel(ARCMSR_ARC1880_RESET_ADAPTER, &pmuC->host_diagnostic);
} else if (acb->dev_id == 0x1884) {
struct MessageUnit_E __iomem *pmuE = acb->pmuE;
do {
count++;
writel(0x4, &pmuE->write_sequence_3xxx);
writel(0xB, &pmuE->write_sequence_3xxx);
writel(0x2, &pmuE->write_sequence_3xxx);
writel(0x7, &pmuE->write_sequence_3xxx);
writel(0xD, &pmuE->write_sequence_3xxx);
mdelay(10);
} while (((readl(&pmuE->host_diagnostic_3xxx) &
ARCMSR_ARC1884_DiagWrite_ENABLE) == 0) && (count < 5));
writel(ARCMSR_ARC188X_RESET_ADAPTER, &pmuE->host_diagnostic_3xxx);
} else if (acb->dev_id == 0x1214) {
writel(0x20, pmuD->reset_request);
} else {
pci_write_config_byte(acb->pdev, 0x84, 0x20);
}
msleep(2000);
/* write back pci config data */
for (i = 0; i < 64; i++) {
pci_write_config_byte(acb->pdev, i, value[i]);
}
msleep(1000);
return;
}
static bool arcmsr_reset_in_progress(struct AdapterControlBlock *acb)
{
bool rtn = true;
switch(acb->adapter_type) {
case ACB_ADAPTER_TYPE_A:{
struct MessageUnit_A __iomem *reg = acb->pmuA;
rtn = ((readl(&reg->outbound_msgaddr1) &
ARCMSR_OUTBOUND_MESG1_FIRMWARE_OK) == 0) ? true : false;
}
break;
case ACB_ADAPTER_TYPE_B:{
struct MessageUnit_B *reg = acb->pmuB;
rtn = ((readl(reg->iop2drv_doorbell) &
ARCMSR_MESSAGE_FIRMWARE_OK) == 0) ? true : false;
}
break;
case ACB_ADAPTER_TYPE_C:{
struct MessageUnit_C __iomem *reg = acb->pmuC;
rtn = (readl(&reg->host_diagnostic) & 0x04) ? true : false;
}
break;
case ACB_ADAPTER_TYPE_D:{
struct MessageUnit_D *reg = acb->pmuD;
rtn = ((readl(reg->sample_at_reset) & 0x80) == 0) ?
true : false;
}
break;
case ACB_ADAPTER_TYPE_E:
case ACB_ADAPTER_TYPE_F:{
struct MessageUnit_E __iomem *reg = acb->pmuE;
rtn = (readl(&reg->host_diagnostic_3xxx) &
ARCMSR_ARC188X_RESET_ADAPTER) ? true : false;
}
break;
}
return rtn;
}
static void arcmsr_iop_init(struct AdapterControlBlock *acb)
{
uint32_t intmask_org;
/* disable all outbound interrupt */
intmask_org = arcmsr_disable_outbound_ints(acb);
arcmsr_wait_firmware_ready(acb);
arcmsr_iop_confirm(acb);
/*start background rebuild*/
arcmsr_start_adapter_bgrb(acb);
/* empty doorbell Qbuffer if door bell ringed */
arcmsr_clear_doorbell_queue_buffer(acb);
arcmsr_enable_eoi_mode(acb);
/* enable outbound Post Queue,outbound doorbell Interrupt */
arcmsr_enable_outbound_ints(acb, intmask_org);
acb->acb_flags |= ACB_F_IOP_INITED;
}
static uint8_t arcmsr_iop_reset(struct AdapterControlBlock *acb)
{
struct CommandControlBlock *ccb;
uint32_t intmask_org;
uint8_t rtnval = 0x00;
int i = 0;
unsigned long flags;
if (atomic_read(&acb->ccboutstandingcount) != 0) {
/* disable all outbound interrupt */
intmask_org = arcmsr_disable_outbound_ints(acb);
/* talk to iop 331 outstanding command aborted */
rtnval = arcmsr_abort_allcmd(acb);
/* clear all outbound posted Q */
arcmsr_done4abort_postqueue(acb);
for (i = 0; i < acb->maxFreeCCB; i++) {
ccb = acb->pccb_pool[i];
if (ccb->startdone == ARCMSR_CCB_START) {
scsi_dma_unmap(ccb->pcmd);
ccb->startdone = ARCMSR_CCB_DONE;
ccb->ccb_flags = 0;
spin_lock_irqsave(&acb->ccblist_lock, flags);
list_add_tail(&ccb->list, &acb->ccb_free_list);
spin_unlock_irqrestore(&acb->ccblist_lock, flags);
}
}
atomic_set(&acb->ccboutstandingcount, 0);
/* enable all outbound interrupt */
arcmsr_enable_outbound_ints(acb, intmask_org);
return rtnval;
}
return rtnval;
}
static int arcmsr_bus_reset(struct scsi_cmnd *cmd)
{
struct AdapterControlBlock *acb;
int retry_count = 0;
int rtn = FAILED;
acb = (struct AdapterControlBlock *) cmd->device->host->hostdata;
if (acb->acb_flags & ACB_F_ADAPTER_REMOVED)
return SUCCESS;
pr_notice("arcmsr: executing bus reset eh.....num_resets = %d,"
" num_aborts = %d \n", acb->num_resets, acb->num_aborts);
acb->num_resets++;
if (acb->acb_flags & ACB_F_BUS_RESET) {
long timeout;
pr_notice("arcmsr: there is a bus reset eh proceeding...\n");
timeout = wait_event_timeout(wait_q, (acb->acb_flags
& ACB_F_BUS_RESET) == 0, 220 * HZ);
if (timeout)
return SUCCESS;
}
acb->acb_flags |= ACB_F_BUS_RESET;
if (!arcmsr_iop_reset(acb)) {
arcmsr_hardware_reset(acb);
acb->acb_flags &= ~ACB_F_IOP_INITED;
wait_reset_done:
ssleep(ARCMSR_SLEEPTIME);
if (arcmsr_reset_in_progress(acb)) {
if (retry_count > ARCMSR_RETRYCOUNT) {
acb->fw_flag = FW_DEADLOCK;
pr_notice("arcmsr%d: waiting for hw bus reset"
" return, RETRY TERMINATED!!\n",
acb->host->host_no);
return FAILED;
}
retry_count++;
goto wait_reset_done;
}
arcmsr_iop_init(acb);
acb->fw_flag = FW_NORMAL;
mod_timer(&acb->eternal_timer, jiffies +
msecs_to_jiffies(6 * HZ));
acb->acb_flags &= ~ACB_F_BUS_RESET;
rtn = SUCCESS;
pr_notice("arcmsr: scsi bus reset eh returns with success\n");
} else {
acb->acb_flags &= ~ACB_F_BUS_RESET;
acb->fw_flag = FW_NORMAL;
mod_timer(&acb->eternal_timer, jiffies +
msecs_to_jiffies(6 * HZ));
rtn = SUCCESS;
}
return rtn;
}
static int arcmsr_abort_one_cmd(struct AdapterControlBlock *acb,
struct CommandControlBlock *ccb)
{
int rtn;
rtn = arcmsr_polling_ccbdone(acb, ccb);
return rtn;
}
static int arcmsr_abort(struct scsi_cmnd *cmd)
{
struct AdapterControlBlock *acb =
(struct AdapterControlBlock *)cmd->device->host->hostdata;
int i = 0;
int rtn = FAILED;
uint32_t intmask_org;
if (acb->acb_flags & ACB_F_ADAPTER_REMOVED)
return SUCCESS;
printk(KERN_NOTICE
"arcmsr%d: abort device command of scsi id = %d lun = %d\n",
acb->host->host_no, cmd->device->id, (u32)cmd->device->lun);
acb->acb_flags |= ACB_F_ABORT;
acb->num_aborts++;
/*
************************************************
** the all interrupt service routine is locked
** we need to handle it as soon as possible and exit
************************************************
*/
if (!atomic_read(&acb->ccboutstandingcount)) {
acb->acb_flags &= ~ACB_F_ABORT;
return rtn;
}
intmask_org = arcmsr_disable_outbound_ints(acb);
for (i = 0; i < acb->maxFreeCCB; i++) {
struct CommandControlBlock *ccb = acb->pccb_pool[i];
if (ccb->startdone == ARCMSR_CCB_START && ccb->pcmd == cmd) {
ccb->startdone = ARCMSR_CCB_ABORTED;
rtn = arcmsr_abort_one_cmd(acb, ccb);
break;
}
}
acb->acb_flags &= ~ACB_F_ABORT;
arcmsr_enable_outbound_ints(acb, intmask_org);
return rtn;
}
static const char *arcmsr_info(struct Scsi_Host *host)
{
struct AdapterControlBlock *acb =
(struct AdapterControlBlock *) host->hostdata;
static char buf[256];
char *type;
int raid6 = 1;
switch (acb->pdev->device) {
case PCI_DEVICE_ID_ARECA_1110:
case PCI_DEVICE_ID_ARECA_1200:
case PCI_DEVICE_ID_ARECA_1202:
case PCI_DEVICE_ID_ARECA_1210:
raid6 = 0;
fallthrough;
case PCI_DEVICE_ID_ARECA_1120:
case PCI_DEVICE_ID_ARECA_1130:
case PCI_DEVICE_ID_ARECA_1160:
case PCI_DEVICE_ID_ARECA_1170:
case PCI_DEVICE_ID_ARECA_1201:
case PCI_DEVICE_ID_ARECA_1203:
case PCI_DEVICE_ID_ARECA_1220:
case PCI_DEVICE_ID_ARECA_1230:
case PCI_DEVICE_ID_ARECA_1260:
case PCI_DEVICE_ID_ARECA_1270:
case PCI_DEVICE_ID_ARECA_1280:
type = "SATA";
break;
case PCI_DEVICE_ID_ARECA_1214:
case PCI_DEVICE_ID_ARECA_1380:
case PCI_DEVICE_ID_ARECA_1381:
case PCI_DEVICE_ID_ARECA_1680:
case PCI_DEVICE_ID_ARECA_1681:
case PCI_DEVICE_ID_ARECA_1880:
case PCI_DEVICE_ID_ARECA_1884:
type = "SAS/SATA";
break;
case PCI_DEVICE_ID_ARECA_1886:
type = "NVMe/SAS/SATA";
break;
default:
type = "unknown";
raid6 = 0;
break;
}
sprintf(buf, "Areca %s RAID Controller %s\narcmsr version %s\n",
type, raid6 ? "(RAID6 capable)" : "", ARCMSR_DRIVER_VERSION);
return buf;
}