| /* |
| * Cryptographic API. |
| * |
| * Driver for EIP97 AES acceleration. |
| * |
| * Copyright (c) 2016 Ryder Lee <ryder.lee@mediatek.com> |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License version 2 as |
| * published by the Free Software Foundation. |
| * |
| * Some ideas are from atmel-aes.c drivers. |
| */ |
| |
| #include <crypto/aes.h> |
| #include "mtk-platform.h" |
| |
| #define AES_QUEUE_SIZE 512 |
| #define AES_BUF_ORDER 2 |
| #define AES_BUF_SIZE ((PAGE_SIZE << AES_BUF_ORDER) \ |
| & ~(AES_BLOCK_SIZE - 1)) |
| |
| /* AES command token size */ |
| #define AES_CT_SIZE_ECB 2 |
| #define AES_CT_SIZE_CBC 3 |
| #define AES_CT_CTRL_HDR cpu_to_le32(0x00220000) |
| /* AES-CBC/ECB command token */ |
| #define AES_CMD0 cpu_to_le32(0x05000000) |
| #define AES_CMD1 cpu_to_le32(0x2d060000) |
| #define AES_CMD2 cpu_to_le32(0xe4a63806) |
| |
| /* AES transform information word 0 fields */ |
| #define AES_TFM_BASIC_OUT cpu_to_le32(0x4 << 0) |
| #define AES_TFM_BASIC_IN cpu_to_le32(0x5 << 0) |
| #define AES_TFM_SIZE(x) cpu_to_le32((x) << 8) |
| #define AES_TFM_128BITS cpu_to_le32(0xb << 16) |
| #define AES_TFM_192BITS cpu_to_le32(0xd << 16) |
| #define AES_TFM_256BITS cpu_to_le32(0xf << 16) |
| /* AES transform information word 1 fields */ |
| #define AES_TFM_ECB cpu_to_le32(0x0 << 0) |
| #define AES_TFM_CBC cpu_to_le32(0x1 << 0) |
| #define AES_TFM_FULL_IV cpu_to_le32(0xf << 5) |
| |
| /* AES flags */ |
| #define AES_FLAGS_MODE_MSK 0x7 |
| #define AES_FLAGS_ECB BIT(0) |
| #define AES_FLAGS_CBC BIT(1) |
| #define AES_FLAGS_ENCRYPT BIT(2) |
| #define AES_FLAGS_BUSY BIT(3) |
| |
| /** |
| * Command token(CT) is a set of hardware instructions that |
| * are used to control engine's processing flow of AES. |
| * |
| * Transform information(TFM) is used to define AES state and |
| * contains all keys and initial vectors. |
| * |
| * The engine requires CT and TFM to do: |
| * - Commands decoding and control of the engine's data path. |
| * - Coordinating hardware data fetch and store operations. |
| * - Result token construction and output. |
| */ |
| struct mtk_aes_ct { |
| __le32 cmd[AES_CT_SIZE_CBC]; |
| }; |
| |
| struct mtk_aes_tfm { |
| __le32 ctrl[2]; |
| __le32 state[SIZE_IN_WORDS(AES_KEYSIZE_256 + AES_BLOCK_SIZE)]; |
| }; |
| |
| struct mtk_aes_reqctx { |
| u64 mode; |
| }; |
| |
| struct mtk_aes_base_ctx { |
| struct mtk_cryp *cryp; |
| u32 keylen; |
| mtk_aes_fn start; |
| |
| struct mtk_aes_ct ct; |
| dma_addr_t ct_dma; |
| struct mtk_aes_tfm tfm; |
| dma_addr_t tfm_dma; |
| |
| __le32 ct_hdr; |
| u32 ct_size; |
| }; |
| |
| struct mtk_aes_ctx { |
| struct mtk_aes_base_ctx base; |
| }; |
| |
| struct mtk_aes_drv { |
| struct list_head dev_list; |
| /* Device list lock */ |
| spinlock_t lock; |
| }; |
| |
| static struct mtk_aes_drv mtk_aes = { |
| .dev_list = LIST_HEAD_INIT(mtk_aes.dev_list), |
| .lock = __SPIN_LOCK_UNLOCKED(mtk_aes.lock), |
| }; |
| |
| static inline u32 mtk_aes_read(struct mtk_cryp *cryp, u32 offset) |
| { |
| return readl_relaxed(cryp->base + offset); |
| } |
| |
| static inline void mtk_aes_write(struct mtk_cryp *cryp, |
| u32 offset, u32 value) |
| { |
| writel_relaxed(value, cryp->base + offset); |
| } |
| |
| static struct mtk_cryp *mtk_aes_find_dev(struct mtk_aes_base_ctx *ctx) |
| { |
| struct mtk_cryp *cryp = NULL; |
| struct mtk_cryp *tmp; |
| |
| spin_lock_bh(&mtk_aes.lock); |
| if (!ctx->cryp) { |
| list_for_each_entry(tmp, &mtk_aes.dev_list, aes_list) { |
| cryp = tmp; |
| break; |
| } |
| ctx->cryp = cryp; |
| } else { |
| cryp = ctx->cryp; |
| } |
| spin_unlock_bh(&mtk_aes.lock); |
| |
| return cryp; |
| } |
| |
| static inline size_t mtk_aes_padlen(size_t len) |
| { |
| len &= AES_BLOCK_SIZE - 1; |
| return len ? AES_BLOCK_SIZE - len : 0; |
| } |
| |
| static bool mtk_aes_check_aligned(struct scatterlist *sg, size_t len, |
| struct mtk_aes_dma *dma) |
| { |
| int nents; |
| |
| if (!IS_ALIGNED(len, AES_BLOCK_SIZE)) |
| return false; |
| |
| for (nents = 0; sg; sg = sg_next(sg), ++nents) { |
| if (!IS_ALIGNED(sg->offset, sizeof(u32))) |
| return false; |
| |
| if (len <= sg->length) { |
| if (!IS_ALIGNED(len, AES_BLOCK_SIZE)) |
| return false; |
| |
| dma->nents = nents + 1; |
| dma->remainder = sg->length - len; |
| sg->length = len; |
| return true; |
| } |
| |
| if (!IS_ALIGNED(sg->length, AES_BLOCK_SIZE)) |
| return false; |
| |
| len -= sg->length; |
| } |
| |
| return false; |
| } |
| |
| /* Initialize and map transform information of AES */ |
| static int mtk_aes_info_map(struct mtk_cryp *cryp, |
| struct mtk_aes_rec *aes, |
| size_t len) |
| { |
| struct ablkcipher_request *req = ablkcipher_request_cast(aes->areq); |
| struct mtk_aes_base_ctx *ctx = aes->ctx; |
| |
| ctx->ct_hdr = AES_CT_CTRL_HDR | cpu_to_le32(len); |
| ctx->ct.cmd[0] = AES_CMD0 | cpu_to_le32(len); |
| ctx->ct.cmd[1] = AES_CMD1; |
| |
| if (aes->flags & AES_FLAGS_ENCRYPT) |
| ctx->tfm.ctrl[0] = AES_TFM_BASIC_OUT; |
| else |
| ctx->tfm.ctrl[0] = AES_TFM_BASIC_IN; |
| |
| if (ctx->keylen == SIZE_IN_WORDS(AES_KEYSIZE_128)) |
| ctx->tfm.ctrl[0] |= AES_TFM_128BITS; |
| else if (ctx->keylen == SIZE_IN_WORDS(AES_KEYSIZE_256)) |
| ctx->tfm.ctrl[0] |= AES_TFM_256BITS; |
| else if (ctx->keylen == SIZE_IN_WORDS(AES_KEYSIZE_192)) |
| ctx->tfm.ctrl[0] |= AES_TFM_192BITS; |
| |
| if (aes->flags & AES_FLAGS_CBC) { |
| const u32 *iv = (const u32 *)req->info; |
| u32 *iv_state = ctx->tfm.state + ctx->keylen; |
| int i; |
| |
| ctx->tfm.ctrl[0] |= AES_TFM_SIZE(ctx->keylen + |
| SIZE_IN_WORDS(AES_BLOCK_SIZE)); |
| ctx->tfm.ctrl[1] = AES_TFM_CBC | AES_TFM_FULL_IV; |
| |
| for (i = 0; i < SIZE_IN_WORDS(AES_BLOCK_SIZE); i++) |
| iv_state[i] = cpu_to_le32(iv[i]); |
| |
| ctx->ct.cmd[2] = AES_CMD2; |
| ctx->ct_size = AES_CT_SIZE_CBC; |
| } else if (aes->flags & AES_FLAGS_ECB) { |
| ctx->tfm.ctrl[0] |= AES_TFM_SIZE(ctx->keylen); |
| ctx->tfm.ctrl[1] = AES_TFM_ECB; |
| |
| ctx->ct_size = AES_CT_SIZE_ECB; |
| } |
| |
| ctx->ct_dma = dma_map_single(cryp->dev, &ctx->ct, sizeof(ctx->ct), |
| DMA_TO_DEVICE); |
| if (unlikely(dma_mapping_error(cryp->dev, ctx->ct_dma))) |
| return -EINVAL; |
| |
| ctx->tfm_dma = dma_map_single(cryp->dev, &ctx->tfm, sizeof(ctx->tfm), |
| DMA_TO_DEVICE); |
| if (unlikely(dma_mapping_error(cryp->dev, ctx->tfm_dma))) { |
| dma_unmap_single(cryp->dev, ctx->tfm_dma, sizeof(ctx->tfm), |
| DMA_TO_DEVICE); |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * Write descriptors for processing. This will configure the engine, load |
| * the transform information and then start the packet processing. |
| */ |
| static int mtk_aes_xmit(struct mtk_cryp *cryp, struct mtk_aes_rec *aes) |
| { |
| struct mtk_ring *ring = cryp->ring[aes->id]; |
| struct mtk_desc *cmd = NULL, *res = NULL; |
| struct scatterlist *ssg = aes->src.sg, *dsg = aes->dst.sg; |
| u32 slen = aes->src.sg_len, dlen = aes->dst.sg_len; |
| int nents; |
| |
| /* Write command descriptors */ |
| for (nents = 0; nents < slen; ++nents, ssg = sg_next(ssg)) { |
| cmd = ring->cmd_base + ring->cmd_pos; |
| cmd->hdr = MTK_DESC_BUF_LEN(ssg->length); |
| cmd->buf = cpu_to_le32(sg_dma_address(ssg)); |
| |
| if (nents == 0) { |
| cmd->hdr |= MTK_DESC_FIRST | |
| MTK_DESC_CT_LEN(aes->ctx->ct_size); |
| cmd->ct = cpu_to_le32(aes->ctx->ct_dma); |
| cmd->ct_hdr = aes->ctx->ct_hdr; |
| cmd->tfm = cpu_to_le32(aes->ctx->tfm_dma); |
| } |
| |
| if (++ring->cmd_pos == MTK_DESC_NUM) |
| ring->cmd_pos = 0; |
| } |
| cmd->hdr |= MTK_DESC_LAST; |
| |
| /* Prepare result descriptors */ |
| for (nents = 0; nents < dlen; ++nents, dsg = sg_next(dsg)) { |
| res = ring->res_base + ring->res_pos; |
| res->hdr = MTK_DESC_BUF_LEN(dsg->length); |
| res->buf = cpu_to_le32(sg_dma_address(dsg)); |
| |
| if (nents == 0) |
| res->hdr |= MTK_DESC_FIRST; |
| |
| if (++ring->res_pos == MTK_DESC_NUM) |
| ring->res_pos = 0; |
| } |
| res->hdr |= MTK_DESC_LAST; |
| |
| /* |
| * Make sure that all changes to the DMA ring are done before we |
| * start engine. |
| */ |
| wmb(); |
| /* Start DMA transfer */ |
| mtk_aes_write(cryp, RDR_PREP_COUNT(aes->id), MTK_DESC_CNT(dlen)); |
| mtk_aes_write(cryp, CDR_PREP_COUNT(aes->id), MTK_DESC_CNT(slen)); |
| |
| return -EINPROGRESS; |
| } |
| |
| static inline void mtk_aes_restore_sg(const struct mtk_aes_dma *dma) |
| { |
| struct scatterlist *sg = dma->sg; |
| int nents = dma->nents; |
| |
| if (!dma->remainder) |
| return; |
| |
| while (--nents > 0 && sg) |
| sg = sg_next(sg); |
| |
| if (!sg) |
| return; |
| |
| sg->length += dma->remainder; |
| } |
| |
| static int mtk_aes_map(struct mtk_cryp *cryp, struct mtk_aes_rec *aes, |
| struct scatterlist *src, struct scatterlist *dst, |
| size_t len) |
| { |
| size_t padlen = 0; |
| bool src_aligned, dst_aligned; |
| |
| aes->total = len; |
| aes->src.sg = src; |
| aes->dst.sg = dst; |
| aes->real_dst = dst; |
| |
| src_aligned = mtk_aes_check_aligned(src, len, &aes->src); |
| if (src == dst) |
| dst_aligned = src_aligned; |
| else |
| dst_aligned = mtk_aes_check_aligned(dst, len, &aes->dst); |
| |
| if (!src_aligned || !dst_aligned) { |
| padlen = mtk_aes_padlen(len); |
| |
| if (len + padlen > AES_BUF_SIZE) |
| return -ENOMEM; |
| |
| if (!src_aligned) { |
| sg_copy_to_buffer(src, sg_nents(src), aes->buf, len); |
| aes->src.sg = &aes->aligned_sg; |
| aes->src.nents = 1; |
| aes->src.remainder = 0; |
| } |
| |
| if (!dst_aligned) { |
| aes->dst.sg = &aes->aligned_sg; |
| aes->dst.nents = 1; |
| aes->dst.remainder = 0; |
| } |
| |
| sg_init_table(&aes->aligned_sg, 1); |
| sg_set_buf(&aes->aligned_sg, aes->buf, len + padlen); |
| } |
| |
| if (aes->src.sg == aes->dst.sg) { |
| aes->src.sg_len = dma_map_sg(cryp->dev, aes->src.sg, |
| aes->src.nents, DMA_BIDIRECTIONAL); |
| aes->dst.sg_len = aes->src.sg_len; |
| if (unlikely(!aes->src.sg_len)) |
| return -EFAULT; |
| } else { |
| aes->src.sg_len = dma_map_sg(cryp->dev, aes->src.sg, |
| aes->src.nents, DMA_TO_DEVICE); |
| if (unlikely(!aes->src.sg_len)) |
| return -EFAULT; |
| |
| aes->dst.sg_len = dma_map_sg(cryp->dev, aes->dst.sg, |
| aes->dst.nents, DMA_FROM_DEVICE); |
| if (unlikely(!aes->dst.sg_len)) { |
| dma_unmap_sg(cryp->dev, aes->src.sg, |
| aes->src.nents, DMA_TO_DEVICE); |
| return -EFAULT; |
| } |
| } |
| |
| return mtk_aes_info_map(cryp, aes, len + padlen); |
| } |
| |
| static int mtk_aes_handle_queue(struct mtk_cryp *cryp, u8 id, |
| struct crypto_async_request *new_areq) |
| { |
| struct mtk_aes_rec *aes = cryp->aes[id]; |
| struct crypto_async_request *areq, *backlog; |
| struct mtk_aes_base_ctx *ctx; |
| unsigned long flags; |
| int ret = 0; |
| |
| spin_lock_irqsave(&aes->lock, flags); |
| if (new_areq) |
| ret = crypto_enqueue_request(&aes->queue, new_areq); |
| if (aes->flags & AES_FLAGS_BUSY) { |
| spin_unlock_irqrestore(&aes->lock, flags); |
| return ret; |
| } |
| backlog = crypto_get_backlog(&aes->queue); |
| areq = crypto_dequeue_request(&aes->queue); |
| if (areq) |
| aes->flags |= AES_FLAGS_BUSY; |
| spin_unlock_irqrestore(&aes->lock, flags); |
| |
| if (!areq) |
| return ret; |
| |
| if (backlog) |
| backlog->complete(backlog, -EINPROGRESS); |
| |
| ctx = crypto_tfm_ctx(areq->tfm); |
| |
| aes->areq = areq; |
| aes->ctx = ctx; |
| |
| return ctx->start(cryp, aes); |
| } |
| |
| static int mtk_aes_start(struct mtk_cryp *cryp, struct mtk_aes_rec *aes) |
| { |
| struct ablkcipher_request *req = ablkcipher_request_cast(aes->areq); |
| struct mtk_aes_reqctx *rctx = ablkcipher_request_ctx(req); |
| int err; |
| |
| rctx = ablkcipher_request_ctx(req); |
| rctx->mode &= AES_FLAGS_MODE_MSK; |
| aes->flags = (aes->flags & ~AES_FLAGS_MODE_MSK) | rctx->mode; |
| |
| err = mtk_aes_map(cryp, aes, req->src, req->dst, req->nbytes); |
| if (err) |
| return err; |
| |
| return mtk_aes_xmit(cryp, aes); |
| } |
| |
| static void mtk_aes_unmap(struct mtk_cryp *cryp, struct mtk_aes_rec *aes) |
| { |
| struct mtk_aes_base_ctx *ctx = aes->ctx; |
| |
| dma_unmap_single(cryp->dev, ctx->ct_dma, sizeof(ctx->ct), |
| DMA_TO_DEVICE); |
| dma_unmap_single(cryp->dev, ctx->tfm_dma, sizeof(ctx->tfm), |
| DMA_TO_DEVICE); |
| |
| if (aes->src.sg == aes->dst.sg) { |
| dma_unmap_sg(cryp->dev, aes->src.sg, |
| aes->src.nents, DMA_BIDIRECTIONAL); |
| |
| if (aes->src.sg != &aes->aligned_sg) |
| mtk_aes_restore_sg(&aes->src); |
| } else { |
| dma_unmap_sg(cryp->dev, aes->dst.sg, |
| aes->dst.nents, DMA_FROM_DEVICE); |
| |
| if (aes->dst.sg != &aes->aligned_sg) |
| mtk_aes_restore_sg(&aes->dst); |
| |
| dma_unmap_sg(cryp->dev, aes->src.sg, |
| aes->src.nents, DMA_TO_DEVICE); |
| |
| if (aes->src.sg != &aes->aligned_sg) |
| mtk_aes_restore_sg(&aes->src); |
| } |
| |
| if (aes->dst.sg == &aes->aligned_sg) |
| sg_copy_from_buffer(aes->real_dst, |
| sg_nents(aes->real_dst), |
| aes->buf, aes->total); |
| } |
| |
| static inline void mtk_aes_complete(struct mtk_cryp *cryp, |
| struct mtk_aes_rec *aes) |
| { |
| aes->flags &= ~AES_FLAGS_BUSY; |
| aes->areq->complete(aes->areq, 0); |
| |
| /* Handle new request */ |
| mtk_aes_handle_queue(cryp, aes->id, NULL); |
| } |
| |
| /* Check and set the AES key to transform state buffer */ |
| static int mtk_aes_setkey(struct crypto_ablkcipher *tfm, |
| const u8 *key, u32 keylen) |
| { |
| struct mtk_aes_base_ctx *ctx = crypto_ablkcipher_ctx(tfm); |
| const u32 *key_tmp = (const u32 *)key; |
| u32 *key_state = ctx->tfm.state; |
| int i; |
| |
| if (keylen != AES_KEYSIZE_128 && |
| keylen != AES_KEYSIZE_192 && |
| keylen != AES_KEYSIZE_256) { |
| crypto_ablkcipher_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN); |
| return -EINVAL; |
| } |
| |
| ctx->keylen = SIZE_IN_WORDS(keylen); |
| |
| for (i = 0; i < ctx->keylen; i++) |
| key_state[i] = cpu_to_le32(key_tmp[i]); |
| |
| return 0; |
| } |
| |
| static int mtk_aes_crypt(struct ablkcipher_request *req, u64 mode) |
| { |
| struct mtk_aes_base_ctx *ctx; |
| struct mtk_aes_reqctx *rctx; |
| |
| ctx = crypto_ablkcipher_ctx(crypto_ablkcipher_reqtfm(req)); |
| rctx = ablkcipher_request_ctx(req); |
| rctx->mode = mode; |
| |
| return mtk_aes_handle_queue(ctx->cryp, |
| !(mode & AES_FLAGS_ENCRYPT), &req->base); |
| } |
| |
| static int mtk_ecb_encrypt(struct ablkcipher_request *req) |
| { |
| return mtk_aes_crypt(req, AES_FLAGS_ENCRYPT | AES_FLAGS_ECB); |
| } |
| |
| static int mtk_ecb_decrypt(struct ablkcipher_request *req) |
| { |
| return mtk_aes_crypt(req, AES_FLAGS_ECB); |
| } |
| |
| static int mtk_cbc_encrypt(struct ablkcipher_request *req) |
| { |
| return mtk_aes_crypt(req, AES_FLAGS_ENCRYPT | AES_FLAGS_CBC); |
| } |
| |
| static int mtk_cbc_decrypt(struct ablkcipher_request *req) |
| { |
| return mtk_aes_crypt(req, AES_FLAGS_CBC); |
| } |
| |
| static int mtk_aes_cra_init(struct crypto_tfm *tfm) |
| { |
| struct mtk_aes_ctx *ctx = crypto_tfm_ctx(tfm); |
| struct mtk_cryp *cryp = NULL; |
| |
| cryp = mtk_aes_find_dev(&ctx->base); |
| if (!cryp) { |
| pr_err("can't find crypto device\n"); |
| return -ENODEV; |
| } |
| |
| tfm->crt_ablkcipher.reqsize = sizeof(struct mtk_aes_reqctx); |
| ctx->base.start = mtk_aes_start; |
| return 0; |
| } |
| |
| static struct crypto_alg aes_algs[] = { |
| { |
| .cra_name = "cbc(aes)", |
| .cra_driver_name = "cbc-aes-mtk", |
| .cra_priority = 400, |
| .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | |
| CRYPTO_ALG_ASYNC, |
| .cra_init = mtk_aes_cra_init, |
| .cra_blocksize = AES_BLOCK_SIZE, |
| .cra_ctxsize = sizeof(struct mtk_aes_ctx), |
| .cra_alignmask = 15, |
| .cra_type = &crypto_ablkcipher_type, |
| .cra_module = THIS_MODULE, |
| .cra_u.ablkcipher = { |
| .min_keysize = AES_MIN_KEY_SIZE, |
| .max_keysize = AES_MAX_KEY_SIZE, |
| .setkey = mtk_aes_setkey, |
| .encrypt = mtk_cbc_encrypt, |
| .decrypt = mtk_cbc_decrypt, |
| .ivsize = AES_BLOCK_SIZE, |
| } |
| }, |
| { |
| .cra_name = "ecb(aes)", |
| .cra_driver_name = "ecb-aes-mtk", |
| .cra_priority = 400, |
| .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | |
| CRYPTO_ALG_ASYNC, |
| .cra_init = mtk_aes_cra_init, |
| .cra_blocksize = AES_BLOCK_SIZE, |
| .cra_ctxsize = sizeof(struct mtk_aes_ctx), |
| .cra_alignmask = 15, |
| .cra_type = &crypto_ablkcipher_type, |
| .cra_module = THIS_MODULE, |
| .cra_u.ablkcipher = { |
| .min_keysize = AES_MIN_KEY_SIZE, |
| .max_keysize = AES_MAX_KEY_SIZE, |
| .setkey = mtk_aes_setkey, |
| .encrypt = mtk_ecb_encrypt, |
| .decrypt = mtk_ecb_decrypt, |
| } |
| }, |
| }; |
| |
| static void mtk_aes_enc_task(unsigned long data) |
| { |
| struct mtk_cryp *cryp = (struct mtk_cryp *)data; |
| struct mtk_aes_rec *aes = cryp->aes[0]; |
| |
| mtk_aes_unmap(cryp, aes); |
| mtk_aes_complete(cryp, aes); |
| } |
| |
| static void mtk_aes_dec_task(unsigned long data) |
| { |
| struct mtk_cryp *cryp = (struct mtk_cryp *)data; |
| struct mtk_aes_rec *aes = cryp->aes[1]; |
| |
| mtk_aes_unmap(cryp, aes); |
| mtk_aes_complete(cryp, aes); |
| } |
| |
| static irqreturn_t mtk_aes_enc_irq(int irq, void *dev_id) |
| { |
| struct mtk_cryp *cryp = (struct mtk_cryp *)dev_id; |
| struct mtk_aes_rec *aes = cryp->aes[0]; |
| u32 val = mtk_aes_read(cryp, RDR_STAT(RING0)); |
| |
| mtk_aes_write(cryp, RDR_STAT(RING0), val); |
| |
| if (likely(AES_FLAGS_BUSY & aes->flags)) { |
| mtk_aes_write(cryp, RDR_PROC_COUNT(RING0), MTK_CNT_RST); |
| mtk_aes_write(cryp, RDR_THRESH(RING0), |
| MTK_RDR_PROC_THRESH | MTK_RDR_PROC_MODE); |
| |
| tasklet_schedule(&aes->task); |
| } else { |
| dev_warn(cryp->dev, "AES interrupt when no active requests.\n"); |
| } |
| return IRQ_HANDLED; |
| } |
| |
| static irqreturn_t mtk_aes_dec_irq(int irq, void *dev_id) |
| { |
| struct mtk_cryp *cryp = (struct mtk_cryp *)dev_id; |
| struct mtk_aes_rec *aes = cryp->aes[1]; |
| u32 val = mtk_aes_read(cryp, RDR_STAT(RING1)); |
| |
| mtk_aes_write(cryp, RDR_STAT(RING1), val); |
| |
| if (likely(AES_FLAGS_BUSY & aes->flags)) { |
| mtk_aes_write(cryp, RDR_PROC_COUNT(RING1), MTK_CNT_RST); |
| mtk_aes_write(cryp, RDR_THRESH(RING1), |
| MTK_RDR_PROC_THRESH | MTK_RDR_PROC_MODE); |
| |
| tasklet_schedule(&aes->task); |
| } else { |
| dev_warn(cryp->dev, "AES interrupt when no active requests.\n"); |
| } |
| return IRQ_HANDLED; |
| } |
| |
| /* |
| * The purpose of creating encryption and decryption records is |
| * to process outbound/inbound data in parallel, it can improve |
| * performance in most use cases, such as IPSec VPN, especially |
| * under heavy network traffic. |
| */ |
| static int mtk_aes_record_init(struct mtk_cryp *cryp) |
| { |
| struct mtk_aes_rec **aes = cryp->aes; |
| int i, err = -ENOMEM; |
| |
| for (i = 0; i < MTK_REC_NUM; i++) { |
| aes[i] = kzalloc(sizeof(**aes), GFP_KERNEL); |
| if (!aes[i]) |
| goto err_cleanup; |
| |
| aes[i]->buf = (void *)__get_free_pages(GFP_KERNEL, |
| AES_BUF_ORDER); |
| if (!aes[i]->buf) |
| goto err_cleanup; |
| |
| aes[i]->id = i; |
| |
| spin_lock_init(&aes[i]->lock); |
| crypto_init_queue(&aes[i]->queue, AES_QUEUE_SIZE); |
| } |
| |
| tasklet_init(&aes[0]->task, mtk_aes_enc_task, (unsigned long)cryp); |
| tasklet_init(&aes[1]->task, mtk_aes_dec_task, (unsigned long)cryp); |
| |
| return 0; |
| |
| err_cleanup: |
| for (; i--; ) { |
| free_page((unsigned long)aes[i]->buf); |
| kfree(aes[i]); |
| } |
| |
| return err; |
| } |
| |
| static void mtk_aes_record_free(struct mtk_cryp *cryp) |
| { |
| int i; |
| |
| for (i = 0; i < MTK_REC_NUM; i++) { |
| tasklet_kill(&cryp->aes[i]->task); |
| free_page((unsigned long)cryp->aes[i]->buf); |
| kfree(cryp->aes[i]); |
| } |
| } |
| |
| static void mtk_aes_unregister_algs(void) |
| { |
| int i; |
| |
| for (i = 0; i < ARRAY_SIZE(aes_algs); i++) |
| crypto_unregister_alg(&aes_algs[i]); |
| } |
| |
| static int mtk_aes_register_algs(void) |
| { |
| int err, i; |
| |
| for (i = 0; i < ARRAY_SIZE(aes_algs); i++) { |
| err = crypto_register_alg(&aes_algs[i]); |
| if (err) |
| goto err_aes_algs; |
| } |
| |
| return 0; |
| |
| err_aes_algs: |
| for (; i--; ) |
| crypto_unregister_alg(&aes_algs[i]); |
| |
| return err; |
| } |
| |
| int mtk_cipher_alg_register(struct mtk_cryp *cryp) |
| { |
| int ret; |
| |
| INIT_LIST_HEAD(&cryp->aes_list); |
| |
| /* Initialize two cipher records */ |
| ret = mtk_aes_record_init(cryp); |
| if (ret) |
| goto err_record; |
| |
| /* Ring0 is use by encryption record */ |
| ret = devm_request_irq(cryp->dev, cryp->irq[RING0], mtk_aes_enc_irq, |
| IRQF_TRIGGER_LOW, "mtk-aes", cryp); |
| if (ret) { |
| dev_err(cryp->dev, "unable to request AES encryption irq.\n"); |
| goto err_res; |
| } |
| |
| /* Ring1 is use by decryption record */ |
| ret = devm_request_irq(cryp->dev, cryp->irq[RING1], mtk_aes_dec_irq, |
| IRQF_TRIGGER_LOW, "mtk-aes", cryp); |
| if (ret) { |
| dev_err(cryp->dev, "unable to request AES decryption irq.\n"); |
| goto err_res; |
| } |
| |
| /* Enable ring0 and ring1 interrupt */ |
| mtk_aes_write(cryp, AIC_ENABLE_SET(RING0), MTK_IRQ_RDR0); |
| mtk_aes_write(cryp, AIC_ENABLE_SET(RING1), MTK_IRQ_RDR1); |
| |
| spin_lock(&mtk_aes.lock); |
| list_add_tail(&cryp->aes_list, &mtk_aes.dev_list); |
| spin_unlock(&mtk_aes.lock); |
| |
| ret = mtk_aes_register_algs(); |
| if (ret) |
| goto err_algs; |
| |
| return 0; |
| |
| err_algs: |
| spin_lock(&mtk_aes.lock); |
| list_del(&cryp->aes_list); |
| spin_unlock(&mtk_aes.lock); |
| err_res: |
| mtk_aes_record_free(cryp); |
| err_record: |
| |
| dev_err(cryp->dev, "mtk-aes initialization failed.\n"); |
| return ret; |
| } |
| |
| void mtk_cipher_alg_release(struct mtk_cryp *cryp) |
| { |
| spin_lock(&mtk_aes.lock); |
| list_del(&cryp->aes_list); |
| spin_unlock(&mtk_aes.lock); |
| |
| mtk_aes_unregister_algs(); |
| mtk_aes_record_free(cryp); |
| } |