blob: 537bc310a673f113b40460bc7c83c8461e944d8c [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
#include "misc.h"
#include "ctree.h"
#include "space-info.h"
#include "sysfs.h"
#include "volumes.h"
#include "free-space-cache.h"
#include "ordered-data.h"
#include "transaction.h"
#include "block-group.h"
u64 __pure btrfs_space_info_used(struct btrfs_space_info *s_info,
bool may_use_included)
{
ASSERT(s_info);
return s_info->bytes_used + s_info->bytes_reserved +
s_info->bytes_pinned + s_info->bytes_readonly +
(may_use_included ? s_info->bytes_may_use : 0);
}
/*
* after adding space to the filesystem, we need to clear the full flags
* on all the space infos.
*/
void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
{
struct list_head *head = &info->space_info;
struct btrfs_space_info *found;
rcu_read_lock();
list_for_each_entry_rcu(found, head, list)
found->full = 0;
rcu_read_unlock();
}
static int create_space_info(struct btrfs_fs_info *info, u64 flags)
{
struct btrfs_space_info *space_info;
int i;
int ret;
space_info = kzalloc(sizeof(*space_info), GFP_NOFS);
if (!space_info)
return -ENOMEM;
ret = percpu_counter_init(&space_info->total_bytes_pinned, 0,
GFP_KERNEL);
if (ret) {
kfree(space_info);
return ret;
}
for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
INIT_LIST_HEAD(&space_info->block_groups[i]);
init_rwsem(&space_info->groups_sem);
spin_lock_init(&space_info->lock);
space_info->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
INIT_LIST_HEAD(&space_info->ro_bgs);
INIT_LIST_HEAD(&space_info->tickets);
INIT_LIST_HEAD(&space_info->priority_tickets);
ret = btrfs_sysfs_add_space_info_type(info, space_info);
if (ret)
return ret;
list_add_rcu(&space_info->list, &info->space_info);
if (flags & BTRFS_BLOCK_GROUP_DATA)
info->data_sinfo = space_info;
return ret;
}
int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
{
struct btrfs_super_block *disk_super;
u64 features;
u64 flags;
int mixed = 0;
int ret;
disk_super = fs_info->super_copy;
if (!btrfs_super_root(disk_super))
return -EINVAL;
features = btrfs_super_incompat_flags(disk_super);
if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
mixed = 1;
flags = BTRFS_BLOCK_GROUP_SYSTEM;
ret = create_space_info(fs_info, flags);
if (ret)
goto out;
if (mixed) {
flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
ret = create_space_info(fs_info, flags);
} else {
flags = BTRFS_BLOCK_GROUP_METADATA;
ret = create_space_info(fs_info, flags);
if (ret)
goto out;
flags = BTRFS_BLOCK_GROUP_DATA;
ret = create_space_info(fs_info, flags);
}
out:
return ret;
}
void btrfs_update_space_info(struct btrfs_fs_info *info, u64 flags,
u64 total_bytes, u64 bytes_used,
u64 bytes_readonly,
struct btrfs_space_info **space_info)
{
struct btrfs_space_info *found;
int factor;
factor = btrfs_bg_type_to_factor(flags);
found = btrfs_find_space_info(info, flags);
ASSERT(found);
spin_lock(&found->lock);
found->total_bytes += total_bytes;
found->disk_total += total_bytes * factor;
found->bytes_used += bytes_used;
found->disk_used += bytes_used * factor;
found->bytes_readonly += bytes_readonly;
if (total_bytes > 0)
found->full = 0;
btrfs_try_granting_tickets(info, found);
spin_unlock(&found->lock);
*space_info = found;
}
struct btrfs_space_info *btrfs_find_space_info(struct btrfs_fs_info *info,
u64 flags)
{
struct list_head *head = &info->space_info;
struct btrfs_space_info *found;
flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
rcu_read_lock();
list_for_each_entry_rcu(found, head, list) {
if (found->flags & flags) {
rcu_read_unlock();
return found;
}
}
rcu_read_unlock();
return NULL;
}
static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
{
return (global->size << 1);
}
static int can_overcommit(struct btrfs_fs_info *fs_info,
struct btrfs_space_info *space_info, u64 bytes,
enum btrfs_reserve_flush_enum flush)
{
u64 profile;
u64 avail;
u64 used;
int factor;
/* Don't overcommit when in mixed mode. */
if (space_info->flags & BTRFS_BLOCK_GROUP_DATA)
return 0;
if (space_info->flags & BTRFS_BLOCK_GROUP_SYSTEM)
profile = btrfs_system_alloc_profile(fs_info);
else
profile = btrfs_metadata_alloc_profile(fs_info);
used = btrfs_space_info_used(space_info, true);
avail = atomic64_read(&fs_info->free_chunk_space);
/*
* If we have dup, raid1 or raid10 then only half of the free
* space is actually usable. For raid56, the space info used
* doesn't include the parity drive, so we don't have to
* change the math
*/
factor = btrfs_bg_type_to_factor(profile);
avail = div_u64(avail, factor);
/*
* If we aren't flushing all things, let us overcommit up to
* 1/2th of the space. If we can flush, don't let us overcommit
* too much, let it overcommit up to 1/8 of the space.
*/
if (flush == BTRFS_RESERVE_FLUSH_ALL)
avail >>= 3;
else
avail >>= 1;
if (used + bytes < space_info->total_bytes + avail)
return 1;
return 0;
}
/*
* This is for space we already have accounted in space_info->bytes_may_use, so
* basically when we're returning space from block_rsv's.
*/
void btrfs_try_granting_tickets(struct btrfs_fs_info *fs_info,
struct btrfs_space_info *space_info)
{
struct list_head *head;
enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH;
lockdep_assert_held(&space_info->lock);
head = &space_info->priority_tickets;
again:
while (!list_empty(head)) {
struct reserve_ticket *ticket;
u64 used = btrfs_space_info_used(space_info, true);
ticket = list_first_entry(head, struct reserve_ticket, list);
/* Check and see if our ticket can be satisified now. */
if ((used + ticket->bytes <= space_info->total_bytes) ||
can_overcommit(fs_info, space_info, ticket->bytes, flush)) {
btrfs_space_info_update_bytes_may_use(fs_info,
space_info,
ticket->bytes);
list_del_init(&ticket->list);
ticket->bytes = 0;
space_info->tickets_id++;
wake_up(&ticket->wait);
} else {
break;
}
}
if (head == &space_info->priority_tickets) {
head = &space_info->tickets;
flush = BTRFS_RESERVE_FLUSH_ALL;
goto again;
}
}
#define DUMP_BLOCK_RSV(fs_info, rsv_name) \
do { \
struct btrfs_block_rsv *__rsv = &(fs_info)->rsv_name; \
spin_lock(&__rsv->lock); \
btrfs_info(fs_info, #rsv_name ": size %llu reserved %llu", \
__rsv->size, __rsv->reserved); \
spin_unlock(&__rsv->lock); \
} while (0)
static void __btrfs_dump_space_info(struct btrfs_fs_info *fs_info,
struct btrfs_space_info *info)
{
lockdep_assert_held(&info->lock);
btrfs_info(fs_info, "space_info %llu has %llu free, is %sfull",
info->flags,
info->total_bytes - btrfs_space_info_used(info, true),
info->full ? "" : "not ");
btrfs_info(fs_info,
"space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu",
info->total_bytes, info->bytes_used, info->bytes_pinned,
info->bytes_reserved, info->bytes_may_use,
info->bytes_readonly);
DUMP_BLOCK_RSV(fs_info, global_block_rsv);
DUMP_BLOCK_RSV(fs_info, trans_block_rsv);
DUMP_BLOCK_RSV(fs_info, chunk_block_rsv);
DUMP_BLOCK_RSV(fs_info, delayed_block_rsv);
DUMP_BLOCK_RSV(fs_info, delayed_refs_rsv);
}
void btrfs_dump_space_info(struct btrfs_fs_info *fs_info,
struct btrfs_space_info *info, u64 bytes,
int dump_block_groups)
{
struct btrfs_block_group *cache;
int index = 0;
spin_lock(&info->lock);
__btrfs_dump_space_info(fs_info, info);
spin_unlock(&info->lock);
if (!dump_block_groups)
return;
down_read(&info->groups_sem);
again:
list_for_each_entry(cache, &info->block_groups[index], list) {
spin_lock(&cache->lock);
btrfs_info(fs_info,
"block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %s",
cache->start, cache->length, cache->used, cache->pinned,
cache->reserved, cache->ro ? "[readonly]" : "");
btrfs_dump_free_space(cache, bytes);
spin_unlock(&cache->lock);
}
if (++index < BTRFS_NR_RAID_TYPES)
goto again;
up_read(&info->groups_sem);
}
static void btrfs_writeback_inodes_sb_nr(struct btrfs_fs_info *fs_info,
unsigned long nr_pages, int nr_items)
{
struct super_block *sb = fs_info->sb;
if (down_read_trylock(&sb->s_umount)) {
writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
up_read(&sb->s_umount);
} else {
/*
* We needn't worry the filesystem going from r/w to r/o though
* we don't acquire ->s_umount mutex, because the filesystem
* should guarantee the delalloc inodes list be empty after
* the filesystem is readonly(all dirty pages are written to
* the disk).
*/
btrfs_start_delalloc_roots(fs_info, nr_items);
if (!current->journal_info)
btrfs_wait_ordered_roots(fs_info, nr_items, 0, (u64)-1);
}
}
static inline u64 calc_reclaim_items_nr(struct btrfs_fs_info *fs_info,
u64 to_reclaim)
{
u64 bytes;
u64 nr;
bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
nr = div64_u64(to_reclaim, bytes);
if (!nr)
nr = 1;
return nr;
}
#define EXTENT_SIZE_PER_ITEM SZ_256K
/*
* shrink metadata reservation for delalloc
*/
static void shrink_delalloc(struct btrfs_fs_info *fs_info, u64 to_reclaim,
u64 orig, bool wait_ordered)
{
struct btrfs_space_info *space_info;
struct btrfs_trans_handle *trans;
u64 delalloc_bytes;
u64 dio_bytes;
u64 async_pages;
u64 items;
long time_left;
unsigned long nr_pages;
int loops;
/* Calc the number of the pages we need flush for space reservation */
items = calc_reclaim_items_nr(fs_info, to_reclaim);
to_reclaim = items * EXTENT_SIZE_PER_ITEM;
trans = (struct btrfs_trans_handle *)current->journal_info;
space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
delalloc_bytes = percpu_counter_sum_positive(
&fs_info->delalloc_bytes);
dio_bytes = percpu_counter_sum_positive(&fs_info->dio_bytes);
if (delalloc_bytes == 0 && dio_bytes == 0) {
if (trans)
return;
if (wait_ordered)
btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
return;
}
/*
* If we are doing more ordered than delalloc we need to just wait on
* ordered extents, otherwise we'll waste time trying to flush delalloc
* that likely won't give us the space back we need.
*/
if (dio_bytes > delalloc_bytes)
wait_ordered = true;
loops = 0;
while ((delalloc_bytes || dio_bytes) && loops < 3) {
nr_pages = min(delalloc_bytes, to_reclaim) >> PAGE_SHIFT;
/*
* Triggers inode writeback for up to nr_pages. This will invoke
* ->writepages callback and trigger delalloc filling
* (btrfs_run_delalloc_range()).
*/
btrfs_writeback_inodes_sb_nr(fs_info, nr_pages, items);
/*
* We need to wait for the compressed pages to start before
* we continue.
*/
async_pages = atomic_read(&fs_info->async_delalloc_pages);
if (!async_pages)
goto skip_async;
/*
* Calculate how many compressed pages we want to be written
* before we continue. I.e if there are more async pages than we
* require wait_event will wait until nr_pages are written.
*/
if (async_pages <= nr_pages)
async_pages = 0;
else
async_pages -= nr_pages;
wait_event(fs_info->async_submit_wait,
atomic_read(&fs_info->async_delalloc_pages) <=
(int)async_pages);
skip_async:
spin_lock(&space_info->lock);
if (list_empty(&space_info->tickets) &&
list_empty(&space_info->priority_tickets)) {
spin_unlock(&space_info->lock);
break;
}
spin_unlock(&space_info->lock);
loops++;
if (wait_ordered && !trans) {
btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
} else {
time_left = schedule_timeout_killable(1);
if (time_left)
break;
}
delalloc_bytes = percpu_counter_sum_positive(
&fs_info->delalloc_bytes);
dio_bytes = percpu_counter_sum_positive(&fs_info->dio_bytes);
}
}
/**
* maybe_commit_transaction - possibly commit the transaction if its ok to
* @root - the root we're allocating for
* @bytes - the number of bytes we want to reserve
* @force - force the commit
*
* This will check to make sure that committing the transaction will actually
* get us somewhere and then commit the transaction if it does. Otherwise it
* will return -ENOSPC.
*/
static int may_commit_transaction(struct btrfs_fs_info *fs_info,
struct btrfs_space_info *space_info)
{
struct reserve_ticket *ticket = NULL;
struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_block_rsv;
struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
struct btrfs_trans_handle *trans;
u64 bytes_needed;
u64 reclaim_bytes = 0;
u64 cur_free_bytes = 0;
trans = (struct btrfs_trans_handle *)current->journal_info;
if (trans)
return -EAGAIN;
spin_lock(&space_info->lock);
cur_free_bytes = btrfs_space_info_used(space_info, true);
if (cur_free_bytes < space_info->total_bytes)
cur_free_bytes = space_info->total_bytes - cur_free_bytes;
else
cur_free_bytes = 0;
if (!list_empty(&space_info->priority_tickets))
ticket = list_first_entry(&space_info->priority_tickets,
struct reserve_ticket, list);
else if (!list_empty(&space_info->tickets))
ticket = list_first_entry(&space_info->tickets,
struct reserve_ticket, list);
bytes_needed = (ticket) ? ticket->bytes : 0;
if (bytes_needed > cur_free_bytes)
bytes_needed -= cur_free_bytes;
else
bytes_needed = 0;
spin_unlock(&space_info->lock);
if (!bytes_needed)
return 0;
trans = btrfs_join_transaction(fs_info->extent_root);
if (IS_ERR(trans))
return PTR_ERR(trans);
/*
* See if there is enough pinned space to make this reservation, or if
* we have block groups that are going to be freed, allowing us to
* possibly do a chunk allocation the next loop through.
*/
if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags) ||
__percpu_counter_compare(&space_info->total_bytes_pinned,
bytes_needed,
BTRFS_TOTAL_BYTES_PINNED_BATCH) >= 0)
goto commit;
/*
* See if there is some space in the delayed insertion reservation for
* this reservation.
*/
if (space_info != delayed_rsv->space_info)
goto enospc;
spin_lock(&delayed_rsv->lock);
reclaim_bytes += delayed_rsv->reserved;
spin_unlock(&delayed_rsv->lock);
spin_lock(&delayed_refs_rsv->lock);
reclaim_bytes += delayed_refs_rsv->reserved;
spin_unlock(&delayed_refs_rsv->lock);
if (reclaim_bytes >= bytes_needed)
goto commit;
bytes_needed -= reclaim_bytes;
if (__percpu_counter_compare(&space_info->total_bytes_pinned,
bytes_needed,
BTRFS_TOTAL_BYTES_PINNED_BATCH) < 0)
goto enospc;
commit:
return btrfs_commit_transaction(trans);
enospc:
btrfs_end_transaction(trans);
return -ENOSPC;
}
/*
* Try to flush some data based on policy set by @state. This is only advisory
* and may fail for various reasons. The caller is supposed to examine the
* state of @space_info to detect the outcome.
*/
static void flush_space(struct btrfs_fs_info *fs_info,
struct btrfs_space_info *space_info, u64 num_bytes,
int state)
{
struct btrfs_root *root = fs_info->extent_root;
struct btrfs_trans_handle *trans;
int nr;
int ret = 0;
switch (state) {
case FLUSH_DELAYED_ITEMS_NR:
case FLUSH_DELAYED_ITEMS:
if (state == FLUSH_DELAYED_ITEMS_NR)
nr = calc_reclaim_items_nr(fs_info, num_bytes) * 2;
else
nr = -1;
trans = btrfs_join_transaction(root);
if (IS_ERR(trans)) {
ret = PTR_ERR(trans);
break;
}
ret = btrfs_run_delayed_items_nr(trans, nr);
btrfs_end_transaction(trans);
break;
case FLUSH_DELALLOC:
case FLUSH_DELALLOC_WAIT:
shrink_delalloc(fs_info, num_bytes * 2, num_bytes,
state == FLUSH_DELALLOC_WAIT);
break;
case FLUSH_DELAYED_REFS_NR:
case FLUSH_DELAYED_REFS:
trans = btrfs_join_transaction(root);
if (IS_ERR(trans)) {
ret = PTR_ERR(trans);
break;
}
if (state == FLUSH_DELAYED_REFS_NR)
nr = calc_reclaim_items_nr(fs_info, num_bytes);
else
nr = 0;
btrfs_run_delayed_refs(trans, nr);
btrfs_end_transaction(trans);
break;
case ALLOC_CHUNK:
case ALLOC_CHUNK_FORCE:
trans = btrfs_join_transaction(root);
if (IS_ERR(trans)) {
ret = PTR_ERR(trans);
break;
}
ret = btrfs_chunk_alloc(trans,
btrfs_metadata_alloc_profile(fs_info),
(state == ALLOC_CHUNK) ? CHUNK_ALLOC_NO_FORCE :
CHUNK_ALLOC_FORCE);
btrfs_end_transaction(trans);
if (ret > 0 || ret == -ENOSPC)
ret = 0;
break;
case RUN_DELAYED_IPUTS:
/*
* If we have pending delayed iputs then we could free up a
* bunch of pinned space, so make sure we run the iputs before
* we do our pinned bytes check below.
*/
btrfs_run_delayed_iputs(fs_info);
btrfs_wait_on_delayed_iputs(fs_info);
break;
case COMMIT_TRANS:
ret = may_commit_transaction(fs_info, space_info);
break;
default:
ret = -ENOSPC;
break;
}
trace_btrfs_flush_space(fs_info, space_info->flags, num_bytes, state,
ret);
return;
}
static inline u64
btrfs_calc_reclaim_metadata_size(struct btrfs_fs_info *fs_info,
struct btrfs_space_info *space_info)
{
struct reserve_ticket *ticket;
u64 used;
u64 expected;
u64 to_reclaim = 0;
list_for_each_entry(ticket, &space_info->tickets, list)
to_reclaim += ticket->bytes;
list_for_each_entry(ticket, &space_info->priority_tickets, list)
to_reclaim += ticket->bytes;
if (to_reclaim)
return to_reclaim;
to_reclaim = min_t(u64, num_online_cpus() * SZ_1M, SZ_16M);
if (can_overcommit(fs_info, space_info, to_reclaim,
BTRFS_RESERVE_FLUSH_ALL))
return 0;
used = btrfs_space_info_used(space_info, true);
if (can_overcommit(fs_info, space_info, SZ_1M, BTRFS_RESERVE_FLUSH_ALL))
expected = div_factor_fine(space_info->total_bytes, 95);
else
expected = div_factor_fine(space_info->total_bytes, 90);
if (used > expected)
to_reclaim = used - expected;
else
to_reclaim = 0;
to_reclaim = min(to_reclaim, space_info->bytes_may_use +
space_info->bytes_reserved);
return to_reclaim;
}
static inline int need_do_async_reclaim(struct btrfs_fs_info *fs_info,
struct btrfs_space_info *space_info,
u64 used)
{
u64 thresh = div_factor_fine(space_info->total_bytes, 98);
/* If we're just plain full then async reclaim just slows us down. */
if ((space_info->bytes_used + space_info->bytes_reserved) >= thresh)
return 0;
if (!btrfs_calc_reclaim_metadata_size(fs_info, space_info))
return 0;
return (used >= thresh && !btrfs_fs_closing(fs_info) &&
!test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
}
/*
* maybe_fail_all_tickets - we've exhausted our flushing, start failing tickets
* @fs_info - fs_info for this fs
* @space_info - the space info we were flushing
*
* We call this when we've exhausted our flushing ability and haven't made
* progress in satisfying tickets. The reservation code handles tickets in
* order, so if there is a large ticket first and then smaller ones we could
* very well satisfy the smaller tickets. This will attempt to wake up any
* tickets in the list to catch this case.
*
* This function returns true if it was able to make progress by clearing out
* other tickets, or if it stumbles across a ticket that was smaller than the
* first ticket.
*/
static bool maybe_fail_all_tickets(struct btrfs_fs_info *fs_info,
struct btrfs_space_info *space_info)
{
struct reserve_ticket *ticket;
u64 tickets_id = space_info->tickets_id;
u64 first_ticket_bytes = 0;
if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
btrfs_info(fs_info, "cannot satisfy tickets, dumping space info");
__btrfs_dump_space_info(fs_info, space_info);
}
while (!list_empty(&space_info->tickets) &&
tickets_id == space_info->tickets_id) {
ticket = list_first_entry(&space_info->tickets,
struct reserve_ticket, list);
/*
* may_commit_transaction will avoid committing the transaction
* if it doesn't feel like the space reclaimed by the commit
* would result in the ticket succeeding. However if we have a
* smaller ticket in the queue it may be small enough to be
* satisified by committing the transaction, so if any
* subsequent ticket is smaller than the first ticket go ahead
* and send us back for another loop through the enospc flushing
* code.
*/
if (first_ticket_bytes == 0)
first_ticket_bytes = ticket->bytes;
else if (first_ticket_bytes > ticket->bytes)
return true;
if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
btrfs_info(fs_info, "failing ticket with %llu bytes",
ticket->bytes);
list_del_init(&ticket->list);
ticket->error = -ENOSPC;
wake_up(&ticket->wait);
/*
* We're just throwing tickets away, so more flushing may not
* trip over btrfs_try_granting_tickets, so we need to call it
* here to see if we can make progress with the next ticket in
* the list.
*/
btrfs_try_granting_tickets(fs_info, space_info);
}
return (tickets_id != space_info->tickets_id);
}
/*
* This is for normal flushers, we can wait all goddamned day if we want to. We
* will loop and continuously try to flush as long as we are making progress.
* We count progress as clearing off tickets each time we have to loop.
*/
static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
{
struct btrfs_fs_info *fs_info;
struct btrfs_space_info *space_info;
u64 to_reclaim;
int flush_state;
int commit_cycles = 0;
u64 last_tickets_id;
fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
spin_lock(&space_info->lock);
to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info);
if (!to_reclaim) {
space_info->flush = 0;
spin_unlock(&space_info->lock);
return;
}
last_tickets_id = space_info->tickets_id;
spin_unlock(&space_info->lock);
flush_state = FLUSH_DELAYED_ITEMS_NR;
do {
flush_space(fs_info, space_info, to_reclaim, flush_state);
spin_lock(&space_info->lock);
if (list_empty(&space_info->tickets)) {
space_info->flush = 0;
spin_unlock(&space_info->lock);
return;
}
to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info,
space_info);
if (last_tickets_id == space_info->tickets_id) {
flush_state++;
} else {
last_tickets_id = space_info->tickets_id;
flush_state = FLUSH_DELAYED_ITEMS_NR;
if (commit_cycles)
commit_cycles--;
}
/*
* We don't want to force a chunk allocation until we've tried
* pretty hard to reclaim space. Think of the case where we
* freed up a bunch of space and so have a lot of pinned space
* to reclaim. We would rather use that than possibly create a
* underutilized metadata chunk. So if this is our first run
* through the flushing state machine skip ALLOC_CHUNK_FORCE and
* commit the transaction. If nothing has changed the next go
* around then we can force a chunk allocation.
*/
if (flush_state == ALLOC_CHUNK_FORCE && !commit_cycles)
flush_state++;
if (flush_state > COMMIT_TRANS) {
commit_cycles++;
if (commit_cycles > 2) {
if (maybe_fail_all_tickets(fs_info, space_info)) {
flush_state = FLUSH_DELAYED_ITEMS_NR;
commit_cycles--;
} else {
space_info->flush = 0;
}
} else {
flush_state = FLUSH_DELAYED_ITEMS_NR;
}
}
spin_unlock(&space_info->lock);
} while (flush_state <= COMMIT_TRANS);
}
void btrfs_init_async_reclaim_work(struct work_struct *work)
{
INIT_WORK(work, btrfs_async_reclaim_metadata_space);
}
static const enum btrfs_flush_state priority_flush_states[] = {
FLUSH_DELAYED_ITEMS_NR,
FLUSH_DELAYED_ITEMS,
ALLOC_CHUNK,
};
static const enum btrfs_flush_state evict_flush_states[] = {
FLUSH_DELAYED_ITEMS_NR,
FLUSH_DELAYED_ITEMS,
FLUSH_DELAYED_REFS_NR,
FLUSH_DELAYED_REFS,
FLUSH_DELALLOC,
FLUSH_DELALLOC_WAIT,
ALLOC_CHUNK,
COMMIT_TRANS,
};
static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info,
struct btrfs_space_info *space_info,
struct reserve_ticket *ticket,
const enum btrfs_flush_state *states,
int states_nr)
{
u64 to_reclaim;
int flush_state;
spin_lock(&space_info->lock);
to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info);
if (!to_reclaim) {
spin_unlock(&space_info->lock);
return;
}
spin_unlock(&space_info->lock);
flush_state = 0;
do {
flush_space(fs_info, space_info, to_reclaim, states[flush_state]);
flush_state++;
spin_lock(&space_info->lock);
if (ticket->bytes == 0) {
spin_unlock(&space_info->lock);
return;
}
spin_unlock(&space_info->lock);
} while (flush_state < states_nr);
}
static void wait_reserve_ticket(struct btrfs_fs_info *fs_info,
struct btrfs_space_info *space_info,
struct reserve_ticket *ticket)
{
DEFINE_WAIT(wait);
int ret = 0;
spin_lock(&space_info->lock);
while (ticket->bytes > 0 && ticket->error == 0) {
ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE);
if (ret) {
/*
* Delete us from the list. After we unlock the space
* info, we don't want the async reclaim job to reserve
* space for this ticket. If that would happen, then the
* ticket's task would not known that space was reserved
* despite getting an error, resulting in a space leak
* (bytes_may_use counter of our space_info).
*/
list_del_init(&ticket->list);
ticket->error = -EINTR;
break;
}
spin_unlock(&space_info->lock);
schedule();
finish_wait(&ticket->wait, &wait);
spin_lock(&space_info->lock);
}
spin_unlock(&space_info->lock);
}
/**
* handle_reserve_ticket - do the appropriate flushing and waiting for a ticket
* @fs_info - the fs
* @space_info - the space_info for the reservation
* @ticket - the ticket for the reservation
* @flush - how much we can flush
*
* This does the work of figuring out how to flush for the ticket, waiting for
* the reservation, and returning the appropriate error if there is one.
*/
static int handle_reserve_ticket(struct btrfs_fs_info *fs_info,
struct btrfs_space_info *space_info,
struct reserve_ticket *ticket,
enum btrfs_reserve_flush_enum flush)
{
int ret;
switch (flush) {
case BTRFS_RESERVE_FLUSH_ALL:
wait_reserve_ticket(fs_info, space_info, ticket);
break;
case BTRFS_RESERVE_FLUSH_LIMIT:
priority_reclaim_metadata_space(fs_info, space_info, ticket,
priority_flush_states,
ARRAY_SIZE(priority_flush_states));
break;
case BTRFS_RESERVE_FLUSH_EVICT:
priority_reclaim_metadata_space(fs_info, space_info, ticket,
evict_flush_states,
ARRAY_SIZE(evict_flush_states));
break;
default:
ASSERT(0);
break;
}
spin_lock(&space_info->lock);
ret = ticket->error;
if (ticket->bytes || ticket->error) {
/*
* Need to delete here for priority tickets. For regular tickets
* either the async reclaim job deletes the ticket from the list
* or we delete it ourselves at wait_reserve_ticket().
*/
list_del_init(&ticket->list);
if (!ret)
ret = -ENOSPC;
}
spin_unlock(&space_info->lock);
ASSERT(list_empty(&ticket->list));
/*
* Check that we can't have an error set if the reservation succeeded,
* as that would confuse tasks and lead them to error out without
* releasing reserved space (if an error happens the expectation is that
* space wasn't reserved at all).
*/
ASSERT(!(ticket->bytes == 0 && ticket->error));
return ret;
}
/**
* reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
* @root - the root we're allocating for
* @space_info - the space info we want to allocate from
* @orig_bytes - the number of bytes we want
* @flush - whether or not we can flush to make our reservation
*
* This will reserve orig_bytes number of bytes from the space info associated
* with the block_rsv. If there is not enough space it will make an attempt to
* flush out space to make room. It will do this by flushing delalloc if
* possible or committing the transaction. If flush is 0 then no attempts to
* regain reservations will be made and this will fail if there is not enough
* space already.
*/
static int __reserve_metadata_bytes(struct btrfs_fs_info *fs_info,
struct btrfs_space_info *space_info,
u64 orig_bytes,
enum btrfs_reserve_flush_enum flush)
{
struct reserve_ticket ticket;
u64 used;
int ret = 0;
bool pending_tickets;
ASSERT(orig_bytes);
ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_ALL);
spin_lock(&space_info->lock);
ret = -ENOSPC;
used = btrfs_space_info_used(space_info, true);
pending_tickets = !list_empty(&space_info->tickets) ||
!list_empty(&space_info->priority_tickets);
/*
* Carry on if we have enough space (short-circuit) OR call
* can_overcommit() to ensure we can overcommit to continue.
*/
if (!pending_tickets &&
((used + orig_bytes <= space_info->total_bytes) ||
can_overcommit(fs_info, space_info, orig_bytes, flush))) {
btrfs_space_info_update_bytes_may_use(fs_info, space_info,
orig_bytes);
ret = 0;
}
/*
* If we couldn't make a reservation then setup our reservation ticket
* and kick the async worker if it's not already running.
*
* If we are a priority flusher then we just need to add our ticket to
* the list and we will do our own flushing further down.
*/
if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
ticket.bytes = orig_bytes;
ticket.error = 0;
init_waitqueue_head(&ticket.wait);
if (flush == BTRFS_RESERVE_FLUSH_ALL) {
list_add_tail(&ticket.list, &space_info->tickets);
if (!space_info->flush) {
space_info->flush = 1;
trace_btrfs_trigger_flush(fs_info,
space_info->flags,
orig_bytes, flush,
"enospc");
queue_work(system_unbound_wq,
&fs_info->async_reclaim_work);
}
} else {
list_add_tail(&ticket.list,
&space_info->priority_tickets);
}
} else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
used += orig_bytes;
/*
* We will do the space reservation dance during log replay,
* which means we won't have fs_info->fs_root set, so don't do
* the async reclaim as we will panic.
*/
if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags) &&
need_do_async_reclaim(fs_info, space_info, used) &&
!work_busy(&fs_info->async_reclaim_work)) {
trace_btrfs_trigger_flush(fs_info, space_info->flags,
orig_bytes, flush, "preempt");
queue_work(system_unbound_wq,
&fs_info->async_reclaim_work);
}
}
spin_unlock(&space_info->lock);
if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
return ret;
return handle_reserve_ticket(fs_info, space_info, &ticket, flush);
}
/**
* reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
* @root - the root we're allocating for
* @block_rsv - the block_rsv we're allocating for
* @orig_bytes - the number of bytes we want
* @flush - whether or not we can flush to make our reservation
*
* This will reserve orig_bytes number of bytes from the space info associated
* with the block_rsv. If there is not enough space it will make an attempt to
* flush out space to make room. It will do this by flushing delalloc if
* possible or committing the transaction. If flush is 0 then no attempts to
* regain reservations will be made and this will fail if there is not enough
* space already.
*/
int btrfs_reserve_metadata_bytes(struct btrfs_root *root,
struct btrfs_block_rsv *block_rsv,
u64 orig_bytes,
enum btrfs_reserve_flush_enum flush)
{
struct btrfs_fs_info *fs_info = root->fs_info;
struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
int ret;
ret = __reserve_metadata_bytes(fs_info, block_rsv->space_info,
orig_bytes, flush);
if (ret == -ENOSPC &&
unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
if (block_rsv != global_rsv &&
!btrfs_block_rsv_use_bytes(global_rsv, orig_bytes))
ret = 0;
}
if (ret == -ENOSPC) {
trace_btrfs_space_reservation(fs_info, "space_info:enospc",
block_rsv->space_info->flags,
orig_bytes, 1);
if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
btrfs_dump_space_info(fs_info, block_rsv->space_info,
orig_bytes, 0);
}
return ret;
}