| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * Copyright (C) 2012 Avionic Design GmbH |
| * Copyright (C) 2012 NVIDIA CORPORATION. All rights reserved. |
| */ |
| |
| #include <linux/clk.h> |
| #include <linux/debugfs.h> |
| #include <linux/delay.h> |
| #include <linux/iommu.h> |
| #include <linux/interconnect.h> |
| #include <linux/module.h> |
| #include <linux/of_device.h> |
| #include <linux/pm_domain.h> |
| #include <linux/pm_opp.h> |
| #include <linux/pm_runtime.h> |
| #include <linux/reset.h> |
| |
| #include <soc/tegra/common.h> |
| #include <soc/tegra/pmc.h> |
| |
| #include <drm/drm_atomic.h> |
| #include <drm/drm_atomic_helper.h> |
| #include <drm/drm_debugfs.h> |
| #include <drm/drm_fourcc.h> |
| #include <drm/drm_plane_helper.h> |
| #include <drm/drm_vblank.h> |
| |
| #include "dc.h" |
| #include "drm.h" |
| #include "gem.h" |
| #include "hub.h" |
| #include "plane.h" |
| |
| static void tegra_crtc_atomic_destroy_state(struct drm_crtc *crtc, |
| struct drm_crtc_state *state); |
| |
| static void tegra_dc_stats_reset(struct tegra_dc_stats *stats) |
| { |
| stats->frames = 0; |
| stats->vblank = 0; |
| stats->underflow = 0; |
| stats->overflow = 0; |
| } |
| |
| /* Reads the active copy of a register. */ |
| static u32 tegra_dc_readl_active(struct tegra_dc *dc, unsigned long offset) |
| { |
| u32 value; |
| |
| tegra_dc_writel(dc, READ_MUX, DC_CMD_STATE_ACCESS); |
| value = tegra_dc_readl(dc, offset); |
| tegra_dc_writel(dc, 0, DC_CMD_STATE_ACCESS); |
| |
| return value; |
| } |
| |
| static inline unsigned int tegra_plane_offset(struct tegra_plane *plane, |
| unsigned int offset) |
| { |
| if (offset >= 0x500 && offset <= 0x638) { |
| offset = 0x000 + (offset - 0x500); |
| return plane->offset + offset; |
| } |
| |
| if (offset >= 0x700 && offset <= 0x719) { |
| offset = 0x180 + (offset - 0x700); |
| return plane->offset + offset; |
| } |
| |
| if (offset >= 0x800 && offset <= 0x839) { |
| offset = 0x1c0 + (offset - 0x800); |
| return plane->offset + offset; |
| } |
| |
| dev_WARN(plane->dc->dev, "invalid offset: %x\n", offset); |
| |
| return plane->offset + offset; |
| } |
| |
| static inline u32 tegra_plane_readl(struct tegra_plane *plane, |
| unsigned int offset) |
| { |
| return tegra_dc_readl(plane->dc, tegra_plane_offset(plane, offset)); |
| } |
| |
| static inline void tegra_plane_writel(struct tegra_plane *plane, u32 value, |
| unsigned int offset) |
| { |
| tegra_dc_writel(plane->dc, value, tegra_plane_offset(plane, offset)); |
| } |
| |
| bool tegra_dc_has_output(struct tegra_dc *dc, struct device *dev) |
| { |
| struct device_node *np = dc->dev->of_node; |
| struct of_phandle_iterator it; |
| int err; |
| |
| of_for_each_phandle(&it, err, np, "nvidia,outputs", NULL, 0) |
| if (it.node == dev->of_node) |
| return true; |
| |
| return false; |
| } |
| |
| /* |
| * Double-buffered registers have two copies: ASSEMBLY and ACTIVE. When the |
| * *_ACT_REQ bits are set the ASSEMBLY copy is latched into the ACTIVE copy. |
| * Latching happens mmediately if the display controller is in STOP mode or |
| * on the next frame boundary otherwise. |
| * |
| * Triple-buffered registers have three copies: ASSEMBLY, ARM and ACTIVE. The |
| * ASSEMBLY copy is latched into the ARM copy immediately after *_UPDATE bits |
| * are written. When the *_ACT_REQ bits are written, the ARM copy is latched |
| * into the ACTIVE copy, either immediately if the display controller is in |
| * STOP mode, or at the next frame boundary otherwise. |
| */ |
| void tegra_dc_commit(struct tegra_dc *dc) |
| { |
| tegra_dc_writel(dc, GENERAL_ACT_REQ << 8, DC_CMD_STATE_CONTROL); |
| tegra_dc_writel(dc, GENERAL_ACT_REQ, DC_CMD_STATE_CONTROL); |
| } |
| |
| static inline u32 compute_dda_inc(unsigned int in, unsigned int out, bool v, |
| unsigned int bpp) |
| { |
| fixed20_12 outf = dfixed_init(out); |
| fixed20_12 inf = dfixed_init(in); |
| u32 dda_inc; |
| int max; |
| |
| if (v) |
| max = 15; |
| else { |
| switch (bpp) { |
| case 2: |
| max = 8; |
| break; |
| |
| default: |
| WARN_ON_ONCE(1); |
| fallthrough; |
| case 4: |
| max = 4; |
| break; |
| } |
| } |
| |
| outf.full = max_t(u32, outf.full - dfixed_const(1), dfixed_const(1)); |
| inf.full -= dfixed_const(1); |
| |
| dda_inc = dfixed_div(inf, outf); |
| dda_inc = min_t(u32, dda_inc, dfixed_const(max)); |
| |
| return dda_inc; |
| } |
| |
| static inline u32 compute_initial_dda(unsigned int in) |
| { |
| fixed20_12 inf = dfixed_init(in); |
| return dfixed_frac(inf); |
| } |
| |
| static void tegra_plane_setup_blending_legacy(struct tegra_plane *plane) |
| { |
| u32 background[3] = { |
| BLEND_WEIGHT1(0) | BLEND_WEIGHT0(0) | BLEND_COLOR_KEY_NONE, |
| BLEND_WEIGHT1(0) | BLEND_WEIGHT0(0) | BLEND_COLOR_KEY_NONE, |
| BLEND_WEIGHT1(0) | BLEND_WEIGHT0(0) | BLEND_COLOR_KEY_NONE, |
| }; |
| u32 foreground = BLEND_WEIGHT1(255) | BLEND_WEIGHT0(255) | |
| BLEND_COLOR_KEY_NONE; |
| u32 blendnokey = BLEND_WEIGHT1(255) | BLEND_WEIGHT0(255); |
| struct tegra_plane_state *state; |
| u32 blending[2]; |
| unsigned int i; |
| |
| /* disable blending for non-overlapping case */ |
| tegra_plane_writel(plane, blendnokey, DC_WIN_BLEND_NOKEY); |
| tegra_plane_writel(plane, foreground, DC_WIN_BLEND_1WIN); |
| |
| state = to_tegra_plane_state(plane->base.state); |
| |
| if (state->opaque) { |
| /* |
| * Since custom fix-weight blending isn't utilized and weight |
| * of top window is set to max, we can enforce dependent |
| * blending which in this case results in transparent bottom |
| * window if top window is opaque and if top window enables |
| * alpha blending, then bottom window is getting alpha value |
| * of 1 minus the sum of alpha components of the overlapping |
| * plane. |
| */ |
| background[0] |= BLEND_CONTROL_DEPENDENT; |
| background[1] |= BLEND_CONTROL_DEPENDENT; |
| |
| /* |
| * The region where three windows overlap is the intersection |
| * of the two regions where two windows overlap. It contributes |
| * to the area if all of the windows on top of it have an alpha |
| * component. |
| */ |
| switch (state->base.normalized_zpos) { |
| case 0: |
| if (state->blending[0].alpha && |
| state->blending[1].alpha) |
| background[2] |= BLEND_CONTROL_DEPENDENT; |
| break; |
| |
| case 1: |
| background[2] |= BLEND_CONTROL_DEPENDENT; |
| break; |
| } |
| } else { |
| /* |
| * Enable alpha blending if pixel format has an alpha |
| * component. |
| */ |
| foreground |= BLEND_CONTROL_ALPHA; |
| |
| /* |
| * If any of the windows on top of this window is opaque, it |
| * will completely conceal this window within that area. If |
| * top window has an alpha component, it is blended over the |
| * bottom window. |
| */ |
| for (i = 0; i < 2; i++) { |
| if (state->blending[i].alpha && |
| state->blending[i].top) |
| background[i] |= BLEND_CONTROL_DEPENDENT; |
| } |
| |
| switch (state->base.normalized_zpos) { |
| case 0: |
| if (state->blending[0].alpha && |
| state->blending[1].alpha) |
| background[2] |= BLEND_CONTROL_DEPENDENT; |
| break; |
| |
| case 1: |
| /* |
| * When both middle and topmost windows have an alpha, |
| * these windows a mixed together and then the result |
| * is blended over the bottom window. |
| */ |
| if (state->blending[0].alpha && |
| state->blending[0].top) |
| background[2] |= BLEND_CONTROL_ALPHA; |
| |
| if (state->blending[1].alpha && |
| state->blending[1].top) |
| background[2] |= BLEND_CONTROL_ALPHA; |
| break; |
| } |
| } |
| |
| switch (state->base.normalized_zpos) { |
| case 0: |
| tegra_plane_writel(plane, background[0], DC_WIN_BLEND_2WIN_X); |
| tegra_plane_writel(plane, background[1], DC_WIN_BLEND_2WIN_Y); |
| tegra_plane_writel(plane, background[2], DC_WIN_BLEND_3WIN_XY); |
| break; |
| |
| case 1: |
| /* |
| * If window B / C is topmost, then X / Y registers are |
| * matching the order of blending[...] state indices, |
| * otherwise a swap is required. |
| */ |
| if (!state->blending[0].top && state->blending[1].top) { |
| blending[0] = foreground; |
| blending[1] = background[1]; |
| } else { |
| blending[0] = background[0]; |
| blending[1] = foreground; |
| } |
| |
| tegra_plane_writel(plane, blending[0], DC_WIN_BLEND_2WIN_X); |
| tegra_plane_writel(plane, blending[1], DC_WIN_BLEND_2WIN_Y); |
| tegra_plane_writel(plane, background[2], DC_WIN_BLEND_3WIN_XY); |
| break; |
| |
| case 2: |
| tegra_plane_writel(plane, foreground, DC_WIN_BLEND_2WIN_X); |
| tegra_plane_writel(plane, foreground, DC_WIN_BLEND_2WIN_Y); |
| tegra_plane_writel(plane, foreground, DC_WIN_BLEND_3WIN_XY); |
| break; |
| } |
| } |
| |
| static void tegra_plane_setup_blending(struct tegra_plane *plane, |
| const struct tegra_dc_window *window) |
| { |
| u32 value; |
| |
| value = BLEND_FACTOR_DST_ALPHA_ZERO | BLEND_FACTOR_SRC_ALPHA_K2 | |
| BLEND_FACTOR_DST_COLOR_NEG_K1_TIMES_SRC | |
| BLEND_FACTOR_SRC_COLOR_K1_TIMES_SRC; |
| tegra_plane_writel(plane, value, DC_WIN_BLEND_MATCH_SELECT); |
| |
| value = BLEND_FACTOR_DST_ALPHA_ZERO | BLEND_FACTOR_SRC_ALPHA_K2 | |
| BLEND_FACTOR_DST_COLOR_NEG_K1_TIMES_SRC | |
| BLEND_FACTOR_SRC_COLOR_K1_TIMES_SRC; |
| tegra_plane_writel(plane, value, DC_WIN_BLEND_NOMATCH_SELECT); |
| |
| value = K2(255) | K1(255) | WINDOW_LAYER_DEPTH(255 - window->zpos); |
| tegra_plane_writel(plane, value, DC_WIN_BLEND_LAYER_CONTROL); |
| } |
| |
| static bool |
| tegra_plane_use_horizontal_filtering(struct tegra_plane *plane, |
| const struct tegra_dc_window *window) |
| { |
| struct tegra_dc *dc = plane->dc; |
| |
| if (window->src.w == window->dst.w) |
| return false; |
| |
| if (plane->index == 0 && dc->soc->has_win_a_without_filters) |
| return false; |
| |
| return true; |
| } |
| |
| static bool |
| tegra_plane_use_vertical_filtering(struct tegra_plane *plane, |
| const struct tegra_dc_window *window) |
| { |
| struct tegra_dc *dc = plane->dc; |
| |
| if (window->src.h == window->dst.h) |
| return false; |
| |
| if (plane->index == 0 && dc->soc->has_win_a_without_filters) |
| return false; |
| |
| if (plane->index == 2 && dc->soc->has_win_c_without_vert_filter) |
| return false; |
| |
| return true; |
| } |
| |
| static void tegra_dc_setup_window(struct tegra_plane *plane, |
| const struct tegra_dc_window *window) |
| { |
| unsigned h_offset, v_offset, h_size, v_size, h_dda, v_dda, bpp; |
| struct tegra_dc *dc = plane->dc; |
| bool yuv, planar; |
| u32 value; |
| |
| /* |
| * For YUV planar modes, the number of bytes per pixel takes into |
| * account only the luma component and therefore is 1. |
| */ |
| yuv = tegra_plane_format_is_yuv(window->format, &planar, NULL); |
| if (!yuv) |
| bpp = window->bits_per_pixel / 8; |
| else |
| bpp = planar ? 1 : 2; |
| |
| tegra_plane_writel(plane, window->format, DC_WIN_COLOR_DEPTH); |
| tegra_plane_writel(plane, window->swap, DC_WIN_BYTE_SWAP); |
| |
| value = V_POSITION(window->dst.y) | H_POSITION(window->dst.x); |
| tegra_plane_writel(plane, value, DC_WIN_POSITION); |
| |
| value = V_SIZE(window->dst.h) | H_SIZE(window->dst.w); |
| tegra_plane_writel(plane, value, DC_WIN_SIZE); |
| |
| h_offset = window->src.x * bpp; |
| v_offset = window->src.y; |
| h_size = window->src.w * bpp; |
| v_size = window->src.h; |
| |
| if (window->reflect_x) |
| h_offset += (window->src.w - 1) * bpp; |
| |
| if (window->reflect_y) |
| v_offset += window->src.h - 1; |
| |
| value = V_PRESCALED_SIZE(v_size) | H_PRESCALED_SIZE(h_size); |
| tegra_plane_writel(plane, value, DC_WIN_PRESCALED_SIZE); |
| |
| /* |
| * For DDA computations the number of bytes per pixel for YUV planar |
| * modes needs to take into account all Y, U and V components. |
| */ |
| if (yuv && planar) |
| bpp = 2; |
| |
| h_dda = compute_dda_inc(window->src.w, window->dst.w, false, bpp); |
| v_dda = compute_dda_inc(window->src.h, window->dst.h, true, bpp); |
| |
| value = V_DDA_INC(v_dda) | H_DDA_INC(h_dda); |
| tegra_plane_writel(plane, value, DC_WIN_DDA_INC); |
| |
| h_dda = compute_initial_dda(window->src.x); |
| v_dda = compute_initial_dda(window->src.y); |
| |
| tegra_plane_writel(plane, h_dda, DC_WIN_H_INITIAL_DDA); |
| tegra_plane_writel(plane, v_dda, DC_WIN_V_INITIAL_DDA); |
| |
| tegra_plane_writel(plane, 0, DC_WIN_UV_BUF_STRIDE); |
| tegra_plane_writel(plane, 0, DC_WIN_BUF_STRIDE); |
| |
| tegra_plane_writel(plane, window->base[0], DC_WINBUF_START_ADDR); |
| |
| if (yuv && planar) { |
| tegra_plane_writel(plane, window->base[1], DC_WINBUF_START_ADDR_U); |
| tegra_plane_writel(plane, window->base[2], DC_WINBUF_START_ADDR_V); |
| value = window->stride[1] << 16 | window->stride[0]; |
| tegra_plane_writel(plane, value, DC_WIN_LINE_STRIDE); |
| } else { |
| tegra_plane_writel(plane, window->stride[0], DC_WIN_LINE_STRIDE); |
| } |
| |
| tegra_plane_writel(plane, h_offset, DC_WINBUF_ADDR_H_OFFSET); |
| tegra_plane_writel(plane, v_offset, DC_WINBUF_ADDR_V_OFFSET); |
| |
| if (dc->soc->supports_block_linear) { |
| unsigned long height = window->tiling.value; |
| |
| switch (window->tiling.mode) { |
| case TEGRA_BO_TILING_MODE_PITCH: |
| value = DC_WINBUF_SURFACE_KIND_PITCH; |
| break; |
| |
| case TEGRA_BO_TILING_MODE_TILED: |
| value = DC_WINBUF_SURFACE_KIND_TILED; |
| break; |
| |
| case TEGRA_BO_TILING_MODE_BLOCK: |
| value = DC_WINBUF_SURFACE_KIND_BLOCK_HEIGHT(height) | |
| DC_WINBUF_SURFACE_KIND_BLOCK; |
| break; |
| } |
| |
| tegra_plane_writel(plane, value, DC_WINBUF_SURFACE_KIND); |
| } else { |
| switch (window->tiling.mode) { |
| case TEGRA_BO_TILING_MODE_PITCH: |
| value = DC_WIN_BUFFER_ADDR_MODE_LINEAR_UV | |
| DC_WIN_BUFFER_ADDR_MODE_LINEAR; |
| break; |
| |
| case TEGRA_BO_TILING_MODE_TILED: |
| value = DC_WIN_BUFFER_ADDR_MODE_TILE_UV | |
| DC_WIN_BUFFER_ADDR_MODE_TILE; |
| break; |
| |
| case TEGRA_BO_TILING_MODE_BLOCK: |
| /* |
| * No need to handle this here because ->atomic_check |
| * will already have filtered it out. |
| */ |
| break; |
| } |
| |
| tegra_plane_writel(plane, value, DC_WIN_BUFFER_ADDR_MODE); |
| } |
| |
| value = WIN_ENABLE; |
| |
| if (yuv) { |
| /* setup default colorspace conversion coefficients */ |
| tegra_plane_writel(plane, 0x00f0, DC_WIN_CSC_YOF); |
| tegra_plane_writel(plane, 0x012a, DC_WIN_CSC_KYRGB); |
| tegra_plane_writel(plane, 0x0000, DC_WIN_CSC_KUR); |
| tegra_plane_writel(plane, 0x0198, DC_WIN_CSC_KVR); |
| tegra_plane_writel(plane, 0x039b, DC_WIN_CSC_KUG); |
| tegra_plane_writel(plane, 0x032f, DC_WIN_CSC_KVG); |
| tegra_plane_writel(plane, 0x0204, DC_WIN_CSC_KUB); |
| tegra_plane_writel(plane, 0x0000, DC_WIN_CSC_KVB); |
| |
| value |= CSC_ENABLE; |
| } else if (window->bits_per_pixel < 24) { |
| value |= COLOR_EXPAND; |
| } |
| |
| if (window->reflect_x) |
| value |= H_DIRECTION; |
| |
| if (window->reflect_y) |
| value |= V_DIRECTION; |
| |
| if (tegra_plane_use_horizontal_filtering(plane, window)) { |
| /* |
| * Enable horizontal 6-tap filter and set filtering |
| * coefficients to the default values defined in TRM. |
| */ |
| tegra_plane_writel(plane, 0x00008000, DC_WIN_H_FILTER_P(0)); |
| tegra_plane_writel(plane, 0x3e087ce1, DC_WIN_H_FILTER_P(1)); |
| tegra_plane_writel(plane, 0x3b117ac1, DC_WIN_H_FILTER_P(2)); |
| tegra_plane_writel(plane, 0x591b73aa, DC_WIN_H_FILTER_P(3)); |
| tegra_plane_writel(plane, 0x57256d9a, DC_WIN_H_FILTER_P(4)); |
| tegra_plane_writel(plane, 0x552f668b, DC_WIN_H_FILTER_P(5)); |
| tegra_plane_writel(plane, 0x73385e8b, DC_WIN_H_FILTER_P(6)); |
| tegra_plane_writel(plane, 0x72435583, DC_WIN_H_FILTER_P(7)); |
| tegra_plane_writel(plane, 0x714c4c8b, DC_WIN_H_FILTER_P(8)); |
| tegra_plane_writel(plane, 0x70554393, DC_WIN_H_FILTER_P(9)); |
| tegra_plane_writel(plane, 0x715e389b, DC_WIN_H_FILTER_P(10)); |
| tegra_plane_writel(plane, 0x71662faa, DC_WIN_H_FILTER_P(11)); |
| tegra_plane_writel(plane, 0x536d25ba, DC_WIN_H_FILTER_P(12)); |
| tegra_plane_writel(plane, 0x55731bca, DC_WIN_H_FILTER_P(13)); |
| tegra_plane_writel(plane, 0x387a11d9, DC_WIN_H_FILTER_P(14)); |
| tegra_plane_writel(plane, 0x3c7c08f1, DC_WIN_H_FILTER_P(15)); |
| |
| value |= H_FILTER; |
| } |
| |
| if (tegra_plane_use_vertical_filtering(plane, window)) { |
| unsigned int i, k; |
| |
| /* |
| * Enable vertical 2-tap filter and set filtering |
| * coefficients to the default values defined in TRM. |
| */ |
| for (i = 0, k = 128; i < 16; i++, k -= 8) |
| tegra_plane_writel(plane, k, DC_WIN_V_FILTER_P(i)); |
| |
| value |= V_FILTER; |
| } |
| |
| tegra_plane_writel(plane, value, DC_WIN_WIN_OPTIONS); |
| |
| if (dc->soc->has_legacy_blending) |
| tegra_plane_setup_blending_legacy(plane); |
| else |
| tegra_plane_setup_blending(plane, window); |
| } |
| |
| static const u32 tegra20_primary_formats[] = { |
| DRM_FORMAT_ARGB4444, |
| DRM_FORMAT_ARGB1555, |
| DRM_FORMAT_RGB565, |
| DRM_FORMAT_RGBA5551, |
| DRM_FORMAT_ABGR8888, |
| DRM_FORMAT_ARGB8888, |
| /* non-native formats */ |
| DRM_FORMAT_XRGB1555, |
| DRM_FORMAT_RGBX5551, |
| DRM_FORMAT_XBGR8888, |
| DRM_FORMAT_XRGB8888, |
| }; |
| |
| static const u64 tegra20_modifiers[] = { |
| DRM_FORMAT_MOD_LINEAR, |
| DRM_FORMAT_MOD_NVIDIA_TEGRA_TILED, |
| DRM_FORMAT_MOD_INVALID |
| }; |
| |
| static const u32 tegra114_primary_formats[] = { |
| DRM_FORMAT_ARGB4444, |
| DRM_FORMAT_ARGB1555, |
| DRM_FORMAT_RGB565, |
| DRM_FORMAT_RGBA5551, |
| DRM_FORMAT_ABGR8888, |
| DRM_FORMAT_ARGB8888, |
| /* new on Tegra114 */ |
| DRM_FORMAT_ABGR4444, |
| DRM_FORMAT_ABGR1555, |
| DRM_FORMAT_BGRA5551, |
| DRM_FORMAT_XRGB1555, |
| DRM_FORMAT_RGBX5551, |
| DRM_FORMAT_XBGR1555, |
| DRM_FORMAT_BGRX5551, |
| DRM_FORMAT_BGR565, |
| DRM_FORMAT_BGRA8888, |
| DRM_FORMAT_RGBA8888, |
| DRM_FORMAT_XRGB8888, |
| DRM_FORMAT_XBGR8888, |
| }; |
| |
| static const u32 tegra124_primary_formats[] = { |
| DRM_FORMAT_ARGB4444, |
| DRM_FORMAT_ARGB1555, |
| DRM_FORMAT_RGB565, |
| DRM_FORMAT_RGBA5551, |
| DRM_FORMAT_ABGR8888, |
| DRM_FORMAT_ARGB8888, |
| /* new on Tegra114 */ |
| DRM_FORMAT_ABGR4444, |
| DRM_FORMAT_ABGR1555, |
| DRM_FORMAT_BGRA5551, |
| DRM_FORMAT_XRGB1555, |
| DRM_FORMAT_RGBX5551, |
| DRM_FORMAT_XBGR1555, |
| DRM_FORMAT_BGRX5551, |
| DRM_FORMAT_BGR565, |
| DRM_FORMAT_BGRA8888, |
| DRM_FORMAT_RGBA8888, |
| DRM_FORMAT_XRGB8888, |
| DRM_FORMAT_XBGR8888, |
| /* new on Tegra124 */ |
| DRM_FORMAT_RGBX8888, |
| DRM_FORMAT_BGRX8888, |
| }; |
| |
| static const u64 tegra124_modifiers[] = { |
| DRM_FORMAT_MOD_LINEAR, |
| DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(0), |
| DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(1), |
| DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(2), |
| DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(3), |
| DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(4), |
| DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(5), |
| DRM_FORMAT_MOD_INVALID |
| }; |
| |
| static int tegra_plane_atomic_check(struct drm_plane *plane, |
| struct drm_atomic_state *state) |
| { |
| struct drm_plane_state *new_plane_state = drm_atomic_get_new_plane_state(state, |
| plane); |
| struct tegra_plane_state *plane_state = to_tegra_plane_state(new_plane_state); |
| unsigned int supported_rotation = DRM_MODE_ROTATE_0 | |
| DRM_MODE_REFLECT_X | |
| DRM_MODE_REFLECT_Y; |
| unsigned int rotation = new_plane_state->rotation; |
| struct tegra_bo_tiling *tiling = &plane_state->tiling; |
| struct tegra_plane *tegra = to_tegra_plane(plane); |
| struct tegra_dc *dc = to_tegra_dc(new_plane_state->crtc); |
| int err; |
| |
| plane_state->peak_memory_bandwidth = 0; |
| plane_state->avg_memory_bandwidth = 0; |
| |
| /* no need for further checks if the plane is being disabled */ |
| if (!new_plane_state->crtc) { |
| plane_state->total_peak_memory_bandwidth = 0; |
| return 0; |
| } |
| |
| err = tegra_plane_format(new_plane_state->fb->format->format, |
| &plane_state->format, |
| &plane_state->swap); |
| if (err < 0) |
| return err; |
| |
| /* |
| * Tegra20 and Tegra30 are special cases here because they support |
| * only variants of specific formats with an alpha component, but not |
| * the corresponding opaque formats. However, the opaque formats can |
| * be emulated by disabling alpha blending for the plane. |
| */ |
| if (dc->soc->has_legacy_blending) { |
| err = tegra_plane_setup_legacy_state(tegra, plane_state); |
| if (err < 0) |
| return err; |
| } |
| |
| err = tegra_fb_get_tiling(new_plane_state->fb, tiling); |
| if (err < 0) |
| return err; |
| |
| if (tiling->mode == TEGRA_BO_TILING_MODE_BLOCK && |
| !dc->soc->supports_block_linear) { |
| DRM_ERROR("hardware doesn't support block linear mode\n"); |
| return -EINVAL; |
| } |
| |
| /* |
| * Older userspace used custom BO flag in order to specify the Y |
| * reflection, while modern userspace uses the generic DRM rotation |
| * property in order to achieve the same result. The legacy BO flag |
| * duplicates the DRM rotation property when both are set. |
| */ |
| if (tegra_fb_is_bottom_up(new_plane_state->fb)) |
| rotation |= DRM_MODE_REFLECT_Y; |
| |
| rotation = drm_rotation_simplify(rotation, supported_rotation); |
| |
| if (rotation & DRM_MODE_REFLECT_X) |
| plane_state->reflect_x = true; |
| else |
| plane_state->reflect_x = false; |
| |
| if (rotation & DRM_MODE_REFLECT_Y) |
| plane_state->reflect_y = true; |
| else |
| plane_state->reflect_y = false; |
| |
| /* |
| * Tegra doesn't support different strides for U and V planes so we |
| * error out if the user tries to display a framebuffer with such a |
| * configuration. |
| */ |
| if (new_plane_state->fb->format->num_planes > 2) { |
| if (new_plane_state->fb->pitches[2] != new_plane_state->fb->pitches[1]) { |
| DRM_ERROR("unsupported UV-plane configuration\n"); |
| return -EINVAL; |
| } |
| } |
| |
| err = tegra_plane_state_add(tegra, new_plane_state); |
| if (err < 0) |
| return err; |
| |
| return 0; |
| } |
| |
| static void tegra_plane_atomic_disable(struct drm_plane *plane, |
| struct drm_atomic_state *state) |
| { |
| struct drm_plane_state *old_state = drm_atomic_get_old_plane_state(state, |
| plane); |
| struct tegra_plane *p = to_tegra_plane(plane); |
| u32 value; |
| |
| /* rien ne va plus */ |
| if (!old_state || !old_state->crtc) |
| return; |
| |
| value = tegra_plane_readl(p, DC_WIN_WIN_OPTIONS); |
| value &= ~WIN_ENABLE; |
| tegra_plane_writel(p, value, DC_WIN_WIN_OPTIONS); |
| } |
| |
| static void tegra_plane_atomic_update(struct drm_plane *plane, |
| struct drm_atomic_state *state) |
| { |
| struct drm_plane_state *new_state = drm_atomic_get_new_plane_state(state, |
| plane); |
| struct tegra_plane_state *tegra_plane_state = to_tegra_plane_state(new_state); |
| struct drm_framebuffer *fb = new_state->fb; |
| struct tegra_plane *p = to_tegra_plane(plane); |
| struct tegra_dc_window window; |
| unsigned int i; |
| |
| /* rien ne va plus */ |
| if (!new_state->crtc || !new_state->fb) |
| return; |
| |
| if (!new_state->visible) |
| return tegra_plane_atomic_disable(plane, state); |
| |
| memset(&window, 0, sizeof(window)); |
| window.src.x = new_state->src.x1 >> 16; |
| window.src.y = new_state->src.y1 >> 16; |
| window.src.w = drm_rect_width(&new_state->src) >> 16; |
| window.src.h = drm_rect_height(&new_state->src) >> 16; |
| window.dst.x = new_state->dst.x1; |
| window.dst.y = new_state->dst.y1; |
| window.dst.w = drm_rect_width(&new_state->dst); |
| window.dst.h = drm_rect_height(&new_state->dst); |
| window.bits_per_pixel = fb->format->cpp[0] * 8; |
| window.reflect_x = tegra_plane_state->reflect_x; |
| window.reflect_y = tegra_plane_state->reflect_y; |
| |
| /* copy from state */ |
| window.zpos = new_state->normalized_zpos; |
| window.tiling = tegra_plane_state->tiling; |
| window.format = tegra_plane_state->format; |
| window.swap = tegra_plane_state->swap; |
| |
| for (i = 0; i < fb->format->num_planes; i++) { |
| window.base[i] = tegra_plane_state->iova[i] + fb->offsets[i]; |
| |
| /* |
| * Tegra uses a shared stride for UV planes. Framebuffers are |
| * already checked for this in the tegra_plane_atomic_check() |
| * function, so it's safe to ignore the V-plane pitch here. |
| */ |
| if (i < 2) |
| window.stride[i] = fb->pitches[i]; |
| } |
| |
| tegra_dc_setup_window(p, &window); |
| } |
| |
| static const struct drm_plane_helper_funcs tegra_plane_helper_funcs = { |
| .prepare_fb = tegra_plane_prepare_fb, |
| .cleanup_fb = tegra_plane_cleanup_fb, |
| .atomic_check = tegra_plane_atomic_check, |
| .atomic_disable = tegra_plane_atomic_disable, |
| .atomic_update = tegra_plane_atomic_update, |
| }; |
| |
| static unsigned long tegra_plane_get_possible_crtcs(struct drm_device *drm) |
| { |
| /* |
| * Ideally this would use drm_crtc_mask(), but that would require the |
| * CRTC to already be in the mode_config's list of CRTCs. However, it |
| * will only be added to that list in the drm_crtc_init_with_planes() |
| * (in tegra_dc_init()), which in turn requires registration of these |
| * planes. So we have ourselves a nice little chicken and egg problem |
| * here. |
| * |
| * We work around this by manually creating the mask from the number |
| * of CRTCs that have been registered, and should therefore always be |
| * the same as drm_crtc_index() after registration. |
| */ |
| return 1 << drm->mode_config.num_crtc; |
| } |
| |
| static struct drm_plane *tegra_primary_plane_create(struct drm_device *drm, |
| struct tegra_dc *dc) |
| { |
| unsigned long possible_crtcs = tegra_plane_get_possible_crtcs(drm); |
| enum drm_plane_type type = DRM_PLANE_TYPE_PRIMARY; |
| struct tegra_plane *plane; |
| unsigned int num_formats; |
| const u64 *modifiers; |
| const u32 *formats; |
| int err; |
| |
| plane = kzalloc(sizeof(*plane), GFP_KERNEL); |
| if (!plane) |
| return ERR_PTR(-ENOMEM); |
| |
| /* Always use window A as primary window */ |
| plane->offset = 0xa00; |
| plane->index = 0; |
| plane->dc = dc; |
| |
| num_formats = dc->soc->num_primary_formats; |
| formats = dc->soc->primary_formats; |
| modifiers = dc->soc->modifiers; |
| |
| err = tegra_plane_interconnect_init(plane); |
| if (err) { |
| kfree(plane); |
| return ERR_PTR(err); |
| } |
| |
| err = drm_universal_plane_init(drm, &plane->base, possible_crtcs, |
| &tegra_plane_funcs, formats, |
| num_formats, modifiers, type, NULL); |
| if (err < 0) { |
| kfree(plane); |
| return ERR_PTR(err); |
| } |
| |
| drm_plane_helper_add(&plane->base, &tegra_plane_helper_funcs); |
| drm_plane_create_zpos_property(&plane->base, plane->index, 0, 255); |
| |
| err = drm_plane_create_rotation_property(&plane->base, |
| DRM_MODE_ROTATE_0, |
| DRM_MODE_ROTATE_0 | |
| DRM_MODE_ROTATE_180 | |
| DRM_MODE_REFLECT_X | |
| DRM_MODE_REFLECT_Y); |
| if (err < 0) |
| dev_err(dc->dev, "failed to create rotation property: %d\n", |
| err); |
| |
| return &plane->base; |
| } |
| |
| static const u32 tegra_legacy_cursor_plane_formats[] = { |
| DRM_FORMAT_RGBA8888, |
| }; |
| |
| static const u32 tegra_cursor_plane_formats[] = { |
| DRM_FORMAT_ARGB8888, |
| }; |
| |
| static int tegra_cursor_atomic_check(struct drm_plane *plane, |
| struct drm_atomic_state *state) |
| { |
| struct drm_plane_state *new_plane_state = drm_atomic_get_new_plane_state(state, |
| plane); |
| struct tegra_plane_state *plane_state = to_tegra_plane_state(new_plane_state); |
| struct tegra_plane *tegra = to_tegra_plane(plane); |
| int err; |
| |
| plane_state->peak_memory_bandwidth = 0; |
| plane_state->avg_memory_bandwidth = 0; |
| |
| /* no need for further checks if the plane is being disabled */ |
| if (!new_plane_state->crtc) { |
| plane_state->total_peak_memory_bandwidth = 0; |
| return 0; |
| } |
| |
| /* scaling not supported for cursor */ |
| if ((new_plane_state->src_w >> 16 != new_plane_state->crtc_w) || |
| (new_plane_state->src_h >> 16 != new_plane_state->crtc_h)) |
| return -EINVAL; |
| |
| /* only square cursors supported */ |
| if (new_plane_state->src_w != new_plane_state->src_h) |
| return -EINVAL; |
| |
| if (new_plane_state->crtc_w != 32 && new_plane_state->crtc_w != 64 && |
| new_plane_state->crtc_w != 128 && new_plane_state->crtc_w != 256) |
| return -EINVAL; |
| |
| err = tegra_plane_state_add(tegra, new_plane_state); |
| if (err < 0) |
| return err; |
| |
| return 0; |
| } |
| |
| static void __tegra_cursor_atomic_update(struct drm_plane *plane, |
| struct drm_plane_state *new_state) |
| { |
| struct tegra_plane_state *tegra_plane_state = to_tegra_plane_state(new_state); |
| struct tegra_dc *dc = to_tegra_dc(new_state->crtc); |
| struct tegra_drm *tegra = plane->dev->dev_private; |
| #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT |
| u64 dma_mask = *dc->dev->dma_mask; |
| #endif |
| unsigned int x, y; |
| u32 value = 0; |
| |
| /* rien ne va plus */ |
| if (!new_state->crtc || !new_state->fb) |
| return; |
| |
| /* |
| * Legacy display supports hardware clipping of the cursor, but |
| * nvdisplay relies on software to clip the cursor to the screen. |
| */ |
| if (!dc->soc->has_nvdisplay) |
| value |= CURSOR_CLIP_DISPLAY; |
| |
| switch (new_state->crtc_w) { |
| case 32: |
| value |= CURSOR_SIZE_32x32; |
| break; |
| |
| case 64: |
| value |= CURSOR_SIZE_64x64; |
| break; |
| |
| case 128: |
| value |= CURSOR_SIZE_128x128; |
| break; |
| |
| case 256: |
| value |= CURSOR_SIZE_256x256; |
| break; |
| |
| default: |
| WARN(1, "cursor size %ux%u not supported\n", |
| new_state->crtc_w, new_state->crtc_h); |
| return; |
| } |
| |
| value |= (tegra_plane_state->iova[0] >> 10) & 0x3fffff; |
| tegra_dc_writel(dc, value, DC_DISP_CURSOR_START_ADDR); |
| |
| #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT |
| value = (tegra_plane_state->iova[0] >> 32) & (dma_mask >> 32); |
| tegra_dc_writel(dc, value, DC_DISP_CURSOR_START_ADDR_HI); |
| #endif |
| |
| /* enable cursor and set blend mode */ |
| value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS); |
| value |= CURSOR_ENABLE; |
| tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS); |
| |
| value = tegra_dc_readl(dc, DC_DISP_BLEND_CURSOR_CONTROL); |
| value &= ~CURSOR_DST_BLEND_MASK; |
| value &= ~CURSOR_SRC_BLEND_MASK; |
| |
| if (dc->soc->has_nvdisplay) |
| value &= ~CURSOR_COMPOSITION_MODE_XOR; |
| else |
| value |= CURSOR_MODE_NORMAL; |
| |
| value |= CURSOR_DST_BLEND_NEG_K1_TIMES_SRC; |
| value |= CURSOR_SRC_BLEND_K1_TIMES_SRC; |
| value |= CURSOR_ALPHA; |
| tegra_dc_writel(dc, value, DC_DISP_BLEND_CURSOR_CONTROL); |
| |
| /* nvdisplay relies on software for clipping */ |
| if (dc->soc->has_nvdisplay) { |
| struct drm_rect src; |
| |
| x = new_state->dst.x1; |
| y = new_state->dst.y1; |
| |
| drm_rect_fp_to_int(&src, &new_state->src); |
| |
| value = (src.y1 & tegra->vmask) << 16 | (src.x1 & tegra->hmask); |
| tegra_dc_writel(dc, value, DC_DISP_PCALC_HEAD_SET_CROPPED_POINT_IN_CURSOR); |
| |
| value = (drm_rect_height(&src) & tegra->vmask) << 16 | |
| (drm_rect_width(&src) & tegra->hmask); |
| tegra_dc_writel(dc, value, DC_DISP_PCALC_HEAD_SET_CROPPED_SIZE_IN_CURSOR); |
| } else { |
| x = new_state->crtc_x; |
| y = new_state->crtc_y; |
| } |
| |
| /* position the cursor */ |
| value = ((y & tegra->vmask) << 16) | (x & tegra->hmask); |
| tegra_dc_writel(dc, value, DC_DISP_CURSOR_POSITION); |
| } |
| |
| static void tegra_cursor_atomic_update(struct drm_plane *plane, |
| struct drm_atomic_state *state) |
| { |
| struct drm_plane_state *new_state = drm_atomic_get_new_plane_state(state, plane); |
| |
| __tegra_cursor_atomic_update(plane, new_state); |
| } |
| |
| static void tegra_cursor_atomic_disable(struct drm_plane *plane, |
| struct drm_atomic_state *state) |
| { |
| struct drm_plane_state *old_state = drm_atomic_get_old_plane_state(state, |
| plane); |
| struct tegra_dc *dc; |
| u32 value; |
| |
| /* rien ne va plus */ |
| if (!old_state || !old_state->crtc) |
| return; |
| |
| dc = to_tegra_dc(old_state->crtc); |
| |
| value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS); |
| value &= ~CURSOR_ENABLE; |
| tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS); |
| } |
| |
| static int tegra_cursor_atomic_async_check(struct drm_plane *plane, struct drm_atomic_state *state) |
| { |
| struct drm_plane_state *new_state = drm_atomic_get_new_plane_state(state, plane); |
| struct drm_crtc_state *crtc_state; |
| int min_scale, max_scale; |
| int err; |
| |
| crtc_state = drm_atomic_get_existing_crtc_state(state, new_state->crtc); |
| if (WARN_ON(!crtc_state)) |
| return -EINVAL; |
| |
| if (!crtc_state->active) |
| return -EINVAL; |
| |
| if (plane->state->crtc != new_state->crtc || |
| plane->state->src_w != new_state->src_w || |
| plane->state->src_h != new_state->src_h || |
| plane->state->crtc_w != new_state->crtc_w || |
| plane->state->crtc_h != new_state->crtc_h || |
| plane->state->fb != new_state->fb || |
| plane->state->fb == NULL) |
| return -EINVAL; |
| |
| min_scale = (1 << 16) / 8; |
| max_scale = (8 << 16) / 1; |
| |
| err = drm_atomic_helper_check_plane_state(new_state, crtc_state, min_scale, max_scale, |
| true, true); |
| if (err < 0) |
| return err; |
| |
| if (new_state->visible != plane->state->visible) |
| return -EINVAL; |
| |
| return 0; |
| } |
| |
| static void tegra_cursor_atomic_async_update(struct drm_plane *plane, |
| struct drm_atomic_state *state) |
| { |
| struct drm_plane_state *new_state = drm_atomic_get_new_plane_state(state, plane); |
| struct tegra_dc *dc = to_tegra_dc(new_state->crtc); |
| |
| plane->state->src_x = new_state->src_x; |
| plane->state->src_y = new_state->src_y; |
| plane->state->crtc_x = new_state->crtc_x; |
| plane->state->crtc_y = new_state->crtc_y; |
| |
| if (new_state->visible) { |
| struct tegra_plane *p = to_tegra_plane(plane); |
| u32 value; |
| |
| __tegra_cursor_atomic_update(plane, new_state); |
| |
| value = (WIN_A_ACT_REQ << p->index) << 8 | GENERAL_UPDATE; |
| tegra_dc_writel(dc, value, DC_CMD_STATE_CONTROL); |
| (void)tegra_dc_readl(dc, DC_CMD_STATE_CONTROL); |
| |
| value = (WIN_A_ACT_REQ << p->index) | GENERAL_ACT_REQ; |
| tegra_dc_writel(dc, value, DC_CMD_STATE_CONTROL); |
| (void)tegra_dc_readl(dc, DC_CMD_STATE_CONTROL); |
| } |
| } |
| |
| static const struct drm_plane_helper_funcs tegra_cursor_plane_helper_funcs = { |
| .prepare_fb = tegra_plane_prepare_fb, |
| .cleanup_fb = tegra_plane_cleanup_fb, |
| .atomic_check = tegra_cursor_atomic_check, |
| .atomic_update = tegra_cursor_atomic_update, |
| .atomic_disable = tegra_cursor_atomic_disable, |
| .atomic_async_check = tegra_cursor_atomic_async_check, |
| .atomic_async_update = tegra_cursor_atomic_async_update, |
| }; |
| |
| static const uint64_t linear_modifiers[] = { |
| DRM_FORMAT_MOD_LINEAR, |
| DRM_FORMAT_MOD_INVALID |
| }; |
| |
| static struct drm_plane *tegra_dc_cursor_plane_create(struct drm_device *drm, |
| struct tegra_dc *dc) |
| { |
| unsigned long possible_crtcs = tegra_plane_get_possible_crtcs(drm); |
| struct tegra_plane *plane; |
| unsigned int num_formats; |
| const u32 *formats; |
| int err; |
| |
| plane = kzalloc(sizeof(*plane), GFP_KERNEL); |
| if (!plane) |
| return ERR_PTR(-ENOMEM); |
| |
| /* |
| * This index is kind of fake. The cursor isn't a regular plane, but |
| * its update and activation request bits in DC_CMD_STATE_CONTROL do |
| * use the same programming. Setting this fake index here allows the |
| * code in tegra_add_plane_state() to do the right thing without the |
| * need to special-casing the cursor plane. |
| */ |
| plane->index = 6; |
| plane->dc = dc; |
| |
| if (!dc->soc->has_nvdisplay) { |
| num_formats = ARRAY_SIZE(tegra_legacy_cursor_plane_formats); |
| formats = tegra_legacy_cursor_plane_formats; |
| |
| err = tegra_plane_interconnect_init(plane); |
| if (err) { |
| kfree(plane); |
| return ERR_PTR(err); |
| } |
| } else { |
| num_formats = ARRAY_SIZE(tegra_cursor_plane_formats); |
| formats = tegra_cursor_plane_formats; |
| } |
| |
| err = drm_universal_plane_init(drm, &plane->base, possible_crtcs, |
| &tegra_plane_funcs, formats, |
| num_formats, linear_modifiers, |
| DRM_PLANE_TYPE_CURSOR, NULL); |
| if (err < 0) { |
| kfree(plane); |
| return ERR_PTR(err); |
| } |
| |
| drm_plane_helper_add(&plane->base, &tegra_cursor_plane_helper_funcs); |
| drm_plane_create_zpos_immutable_property(&plane->base, 255); |
| |
| return &plane->base; |
| } |
| |
| static const u32 tegra20_overlay_formats[] = { |
| DRM_FORMAT_ARGB4444, |
| DRM_FORMAT_ARGB1555, |
| DRM_FORMAT_RGB565, |
| DRM_FORMAT_RGBA5551, |
| DRM_FORMAT_ABGR8888, |
| DRM_FORMAT_ARGB8888, |
| /* non-native formats */ |
| DRM_FORMAT_XRGB1555, |
| DRM_FORMAT_RGBX5551, |
| DRM_FORMAT_XBGR8888, |
| DRM_FORMAT_XRGB8888, |
| /* planar formats */ |
| DRM_FORMAT_UYVY, |
| DRM_FORMAT_YUYV, |
| DRM_FORMAT_YUV420, |
| DRM_FORMAT_YUV422, |
| }; |
| |
| static const u32 tegra114_overlay_formats[] = { |
| DRM_FORMAT_ARGB4444, |
| DRM_FORMAT_ARGB1555, |
| DRM_FORMAT_RGB565, |
| DRM_FORMAT_RGBA5551, |
| DRM_FORMAT_ABGR8888, |
| DRM_FORMAT_ARGB8888, |
| /* new on Tegra114 */ |
| DRM_FORMAT_ABGR4444, |
| DRM_FORMAT_ABGR1555, |
| DRM_FORMAT_BGRA5551, |
| DRM_FORMAT_XRGB1555, |
| DRM_FORMAT_RGBX5551, |
| DRM_FORMAT_XBGR1555, |
| DRM_FORMAT_BGRX5551, |
| DRM_FORMAT_BGR565, |
| DRM_FORMAT_BGRA8888, |
| DRM_FORMAT_RGBA8888, |
| DRM_FORMAT_XRGB8888, |
| DRM_FORMAT_XBGR8888, |
| /* planar formats */ |
| DRM_FORMAT_UYVY, |
| DRM_FORMAT_YUYV, |
| DRM_FORMAT_YUV420, |
| DRM_FORMAT_YUV422, |
| }; |
| |
| static const u32 tegra124_overlay_formats[] = { |
| DRM_FORMAT_ARGB4444, |
| DRM_FORMAT_ARGB1555, |
| DRM_FORMAT_RGB565, |
| DRM_FORMAT_RGBA5551, |
| DRM_FORMAT_ABGR8888, |
| DRM_FORMAT_ARGB8888, |
| /* new on Tegra114 */ |
| DRM_FORMAT_ABGR4444, |
| DRM_FORMAT_ABGR1555, |
| DRM_FORMAT_BGRA5551, |
| DRM_FORMAT_XRGB1555, |
| DRM_FORMAT_RGBX5551, |
| DRM_FORMAT_XBGR1555, |
| DRM_FORMAT_BGRX5551, |
| DRM_FORMAT_BGR565, |
| DRM_FORMAT_BGRA8888, |
| DRM_FORMAT_RGBA8888, |
| DRM_FORMAT_XRGB8888, |
| DRM_FORMAT_XBGR8888, |
| /* new on Tegra124 */ |
| DRM_FORMAT_RGBX8888, |
| DRM_FORMAT_BGRX8888, |
| /* planar formats */ |
| DRM_FORMAT_UYVY, |
| DRM_FORMAT_YUYV, |
| DRM_FORMAT_YUV420, |
| DRM_FORMAT_YUV422, |
| }; |
| |
| static struct drm_plane *tegra_dc_overlay_plane_create(struct drm_device *drm, |
| struct tegra_dc *dc, |
| unsigned int index, |
| bool cursor) |
| { |
| unsigned long possible_crtcs = tegra_plane_get_possible_crtcs(drm); |
| struct tegra_plane *plane; |
| unsigned int num_formats; |
| enum drm_plane_type type; |
| const u32 *formats; |
| int err; |
| |
| plane = kzalloc(sizeof(*plane), GFP_KERNEL); |
| if (!plane) |
| return ERR_PTR(-ENOMEM); |
| |
| plane->offset = 0xa00 + 0x200 * index; |
| plane->index = index; |
| plane->dc = dc; |
| |
| num_formats = dc->soc->num_overlay_formats; |
| formats = dc->soc->overlay_formats; |
| |
| err = tegra_plane_interconnect_init(plane); |
| if (err) { |
| kfree(plane); |
| return ERR_PTR(err); |
| } |
| |
| if (!cursor) |
| type = DRM_PLANE_TYPE_OVERLAY; |
| else |
| type = DRM_PLANE_TYPE_CURSOR; |
| |
| err = drm_universal_plane_init(drm, &plane->base, possible_crtcs, |
| &tegra_plane_funcs, formats, |
| num_formats, linear_modifiers, |
| type, NULL); |
| if (err < 0) { |
| kfree(plane); |
| return ERR_PTR(err); |
| } |
| |
| drm_plane_helper_add(&plane->base, &tegra_plane_helper_funcs); |
| drm_plane_create_zpos_property(&plane->base, plane->index, 0, 255); |
| |
| err = drm_plane_create_rotation_property(&plane->base, |
| DRM_MODE_ROTATE_0, |
| DRM_MODE_ROTATE_0 | |
| DRM_MODE_ROTATE_180 | |
| DRM_MODE_REFLECT_X | |
| DRM_MODE_REFLECT_Y); |
| if (err < 0) |
| dev_err(dc->dev, "failed to create rotation property: %d\n", |
| err); |
| |
| return &plane->base; |
| } |
| |
| static struct drm_plane *tegra_dc_add_shared_planes(struct drm_device *drm, |
| struct tegra_dc *dc) |
| { |
| struct drm_plane *plane, *primary = NULL; |
| unsigned int i, j; |
| |
| for (i = 0; i < dc->soc->num_wgrps; i++) { |
| const struct tegra_windowgroup_soc *wgrp = &dc->soc->wgrps[i]; |
| |
| if (wgrp->dc == dc->pipe) { |
| for (j = 0; j < wgrp->num_windows; j++) { |
| unsigned int index = wgrp->windows[j]; |
| |
| plane = tegra_shared_plane_create(drm, dc, |
| wgrp->index, |
| index); |
| if (IS_ERR(plane)) |
| return plane; |
| |
| /* |
| * Choose the first shared plane owned by this |
| * head as the primary plane. |
| */ |
| if (!primary) { |
| plane->type = DRM_PLANE_TYPE_PRIMARY; |
| primary = plane; |
| } |
| } |
| } |
| } |
| |
| return primary; |
| } |
| |
| static struct drm_plane *tegra_dc_add_planes(struct drm_device *drm, |
| struct tegra_dc *dc) |
| { |
| struct drm_plane *planes[2], *primary; |
| unsigned int planes_num; |
| unsigned int i; |
| int err; |
| |
| primary = tegra_primary_plane_create(drm, dc); |
| if (IS_ERR(primary)) |
| return primary; |
| |
| if (dc->soc->supports_cursor) |
| planes_num = 2; |
| else |
| planes_num = 1; |
| |
| for (i = 0; i < planes_num; i++) { |
| planes[i] = tegra_dc_overlay_plane_create(drm, dc, 1 + i, |
| false); |
| if (IS_ERR(planes[i])) { |
| err = PTR_ERR(planes[i]); |
| |
| while (i--) |
| planes[i]->funcs->destroy(planes[i]); |
| |
| primary->funcs->destroy(primary); |
| return ERR_PTR(err); |
| } |
| } |
| |
| return primary; |
| } |
| |
| static void tegra_dc_destroy(struct drm_crtc *crtc) |
| { |
| drm_crtc_cleanup(crtc); |
| } |
| |
| static void tegra_crtc_reset(struct drm_crtc *crtc) |
| { |
| struct tegra_dc_state *state = kzalloc(sizeof(*state), GFP_KERNEL); |
| |
| if (crtc->state) |
| tegra_crtc_atomic_destroy_state(crtc, crtc->state); |
| |
| __drm_atomic_helper_crtc_reset(crtc, &state->base); |
| } |
| |
| static struct drm_crtc_state * |
| tegra_crtc_atomic_duplicate_state(struct drm_crtc *crtc) |
| { |
| struct tegra_dc_state *state = to_dc_state(crtc->state); |
| struct tegra_dc_state *copy; |
| |
| copy = kmalloc(sizeof(*copy), GFP_KERNEL); |
| if (!copy) |
| return NULL; |
| |
| __drm_atomic_helper_crtc_duplicate_state(crtc, ©->base); |
| copy->clk = state->clk; |
| copy->pclk = state->pclk; |
| copy->div = state->div; |
| copy->planes = state->planes; |
| |
| return ©->base; |
| } |
| |
| static void tegra_crtc_atomic_destroy_state(struct drm_crtc *crtc, |
| struct drm_crtc_state *state) |
| { |
| __drm_atomic_helper_crtc_destroy_state(state); |
| kfree(state); |
| } |
| |
| #define DEBUGFS_REG32(_name) { .name = #_name, .offset = _name } |
| |
| static const struct debugfs_reg32 tegra_dc_regs[] = { |
| DEBUGFS_REG32(DC_CMD_GENERAL_INCR_SYNCPT), |
| DEBUGFS_REG32(DC_CMD_GENERAL_INCR_SYNCPT_CNTRL), |
| DEBUGFS_REG32(DC_CMD_GENERAL_INCR_SYNCPT_ERROR), |
| DEBUGFS_REG32(DC_CMD_WIN_A_INCR_SYNCPT), |
| DEBUGFS_REG32(DC_CMD_WIN_A_INCR_SYNCPT_CNTRL), |
| DEBUGFS_REG32(DC_CMD_WIN_A_INCR_SYNCPT_ERROR), |
| DEBUGFS_REG32(DC_CMD_WIN_B_INCR_SYNCPT), |
| DEBUGFS_REG32(DC_CMD_WIN_B_INCR_SYNCPT_CNTRL), |
| DEBUGFS_REG32(DC_CMD_WIN_B_INCR_SYNCPT_ERROR), |
| DEBUGFS_REG32(DC_CMD_WIN_C_INCR_SYNCPT), |
| DEBUGFS_REG32(DC_CMD_WIN_C_INCR_SYNCPT_CNTRL), |
| DEBUGFS_REG32(DC_CMD_WIN_C_INCR_SYNCPT_ERROR), |
| DEBUGFS_REG32(DC_CMD_CONT_SYNCPT_VSYNC), |
| DEBUGFS_REG32(DC_CMD_DISPLAY_COMMAND_OPTION0), |
| DEBUGFS_REG32(DC_CMD_DISPLAY_COMMAND), |
| DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE), |
| DEBUGFS_REG32(DC_CMD_DISPLAY_POWER_CONTROL), |
| DEBUGFS_REG32(DC_CMD_INT_STATUS), |
| DEBUGFS_REG32(DC_CMD_INT_MASK), |
| DEBUGFS_REG32(DC_CMD_INT_ENABLE), |
| DEBUGFS_REG32(DC_CMD_INT_TYPE), |
| DEBUGFS_REG32(DC_CMD_INT_POLARITY), |
| DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE1), |
| DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE2), |
| DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE3), |
| DEBUGFS_REG32(DC_CMD_STATE_ACCESS), |
| DEBUGFS_REG32(DC_CMD_STATE_CONTROL), |
| DEBUGFS_REG32(DC_CMD_DISPLAY_WINDOW_HEADER), |
| DEBUGFS_REG32(DC_CMD_REG_ACT_CONTROL), |
| DEBUGFS_REG32(DC_COM_CRC_CONTROL), |
| DEBUGFS_REG32(DC_COM_CRC_CHECKSUM), |
| DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(0)), |
| DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(1)), |
| DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(2)), |
| DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(3)), |
| DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(0)), |
| DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(1)), |
| DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(2)), |
| DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(3)), |
| DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(0)), |
| DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(1)), |
| DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(2)), |
| DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(3)), |
| DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(0)), |
| DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(1)), |
| DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(2)), |
| DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(3)), |
| DEBUGFS_REG32(DC_COM_PIN_INPUT_DATA(0)), |
| DEBUGFS_REG32(DC_COM_PIN_INPUT_DATA(1)), |
| DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(0)), |
| DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(1)), |
| DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(2)), |
| DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(3)), |
| DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(4)), |
| DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(5)), |
| DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(6)), |
| DEBUGFS_REG32(DC_COM_PIN_MISC_CONTROL), |
| DEBUGFS_REG32(DC_COM_PIN_PM0_CONTROL), |
| DEBUGFS_REG32(DC_COM_PIN_PM0_DUTY_CYCLE), |
| DEBUGFS_REG32(DC_COM_PIN_PM1_CONTROL), |
| DEBUGFS_REG32(DC_COM_PIN_PM1_DUTY_CYCLE), |
| DEBUGFS_REG32(DC_COM_SPI_CONTROL), |
| DEBUGFS_REG32(DC_COM_SPI_START_BYTE), |
| DEBUGFS_REG32(DC_COM_HSPI_WRITE_DATA_AB), |
| DEBUGFS_REG32(DC_COM_HSPI_WRITE_DATA_CD), |
| DEBUGFS_REG32(DC_COM_HSPI_CS_DC), |
| DEBUGFS_REG32(DC_COM_SCRATCH_REGISTER_A), |
| DEBUGFS_REG32(DC_COM_SCRATCH_REGISTER_B), |
| DEBUGFS_REG32(DC_COM_GPIO_CTRL), |
| DEBUGFS_REG32(DC_COM_GPIO_DEBOUNCE_COUNTER), |
| DEBUGFS_REG32(DC_COM_CRC_CHECKSUM_LATCHED), |
| DEBUGFS_REG32(DC_DISP_DISP_SIGNAL_OPTIONS0), |
| DEBUGFS_REG32(DC_DISP_DISP_SIGNAL_OPTIONS1), |
| DEBUGFS_REG32(DC_DISP_DISP_WIN_OPTIONS), |
| DEBUGFS_REG32(DC_DISP_DISP_MEM_HIGH_PRIORITY), |
| DEBUGFS_REG32(DC_DISP_DISP_MEM_HIGH_PRIORITY_TIMER), |
| DEBUGFS_REG32(DC_DISP_DISP_TIMING_OPTIONS), |
| DEBUGFS_REG32(DC_DISP_REF_TO_SYNC), |
| DEBUGFS_REG32(DC_DISP_SYNC_WIDTH), |
| DEBUGFS_REG32(DC_DISP_BACK_PORCH), |
| DEBUGFS_REG32(DC_DISP_ACTIVE), |
| DEBUGFS_REG32(DC_DISP_FRONT_PORCH), |
| DEBUGFS_REG32(DC_DISP_H_PULSE0_CONTROL), |
| DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_A), |
| DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_B), |
| DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_C), |
| DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_D), |
| DEBUGFS_REG32(DC_DISP_H_PULSE1_CONTROL), |
| DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_A), |
| DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_B), |
| DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_C), |
| DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_D), |
| DEBUGFS_REG32(DC_DISP_H_PULSE2_CONTROL), |
| DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_A), |
| DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_B), |
| DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_C), |
| DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_D), |
| DEBUGFS_REG32(DC_DISP_V_PULSE0_CONTROL), |
| DEBUGFS_REG32(DC_DISP_V_PULSE0_POSITION_A), |
| DEBUGFS_REG32(DC_DISP_V_PULSE0_POSITION_B), |
| DEBUGFS_REG32(DC_DISP_V_PULSE0_POSITION_C), |
| DEBUGFS_REG32(DC_DISP_V_PULSE1_CONTROL), |
| DEBUGFS_REG32(DC_DISP_V_PULSE1_POSITION_A), |
| DEBUGFS_REG32(DC_DISP_V_PULSE1_POSITION_B), |
| DEBUGFS_REG32(DC_DISP_V_PULSE1_POSITION_C), |
| DEBUGFS_REG32(DC_DISP_V_PULSE2_CONTROL), |
| DEBUGFS_REG32(DC_DISP_V_PULSE2_POSITION_A), |
| DEBUGFS_REG32(DC_DISP_V_PULSE3_CONTROL), |
| DEBUGFS_REG32(DC_DISP_V_PULSE3_POSITION_A), |
| DEBUGFS_REG32(DC_DISP_M0_CONTROL), |
| DEBUGFS_REG32(DC_DISP_M1_CONTROL), |
| DEBUGFS_REG32(DC_DISP_DI_CONTROL), |
| DEBUGFS_REG32(DC_DISP_PP_CONTROL), |
| DEBUGFS_REG32(DC_DISP_PP_SELECT_A), |
| DEBUGFS_REG32(DC_DISP_PP_SELECT_B), |
| DEBUGFS_REG32(DC_DISP_PP_SELECT_C), |
| DEBUGFS_REG32(DC_DISP_PP_SELECT_D), |
| DEBUGFS_REG32(DC_DISP_DISP_CLOCK_CONTROL), |
| DEBUGFS_REG32(DC_DISP_DISP_INTERFACE_CONTROL), |
| DEBUGFS_REG32(DC_DISP_DISP_COLOR_CONTROL), |
| DEBUGFS_REG32(DC_DISP_SHIFT_CLOCK_OPTIONS), |
| DEBUGFS_REG32(DC_DISP_DATA_ENABLE_OPTIONS), |
| DEBUGFS_REG32(DC_DISP_SERIAL_INTERFACE_OPTIONS), |
| DEBUGFS_REG32(DC_DISP_LCD_SPI_OPTIONS), |
| DEBUGFS_REG32(DC_DISP_BORDER_COLOR), |
| DEBUGFS_REG32(DC_DISP_COLOR_KEY0_LOWER), |
| DEBUGFS_REG32(DC_DISP_COLOR_KEY0_UPPER), |
| DEBUGFS_REG32(DC_DISP_COLOR_KEY1_LOWER), |
| DEBUGFS_REG32(DC_DISP_COLOR_KEY1_UPPER), |
| DEBUGFS_REG32(DC_DISP_CURSOR_FOREGROUND), |
| DEBUGFS_REG32(DC_DISP_CURSOR_BACKGROUND), |
| DEBUGFS_REG32(DC_DISP_CURSOR_START_ADDR), |
| DEBUGFS_REG32(DC_DISP_CURSOR_START_ADDR_NS), |
| DEBUGFS_REG32(DC_DISP_CURSOR_POSITION), |
| DEBUGFS_REG32(DC_DISP_CURSOR_POSITION_NS), |
| DEBUGFS_REG32(DC_DISP_INIT_SEQ_CONTROL), |
| DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_A), |
| DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_B), |
| DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_C), |
| DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_D), |
| DEBUGFS_REG32(DC_DISP_DC_MCCIF_FIFOCTRL), |
| DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY0A_HYST), |
| DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY0B_HYST), |
| DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY1A_HYST), |
| DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY1B_HYST), |
| DEBUGFS_REG32(DC_DISP_DAC_CRT_CTRL), |
| DEBUGFS_REG32(DC_DISP_DISP_MISC_CONTROL), |
| DEBUGFS_REG32(DC_DISP_SD_CONTROL), |
| DEBUGFS_REG32(DC_DISP_SD_CSC_COEFF), |
| DEBUGFS_REG32(DC_DISP_SD_LUT(0)), |
| DEBUGFS_REG32(DC_DISP_SD_LUT(1)), |
| DEBUGFS_REG32(DC_DISP_SD_LUT(2)), |
| DEBUGFS_REG32(DC_DISP_SD_LUT(3)), |
| DEBUGFS_REG32(DC_DISP_SD_LUT(4)), |
| DEBUGFS_REG32(DC_DISP_SD_LUT(5)), |
| DEBUGFS_REG32(DC_DISP_SD_LUT(6)), |
| DEBUGFS_REG32(DC_DISP_SD_LUT(7)), |
| DEBUGFS_REG32(DC_DISP_SD_LUT(8)), |
| DEBUGFS_REG32(DC_DISP_SD_FLICKER_CONTROL), |
| DEBUGFS_REG32(DC_DISP_DC_PIXEL_COUNT), |
| DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(0)), |
| DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(1)), |
| DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(2)), |
| DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(3)), |
| DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(4)), |
| DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(5)), |
| DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(6)), |
| DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(7)), |
| DEBUGFS_REG32(DC_DISP_SD_BL_TF(0)), |
| DEBUGFS_REG32(DC_DISP_SD_BL_TF(1)), |
| DEBUGFS_REG32(DC_DISP_SD_BL_TF(2)), |
| DEBUGFS_REG32(DC_DISP_SD_BL_TF(3)), |
| DEBUGFS_REG32(DC_DISP_SD_BL_CONTROL), |
| DEBUGFS_REG32(DC_DISP_SD_HW_K_VALUES), |
| DEBUGFS_REG32(DC_DISP_SD_MAN_K_VALUES), |
| DEBUGFS_REG32(DC_DISP_CURSOR_START_ADDR_HI), |
| DEBUGFS_REG32(DC_DISP_BLEND_CURSOR_CONTROL), |
| DEBUGFS_REG32(DC_WIN_WIN_OPTIONS), |
| DEBUGFS_REG32(DC_WIN_BYTE_SWAP), |
| DEBUGFS_REG32(DC_WIN_BUFFER_CONTROL), |
| DEBUGFS_REG32(DC_WIN_COLOR_DEPTH), |
| DEBUGFS_REG32(DC_WIN_POSITION), |
| DEBUGFS_REG32(DC_WIN_SIZE), |
| DEBUGFS_REG32(DC_WIN_PRESCALED_SIZE), |
| DEBUGFS_REG32(DC_WIN_H_INITIAL_DDA), |
| DEBUGFS_REG32(DC_WIN_V_INITIAL_DDA), |
| DEBUGFS_REG32(DC_WIN_DDA_INC), |
| DEBUGFS_REG32(DC_WIN_LINE_STRIDE), |
| DEBUGFS_REG32(DC_WIN_BUF_STRIDE), |
| DEBUGFS_REG32(DC_WIN_UV_BUF_STRIDE), |
| DEBUGFS_REG32(DC_WIN_BUFFER_ADDR_MODE), |
| DEBUGFS_REG32(DC_WIN_DV_CONTROL), |
| DEBUGFS_REG32(DC_WIN_BLEND_NOKEY), |
| DEBUGFS_REG32(DC_WIN_BLEND_1WIN), |
| DEBUGFS_REG32(DC_WIN_BLEND_2WIN_X), |
| DEBUGFS_REG32(DC_WIN_BLEND_2WIN_Y), |
| DEBUGFS_REG32(DC_WIN_BLEND_3WIN_XY), |
| DEBUGFS_REG32(DC_WIN_HP_FETCH_CONTROL), |
| DEBUGFS_REG32(DC_WINBUF_START_ADDR), |
| DEBUGFS_REG32(DC_WINBUF_START_ADDR_NS), |
| DEBUGFS_REG32(DC_WINBUF_START_ADDR_U), |
| DEBUGFS_REG32(DC_WINBUF_START_ADDR_U_NS), |
| DEBUGFS_REG32(DC_WINBUF_START_ADDR_V), |
| DEBUGFS_REG32(DC_WINBUF_START_ADDR_V_NS), |
| DEBUGFS_REG32(DC_WINBUF_ADDR_H_OFFSET), |
| DEBUGFS_REG32(DC_WINBUF_ADDR_H_OFFSET_NS), |
| DEBUGFS_REG32(DC_WINBUF_ADDR_V_OFFSET), |
| DEBUGFS_REG32(DC_WINBUF_ADDR_V_OFFSET_NS), |
| DEBUGFS_REG32(DC_WINBUF_UFLOW_STATUS), |
| DEBUGFS_REG32(DC_WINBUF_AD_UFLOW_STATUS), |
| DEBUGFS_REG32(DC_WINBUF_BD_UFLOW_STATUS), |
| DEBUGFS_REG32(DC_WINBUF_CD_UFLOW_STATUS), |
| }; |
| |
| static int tegra_dc_show_regs(struct seq_file *s, void *data) |
| { |
| struct drm_info_node *node = s->private; |
| struct tegra_dc *dc = node->info_ent->data; |
| unsigned int i; |
| int err = 0; |
| |
| drm_modeset_lock(&dc->base.mutex, NULL); |
| |
| if (!dc->base.state->active) { |
| err = -EBUSY; |
| goto unlock; |
| } |
| |
| for (i = 0; i < ARRAY_SIZE(tegra_dc_regs); i++) { |
| unsigned int offset = tegra_dc_regs[i].offset; |
| |
| seq_printf(s, "%-40s %#05x %08x\n", tegra_dc_regs[i].name, |
| offset, tegra_dc_readl(dc, offset)); |
| } |
| |
| unlock: |
| drm_modeset_unlock(&dc->base.mutex); |
| return err; |
| } |
| |
| static int tegra_dc_show_crc(struct seq_file *s, void *data) |
| { |
| struct drm_info_node *node = s->private; |
| struct tegra_dc *dc = node->info_ent->data; |
| int err = 0; |
| u32 value; |
| |
| drm_modeset_lock(&dc->base.mutex, NULL); |
| |
| if (!dc->base.state->active) { |
| err = -EBUSY; |
| goto unlock; |
| } |
| |
| value = DC_COM_CRC_CONTROL_ACTIVE_DATA | DC_COM_CRC_CONTROL_ENABLE; |
| tegra_dc_writel(dc, value, DC_COM_CRC_CONTROL); |
| tegra_dc_commit(dc); |
| |
| drm_crtc_wait_one_vblank(&dc->base); |
| drm_crtc_wait_one_vblank(&dc->base); |
| |
| value = tegra_dc_readl(dc, DC_COM_CRC_CHECKSUM); |
| seq_printf(s, "%08x\n", value); |
| |
| tegra_dc_writel(dc, 0, DC_COM_CRC_CONTROL); |
| |
| unlock: |
| drm_modeset_unlock(&dc->base.mutex); |
| return err; |
| } |
| |
| static int tegra_dc_show_stats(struct seq_file *s, void *data) |
| { |
| struct drm_info_node *node = s->private; |
| struct tegra_dc *dc = node->info_ent->data; |
| |
| seq_printf(s, "frames: %lu\n", dc->stats.frames); |
| seq_printf(s, "vblank: %lu\n", dc->stats.vblank); |
| seq_printf(s, "underflow: %lu\n", dc->stats.underflow); |
| seq_printf(s, "overflow: %lu\n", dc->stats.overflow); |
| |
| seq_printf(s, "frames total: %lu\n", dc->stats.frames_total); |
| seq_printf(s, "vblank total: %lu\n", dc->stats.vblank_total); |
| seq_printf(s, "underflow total: %lu\n", dc->stats.underflow_total); |
| seq_printf(s, "overflow total: %lu\n", dc->stats.overflow_total); |
| |
| return 0; |
| } |
| |
| static struct drm_info_list debugfs_files[] = { |
| { "regs", tegra_dc_show_regs, 0, NULL }, |
| { "crc", tegra_dc_show_crc, 0, NULL }, |
| { "stats", tegra_dc_show_stats, 0, NULL }, |
| }; |
| |
| static int tegra_dc_late_register(struct drm_crtc *crtc) |
| { |
| unsigned int i, count = ARRAY_SIZE(debugfs_files); |
| struct drm_minor *minor = crtc->dev->primary; |
| struct dentry *root; |
| struct tegra_dc *dc = to_tegra_dc(crtc); |
| |
| #ifdef CONFIG_DEBUG_FS |
| root = crtc->debugfs_entry; |
| #else |
| root = NULL; |
| #endif |
| |
| dc->debugfs_files = kmemdup(debugfs_files, sizeof(debugfs_files), |
| GFP_KERNEL); |
| if (!dc->debugfs_files) |
| return -ENOMEM; |
| |
| for (i = 0; i < count; i++) |
| dc->debugfs_files[i].data = dc; |
| |
| drm_debugfs_create_files(dc->debugfs_files, count, root, minor); |
| |
| return 0; |
| } |
| |
| static void tegra_dc_early_unregister(struct drm_crtc *crtc) |
| { |
| unsigned int count = ARRAY_SIZE(debugfs_files); |
| struct drm_minor *minor = crtc->dev->primary; |
| struct tegra_dc *dc = to_tegra_dc(crtc); |
| |
| drm_debugfs_remove_files(dc->debugfs_files, count, minor); |
| kfree(dc->debugfs_files); |
| dc->debugfs_files = NULL; |
| } |
| |
| static u32 tegra_dc_get_vblank_counter(struct drm_crtc *crtc) |
| { |
| struct tegra_dc *dc = to_tegra_dc(crtc); |
| |
| /* XXX vblank syncpoints don't work with nvdisplay yet */ |
| if (dc->syncpt && !dc->soc->has_nvdisplay) |
| return host1x_syncpt_read(dc->syncpt); |
| |
| /* fallback to software emulated VBLANK counter */ |
| return (u32)drm_crtc_vblank_count(&dc->base); |
| } |
| |
| static int tegra_dc_enable_vblank(struct drm_crtc *crtc) |
| { |
| struct tegra_dc *dc = to_tegra_dc(crtc); |
| u32 value; |
| |
| value = tegra_dc_readl(dc, DC_CMD_INT_MASK); |
| value |= VBLANK_INT; |
| tegra_dc_writel(dc, value, DC_CMD_INT_MASK); |
| |
| return 0; |
| } |
| |
| static void tegra_dc_disable_vblank(struct drm_crtc *crtc) |
| { |
| struct tegra_dc *dc = to_tegra_dc(crtc); |
| u32 value; |
| |
| value = tegra_dc_readl(dc, DC_CMD_INT_MASK); |
| value &= ~VBLANK_INT; |
| tegra_dc_writel(dc, value, DC_CMD_INT_MASK); |
| } |
| |
| static const struct drm_crtc_funcs tegra_crtc_funcs = { |
| .page_flip = drm_atomic_helper_page_flip, |
| .set_config = drm_atomic_helper_set_config, |
| .destroy = tegra_dc_destroy, |
| .reset = tegra_crtc_reset, |
| .atomic_duplicate_state = tegra_crtc_atomic_duplicate_state, |
| .atomic_destroy_state = tegra_crtc_atomic_destroy_state, |
| .late_register = tegra_dc_late_register, |
| .early_unregister = tegra_dc_early_unregister, |
| .get_vblank_counter = tegra_dc_get_vblank_counter, |
| .enable_vblank = tegra_dc_enable_vblank, |
| .disable_vblank = tegra_dc_disable_vblank, |
| }; |
| |
| static int tegra_dc_set_timings(struct tegra_dc *dc, |
| struct drm_display_mode *mode) |
| { |
| unsigned int h_ref_to_sync = 1; |
| unsigned int v_ref_to_sync = 1; |
| unsigned long value; |
| |
| if (!dc->soc->has_nvdisplay) { |
| tegra_dc_writel(dc, 0x0, DC_DISP_DISP_TIMING_OPTIONS); |
| |
| value = (v_ref_to_sync << 16) | h_ref_to_sync; |
| tegra_dc_writel(dc, value, DC_DISP_REF_TO_SYNC); |
| } |
| |
| value = ((mode->vsync_end - mode->vsync_start) << 16) | |
| ((mode->hsync_end - mode->hsync_start) << 0); |
| tegra_dc_writel(dc, value, DC_DISP_SYNC_WIDTH); |
| |
| value = ((mode->vtotal - mode->vsync_end) << 16) | |
| ((mode->htotal - mode->hsync_end) << 0); |
| tegra_dc_writel(dc, value, DC_DISP_BACK_PORCH); |
| |
| value = ((mode->vsync_start - mode->vdisplay) << 16) | |
| ((mode->hsync_start - mode->hdisplay) << 0); |
| tegra_dc_writel(dc, value, DC_DISP_FRONT_PORCH); |
| |
| value = (mode->vdisplay << 16) | mode->hdisplay; |
| tegra_dc_writel(dc, value, DC_DISP_ACTIVE); |
| |
| return 0; |
| } |
| |
| /** |
| * tegra_dc_state_setup_clock - check clock settings and store them in atomic |
| * state |
| * @dc: display controller |
| * @crtc_state: CRTC atomic state |
| * @clk: parent clock for display controller |
| * @pclk: pixel clock |
| * @div: shift clock divider |
| * |
| * Returns: |
| * 0 on success or a negative error-code on failure. |
| */ |
| int tegra_dc_state_setup_clock(struct tegra_dc *dc, |
| struct drm_crtc_state *crtc_state, |
| struct clk *clk, unsigned long pclk, |
| unsigned int div) |
| { |
| struct tegra_dc_state *state = to_dc_state(crtc_state); |
| |
| if (!clk_has_parent(dc->clk, clk)) |
| return -EINVAL; |
| |
| state->clk = clk; |
| state->pclk = pclk; |
| state->div = div; |
| |
| return 0; |
| } |
| |
| static void tegra_dc_update_voltage_state(struct tegra_dc *dc, |
| struct tegra_dc_state *state) |
| { |
| unsigned long rate, pstate; |
| struct dev_pm_opp *opp; |
| int err; |
| |
| if (!dc->has_opp_table) |
| return; |
| |
| /* calculate actual pixel clock rate which depends on internal divider */ |
| rate = DIV_ROUND_UP(clk_get_rate(dc->clk) * 2, state->div + 2); |
| |
| /* find suitable OPP for the rate */ |
| opp = dev_pm_opp_find_freq_ceil(dc->dev, &rate); |
| |
| /* |
| * Very high resolution modes may results in a clock rate that is |
| * above the characterized maximum. In this case it's okay to fall |
| * back to the characterized maximum. |
| */ |
| if (opp == ERR_PTR(-ERANGE)) |
| opp = dev_pm_opp_find_freq_floor(dc->dev, &rate); |
| |
| if (IS_ERR(opp)) { |
| dev_err(dc->dev, "failed to find OPP for %luHz: %pe\n", |
| rate, opp); |
| return; |
| } |
| |
| pstate = dev_pm_opp_get_required_pstate(opp, 0); |
| dev_pm_opp_put(opp); |
| |
| /* |
| * The minimum core voltage depends on the pixel clock rate (which |
| * depends on internal clock divider of the CRTC) and not on the |
| * rate of the display controller clock. This is why we're not using |
| * dev_pm_opp_set_rate() API and instead controlling the power domain |
| * directly. |
| */ |
| err = dev_pm_genpd_set_performance_state(dc->dev, pstate); |
| if (err) |
| dev_err(dc->dev, "failed to set power domain state to %lu: %d\n", |
| pstate, err); |
| } |
| |
| static void tegra_dc_set_clock_rate(struct tegra_dc *dc, |
| struct tegra_dc_state *state) |
| { |
| int err; |
| |
| err = clk_set_parent(dc->clk, state->clk); |
| if (err < 0) |
| dev_err(dc->dev, "failed to set parent clock: %d\n", err); |
| |
| /* |
| * Outputs may not want to change the parent clock rate. This is only |
| * relevant to Tegra20 where only a single display PLL is available. |
| * Since that PLL would typically be used for HDMI, an internal LVDS |
| * panel would need to be driven by some other clock such as PLL_P |
| * which is shared with other peripherals. Changing the clock rate |
| * should therefore be avoided. |
| */ |
| if (state->pclk > 0) { |
| err = clk_set_rate(state->clk, state->pclk); |
| if (err < 0) |
| dev_err(dc->dev, |
| "failed to set clock rate to %lu Hz\n", |
| state->pclk); |
| |
| err = clk_set_rate(dc->clk, state->pclk); |
| if (err < 0) |
| dev_err(dc->dev, "failed to set clock %pC to %lu Hz: %d\n", |
| dc->clk, state->pclk, err); |
| } |
| |
| DRM_DEBUG_KMS("rate: %lu, div: %u\n", clk_get_rate(dc->clk), |
| state->div); |
| DRM_DEBUG_KMS("pclk: %lu\n", state->pclk); |
| |
| tegra_dc_update_voltage_state(dc, state); |
| } |
| |
| static void tegra_dc_stop(struct tegra_dc *dc) |
| { |
| u32 value; |
| |
| /* stop the display controller */ |
| value = tegra_dc_readl(dc, DC_CMD_DISPLAY_COMMAND); |
| value &= ~DISP_CTRL_MODE_MASK; |
| tegra_dc_writel(dc, value, DC_CMD_DISPLAY_COMMAND); |
| |
| tegra_dc_commit(dc); |
| } |
| |
| static bool tegra_dc_idle(struct tegra_dc *dc) |
| { |
| u32 value; |
| |
| value = tegra_dc_readl_active(dc, DC_CMD_DISPLAY_COMMAND); |
| |
| return (value & DISP_CTRL_MODE_MASK) == 0; |
| } |
| |
| static int tegra_dc_wait_idle(struct tegra_dc *dc, unsigned long timeout) |
| { |
| timeout = jiffies + msecs_to_jiffies(timeout); |
| |
| while (time_before(jiffies, timeout)) { |
| if (tegra_dc_idle(dc)) |
| return 0; |
| |
| usleep_range(1000, 2000); |
| } |
| |
| dev_dbg(dc->dev, "timeout waiting for DC to become idle\n"); |
| return -ETIMEDOUT; |
| } |
| |
| static void |
| tegra_crtc_update_memory_bandwidth(struct drm_crtc *crtc, |
| struct drm_atomic_state *state, |
| bool prepare_bandwidth_transition) |
| { |
| const struct tegra_plane_state *old_tegra_state, *new_tegra_state; |
| u32 i, new_avg_bw, old_avg_bw, new_peak_bw, old_peak_bw; |
| const struct drm_plane_state *old_plane_state; |
| const struct drm_crtc_state *old_crtc_state; |
| struct tegra_dc_window window, old_window; |
| struct tegra_dc *dc = to_tegra_dc(crtc); |
| struct tegra_plane *tegra; |
| struct drm_plane *plane; |
| |
| if (dc->soc->has_nvdisplay) |
| return; |
| |
| old_crtc_state = drm_atomic_get_old_crtc_state(state, crtc); |
| |
| if (!crtc->state->active) { |
| if (!old_crtc_state->active) |
| return; |
| |
| /* |
| * When CRTC is disabled on DPMS, the state of attached planes |
| * is kept unchanged. Hence we need to enforce removal of the |
| * bandwidths from the ICC paths. |
| */ |
| drm_atomic_crtc_for_each_plane(plane, crtc) { |
| tegra = to_tegra_plane(plane); |
| |
| icc_set_bw(tegra->icc_mem, 0, 0); |
| icc_set_bw(tegra->icc_mem_vfilter, 0, 0); |
| } |
| |
| return; |
| } |
| |
| for_each_old_plane_in_state(old_crtc_state->state, plane, |
| old_plane_state, i) { |
| old_tegra_state = to_const_tegra_plane_state(old_plane_state); |
| new_tegra_state = to_const_tegra_plane_state(plane->state); |
| tegra = to_tegra_plane(plane); |
| |
| /* |
| * We're iterating over the global atomic state and it contains |
| * planes from another CRTC, hence we need to filter out the |
| * planes unrelated to this CRTC. |
| */ |
| if (tegra->dc != dc) |
| continue; |
| |
| new_avg_bw = new_tegra_state->avg_memory_bandwidth; |
| old_avg_bw = old_tegra_state->avg_memory_bandwidth; |
| |
| new_peak_bw = new_tegra_state->total_peak_memory_bandwidth; |
| old_peak_bw = old_tegra_state->total_peak_memory_bandwidth; |
| |
| /* |
| * See the comment related to !crtc->state->active above, |
| * which explains why bandwidths need to be updated when |
| * CRTC is turning ON. |
| */ |
| if (new_avg_bw == old_avg_bw && new_peak_bw == old_peak_bw && |
| old_crtc_state->active) |
| continue; |
| |
| window.src.h = drm_rect_height(&plane->state->src) >> 16; |
| window.dst.h = drm_rect_height(&plane->state->dst); |
| |
| old_window.src.h = drm_rect_height(&old_plane_state->src) >> 16; |
| old_window.dst.h = drm_rect_height(&old_plane_state->dst); |
| |
| /* |
| * During the preparation phase (atomic_begin), the memory |
| * freq should go high before the DC changes are committed |
| * if bandwidth requirement goes up, otherwise memory freq |
| * should to stay high if BW requirement goes down. The |
| * opposite applies to the completion phase (post_commit). |
| */ |
| if (prepare_bandwidth_transition) { |
| new_avg_bw = max(old_avg_bw, new_avg_bw); |
| new_peak_bw = max(old_peak_bw, new_peak_bw); |
| |
| if (tegra_plane_use_vertical_filtering(tegra, &old_window)) |
| window = old_window; |
| } |
| |
| icc_set_bw(tegra->icc_mem, new_avg_bw, new_peak_bw); |
| |
| if (tegra_plane_use_vertical_filtering(tegra, &window)) |
| icc_set_bw(tegra->icc_mem_vfilter, new_avg_bw, new_peak_bw); |
| else |
| icc_set_bw(tegra->icc_mem_vfilter, 0, 0); |
| } |
| } |
| |
| static void tegra_crtc_atomic_disable(struct drm_crtc *crtc, |
| struct drm_atomic_state *state) |
| { |
| struct tegra_dc *dc = to_tegra_dc(crtc); |
| u32 value; |
| int err; |
| |
| if (!tegra_dc_idle(dc)) { |
| tegra_dc_stop(dc); |
| |
| /* |
| * Ignore the return value, there isn't anything useful to do |
| * in case this fails. |
| */ |
| tegra_dc_wait_idle(dc, 100); |
| } |
| |
| /* |
| * This should really be part of the RGB encoder driver, but clearing |
| * these bits has the side-effect of stopping the display controller. |
| * When that happens no VBLANK interrupts will be raised. At the same |
| * time the encoder is disabled before the display controller, so the |
| * above code is always going to timeout waiting for the controller |
| * to go idle. |
| * |
| * Given the close coupling between the RGB encoder and the display |
| * controller doing it here is still kind of okay. None of the other |
| * encoder drivers require these bits to be cleared. |
| * |
| * XXX: Perhaps given that the display controller is switched off at |
| * this point anyway maybe clearing these bits isn't even useful for |
| * the RGB encoder? |
| */ |
| if (dc->rgb) { |
| value = tegra_dc_readl(dc, DC_CMD_DISPLAY_POWER_CONTROL); |
| value &= ~(PW0_ENABLE | PW1_ENABLE | PW2_ENABLE | PW3_ENABLE | |
| PW4_ENABLE | PM0_ENABLE | PM1_ENABLE); |
| tegra_dc_writel(dc, value, DC_CMD_DISPLAY_POWER_CONTROL); |
| } |
| |
| tegra_dc_stats_reset(&dc->stats); |
| drm_crtc_vblank_off(crtc); |
| |
| spin_lock_irq(&crtc->dev->event_lock); |
| |
| if (crtc->state->event) { |
| drm_crtc_send_vblank_event(crtc, crtc->state->event); |
| crtc->state->event = NULL; |
| } |
| |
| spin_unlock_irq(&crtc->dev->event_lock); |
| |
| err = host1x_client_suspend(&dc->client); |
| if (err < 0) |
| dev_err(dc->dev, "failed to suspend: %d\n", err); |
| |
| if (dc->has_opp_table) { |
| err = dev_pm_genpd_set_performance_state(dc->dev, 0); |
| if (err) |
| dev_err(dc->dev, |
| "failed to clear power domain state: %d\n", err); |
| } |
| } |
| |
| static void tegra_crtc_atomic_enable(struct drm_crtc *crtc, |
| struct drm_atomic_state *state) |
| { |
| struct drm_display_mode *mode = &crtc->state->adjusted_mode; |
| struct tegra_dc_state *crtc_state = to_dc_state(crtc->state); |
| struct tegra_dc *dc = to_tegra_dc(crtc); |
| u32 value; |
| int err; |
| |
| /* apply PLL changes */ |
| tegra_dc_set_clock_rate(dc, crtc_state); |
| |
| err = host1x_client_resume(&dc->client); |
| if (err < 0) { |
| dev_err(dc->dev, "failed to resume: %d\n", err); |
| return; |
| } |
| |
| /* initialize display controller */ |
| if (dc->syncpt) { |
| u32 syncpt = host1x_syncpt_id(dc->syncpt), enable; |
| |
| if (dc->soc->has_nvdisplay) |
| enable = 1 << 31; |
| else |
| enable = 1 << 8; |
| |
| value = SYNCPT_CNTRL_NO_STALL; |
| tegra_dc_writel(dc, value, DC_CMD_GENERAL_INCR_SYNCPT_CNTRL); |
| |
| value = enable | syncpt; |
| tegra_dc_writel(dc, value, DC_CMD_CONT_SYNCPT_VSYNC); |
| } |
| |
| if (dc->soc->has_nvdisplay) { |
| value = DSC_TO_UF_INT | DSC_BBUF_UF_INT | DSC_RBUF_UF_INT | |
| DSC_OBUF_UF_INT; |
| tegra_dc_writel(dc, value, DC_CMD_INT_TYPE); |
| |
| value = DSC_TO_UF_INT | DSC_BBUF_UF_INT | DSC_RBUF_UF_INT | |
| DSC_OBUF_UF_INT | SD3_BUCKET_WALK_DONE_INT | |
| HEAD_UF_INT | MSF_INT | REG_TMOUT_INT | |
| REGION_CRC_INT | V_PULSE2_INT | V_PULSE3_INT | |
| VBLANK_INT | FRAME_END_INT; |
| tegra_dc_writel(dc, value, DC_CMD_INT_POLARITY); |
| |
| value = SD3_BUCKET_WALK_DONE_INT | HEAD_UF_INT | VBLANK_INT | |
| FRAME_END_INT; |
| tegra_dc_writel(dc, value, DC_CMD_INT_ENABLE); |
| |
| value = HEAD_UF_INT | REG_TMOUT_INT | FRAME_END_INT; |
| tegra_dc_writel(dc, value, DC_CMD_INT_MASK); |
| |
| tegra_dc_writel(dc, READ_MUX, DC_CMD_STATE_ACCESS); |
| } else { |
| value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT | |
| WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT; |
| tegra_dc_writel(dc, value, DC_CMD_INT_TYPE); |
| |
| value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT | |
| WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT; |
| tegra_dc_writel(dc, value, DC_CMD_INT_POLARITY); |
| |
| /* initialize timer */ |
| value = CURSOR_THRESHOLD(0) | WINDOW_A_THRESHOLD(0x20) | |
| WINDOW_B_THRESHOLD(0x20) | WINDOW_C_THRESHOLD(0x20); |
| tegra_dc_writel(dc, value, DC_DISP_DISP_MEM_HIGH_PRIORITY); |
| |
| value = CURSOR_THRESHOLD(0) | WINDOW_A_THRESHOLD(1) | |
| WINDOW_B_THRESHOLD(1) | WINDOW_C_THRESHOLD(1); |
| tegra_dc_writel(dc, value, DC_DISP_DISP_MEM_HIGH_PRIORITY_TIMER); |
| |
| value = VBLANK_INT | WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT | |
| WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT; |
| tegra_dc_writel(dc, value, DC_CMD_INT_ENABLE); |
| |
| value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT | |
| WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT; |
| tegra_dc_writel(dc, value, DC_CMD_INT_MASK); |
| } |
| |
| if (dc->soc->supports_background_color) |
| tegra_dc_writel(dc, 0, DC_DISP_BLEND_BACKGROUND_COLOR); |
| else |
| tegra_dc_writel(dc, 0, DC_DISP_BORDER_COLOR); |
| |
| /* apply pixel clock changes */ |
| if (!dc->soc->has_nvdisplay) { |
| value = SHIFT_CLK_DIVIDER(crtc_state->div) | PIXEL_CLK_DIVIDER_PCD1; |
| tegra_dc_writel(dc, value, DC_DISP_DISP_CLOCK_CONTROL); |
| } |
| |
| /* program display mode */ |
| tegra_dc_set_timings(dc, mode); |
| |
| /* interlacing isn't supported yet, so disable it */ |
| if (dc->soc->supports_interlacing) { |
| value = tegra_dc_readl(dc, DC_DISP_INTERLACE_CONTROL); |
| value &= ~INTERLACE_ENABLE; |
| tegra_dc_writel(dc, value, DC_DISP_INTERLACE_CONTROL); |
| } |
| |
| value = tegra_dc_readl(dc, DC_CMD_DISPLAY_COMMAND); |
| value &= ~DISP_CTRL_MODE_MASK; |
| value |= DISP_CTRL_MODE_C_DISPLAY; |
| tegra_dc_writel(dc, value, DC_CMD_DISPLAY_COMMAND); |
| |
| if (!dc->soc->has_nvdisplay) { |
| value = tegra_dc_readl(dc, DC_CMD_DISPLAY_POWER_CONTROL); |
| value |= PW0_ENABLE | PW1_ENABLE | PW2_ENABLE | PW3_ENABLE | |
| PW4_ENABLE | PM0_ENABLE | PM1_ENABLE; |
| tegra_dc_writel(dc, value, DC_CMD_DISPLAY_POWER_CONTROL); |
| } |
| |
| /* enable underflow reporting and display red for missing pixels */ |
| if (dc->soc->has_nvdisplay) { |
| value = UNDERFLOW_MODE_RED | UNDERFLOW_REPORT_ENABLE; |
| tegra_dc_writel(dc, value, DC_COM_RG_UNDERFLOW); |
| } |
| |
| if (dc->rgb) { |
| /* XXX: parameterize? */ |
| value = SC0_H_QUALIFIER_NONE | SC1_H_QUALIFIER_NONE; |
| tegra_dc_writel(dc, value, DC_DISP_SHIFT_CLOCK_OPTIONS); |
| } |
| |
| tegra_dc_commit(dc); |
| |
| drm_crtc_vblank_on(crtc); |
| } |
| |
| static void tegra_crtc_atomic_begin(struct drm_crtc *crtc, |
| struct drm_atomic_state *state) |
| { |
| unsigned long flags; |
| |
| tegra_crtc_update_memory_bandwidth(crtc, state, true); |
| |
| if (crtc->state->event) { |
| spin_lock_irqsave(&crtc->dev->event_lock, flags); |
| |
| if (drm_crtc_vblank_get(crtc) != 0) |
| drm_crtc_send_vblank_event(crtc, crtc->state->event); |
| else |
| drm_crtc_arm_vblank_event(crtc, crtc->state->event); |
| |
| spin_unlock_irqrestore(&crtc->dev->event_lock, flags); |
| |
| crtc->state->event = NULL; |
| } |
| } |
| |
| static void tegra_crtc_atomic_flush(struct drm_crtc *crtc, |
| struct drm_atomic_state *state) |
| { |
| struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state, |
| crtc); |
| struct tegra_dc_state *dc_state = to_dc_state(crtc_state); |
| struct tegra_dc *dc = to_tegra_dc(crtc); |
| u32 value; |
| |
| value = dc_state->planes << 8 | GENERAL_UPDATE; |
| tegra_dc_writel(dc, value, DC_CMD_STATE_CONTROL); |
| value = tegra_dc_readl(dc, DC_CMD_STATE_CONTROL); |
| |
| value = dc_state->planes | GENERAL_ACT_REQ; |
| tegra_dc_writel(dc, value, DC_CMD_STATE_CONTROL); |
| value = tegra_dc_readl(dc, DC_CMD_STATE_CONTROL); |
| } |
| |
| static bool tegra_plane_is_cursor(const struct drm_plane_state *state) |
| { |
| const struct tegra_dc_soc_info *soc = to_tegra_dc(state->crtc)->soc; |
| const struct drm_format_info *fmt = state->fb->format; |
| unsigned int src_w = drm_rect_width(&state->src) >> 16; |
| unsigned int dst_w = drm_rect_width(&state->dst); |
| |
| if (state->plane->type != DRM_PLANE_TYPE_CURSOR) |
| return false; |
| |
| if (soc->supports_cursor) |
| return true; |
| |
| if (src_w != dst_w || fmt->num_planes != 1 || src_w * fmt->cpp[0] > 256) |
| return false; |
| |
| return true; |
| } |
| |
| static unsigned long |
| tegra_plane_overlap_mask(struct drm_crtc_state *state, |
| const struct drm_plane_state *plane_state) |
| { |
| const struct drm_plane_state *other_state; |
| const struct tegra_plane *tegra; |
| unsigned long overlap_mask = 0; |
| struct drm_plane *plane; |
| struct drm_rect rect; |
| |
| if (!plane_state->visible || !plane_state->fb) |
| return 0; |
| |
| /* |
| * Data-prefetch FIFO will easily help to overcome temporal memory |
| * pressure if other plane overlaps with the cursor plane. |
| */ |
| if (tegra_plane_is_cursor(plane_state)) |
| return 0; |
| |
| drm_atomic_crtc_state_for_each_plane_state(plane, other_state, state) { |
| rect = plane_state->dst; |
| |
| tegra = to_tegra_plane(other_state->plane); |
| |
| if (!other_state->visible || !other_state->fb) |
| continue; |
| |
| /* |
| * Ignore cursor plane overlaps because it's not practical to |
| * assume that it contributes to the bandwidth in overlapping |
| * area if window width is small. |
| */ |
| if (tegra_plane_is_cursor(other_state)) |
| continue; |
| |
| if (drm_rect_intersect(&rect, &other_state->dst)) |
| overlap_mask |= BIT(tegra->index); |
| } |
| |
| return overlap_mask; |
| } |
| |
| static int tegra_crtc_calculate_memory_bandwidth(struct drm_crtc *crtc, |
| struct drm_atomic_state *state) |
| { |
| ulong overlap_mask[TEGRA_DC_LEGACY_PLANES_NUM] = {}, mask; |
| u32 plane_peak_bw[TEGRA_DC_LEGACY_PLANES_NUM] = {}; |
| bool all_planes_overlap_simultaneously = true; |
| const struct tegra_plane_state *tegra_state; |
| const struct drm_plane_state *plane_state; |
| struct tegra_dc *dc = to_tegra_dc(crtc); |
| const struct drm_crtc_state *old_state; |
| struct drm_crtc_state *new_state; |
| struct tegra_plane *tegra; |
| struct drm_plane *plane; |
| |
| /* |
| * The nv-display uses shared planes. The algorithm below assumes |
| * maximum 3 planes per-CRTC, this assumption isn't applicable to |
| * the nv-display. Note that T124 support has additional windows, |
| * but currently they aren't supported by the driver. |
| */ |
| if (dc->soc->has_nvdisplay) |
| return 0; |
| |
| new_state = drm_atomic_get_new_crtc_state(state, crtc); |
| old_state = drm_atomic_get_old_crtc_state(state, crtc); |
| |
| /* |
| * For overlapping planes pixel's data is fetched for each plane at |
| * the same time, hence bandwidths are accumulated in this case. |
| * This needs to be taken into account for calculating total bandwidth |
| * consumed by all planes. |
| * |
| * Here we get the overlapping state of each plane, which is a |
| * bitmask of plane indices telling with what planes there is an |
| * overlap. Note that bitmask[plane] includes BIT(plane) in order |
| * to make further code nicer and simpler. |
| */ |
| drm_atomic_crtc_state_for_each_plane_state(plane, plane_state, new_state) { |
| tegra_state = to_const_tegra_plane_state(plane_state); |
| tegra = to_tegra_plane(plane); |
| |
| if (WARN_ON_ONCE(tegra->index >= TEGRA_DC_LEGACY_PLANES_NUM)) |
| return -EINVAL; |
| |
| plane_peak_bw[tegra->index] = tegra_state->peak_memory_bandwidth; |
| mask = tegra_plane_overlap_mask(new_state, plane_state); |
| overlap_mask[tegra->index] = mask; |
| |
| if (hweight_long(mask) != 3) |
| all_planes_overlap_simultaneously = false; |
| } |
| |
| /* |
| * Then we calculate maximum bandwidth of each plane state. |
| * The bandwidth includes the plane BW + BW of the "simultaneously" |
| * overlapping planes, where "simultaneously" means areas where DC |
| * fetches from the planes simultaneously during of scan-out process. |
| * |
| * For example, if plane A overlaps with planes B and C, but B and C |
| * don't overlap, then the peak bandwidth will be either in area where |
| * A-and-B or A-and-C planes overlap. |
| * |
| * The plane_peak_bw[] contains peak memory bandwidth values of |
| * each plane, this information is needed by interconnect provider |
| * in order to set up latency allowance based on the peak BW, see |
| * tegra_crtc_update_memory_bandwidth(). |
| */ |
| drm_atomic_crtc_state_for_each_plane_state(plane, plane_state, new_state) { |
| u32 i, old_peak_bw, new_peak_bw, overlap_bw = 0; |
| |
| /* |
| * Note that plane's atomic check doesn't touch the |
| * total_peak_memory_bandwidth of enabled plane, hence the |
| * current state contains the old bandwidth state from the |
| * previous CRTC commit. |
| */ |
| tegra_state = to_const_tegra_plane_state(plane_state); |
| tegra = to_tegra_plane(plane); |
| |
| for_each_set_bit(i, &overlap_mask[tegra->index], 3) { |
| if (i == tegra->index) |
| continue; |
| |
| if (all_planes_overlap_simultaneously) |
| overlap_bw += plane_peak_bw[i]; |
| else |
| overlap_bw = max(overlap_bw, plane_peak_bw[i]); |
| } |
| |
| new_peak_bw = plane_peak_bw[tegra->index] + overlap_bw; |
| old_peak_bw = tegra_state->total_peak_memory_bandwidth; |
| |
| /* |
| * If plane's peak bandwidth changed (for example plane isn't |
| * overlapped anymore) and plane isn't in the atomic state, |
| * then add plane to the state in order to have the bandwidth |
| * updated. |
| */ |
| if (old_peak_bw != new_peak_bw) { |
| struct tegra_plane_state *new_tegra_state; |
| struct drm_plane_state *new_plane_state; |
| |
| new_plane_state = drm_atomic_get_plane_state(state, plane); |
| if (IS_ERR(new_plane_state)) |
| return PTR_ERR(new_plane_state); |
| |
| new_tegra_state = to_tegra_plane_state(new_plane_state); |
| new_tegra_state->total_peak_memory_bandwidth = new_peak_bw; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int tegra_crtc_atomic_check(struct drm_crtc *crtc, |
| struct drm_atomic_state *state) |
| { |
| int err; |
| |
| err = tegra_crtc_calculate_memory_bandwidth(crtc, state); |
| if (err) |
| return err; |
| |
| return 0; |
| } |
| |
| void tegra_crtc_atomic_post_commit(struct drm_crtc *crtc, |
| struct drm_atomic_state *state) |
| { |
| /* |
| * Display bandwidth is allowed to go down only once hardware state |
| * is known to be armed, i.e. state was committed and VBLANK event |
| * received. |
| */ |
| tegra_crtc_update_memory_bandwidth(crtc, state, false); |
| } |
| |
| static const struct drm_crtc_helper_funcs tegra_crtc_helper_funcs = { |
| .atomic_check = tegra_crtc_atomic_check, |
| .atomic_begin = tegra_crtc_atomic_begin, |
| .atomic_flush = tegra_crtc_atomic_flush, |
| .atomic_enable = tegra_crtc_atomic_enable, |
| .atomic_disable = tegra_crtc_atomic_disable, |
| }; |
| |
| static irqreturn_t tegra_dc_irq(int irq, void *data) |
| { |
| struct tegra_dc *dc = data; |
| unsigned long status; |
| |
| status = tegra_dc_readl(dc, DC_CMD_INT_STATUS); |
| tegra_dc_writel(dc, status, DC_CMD_INT_STATUS); |
| |
| if (status & FRAME_END_INT) { |
| /* |
| dev_dbg(dc->dev, "%s(): frame end\n", __func__); |
| */ |
| dc->stats.frames_total++; |
| dc->stats.frames++; |
| } |
| |
| if (status & VBLANK_INT) { |
| /* |
| dev_dbg(dc->dev, "%s(): vertical blank\n", __func__); |
| */ |
| drm_crtc_handle_vblank(&dc->base); |
| dc->stats.vblank_total++; |
| dc->stats.vblank++; |
| } |
| |
| if (status & (WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT)) { |
| /* |
| dev_dbg(dc->dev, "%s(): underflow\n", __func__); |
| */ |
| dc->stats.underflow_total++; |
| dc->stats.underflow++; |
| } |
| |
| if (status & (WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT)) { |
| /* |
| dev_dbg(dc->dev, "%s(): overflow\n", __func__); |
| */ |
| dc->stats.overflow_total++; |
| dc->stats.overflow++; |
| } |
| |
| if (status & HEAD_UF_INT) { |
| dev_dbg_ratelimited(dc->dev, "%s(): head underflow\n", __func__); |
| dc->stats.underflow_total++; |
| dc->stats.underflow++; |
| } |
| |
| return IRQ_HANDLED; |
| } |
| |
| static bool tegra_dc_has_window_groups(struct tegra_dc *dc) |
| { |
| unsigned int i; |
| |
| if (!dc->soc->wgrps) |
| return true; |
| |
| for (i = 0; i < dc->soc->num_wgrps; i++) { |
| const struct tegra_windowgroup_soc *wgrp = &dc->soc->wgrps[i]; |
| |
| if (wgrp->dc == dc->pipe && wgrp->num_windows > 0) |
| return true; |
| } |
| |
| return false; |
| } |
| |
| static int tegra_dc_early_init(struct host1x_client *client) |
| { |
| struct drm_device *drm = dev_get_drvdata(client->host); |
| struct tegra_drm *tegra = drm->dev_private; |
| |
| tegra->num_crtcs++; |
| |
| return 0; |
| } |
| |
| static int tegra_dc_init(struct host1x_client *client) |
| { |
| struct drm_device *drm = dev_get_drvdata(client->host); |
| unsigned long flags = HOST1X_SYNCPT_CLIENT_MANAGED; |
| struct tegra_dc *dc = host1x_client_to_dc(client); |
| struct tegra_drm *tegra = drm->dev_private; |
| struct drm_plane *primary = NULL; |
| struct drm_plane *cursor = NULL; |
| int err; |
| |
| /* |
| * DC has been reset by now, so VBLANK syncpoint can be released |
| * for general use. |
| */ |
| host1x_syncpt_release_vblank_reservation(client, 26 + dc->pipe); |
| |
| /* |
| * XXX do not register DCs with no window groups because we cannot |
| * assign a primary plane to them, which in turn will cause KMS to |
| * crash. |
| */ |
| if (!tegra_dc_has_window_groups(dc)) |
| return 0; |
| |
| /* |
| * Set the display hub as the host1x client parent for the display |
| * controller. This is needed for the runtime reference counting that |
| * ensures the display hub is always powered when any of the display |
| * controllers are. |
| */ |
| if (dc->soc->has_nvdisplay) |
| client->parent = &tegra->hub->client; |
| |
| dc->syncpt = host1x_syncpt_request(client, flags); |
| if (!dc->syncpt) |
| dev_warn(dc->dev, "failed to allocate syncpoint\n"); |
| |
| err = host1x_client_iommu_attach(client); |
| if (err < 0 && err != -ENODEV) { |
| dev_err(client->dev, "failed to attach to domain: %d\n", err); |
| return err; |
| } |
| |
| if (dc->soc->wgrps) |
| primary = tegra_dc_add_shared_planes(drm, dc); |
| else |
| primary = tegra_dc_add_planes(drm, dc); |
| |
| if (IS_ERR(primary)) { |
| err = PTR_ERR(primary); |
| goto cleanup; |
| } |
| |
| if (dc->soc->supports_cursor) { |
| cursor = tegra_dc_cursor_plane_create(drm, dc); |
| if (IS_ERR(cursor)) { |
| err = PTR_ERR(cursor); |
| goto cleanup; |
| } |
| } else { |
| /* dedicate one overlay to mouse cursor */ |
| cursor = tegra_dc_overlay_plane_create(drm, dc, 2, true); |
| if (IS_ERR(cursor)) { |
| err = PTR_ERR(cursor); |
| goto cleanup; |
| } |
| } |
| |
| err = drm_crtc_init_with_planes(drm, &dc->base, primary, cursor, |
| &tegra_crtc_funcs, NULL); |
| if (err < 0) |
| goto cleanup; |
| |
| drm_crtc_helper_add(&dc->base, &tegra_crtc_helper_funcs); |
| |
| /* |
| * Keep track of the minimum pitch alignment across all display |
| * controllers. |
| */ |
| if (dc->soc->pitch_align > tegra->pitch_align) |
| tegra->pitch_align = dc->soc->pitch_align; |
| |
| /* track maximum resolution */ |
| if (dc->soc->has_nvdisplay) |
| drm->mode_config.max_width = drm->mode_config.max_height = 16384; |
| else |
| drm->mode_config.max_width = drm->mode_config.max_height = 4096; |
| |
| err = tegra_dc_rgb_init(drm, dc); |
| if (err < 0 && err != -ENODEV) { |
| dev_err(dc->dev, "failed to initialize RGB output: %d\n", err); |
| goto cleanup; |
| } |
| |
| err = devm_request_irq(dc->dev, dc->irq, tegra_dc_irq, 0, |
| dev_name(dc->dev), dc); |
| if (err < 0) { |
| dev_err(dc->dev, "failed to request IRQ#%u: %d\n", dc->irq, |
| err); |
| goto cleanup; |
| } |
| |
| /* |
| * Inherit the DMA parameters (such as maximum segment size) from the |
| * parent host1x device. |
| */ |
| client->dev->dma_parms = client->host->dma_parms; |
| |
| return 0; |
| |
| cleanup: |
| if (!IS_ERR_OR_NULL(cursor)) |
| drm_plane_cleanup(cursor); |
| |
| if (!IS_ERR(primary)) |
| drm_plane_cleanup(primary); |
| |
| host1x_client_iommu_detach(client); |
| host1x_syncpt_put(dc->syncpt); |
| |
| return err; |
| } |
| |
| static int tegra_dc_exit(struct host1x_client *client) |
| { |
| struct tegra_dc *dc = host1x_client_to_dc(client); |
| int err; |
| |
| if (!tegra_dc_has_window_groups(dc)) |
| return 0; |
| |
| /* avoid a dangling pointer just in case this disappears */ |
| client->dev->dma_parms = NULL; |
| |
| devm_free_irq(dc->dev, dc->irq, dc); |
| |
| err = tegra_dc_rgb_exit(dc); |
| if (err) { |
| dev_err(dc->dev, "failed to shutdown RGB output: %d\n", err); |
| return err; |
| } |
| |
| host1x_client_iommu_detach(client); |
| host1x_syncpt_put(dc->syncpt); |
| |
| return 0; |
| } |
| |
| static int tegra_dc_late_exit(struct host1x_client *client) |
| { |
| struct drm_device *drm = dev_get_drvdata(client->host); |
| struct tegra_drm *tegra = drm->dev_private; |
| |
| tegra->num_crtcs--; |
| |
| return 0; |
| } |
| |
| static int tegra_dc_runtime_suspend(struct host1x_client *client) |
| { |
| struct tegra_dc *dc = host1x_client_to_dc(client); |
| struct device *dev = client->dev; |
| int err; |
| |
| err = reset_control_assert(dc->rst); |
| if (err < 0) { |
| dev_err(dev, "failed to assert reset: %d\n", err); |
| return err; |
| } |
| |
| if (dc->soc->has_powergate) |
| tegra_powergate_power_off(dc->powergate); |
| |
| clk_disable_unprepare(dc->clk); |
| pm_runtime_put_sync(dev); |
| |
| return 0; |
| } |
| |
| static int tegra_dc_runtime_resume(struct host1x_client *client) |
| { |
| struct tegra_dc *dc = host1x_client_to_dc(client); |
| struct device *dev = client->dev; |
| int err; |
| |
| err = pm_runtime_resume_and_get(dev); |
| if (err < 0) { |
| dev_err(dev, "failed to get runtime PM: %d\n", err); |
| return err; |
| } |
| |
| if (dc->soc->has_powergate) { |
| err = tegra_powergate_sequence_power_up(dc->powergate, dc->clk, |
| dc->rst); |
| if (err < 0) { |
| dev_err(dev, "failed to power partition: %d\n", err); |
| goto put_rpm; |
| } |
| } else { |
| err = clk_prepare_enable(dc->clk); |
| if (err < 0) { |
| dev_err(dev, "failed to enable clock: %d\n", err); |
| goto put_rpm; |
| } |
| |
| err = reset_control_deassert(dc->rst); |
| if (err < 0) { |
| dev_err(dev, "failed to deassert reset: %d\n", err); |
| goto disable_clk; |
| } |
| } |
| |
| return 0; |
| |
| disable_clk: |
| clk_disable_unprepare(dc->clk); |
| put_rpm: |
| pm_runtime_put_sync(dev); |
| return err; |
| } |
| |
| static const struct host1x_client_ops dc_client_ops = { |
| .early_init = tegra_dc_early_init, |
| .init = tegra_dc_init, |
| .exit = tegra_dc_exit, |
| .late_exit = tegra_dc_late_exit, |
| .suspend = tegra_dc_runtime_suspend, |
| .resume = tegra_dc_runtime_resume, |
| }; |
| |
| static const struct tegra_dc_soc_info tegra20_dc_soc_info = { |
| .supports_background_color = false, |
| .supports_interlacing = false, |
| .supports_cursor = false, |
| .supports_block_linear = false, |
| .supports_sector_layout = false, |
| .has_legacy_blending = true, |
| .pitch_align = 8, |
| .has_powergate = false, |
| .coupled_pm = true, |
| .has_nvdisplay = false, |
| .num_primary_formats = ARRAY_SIZE(tegra20_primary_formats), |
| .primary_formats = tegra20_primary_formats, |
| .num_overlay_formats = ARRAY_SIZE(tegra20_overlay_formats), |
| .overlay_formats = tegra20_overlay_formats, |
| .modifiers = tegra20_modifiers, |
| .has_win_a_without_filters = true, |
| .has_win_b_vfilter_mem_client = true, |
| .has_win_c_without_vert_filter = true, |
| .plane_tiled_memory_bandwidth_x2 = false, |
| .has_pll_d2_out0 = false, |
| }; |
| |
| static const struct tegra_dc_soc_info tegra30_dc_soc_info = { |
| .supports_background_color = false, |
| .supports_interlacing = false, |
| .supports_cursor = false, |
| .supports_block_linear = false, |
| .supports_sector_layout = false, |
| .has_legacy_blending = true, |
| .pitch_align = 8, |
| .has_powergate = false, |
| .coupled_pm = false, |
| .has_nvdisplay = false, |
| .num_primary_formats = ARRAY_SIZE(tegra20_primary_formats), |
| .primary_formats = tegra20_primary_formats, |
| .num_overlay_formats = ARRAY_SIZE(tegra20_overlay_formats), |
| .overlay_formats = tegra20_overlay_formats, |
| .modifiers = tegra20_modifiers, |
| .has_win_a_without_filters = false, |
| .has_win_b_vfilter_mem_client = true, |
| .has_win_c_without_vert_filter = false, |
| .plane_tiled_memory_bandwidth_x2 = true, |
| .has_pll_d2_out0 = true, |
| }; |
| |
| static const struct tegra_dc_soc_info tegra114_dc_soc_info = { |
| .supports_background_color = false, |
| .supports_interlacing = false, |
| .supports_cursor = false, |
| .supports_block_linear = false, |
| .supports_sector_layout = false, |
| .has_legacy_blending = true, |
| .pitch_align = 64, |
| .has_powergate = true, |
| .coupled_pm = false, |
| .has_nvdisplay = false, |
| .num_primary_formats = ARRAY_SIZE(tegra114_primary_formats), |
| .primary_formats = tegra114_primary_formats, |
| .num_overlay_formats = ARRAY_SIZE(tegra114_overlay_formats), |
| .overlay_formats = tegra114_overlay_formats, |
| .modifiers = tegra20_modifiers, |
| .has_win_a_without_filters = false, |
| .has_win_b_vfilter_mem_client = false, |
| .has_win_c_without_vert_filter = false, |
| .plane_tiled_memory_bandwidth_x2 = true, |
| .has_pll_d2_out0 = true, |
| }; |
| |
| static const struct tegra_dc_soc_info tegra124_dc_soc_info = { |
| .supports_background_color = true, |
| .supports_interlacing = true, |
| .supports_cursor = true, |
| .supports_block_linear = true, |
| .supports_sector_layout = false, |
| .has_legacy_blending = false, |
| .pitch_align = 64, |
| .has_powergate = true, |
| .coupled_pm = false, |
| .has_nvdisplay = false, |
| .num_primary_formats = ARRAY_SIZE(tegra124_primary_formats), |
| .primary_formats = tegra124_primary_formats, |
| .num_overlay_formats = ARRAY_SIZE(tegra124_overlay_formats), |
| .overlay_formats = tegra124_overlay_formats, |
| .modifiers = tegra124_modifiers, |
| .has_win_a_without_filters = false, |
| .has_win_b_vfilter_mem_client = false, |
| .has_win_c_without_vert_filter = false, |
| .plane_tiled_memory_bandwidth_x2 = false, |
| .has_pll_d2_out0 = true, |
| }; |
| |
| static const struct tegra_dc_soc_info tegra210_dc_soc_info = { |
| .supports_background_color = true, |
| .supports_interlacing = true, |
| .supports_cursor = true, |
| .supports_block_linear = true, |
| .supports_sector_layout = false, |
| .has_legacy_blending = false, |
| .pitch_align = 64, |
| .has_powergate = true, |
| .coupled_pm = false, |
| .has_nvdisplay = false, |
| .num_primary_formats = ARRAY_SIZE(tegra114_primary_formats), |
| .primary_formats = tegra114_primary_formats, |
| .num_overlay_formats = ARRAY_SIZE(tegra114_overlay_formats), |
| .overlay_formats = tegra114_overlay_formats, |
| .modifiers = tegra124_modifiers, |
| .has_win_a_without_filters = false, |
| .has_win_b_vfilter_mem_client = false, |
| .has_win_c_without_vert_filter = false, |
| .plane_tiled_memory_bandwidth_x2 = false, |
| .has_pll_d2_out0 = true, |
| }; |
| |
| static const struct tegra_windowgroup_soc tegra186_dc_wgrps[] = { |
| { |
| .index = 0, |
| .dc = 0, |
| .windows = (const unsigned int[]) { 0 }, |
| .num_windows = 1, |
| }, { |
| .index = 1, |
| .dc = 1, |
| .windows = (const unsigned int[]) { 1 }, |
| .num_windows = 1, |
| }, { |
| .index = 2, |
| .dc = 1, |
| .windows = (const unsigned int[]) { 2 }, |
| .num_windows = 1, |
| }, { |
| .index = 3, |
| .dc = 2, |
| .windows = (const unsigned int[]) { 3 }, |
| .num_windows = 1, |
| }, { |
| .index = 4, |
| .dc = 2, |
| .windows = (const unsigned int[]) { 4 }, |
| .num_windows = 1, |
| }, { |
| .index = 5, |
| .dc = 2, |
| .windows = (const unsigned int[]) { 5 }, |
| .num_windows = 1, |
| }, |
| }; |
| |
| static const struct tegra_dc_soc_info tegra186_dc_soc_info = { |
| .supports_background_color = true, |
| .supports_interlacing = true, |
| .supports_cursor = true, |
| .supports_block_linear = true, |
| .supports_sector_layout = false, |
| .has_legacy_blending = false, |
| .pitch_align = 64, |
| .has_powergate = false, |
| .coupled_pm = false, |
| .has_nvdisplay = true, |
| .wgrps = tegra186_dc_wgrps, |
| .num_wgrps = ARRAY_SIZE(tegra186_dc_wgrps), |
| .plane_tiled_memory_bandwidth_x2 = false, |
| .has_pll_d2_out0 = false, |
| }; |
| |
| static const struct tegra_windowgroup_soc tegra194_dc_wgrps[] = { |
| { |
| .index = 0, |
| .dc = 0, |
| .windows = (const unsigned int[]) { 0 }, |
| .num_windows = 1, |
| }, { |
| .index = 1, |
| .dc = 1, |
| .windows = (const unsigned int[]) { 1 }, |
| .num_windows = 1, |
| }, { |
| .index = 2, |
| .dc = 1, |
| .windows = (const unsigned int[]) { 2 }, |
| .num_windows = 1, |
| }, { |
| .index = 3, |
| .dc = 2, |
| .windows = (const unsigned int[]) { 3 }, |
| .num_windows = 1, |
| }, { |
| .index = 4, |
| .dc = 2, |
| .windows = (const unsigned int[]) { 4 }, |
| .num_windows = 1, |
| }, { |
| .index = 5, |
| .dc = 2, |
| .windows = (const unsigned int[]) { 5 }, |
| .num_windows = 1, |
| }, |
| }; |
| |
| static const struct tegra_dc_soc_info tegra194_dc_soc_info = { |
| .supports_background_color = true, |
| .supports_interlacing = true, |
| .supports_cursor = true, |
| .supports_block_linear = true, |
| .supports_sector_layout = true, |
| .has_legacy_blending = false, |
| .pitch_align = 64, |
| .has_powergate = false, |
| .coupled_pm = false, |
| .has_nvdisplay = true, |
| .wgrps = tegra194_dc_wgrps, |
| .num_wgrps = ARRAY_SIZE(tegra194_dc_wgrps), |
| .plane_tiled_memory_bandwidth_x2 = false, |
| .has_pll_d2_out0 = false, |
| }; |
| |
| static const struct of_device_id tegra_dc_of_match[] = { |
| { |
| .compatible = "nvidia,tegra194-dc", |
| .data = &tegra194_dc_soc_info, |
| }, { |
| .compatible = "nvidia,tegra186-dc", |
| .data = &tegra186_dc_soc_info, |
| }, { |
| .compatible = "nvidia,tegra210-dc", |
| .data = &tegra210_dc_soc_info, |
| }, { |
| .compatible = "nvidia,tegra124-dc", |
| .data = &tegra124_dc_soc_info, |
| }, { |
| .compatible = "nvidia,tegra114-dc", |
| .data = &tegra114_dc_soc_info, |
| }, { |
| .compatible = "nvidia,tegra30-dc", |
| .data = &tegra30_dc_soc_info, |
| }, { |
| .compatible = "nvidia,tegra20-dc", |
| .data = &tegra20_dc_soc_info, |
| }, { |
| /* sentinel */ |
| } |
| }; |
| MODULE_DEVICE_TABLE(of, tegra_dc_of_match); |
| |
| static int tegra_dc_parse_dt(struct tegra_dc *dc) |
| { |
| struct device_node *np; |
| u32 value = 0; |
| int err; |
| |
| err = of_property_read_u32(dc->dev->of_node, "nvidia,head", &value); |
| if (err < 0) { |
| dev_err(dc->dev, "missing \"nvidia,head\" property\n"); |
| |
| /* |
| * If the nvidia,head property isn't present, try to find the |
| * correct head number by looking up the position of this |
| * display controller's node within the device tree. Assuming |
| * that the nodes are ordered properly in the DTS file and |
| * that the translation into a flattened device tree blob |
| * preserves that ordering this will actually yield the right |
| * head number. |
| * |
| * If those assumptions don't hold, this will still work for |
| * cases where only a single display controller is used. |
| */ |
| for_each_matching_node(np, tegra_dc_of_match) { |
| if (np == dc->dev->of_node) { |
| of_node_put(np); |
| break; |
| } |
| |
| value++; |
| } |
| } |
| |
| dc->pipe = value; |
| |
| return 0; |
| } |
| |
| static int tegra_dc_match_by_pipe(struct device *dev, const void *data) |
| { |
| struct tegra_dc *dc = dev_get_drvdata(dev); |
| unsigned int pipe = (unsigned long)(void *)data; |
| |
| return dc->pipe == pipe; |
| } |
| |
| static int tegra_dc_couple(struct tegra_dc *dc) |
| { |
| /* |
| * On Tegra20, DC1 requires DC0 to be taken out of reset in order to |
| * be enabled, otherwise CPU hangs on writing to CMD_DISPLAY_COMMAND / |
| * POWER_CONTROL registers during CRTC enabling. |
| */ |
| if (dc->soc->coupled_pm && dc->pipe == 1) { |
| struct device *companion; |
| struct tegra_dc *parent; |
| |
| companion = driver_find_device(dc->dev->driver, NULL, (const void *)0, |
| tegra_dc_match_by_pipe); |
| if (!companion) |
| return -EPROBE_DEFER; |
| |
| parent = dev_get_drvdata(companion); |
| dc->client.parent = &parent->client; |
| |
| dev_dbg(dc->dev, "coupled to %s\n", dev_name(companion)); |
| } |
| |
| return 0; |
| } |
| |
| static int tegra_dc_init_opp_table(struct tegra_dc *dc) |
| { |
| struct tegra_core_opp_params opp_params = {}; |
| int err; |
| |
| err = devm_tegra_core_dev_init_opp_table(dc->dev, &opp_params); |
| if (err && err != -ENODEV) |
| return err; |
| |
| if (err) |
| dc->has_opp_table = false; |
| else |
| dc->has_opp_table = true; |
| |
| return 0; |
| } |
| |
| static int tegra_dc_probe(struct platform_device *pdev) |
| { |
| u64 dma_mask = dma_get_mask(pdev->dev.parent); |
| struct tegra_dc *dc; |
| int err; |
| |
| err = dma_coerce_mask_and_coherent(&pdev->dev, dma_mask); |
| if (err < 0) { |
| dev_err(&pdev->dev, "failed to set DMA mask: %d\n", err); |
| return err; |
| } |
| |
| dc = devm_kzalloc(&pdev->dev, sizeof(*dc), GFP_KERNEL); |
| if (!dc) |
| return -ENOMEM; |
| |
| dc->soc = of_device_get_match_data(&pdev->dev); |
| |
| INIT_LIST_HEAD(&dc->list); |
| dc->dev = &pdev->dev; |
| |
| err = tegra_dc_parse_dt(dc); |
| if (err < 0) |
| return err; |
| |
| err = tegra_dc_couple(dc); |
| if (err < 0) |
| return err; |
| |
| dc->clk = devm_clk_get(&pdev->dev, NULL); |
| if (IS_ERR(dc->clk)) { |
| dev_err(&pdev->dev, "failed to get clock\n"); |
| return PTR_ERR(dc->clk); |
| } |
| |
| dc->rst = devm_reset_control_get(&pdev->dev, "dc"); |
| if (IS_ERR(dc->rst)) { |
| dev_err(&pdev->dev, "failed to get reset\n"); |
| return PTR_ERR(dc->rst); |
| } |
| |
| /* assert reset and disable clock */ |
| err = clk_prepare_enable(dc->clk); |
| if (err < 0) |
| return err; |
| |
| usleep_range(2000, 4000); |
| |
| err = reset_control_assert(dc->rst); |
| if (err < 0) |
| return err; |
| |
| usleep_range(2000, 4000); |
| |
| clk_disable_unprepare(dc->clk); |
| |
| if (dc->soc->has_powergate) { |
| if (dc->pipe == 0) |
| dc->powergate = TEGRA_POWERGATE_DIS; |
| else |
| dc->powergate = TEGRA_POWERGATE_DISB; |
| |
| tegra_powergate_power_off(dc->powergate); |
| } |
| |
| err = tegra_dc_init_opp_table(dc); |
| if (err < 0) |
| return err; |
| |
| dc->regs = devm_platform_ioremap_resource(pdev, 0); |
| if (IS_ERR(dc->regs)) |
| return PTR_ERR(dc->regs); |
| |
| dc->irq = platform_get_irq(pdev, 0); |
| if (dc->irq < 0) |
| return -ENXIO; |
| |
| err = tegra_dc_rgb_probe(dc); |
| if (err < 0 && err != -ENODEV) { |
| const char *level = KERN_ERR; |
| |
| if (err == -EPROBE_DEFER) |
| level = KERN_DEBUG; |
| |
| dev_printk(level, dc->dev, "failed to probe RGB output: %d\n", |
| err); |
| return err; |
| } |
| |
| platform_set_drvdata(pdev, dc); |
| pm_runtime_enable(&pdev->dev); |
| |
| INIT_LIST_HEAD(&dc->client.list); |
| dc->client.ops = &dc_client_ops; |
| dc->client.dev = &pdev->dev; |
| |
| err = host1x_client_register(&dc->client); |
| if (err < 0) { |
| dev_err(&pdev->dev, "failed to register host1x client: %d\n", |
| err); |
| goto disable_pm; |
| } |
| |
| return 0; |
| |
| disable_pm: |
| pm_runtime_disable(&pdev->dev); |
| tegra_dc_rgb_remove(dc); |
| |
| return err; |
| } |
| |
| static int tegra_dc_remove(struct platform_device *pdev) |
| { |
| struct tegra_dc *dc = platform_get_drvdata(pdev); |
| int err; |
| |
| err = host1x_client_unregister(&dc->client); |
| if (err < 0) { |
| dev_err(&pdev->dev, "failed to unregister host1x client: %d\n", |
| err); |
| return err; |
| } |
| |
| err = tegra_dc_rgb_remove(dc); |
| if (err < 0) { |
| dev_err(&pdev->dev, "failed to remove RGB output: %d\n", err); |
| return err; |
| } |
| |
| pm_runtime_disable(&pdev->dev); |
| |
| return 0; |
| } |
| |
| struct platform_driver tegra_dc_driver = { |
| .driver = { |
| .name = "tegra-dc", |
| .of_match_table = tegra_dc_of_match, |
| }, |
| .probe = tegra_dc_probe, |
| .remove = tegra_dc_remove, |
| }; |