| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * f2fs compress support |
| * |
| * Copyright (c) 2019 Chao Yu <chao@kernel.org> |
| */ |
| |
| #include <linux/fs.h> |
| #include <linux/f2fs_fs.h> |
| #include <linux/writeback.h> |
| #include <linux/backing-dev.h> |
| #include <linux/lzo.h> |
| #include <linux/lz4.h> |
| #include <linux/zstd.h> |
| #include <linux/pagevec.h> |
| |
| #include "f2fs.h" |
| #include "node.h" |
| #include "segment.h" |
| #include <trace/events/f2fs.h> |
| |
| static struct kmem_cache *cic_entry_slab; |
| static struct kmem_cache *dic_entry_slab; |
| |
| static void *page_array_alloc(struct inode *inode, int nr) |
| { |
| struct f2fs_sb_info *sbi = F2FS_I_SB(inode); |
| unsigned int size = sizeof(struct page *) * nr; |
| |
| if (likely(size <= sbi->page_array_slab_size)) |
| return f2fs_kmem_cache_alloc(sbi->page_array_slab, |
| GFP_F2FS_ZERO, false, F2FS_I_SB(inode)); |
| return f2fs_kzalloc(sbi, size, GFP_NOFS); |
| } |
| |
| static void page_array_free(struct inode *inode, void *pages, int nr) |
| { |
| struct f2fs_sb_info *sbi = F2FS_I_SB(inode); |
| unsigned int size = sizeof(struct page *) * nr; |
| |
| if (!pages) |
| return; |
| |
| if (likely(size <= sbi->page_array_slab_size)) |
| kmem_cache_free(sbi->page_array_slab, pages); |
| else |
| kfree(pages); |
| } |
| |
| struct f2fs_compress_ops { |
| int (*init_compress_ctx)(struct compress_ctx *cc); |
| void (*destroy_compress_ctx)(struct compress_ctx *cc); |
| int (*compress_pages)(struct compress_ctx *cc); |
| int (*init_decompress_ctx)(struct decompress_io_ctx *dic); |
| void (*destroy_decompress_ctx)(struct decompress_io_ctx *dic); |
| int (*decompress_pages)(struct decompress_io_ctx *dic); |
| }; |
| |
| static unsigned int offset_in_cluster(struct compress_ctx *cc, pgoff_t index) |
| { |
| return index & (cc->cluster_size - 1); |
| } |
| |
| static pgoff_t cluster_idx(struct compress_ctx *cc, pgoff_t index) |
| { |
| return index >> cc->log_cluster_size; |
| } |
| |
| static pgoff_t start_idx_of_cluster(struct compress_ctx *cc) |
| { |
| return cc->cluster_idx << cc->log_cluster_size; |
| } |
| |
| bool f2fs_is_compressed_page(struct page *page) |
| { |
| if (!PagePrivate(page)) |
| return false; |
| if (!page_private(page)) |
| return false; |
| if (page_private_nonpointer(page)) |
| return false; |
| |
| f2fs_bug_on(F2FS_M_SB(page->mapping), |
| *((u32 *)page_private(page)) != F2FS_COMPRESSED_PAGE_MAGIC); |
| return true; |
| } |
| |
| static void f2fs_set_compressed_page(struct page *page, |
| struct inode *inode, pgoff_t index, void *data) |
| { |
| attach_page_private(page, (void *)data); |
| |
| /* i_crypto_info and iv index */ |
| page->index = index; |
| page->mapping = inode->i_mapping; |
| } |
| |
| static void f2fs_drop_rpages(struct compress_ctx *cc, int len, bool unlock) |
| { |
| int i; |
| |
| for (i = 0; i < len; i++) { |
| if (!cc->rpages[i]) |
| continue; |
| if (unlock) |
| unlock_page(cc->rpages[i]); |
| else |
| put_page(cc->rpages[i]); |
| } |
| } |
| |
| static void f2fs_put_rpages(struct compress_ctx *cc) |
| { |
| f2fs_drop_rpages(cc, cc->cluster_size, false); |
| } |
| |
| static void f2fs_unlock_rpages(struct compress_ctx *cc, int len) |
| { |
| f2fs_drop_rpages(cc, len, true); |
| } |
| |
| static void f2fs_put_rpages_wbc(struct compress_ctx *cc, |
| struct writeback_control *wbc, bool redirty, int unlock) |
| { |
| unsigned int i; |
| |
| for (i = 0; i < cc->cluster_size; i++) { |
| if (!cc->rpages[i]) |
| continue; |
| if (redirty) |
| redirty_page_for_writepage(wbc, cc->rpages[i]); |
| f2fs_put_page(cc->rpages[i], unlock); |
| } |
| } |
| |
| struct page *f2fs_compress_control_page(struct page *page) |
| { |
| return ((struct compress_io_ctx *)page_private(page))->rpages[0]; |
| } |
| |
| int f2fs_init_compress_ctx(struct compress_ctx *cc) |
| { |
| if (cc->rpages) |
| return 0; |
| |
| cc->rpages = page_array_alloc(cc->inode, cc->cluster_size); |
| return cc->rpages ? 0 : -ENOMEM; |
| } |
| |
| void f2fs_destroy_compress_ctx(struct compress_ctx *cc, bool reuse) |
| { |
| page_array_free(cc->inode, cc->rpages, cc->cluster_size); |
| cc->rpages = NULL; |
| cc->nr_rpages = 0; |
| cc->nr_cpages = 0; |
| if (!reuse) |
| cc->cluster_idx = NULL_CLUSTER; |
| } |
| |
| void f2fs_compress_ctx_add_page(struct compress_ctx *cc, struct page *page) |
| { |
| unsigned int cluster_ofs; |
| |
| if (!f2fs_cluster_can_merge_page(cc, page->index)) |
| f2fs_bug_on(F2FS_I_SB(cc->inode), 1); |
| |
| cluster_ofs = offset_in_cluster(cc, page->index); |
| cc->rpages[cluster_ofs] = page; |
| cc->nr_rpages++; |
| cc->cluster_idx = cluster_idx(cc, page->index); |
| } |
| |
| #ifdef CONFIG_F2FS_FS_LZO |
| static int lzo_init_compress_ctx(struct compress_ctx *cc) |
| { |
| cc->private = f2fs_kvmalloc(F2FS_I_SB(cc->inode), |
| LZO1X_MEM_COMPRESS, GFP_NOFS); |
| if (!cc->private) |
| return -ENOMEM; |
| |
| cc->clen = lzo1x_worst_compress(PAGE_SIZE << cc->log_cluster_size); |
| return 0; |
| } |
| |
| static void lzo_destroy_compress_ctx(struct compress_ctx *cc) |
| { |
| kvfree(cc->private); |
| cc->private = NULL; |
| } |
| |
| static int lzo_compress_pages(struct compress_ctx *cc) |
| { |
| int ret; |
| |
| ret = lzo1x_1_compress(cc->rbuf, cc->rlen, cc->cbuf->cdata, |
| &cc->clen, cc->private); |
| if (ret != LZO_E_OK) { |
| printk_ratelimited("%sF2FS-fs (%s): lzo compress failed, ret:%d\n", |
| KERN_ERR, F2FS_I_SB(cc->inode)->sb->s_id, ret); |
| return -EIO; |
| } |
| return 0; |
| } |
| |
| static int lzo_decompress_pages(struct decompress_io_ctx *dic) |
| { |
| int ret; |
| |
| ret = lzo1x_decompress_safe(dic->cbuf->cdata, dic->clen, |
| dic->rbuf, &dic->rlen); |
| if (ret != LZO_E_OK) { |
| printk_ratelimited("%sF2FS-fs (%s): lzo decompress failed, ret:%d\n", |
| KERN_ERR, F2FS_I_SB(dic->inode)->sb->s_id, ret); |
| return -EIO; |
| } |
| |
| if (dic->rlen != PAGE_SIZE << dic->log_cluster_size) { |
| printk_ratelimited("%sF2FS-fs (%s): lzo invalid rlen:%zu, " |
| "expected:%lu\n", KERN_ERR, |
| F2FS_I_SB(dic->inode)->sb->s_id, |
| dic->rlen, |
| PAGE_SIZE << dic->log_cluster_size); |
| return -EIO; |
| } |
| return 0; |
| } |
| |
| static const struct f2fs_compress_ops f2fs_lzo_ops = { |
| .init_compress_ctx = lzo_init_compress_ctx, |
| .destroy_compress_ctx = lzo_destroy_compress_ctx, |
| .compress_pages = lzo_compress_pages, |
| .decompress_pages = lzo_decompress_pages, |
| }; |
| #endif |
| |
| #ifdef CONFIG_F2FS_FS_LZ4 |
| static int lz4_init_compress_ctx(struct compress_ctx *cc) |
| { |
| unsigned int size = LZ4_MEM_COMPRESS; |
| |
| #ifdef CONFIG_F2FS_FS_LZ4HC |
| if (F2FS_I(cc->inode)->i_compress_flag >> COMPRESS_LEVEL_OFFSET) |
| size = LZ4HC_MEM_COMPRESS; |
| #endif |
| |
| cc->private = f2fs_kvmalloc(F2FS_I_SB(cc->inode), size, GFP_NOFS); |
| if (!cc->private) |
| return -ENOMEM; |
| |
| /* |
| * we do not change cc->clen to LZ4_compressBound(inputsize) to |
| * adapt worst compress case, because lz4 compressor can handle |
| * output budget properly. |
| */ |
| cc->clen = cc->rlen - PAGE_SIZE - COMPRESS_HEADER_SIZE; |
| return 0; |
| } |
| |
| static void lz4_destroy_compress_ctx(struct compress_ctx *cc) |
| { |
| kvfree(cc->private); |
| cc->private = NULL; |
| } |
| |
| #ifdef CONFIG_F2FS_FS_LZ4HC |
| static int lz4hc_compress_pages(struct compress_ctx *cc) |
| { |
| unsigned char level = F2FS_I(cc->inode)->i_compress_flag >> |
| COMPRESS_LEVEL_OFFSET; |
| int len; |
| |
| if (level) |
| len = LZ4_compress_HC(cc->rbuf, cc->cbuf->cdata, cc->rlen, |
| cc->clen, level, cc->private); |
| else |
| len = LZ4_compress_default(cc->rbuf, cc->cbuf->cdata, cc->rlen, |
| cc->clen, cc->private); |
| if (!len) |
| return -EAGAIN; |
| |
| cc->clen = len; |
| return 0; |
| } |
| #endif |
| |
| static int lz4_compress_pages(struct compress_ctx *cc) |
| { |
| int len; |
| |
| #ifdef CONFIG_F2FS_FS_LZ4HC |
| return lz4hc_compress_pages(cc); |
| #endif |
| len = LZ4_compress_default(cc->rbuf, cc->cbuf->cdata, cc->rlen, |
| cc->clen, cc->private); |
| if (!len) |
| return -EAGAIN; |
| |
| cc->clen = len; |
| return 0; |
| } |
| |
| static int lz4_decompress_pages(struct decompress_io_ctx *dic) |
| { |
| int ret; |
| |
| ret = LZ4_decompress_safe(dic->cbuf->cdata, dic->rbuf, |
| dic->clen, dic->rlen); |
| if (ret < 0) { |
| printk_ratelimited("%sF2FS-fs (%s): lz4 decompress failed, ret:%d\n", |
| KERN_ERR, F2FS_I_SB(dic->inode)->sb->s_id, ret); |
| return -EIO; |
| } |
| |
| if (ret != PAGE_SIZE << dic->log_cluster_size) { |
| printk_ratelimited("%sF2FS-fs (%s): lz4 invalid rlen:%zu, " |
| "expected:%lu\n", KERN_ERR, |
| F2FS_I_SB(dic->inode)->sb->s_id, |
| dic->rlen, |
| PAGE_SIZE << dic->log_cluster_size); |
| return -EIO; |
| } |
| return 0; |
| } |
| |
| static const struct f2fs_compress_ops f2fs_lz4_ops = { |
| .init_compress_ctx = lz4_init_compress_ctx, |
| .destroy_compress_ctx = lz4_destroy_compress_ctx, |
| .compress_pages = lz4_compress_pages, |
| .decompress_pages = lz4_decompress_pages, |
| }; |
| #endif |
| |
| #ifdef CONFIG_F2FS_FS_ZSTD |
| #define F2FS_ZSTD_DEFAULT_CLEVEL 1 |
| |
| static int zstd_init_compress_ctx(struct compress_ctx *cc) |
| { |
| ZSTD_parameters params; |
| ZSTD_CStream *stream; |
| void *workspace; |
| unsigned int workspace_size; |
| unsigned char level = F2FS_I(cc->inode)->i_compress_flag >> |
| COMPRESS_LEVEL_OFFSET; |
| |
| if (!level) |
| level = F2FS_ZSTD_DEFAULT_CLEVEL; |
| |
| params = ZSTD_getParams(level, cc->rlen, 0); |
| workspace_size = ZSTD_CStreamWorkspaceBound(params.cParams); |
| |
| workspace = f2fs_kvmalloc(F2FS_I_SB(cc->inode), |
| workspace_size, GFP_NOFS); |
| if (!workspace) |
| return -ENOMEM; |
| |
| stream = ZSTD_initCStream(params, 0, workspace, workspace_size); |
| if (!stream) { |
| printk_ratelimited("%sF2FS-fs (%s): %s ZSTD_initCStream failed\n", |
| KERN_ERR, F2FS_I_SB(cc->inode)->sb->s_id, |
| __func__); |
| kvfree(workspace); |
| return -EIO; |
| } |
| |
| cc->private = workspace; |
| cc->private2 = stream; |
| |
| cc->clen = cc->rlen - PAGE_SIZE - COMPRESS_HEADER_SIZE; |
| return 0; |
| } |
| |
| static void zstd_destroy_compress_ctx(struct compress_ctx *cc) |
| { |
| kvfree(cc->private); |
| cc->private = NULL; |
| cc->private2 = NULL; |
| } |
| |
| static int zstd_compress_pages(struct compress_ctx *cc) |
| { |
| ZSTD_CStream *stream = cc->private2; |
| ZSTD_inBuffer inbuf; |
| ZSTD_outBuffer outbuf; |
| int src_size = cc->rlen; |
| int dst_size = src_size - PAGE_SIZE - COMPRESS_HEADER_SIZE; |
| int ret; |
| |
| inbuf.pos = 0; |
| inbuf.src = cc->rbuf; |
| inbuf.size = src_size; |
| |
| outbuf.pos = 0; |
| outbuf.dst = cc->cbuf->cdata; |
| outbuf.size = dst_size; |
| |
| ret = ZSTD_compressStream(stream, &outbuf, &inbuf); |
| if (ZSTD_isError(ret)) { |
| printk_ratelimited("%sF2FS-fs (%s): %s ZSTD_compressStream failed, ret: %d\n", |
| KERN_ERR, F2FS_I_SB(cc->inode)->sb->s_id, |
| __func__, ZSTD_getErrorCode(ret)); |
| return -EIO; |
| } |
| |
| ret = ZSTD_endStream(stream, &outbuf); |
| if (ZSTD_isError(ret)) { |
| printk_ratelimited("%sF2FS-fs (%s): %s ZSTD_endStream returned %d\n", |
| KERN_ERR, F2FS_I_SB(cc->inode)->sb->s_id, |
| __func__, ZSTD_getErrorCode(ret)); |
| return -EIO; |
| } |
| |
| /* |
| * there is compressed data remained in intermediate buffer due to |
| * no more space in cbuf.cdata |
| */ |
| if (ret) |
| return -EAGAIN; |
| |
| cc->clen = outbuf.pos; |
| return 0; |
| } |
| |
| static int zstd_init_decompress_ctx(struct decompress_io_ctx *dic) |
| { |
| ZSTD_DStream *stream; |
| void *workspace; |
| unsigned int workspace_size; |
| unsigned int max_window_size = |
| MAX_COMPRESS_WINDOW_SIZE(dic->log_cluster_size); |
| |
| workspace_size = ZSTD_DStreamWorkspaceBound(max_window_size); |
| |
| workspace = f2fs_kvmalloc(F2FS_I_SB(dic->inode), |
| workspace_size, GFP_NOFS); |
| if (!workspace) |
| return -ENOMEM; |
| |
| stream = ZSTD_initDStream(max_window_size, workspace, workspace_size); |
| if (!stream) { |
| printk_ratelimited("%sF2FS-fs (%s): %s ZSTD_initDStream failed\n", |
| KERN_ERR, F2FS_I_SB(dic->inode)->sb->s_id, |
| __func__); |
| kvfree(workspace); |
| return -EIO; |
| } |
| |
| dic->private = workspace; |
| dic->private2 = stream; |
| |
| return 0; |
| } |
| |
| static void zstd_destroy_decompress_ctx(struct decompress_io_ctx *dic) |
| { |
| kvfree(dic->private); |
| dic->private = NULL; |
| dic->private2 = NULL; |
| } |
| |
| static int zstd_decompress_pages(struct decompress_io_ctx *dic) |
| { |
| ZSTD_DStream *stream = dic->private2; |
| ZSTD_inBuffer inbuf; |
| ZSTD_outBuffer outbuf; |
| int ret; |
| |
| inbuf.pos = 0; |
| inbuf.src = dic->cbuf->cdata; |
| inbuf.size = dic->clen; |
| |
| outbuf.pos = 0; |
| outbuf.dst = dic->rbuf; |
| outbuf.size = dic->rlen; |
| |
| ret = ZSTD_decompressStream(stream, &outbuf, &inbuf); |
| if (ZSTD_isError(ret)) { |
| printk_ratelimited("%sF2FS-fs (%s): %s ZSTD_compressStream failed, ret: %d\n", |
| KERN_ERR, F2FS_I_SB(dic->inode)->sb->s_id, |
| __func__, ZSTD_getErrorCode(ret)); |
| return -EIO; |
| } |
| |
| if (dic->rlen != outbuf.pos) { |
| printk_ratelimited("%sF2FS-fs (%s): %s ZSTD invalid rlen:%zu, " |
| "expected:%lu\n", KERN_ERR, |
| F2FS_I_SB(dic->inode)->sb->s_id, |
| __func__, dic->rlen, |
| PAGE_SIZE << dic->log_cluster_size); |
| return -EIO; |
| } |
| |
| return 0; |
| } |
| |
| static const struct f2fs_compress_ops f2fs_zstd_ops = { |
| .init_compress_ctx = zstd_init_compress_ctx, |
| .destroy_compress_ctx = zstd_destroy_compress_ctx, |
| .compress_pages = zstd_compress_pages, |
| .init_decompress_ctx = zstd_init_decompress_ctx, |
| .destroy_decompress_ctx = zstd_destroy_decompress_ctx, |
| .decompress_pages = zstd_decompress_pages, |
| }; |
| #endif |
| |
| #ifdef CONFIG_F2FS_FS_LZO |
| #ifdef CONFIG_F2FS_FS_LZORLE |
| static int lzorle_compress_pages(struct compress_ctx *cc) |
| { |
| int ret; |
| |
| ret = lzorle1x_1_compress(cc->rbuf, cc->rlen, cc->cbuf->cdata, |
| &cc->clen, cc->private); |
| if (ret != LZO_E_OK) { |
| printk_ratelimited("%sF2FS-fs (%s): lzo-rle compress failed, ret:%d\n", |
| KERN_ERR, F2FS_I_SB(cc->inode)->sb->s_id, ret); |
| return -EIO; |
| } |
| return 0; |
| } |
| |
| static const struct f2fs_compress_ops f2fs_lzorle_ops = { |
| .init_compress_ctx = lzo_init_compress_ctx, |
| .destroy_compress_ctx = lzo_destroy_compress_ctx, |
| .compress_pages = lzorle_compress_pages, |
| .decompress_pages = lzo_decompress_pages, |
| }; |
| #endif |
| #endif |
| |
| static const struct f2fs_compress_ops *f2fs_cops[COMPRESS_MAX] = { |
| #ifdef CONFIG_F2FS_FS_LZO |
| &f2fs_lzo_ops, |
| #else |
| NULL, |
| #endif |
| #ifdef CONFIG_F2FS_FS_LZ4 |
| &f2fs_lz4_ops, |
| #else |
| NULL, |
| #endif |
| #ifdef CONFIG_F2FS_FS_ZSTD |
| &f2fs_zstd_ops, |
| #else |
| NULL, |
| #endif |
| #if defined(CONFIG_F2FS_FS_LZO) && defined(CONFIG_F2FS_FS_LZORLE) |
| &f2fs_lzorle_ops, |
| #else |
| NULL, |
| #endif |
| }; |
| |
| bool f2fs_is_compress_backend_ready(struct inode *inode) |
| { |
| if (!f2fs_compressed_file(inode)) |
| return true; |
| return f2fs_cops[F2FS_I(inode)->i_compress_algorithm]; |
| } |
| |
| static mempool_t *compress_page_pool; |
| static int num_compress_pages = 512; |
| module_param(num_compress_pages, uint, 0444); |
| MODULE_PARM_DESC(num_compress_pages, |
| "Number of intermediate compress pages to preallocate"); |
| |
| int f2fs_init_compress_mempool(void) |
| { |
| compress_page_pool = mempool_create_page_pool(num_compress_pages, 0); |
| if (!compress_page_pool) |
| return -ENOMEM; |
| |
| return 0; |
| } |
| |
| void f2fs_destroy_compress_mempool(void) |
| { |
| mempool_destroy(compress_page_pool); |
| } |
| |
| static struct page *f2fs_compress_alloc_page(void) |
| { |
| struct page *page; |
| |
| page = mempool_alloc(compress_page_pool, GFP_NOFS); |
| lock_page(page); |
| |
| return page; |
| } |
| |
| static void f2fs_compress_free_page(struct page *page) |
| { |
| if (!page) |
| return; |
| detach_page_private(page); |
| page->mapping = NULL; |
| unlock_page(page); |
| mempool_free(page, compress_page_pool); |
| } |
| |
| #define MAX_VMAP_RETRIES 3 |
| |
| static void *f2fs_vmap(struct page **pages, unsigned int count) |
| { |
| int i; |
| void *buf = NULL; |
| |
| for (i = 0; i < MAX_VMAP_RETRIES; i++) { |
| buf = vm_map_ram(pages, count, -1); |
| if (buf) |
| break; |
| vm_unmap_aliases(); |
| } |
| return buf; |
| } |
| |
| static int f2fs_compress_pages(struct compress_ctx *cc) |
| { |
| struct f2fs_inode_info *fi = F2FS_I(cc->inode); |
| const struct f2fs_compress_ops *cops = |
| f2fs_cops[fi->i_compress_algorithm]; |
| unsigned int max_len, new_nr_cpages; |
| struct page **new_cpages; |
| u32 chksum = 0; |
| int i, ret; |
| |
| trace_f2fs_compress_pages_start(cc->inode, cc->cluster_idx, |
| cc->cluster_size, fi->i_compress_algorithm); |
| |
| if (cops->init_compress_ctx) { |
| ret = cops->init_compress_ctx(cc); |
| if (ret) |
| goto out; |
| } |
| |
| max_len = COMPRESS_HEADER_SIZE + cc->clen; |
| cc->nr_cpages = DIV_ROUND_UP(max_len, PAGE_SIZE); |
| |
| cc->cpages = page_array_alloc(cc->inode, cc->nr_cpages); |
| if (!cc->cpages) { |
| ret = -ENOMEM; |
| goto destroy_compress_ctx; |
| } |
| |
| for (i = 0; i < cc->nr_cpages; i++) { |
| cc->cpages[i] = f2fs_compress_alloc_page(); |
| if (!cc->cpages[i]) { |
| ret = -ENOMEM; |
| goto out_free_cpages; |
| } |
| } |
| |
| cc->rbuf = f2fs_vmap(cc->rpages, cc->cluster_size); |
| if (!cc->rbuf) { |
| ret = -ENOMEM; |
| goto out_free_cpages; |
| } |
| |
| cc->cbuf = f2fs_vmap(cc->cpages, cc->nr_cpages); |
| if (!cc->cbuf) { |
| ret = -ENOMEM; |
| goto out_vunmap_rbuf; |
| } |
| |
| ret = cops->compress_pages(cc); |
| if (ret) |
| goto out_vunmap_cbuf; |
| |
| max_len = PAGE_SIZE * (cc->cluster_size - 1) - COMPRESS_HEADER_SIZE; |
| |
| if (cc->clen > max_len) { |
| ret = -EAGAIN; |
| goto out_vunmap_cbuf; |
| } |
| |
| cc->cbuf->clen = cpu_to_le32(cc->clen); |
| |
| if (fi->i_compress_flag & 1 << COMPRESS_CHKSUM) |
| chksum = f2fs_crc32(F2FS_I_SB(cc->inode), |
| cc->cbuf->cdata, cc->clen); |
| cc->cbuf->chksum = cpu_to_le32(chksum); |
| |
| for (i = 0; i < COMPRESS_DATA_RESERVED_SIZE; i++) |
| cc->cbuf->reserved[i] = cpu_to_le32(0); |
| |
| new_nr_cpages = DIV_ROUND_UP(cc->clen + COMPRESS_HEADER_SIZE, PAGE_SIZE); |
| |
| /* Now we're going to cut unnecessary tail pages */ |
| new_cpages = page_array_alloc(cc->inode, new_nr_cpages); |
| if (!new_cpages) { |
| ret = -ENOMEM; |
| goto out_vunmap_cbuf; |
| } |
| |
| /* zero out any unused part of the last page */ |
| memset(&cc->cbuf->cdata[cc->clen], 0, |
| (new_nr_cpages * PAGE_SIZE) - |
| (cc->clen + COMPRESS_HEADER_SIZE)); |
| |
| vm_unmap_ram(cc->cbuf, cc->nr_cpages); |
| vm_unmap_ram(cc->rbuf, cc->cluster_size); |
| |
| for (i = 0; i < cc->nr_cpages; i++) { |
| if (i < new_nr_cpages) { |
| new_cpages[i] = cc->cpages[i]; |
| continue; |
| } |
| f2fs_compress_free_page(cc->cpages[i]); |
| cc->cpages[i] = NULL; |
| } |
| |
| if (cops->destroy_compress_ctx) |
| cops->destroy_compress_ctx(cc); |
| |
| page_array_free(cc->inode, cc->cpages, cc->nr_cpages); |
| cc->cpages = new_cpages; |
| cc->nr_cpages = new_nr_cpages; |
| |
| trace_f2fs_compress_pages_end(cc->inode, cc->cluster_idx, |
| cc->clen, ret); |
| return 0; |
| |
| out_vunmap_cbuf: |
| vm_unmap_ram(cc->cbuf, cc->nr_cpages); |
| out_vunmap_rbuf: |
| vm_unmap_ram(cc->rbuf, cc->cluster_size); |
| out_free_cpages: |
| for (i = 0; i < cc->nr_cpages; i++) { |
| if (cc->cpages[i]) |
| f2fs_compress_free_page(cc->cpages[i]); |
| } |
| page_array_free(cc->inode, cc->cpages, cc->nr_cpages); |
| cc->cpages = NULL; |
| destroy_compress_ctx: |
| if (cops->destroy_compress_ctx) |
| cops->destroy_compress_ctx(cc); |
| out: |
| trace_f2fs_compress_pages_end(cc->inode, cc->cluster_idx, |
| cc->clen, ret); |
| return ret; |
| } |
| |
| void f2fs_decompress_cluster(struct decompress_io_ctx *dic) |
| { |
| struct f2fs_sb_info *sbi = F2FS_I_SB(dic->inode); |
| struct f2fs_inode_info *fi = F2FS_I(dic->inode); |
| const struct f2fs_compress_ops *cops = |
| f2fs_cops[fi->i_compress_algorithm]; |
| int ret; |
| int i; |
| |
| trace_f2fs_decompress_pages_start(dic->inode, dic->cluster_idx, |
| dic->cluster_size, fi->i_compress_algorithm); |
| |
| if (dic->failed) { |
| ret = -EIO; |
| goto out_end_io; |
| } |
| |
| dic->tpages = page_array_alloc(dic->inode, dic->cluster_size); |
| if (!dic->tpages) { |
| ret = -ENOMEM; |
| goto out_end_io; |
| } |
| |
| for (i = 0; i < dic->cluster_size; i++) { |
| if (dic->rpages[i]) { |
| dic->tpages[i] = dic->rpages[i]; |
| continue; |
| } |
| |
| dic->tpages[i] = f2fs_compress_alloc_page(); |
| if (!dic->tpages[i]) { |
| ret = -ENOMEM; |
| goto out_end_io; |
| } |
| } |
| |
| if (cops->init_decompress_ctx) { |
| ret = cops->init_decompress_ctx(dic); |
| if (ret) |
| goto out_end_io; |
| } |
| |
| dic->rbuf = f2fs_vmap(dic->tpages, dic->cluster_size); |
| if (!dic->rbuf) { |
| ret = -ENOMEM; |
| goto out_destroy_decompress_ctx; |
| } |
| |
| dic->cbuf = f2fs_vmap(dic->cpages, dic->nr_cpages); |
| if (!dic->cbuf) { |
| ret = -ENOMEM; |
| goto out_vunmap_rbuf; |
| } |
| |
| dic->clen = le32_to_cpu(dic->cbuf->clen); |
| dic->rlen = PAGE_SIZE << dic->log_cluster_size; |
| |
| if (dic->clen > PAGE_SIZE * dic->nr_cpages - COMPRESS_HEADER_SIZE) { |
| ret = -EFSCORRUPTED; |
| goto out_vunmap_cbuf; |
| } |
| |
| ret = cops->decompress_pages(dic); |
| |
| if (!ret && (fi->i_compress_flag & 1 << COMPRESS_CHKSUM)) { |
| u32 provided = le32_to_cpu(dic->cbuf->chksum); |
| u32 calculated = f2fs_crc32(sbi, dic->cbuf->cdata, dic->clen); |
| |
| if (provided != calculated) { |
| if (!is_inode_flag_set(dic->inode, FI_COMPRESS_CORRUPT)) { |
| set_inode_flag(dic->inode, FI_COMPRESS_CORRUPT); |
| printk_ratelimited( |
| "%sF2FS-fs (%s): checksum invalid, nid = %lu, %x vs %x", |
| KERN_INFO, sbi->sb->s_id, dic->inode->i_ino, |
| provided, calculated); |
| } |
| set_sbi_flag(sbi, SBI_NEED_FSCK); |
| } |
| } |
| |
| out_vunmap_cbuf: |
| vm_unmap_ram(dic->cbuf, dic->nr_cpages); |
| out_vunmap_rbuf: |
| vm_unmap_ram(dic->rbuf, dic->cluster_size); |
| out_destroy_decompress_ctx: |
| if (cops->destroy_decompress_ctx) |
| cops->destroy_decompress_ctx(dic); |
| out_end_io: |
| trace_f2fs_decompress_pages_end(dic->inode, dic->cluster_idx, |
| dic->clen, ret); |
| f2fs_decompress_end_io(dic, ret); |
| } |
| |
| /* |
| * This is called when a page of a compressed cluster has been read from disk |
| * (or failed to be read from disk). It checks whether this page was the last |
| * page being waited on in the cluster, and if so, it decompresses the cluster |
| * (or in the case of a failure, cleans up without actually decompressing). |
| */ |
| void f2fs_end_read_compressed_page(struct page *page, bool failed, |
| block_t blkaddr) |
| { |
| struct decompress_io_ctx *dic = |
| (struct decompress_io_ctx *)page_private(page); |
| struct f2fs_sb_info *sbi = F2FS_I_SB(dic->inode); |
| |
| dec_page_count(sbi, F2FS_RD_DATA); |
| |
| if (failed) |
| WRITE_ONCE(dic->failed, true); |
| else if (blkaddr) |
| f2fs_cache_compressed_page(sbi, page, |
| dic->inode->i_ino, blkaddr); |
| |
| if (atomic_dec_and_test(&dic->remaining_pages)) |
| f2fs_decompress_cluster(dic); |
| } |
| |
| static bool is_page_in_cluster(struct compress_ctx *cc, pgoff_t index) |
| { |
| if (cc->cluster_idx == NULL_CLUSTER) |
| return true; |
| return cc->cluster_idx == cluster_idx(cc, index); |
| } |
| |
| bool f2fs_cluster_is_empty(struct compress_ctx *cc) |
| { |
| return cc->nr_rpages == 0; |
| } |
| |
| static bool f2fs_cluster_is_full(struct compress_ctx *cc) |
| { |
| return cc->cluster_size == cc->nr_rpages; |
| } |
| |
| bool f2fs_cluster_can_merge_page(struct compress_ctx *cc, pgoff_t index) |
| { |
| if (f2fs_cluster_is_empty(cc)) |
| return true; |
| return is_page_in_cluster(cc, index); |
| } |
| |
| static bool cluster_has_invalid_data(struct compress_ctx *cc) |
| { |
| loff_t i_size = i_size_read(cc->inode); |
| unsigned nr_pages = DIV_ROUND_UP(i_size, PAGE_SIZE); |
| int i; |
| |
| for (i = 0; i < cc->cluster_size; i++) { |
| struct page *page = cc->rpages[i]; |
| |
| f2fs_bug_on(F2FS_I_SB(cc->inode), !page); |
| |
| /* beyond EOF */ |
| if (page->index >= nr_pages) |
| return true; |
| } |
| return false; |
| } |
| |
| static int __f2fs_cluster_blocks(struct inode *inode, |
| unsigned int cluster_idx, bool compr) |
| { |
| struct dnode_of_data dn; |
| unsigned int cluster_size = F2FS_I(inode)->i_cluster_size; |
| unsigned int start_idx = cluster_idx << |
| F2FS_I(inode)->i_log_cluster_size; |
| int ret; |
| |
| set_new_dnode(&dn, inode, NULL, NULL, 0); |
| ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE); |
| if (ret) { |
| if (ret == -ENOENT) |
| ret = 0; |
| goto fail; |
| } |
| |
| if (dn.data_blkaddr == COMPRESS_ADDR) { |
| int i; |
| |
| ret = 1; |
| for (i = 1; i < cluster_size; i++) { |
| block_t blkaddr; |
| |
| blkaddr = data_blkaddr(dn.inode, |
| dn.node_page, dn.ofs_in_node + i); |
| if (compr) { |
| if (__is_valid_data_blkaddr(blkaddr)) |
| ret++; |
| } else { |
| if (blkaddr != NULL_ADDR) |
| ret++; |
| } |
| } |
| |
| f2fs_bug_on(F2FS_I_SB(inode), |
| !compr && ret != cluster_size && |
| !is_inode_flag_set(inode, FI_COMPRESS_RELEASED)); |
| } |
| fail: |
| f2fs_put_dnode(&dn); |
| return ret; |
| } |
| |
| /* return # of compressed blocks in compressed cluster */ |
| static int f2fs_compressed_blocks(struct compress_ctx *cc) |
| { |
| return __f2fs_cluster_blocks(cc->inode, cc->cluster_idx, true); |
| } |
| |
| /* return # of valid blocks in compressed cluster */ |
| int f2fs_is_compressed_cluster(struct inode *inode, pgoff_t index) |
| { |
| return __f2fs_cluster_blocks(inode, |
| index >> F2FS_I(inode)->i_log_cluster_size, |
| false); |
| } |
| |
| static bool cluster_may_compress(struct compress_ctx *cc) |
| { |
| if (!f2fs_need_compress_data(cc->inode)) |
| return false; |
| if (f2fs_is_atomic_file(cc->inode)) |
| return false; |
| if (!f2fs_cluster_is_full(cc)) |
| return false; |
| if (unlikely(f2fs_cp_error(F2FS_I_SB(cc->inode)))) |
| return false; |
| return !cluster_has_invalid_data(cc); |
| } |
| |
| static void set_cluster_writeback(struct compress_ctx *cc) |
| { |
| int i; |
| |
| for (i = 0; i < cc->cluster_size; i++) { |
| if (cc->rpages[i]) |
| set_page_writeback(cc->rpages[i]); |
| } |
| } |
| |
| static void set_cluster_dirty(struct compress_ctx *cc) |
| { |
| int i; |
| |
| for (i = 0; i < cc->cluster_size; i++) |
| if (cc->rpages[i]) |
| set_page_dirty(cc->rpages[i]); |
| } |
| |
| static int prepare_compress_overwrite(struct compress_ctx *cc, |
| struct page **pagep, pgoff_t index, void **fsdata) |
| { |
| struct f2fs_sb_info *sbi = F2FS_I_SB(cc->inode); |
| struct address_space *mapping = cc->inode->i_mapping; |
| struct page *page; |
| sector_t last_block_in_bio; |
| unsigned fgp_flag = FGP_LOCK | FGP_WRITE | FGP_CREAT; |
| pgoff_t start_idx = start_idx_of_cluster(cc); |
| int i, ret; |
| |
| retry: |
| ret = f2fs_is_compressed_cluster(cc->inode, start_idx); |
| if (ret <= 0) |
| return ret; |
| |
| ret = f2fs_init_compress_ctx(cc); |
| if (ret) |
| return ret; |
| |
| /* keep page reference to avoid page reclaim */ |
| for (i = 0; i < cc->cluster_size; i++) { |
| page = f2fs_pagecache_get_page(mapping, start_idx + i, |
| fgp_flag, GFP_NOFS); |
| if (!page) { |
| ret = -ENOMEM; |
| goto unlock_pages; |
| } |
| |
| if (PageUptodate(page)) |
| f2fs_put_page(page, 1); |
| else |
| f2fs_compress_ctx_add_page(cc, page); |
| } |
| |
| if (!f2fs_cluster_is_empty(cc)) { |
| struct bio *bio = NULL; |
| |
| ret = f2fs_read_multi_pages(cc, &bio, cc->cluster_size, |
| &last_block_in_bio, false, true); |
| f2fs_put_rpages(cc); |
| f2fs_destroy_compress_ctx(cc, true); |
| if (ret) |
| goto out; |
| if (bio) |
| f2fs_submit_bio(sbi, bio, DATA); |
| |
| ret = f2fs_init_compress_ctx(cc); |
| if (ret) |
| goto out; |
| } |
| |
| for (i = 0; i < cc->cluster_size; i++) { |
| f2fs_bug_on(sbi, cc->rpages[i]); |
| |
| page = find_lock_page(mapping, start_idx + i); |
| if (!page) { |
| /* page can be truncated */ |
| goto release_and_retry; |
| } |
| |
| f2fs_wait_on_page_writeback(page, DATA, true, true); |
| f2fs_compress_ctx_add_page(cc, page); |
| |
| if (!PageUptodate(page)) { |
| release_and_retry: |
| f2fs_put_rpages(cc); |
| f2fs_unlock_rpages(cc, i + 1); |
| f2fs_destroy_compress_ctx(cc, true); |
| goto retry; |
| } |
| } |
| |
| if (likely(!ret)) { |
| *fsdata = cc->rpages; |
| *pagep = cc->rpages[offset_in_cluster(cc, index)]; |
| return cc->cluster_size; |
| } |
| |
| unlock_pages: |
| f2fs_put_rpages(cc); |
| f2fs_unlock_rpages(cc, i); |
| f2fs_destroy_compress_ctx(cc, true); |
| out: |
| return ret; |
| } |
| |
| int f2fs_prepare_compress_overwrite(struct inode *inode, |
| struct page **pagep, pgoff_t index, void **fsdata) |
| { |
| struct compress_ctx cc = { |
| .inode = inode, |
| .log_cluster_size = F2FS_I(inode)->i_log_cluster_size, |
| .cluster_size = F2FS_I(inode)->i_cluster_size, |
| .cluster_idx = index >> F2FS_I(inode)->i_log_cluster_size, |
| .rpages = NULL, |
| .nr_rpages = 0, |
| }; |
| |
| return prepare_compress_overwrite(&cc, pagep, index, fsdata); |
| } |
| |
| bool f2fs_compress_write_end(struct inode *inode, void *fsdata, |
| pgoff_t index, unsigned copied) |
| |
| { |
| struct compress_ctx cc = { |
| .inode = inode, |
| .log_cluster_size = F2FS_I(inode)->i_log_cluster_size, |
| .cluster_size = F2FS_I(inode)->i_cluster_size, |
| .rpages = fsdata, |
| }; |
| bool first_index = (index == cc.rpages[0]->index); |
| |
| if (copied) |
| set_cluster_dirty(&cc); |
| |
| f2fs_put_rpages_wbc(&cc, NULL, false, 1); |
| f2fs_destroy_compress_ctx(&cc, false); |
| |
| return first_index; |
| } |
| |
| int f2fs_truncate_partial_cluster(struct inode *inode, u64 from, bool lock) |
| { |
| void *fsdata = NULL; |
| struct page *pagep; |
| int log_cluster_size = F2FS_I(inode)->i_log_cluster_size; |
| pgoff_t start_idx = from >> (PAGE_SHIFT + log_cluster_size) << |
| log_cluster_size; |
| int err; |
| |
| err = f2fs_is_compressed_cluster(inode, start_idx); |
| if (err < 0) |
| return err; |
| |
| /* truncate normal cluster */ |
| if (!err) |
| return f2fs_do_truncate_blocks(inode, from, lock); |
| |
| /* truncate compressed cluster */ |
| err = f2fs_prepare_compress_overwrite(inode, &pagep, |
| start_idx, &fsdata); |
| |
| /* should not be a normal cluster */ |
| f2fs_bug_on(F2FS_I_SB(inode), err == 0); |
| |
| if (err <= 0) |
| return err; |
| |
| if (err > 0) { |
| struct page **rpages = fsdata; |
| int cluster_size = F2FS_I(inode)->i_cluster_size; |
| int i; |
| |
| for (i = cluster_size - 1; i >= 0; i--) { |
| loff_t start = rpages[i]->index << PAGE_SHIFT; |
| |
| if (from <= start) { |
| zero_user_segment(rpages[i], 0, PAGE_SIZE); |
| } else { |
| zero_user_segment(rpages[i], from - start, |
| PAGE_SIZE); |
| break; |
| } |
| } |
| |
| f2fs_compress_write_end(inode, fsdata, start_idx, true); |
| } |
| return 0; |
| } |
| |
| static int f2fs_write_compressed_pages(struct compress_ctx *cc, |
| int *submitted, |
| struct writeback_control *wbc, |
| enum iostat_type io_type) |
| { |
| struct inode *inode = cc->inode; |
| struct f2fs_sb_info *sbi = F2FS_I_SB(inode); |
| struct f2fs_inode_info *fi = F2FS_I(inode); |
| struct f2fs_io_info fio = { |
| .sbi = sbi, |
| .ino = cc->inode->i_ino, |
| .type = DATA, |
| .op = REQ_OP_WRITE, |
| .op_flags = wbc_to_write_flags(wbc), |
| .old_blkaddr = NEW_ADDR, |
| .page = NULL, |
| .encrypted_page = NULL, |
| .compressed_page = NULL, |
| .submitted = false, |
| .io_type = io_type, |
| .io_wbc = wbc, |
| .encrypted = fscrypt_inode_uses_fs_layer_crypto(cc->inode), |
| }; |
| struct dnode_of_data dn; |
| struct node_info ni; |
| struct compress_io_ctx *cic; |
| pgoff_t start_idx = start_idx_of_cluster(cc); |
| unsigned int last_index = cc->cluster_size - 1; |
| loff_t psize; |
| int i, err; |
| |
| /* we should bypass data pages to proceed the kworkder jobs */ |
| if (unlikely(f2fs_cp_error(sbi))) { |
| mapping_set_error(cc->rpages[0]->mapping, -EIO); |
| goto out_free; |
| } |
| |
| if (IS_NOQUOTA(inode)) { |
| /* |
| * We need to wait for node_write to avoid block allocation during |
| * checkpoint. This can only happen to quota writes which can cause |
| * the below discard race condition. |
| */ |
| down_read(&sbi->node_write); |
| } else if (!f2fs_trylock_op(sbi)) { |
| goto out_free; |
| } |
| |
| set_new_dnode(&dn, cc->inode, NULL, NULL, 0); |
| |
| err = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE); |
| if (err) |
| goto out_unlock_op; |
| |
| for (i = 0; i < cc->cluster_size; i++) { |
| if (data_blkaddr(dn.inode, dn.node_page, |
| dn.ofs_in_node + i) == NULL_ADDR) |
| goto out_put_dnode; |
| } |
| |
| psize = (loff_t)(cc->rpages[last_index]->index + 1) << PAGE_SHIFT; |
| |
| err = f2fs_get_node_info(fio.sbi, dn.nid, &ni); |
| if (err) |
| goto out_put_dnode; |
| |
| fio.version = ni.version; |
| |
| cic = f2fs_kmem_cache_alloc(cic_entry_slab, GFP_F2FS_ZERO, false, sbi); |
| if (!cic) |
| goto out_put_dnode; |
| |
| cic->magic = F2FS_COMPRESSED_PAGE_MAGIC; |
| cic->inode = inode; |
| atomic_set(&cic->pending_pages, cc->nr_cpages); |
| cic->rpages = page_array_alloc(cc->inode, cc->cluster_size); |
| if (!cic->rpages) |
| goto out_put_cic; |
| |
| cic->nr_rpages = cc->cluster_size; |
| |
| for (i = 0; i < cc->nr_cpages; i++) { |
| f2fs_set_compressed_page(cc->cpages[i], inode, |
| cc->rpages[i + 1]->index, cic); |
| fio.compressed_page = cc->cpages[i]; |
| |
| fio.old_blkaddr = data_blkaddr(dn.inode, dn.node_page, |
| dn.ofs_in_node + i + 1); |
| |
| /* wait for GCed page writeback via META_MAPPING */ |
| f2fs_wait_on_block_writeback(inode, fio.old_blkaddr); |
| |
| if (fio.encrypted) { |
| fio.page = cc->rpages[i + 1]; |
| err = f2fs_encrypt_one_page(&fio); |
| if (err) |
| goto out_destroy_crypt; |
| cc->cpages[i] = fio.encrypted_page; |
| } |
| } |
| |
| set_cluster_writeback(cc); |
| |
| for (i = 0; i < cc->cluster_size; i++) |
| cic->rpages[i] = cc->rpages[i]; |
| |
| for (i = 0; i < cc->cluster_size; i++, dn.ofs_in_node++) { |
| block_t blkaddr; |
| |
| blkaddr = f2fs_data_blkaddr(&dn); |
| fio.page = cc->rpages[i]; |
| fio.old_blkaddr = blkaddr; |
| |
| /* cluster header */ |
| if (i == 0) { |
| if (blkaddr == COMPRESS_ADDR) |
| fio.compr_blocks++; |
| if (__is_valid_data_blkaddr(blkaddr)) |
| f2fs_invalidate_blocks(sbi, blkaddr); |
| f2fs_update_data_blkaddr(&dn, COMPRESS_ADDR); |
| goto unlock_continue; |
| } |
| |
| if (fio.compr_blocks && __is_valid_data_blkaddr(blkaddr)) |
| fio.compr_blocks++; |
| |
| if (i > cc->nr_cpages) { |
| if (__is_valid_data_blkaddr(blkaddr)) { |
| f2fs_invalidate_blocks(sbi, blkaddr); |
| f2fs_update_data_blkaddr(&dn, NEW_ADDR); |
| } |
| goto unlock_continue; |
| } |
| |
| f2fs_bug_on(fio.sbi, blkaddr == NULL_ADDR); |
| |
| if (fio.encrypted) |
| fio.encrypted_page = cc->cpages[i - 1]; |
| else |
| fio.compressed_page = cc->cpages[i - 1]; |
| |
| cc->cpages[i - 1] = NULL; |
| f2fs_outplace_write_data(&dn, &fio); |
| (*submitted)++; |
| unlock_continue: |
| inode_dec_dirty_pages(cc->inode); |
| unlock_page(fio.page); |
| } |
| |
| if (fio.compr_blocks) |
| f2fs_i_compr_blocks_update(inode, fio.compr_blocks - 1, false); |
| f2fs_i_compr_blocks_update(inode, cc->nr_cpages, true); |
| add_compr_block_stat(inode, cc->nr_cpages); |
| |
| set_inode_flag(cc->inode, FI_APPEND_WRITE); |
| if (cc->cluster_idx == 0) |
| set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN); |
| |
| f2fs_put_dnode(&dn); |
| if (IS_NOQUOTA(inode)) |
| up_read(&sbi->node_write); |
| else |
| f2fs_unlock_op(sbi); |
| |
| spin_lock(&fi->i_size_lock); |
| if (fi->last_disk_size < psize) |
| fi->last_disk_size = psize; |
| spin_unlock(&fi->i_size_lock); |
| |
| f2fs_put_rpages(cc); |
| page_array_free(cc->inode, cc->cpages, cc->nr_cpages); |
| cc->cpages = NULL; |
| f2fs_destroy_compress_ctx(cc, false); |
| return 0; |
| |
| out_destroy_crypt: |
| page_array_free(cc->inode, cic->rpages, cc->cluster_size); |
| |
| for (--i; i >= 0; i--) |
| fscrypt_finalize_bounce_page(&cc->cpages[i]); |
| for (i = 0; i < cc->nr_cpages; i++) { |
| if (!cc->cpages[i]) |
| continue; |
| f2fs_compress_free_page(cc->cpages[i]); |
| cc->cpages[i] = NULL; |
| } |
| out_put_cic: |
| kmem_cache_free(cic_entry_slab, cic); |
| out_put_dnode: |
| f2fs_put_dnode(&dn); |
| out_unlock_op: |
| if (IS_NOQUOTA(inode)) |
| up_read(&sbi->node_write); |
| else |
| f2fs_unlock_op(sbi); |
| out_free: |
| page_array_free(cc->inode, cc->cpages, cc->nr_cpages); |
| cc->cpages = NULL; |
| return -EAGAIN; |
| } |
| |
| void f2fs_compress_write_end_io(struct bio *bio, struct page *page) |
| { |
| struct f2fs_sb_info *sbi = bio->bi_private; |
| struct compress_io_ctx *cic = |
| (struct compress_io_ctx *)page_private(page); |
| int i; |
| |
| if (unlikely(bio->bi_status)) |
| mapping_set_error(cic->inode->i_mapping, -EIO); |
| |
| f2fs_compress_free_page(page); |
| |
| dec_page_count(sbi, F2FS_WB_DATA); |
| |
| if (atomic_dec_return(&cic->pending_pages)) |
| return; |
| |
| for (i = 0; i < cic->nr_rpages; i++) { |
| WARN_ON(!cic->rpages[i]); |
| clear_page_private_gcing(cic->rpages[i]); |
| end_page_writeback(cic->rpages[i]); |
| } |
| |
| page_array_free(cic->inode, cic->rpages, cic->nr_rpages); |
| kmem_cache_free(cic_entry_slab, cic); |
| } |
| |
| static int f2fs_write_raw_pages(struct compress_ctx *cc, |
| int *submitted, |
| struct writeback_control *wbc, |
| enum iostat_type io_type) |
| { |
| struct address_space *mapping = cc->inode->i_mapping; |
| int _submitted, compr_blocks, ret; |
| int i = -1, err = 0; |
| |
| compr_blocks = f2fs_compressed_blocks(cc); |
| if (compr_blocks < 0) { |
| err = compr_blocks; |
| goto out_err; |
| } |
| |
| for (i = 0; i < cc->cluster_size; i++) { |
| if (!cc->rpages[i]) |
| continue; |
| retry_write: |
| if (cc->rpages[i]->mapping != mapping) { |
| unlock_page(cc->rpages[i]); |
| continue; |
| } |
| |
| BUG_ON(!PageLocked(cc->rpages[i])); |
| |
| ret = f2fs_write_single_data_page(cc->rpages[i], &_submitted, |
| NULL, NULL, wbc, io_type, |
| compr_blocks, false); |
| if (ret) { |
| if (ret == AOP_WRITEPAGE_ACTIVATE) { |
| unlock_page(cc->rpages[i]); |
| ret = 0; |
| } else if (ret == -EAGAIN) { |
| /* |
| * for quota file, just redirty left pages to |
| * avoid deadlock caused by cluster update race |
| * from foreground operation. |
| */ |
| if (IS_NOQUOTA(cc->inode)) { |
| err = 0; |
| goto out_err; |
| } |
| ret = 0; |
| cond_resched(); |
| congestion_wait(BLK_RW_ASYNC, |
| DEFAULT_IO_TIMEOUT); |
| lock_page(cc->rpages[i]); |
| |
| if (!PageDirty(cc->rpages[i])) { |
| unlock_page(cc->rpages[i]); |
| continue; |
| } |
| |
| clear_page_dirty_for_io(cc->rpages[i]); |
| goto retry_write; |
| } |
| err = ret; |
| goto out_err; |
| } |
| |
| *submitted += _submitted; |
| } |
| |
| f2fs_balance_fs(F2FS_M_SB(mapping), true); |
| |
| return 0; |
| out_err: |
| for (++i; i < cc->cluster_size; i++) { |
| if (!cc->rpages[i]) |
| continue; |
| redirty_page_for_writepage(wbc, cc->rpages[i]); |
| unlock_page(cc->rpages[i]); |
| } |
| return err; |
| } |
| |
| int f2fs_write_multi_pages(struct compress_ctx *cc, |
| int *submitted, |
| struct writeback_control *wbc, |
| enum iostat_type io_type) |
| { |
| int err; |
| |
| *submitted = 0; |
| if (cluster_may_compress(cc)) { |
| err = f2fs_compress_pages(cc); |
| if (err == -EAGAIN) { |
| goto write; |
| } else if (err) { |
| f2fs_put_rpages_wbc(cc, wbc, true, 1); |
| goto destroy_out; |
| } |
| |
| err = f2fs_write_compressed_pages(cc, submitted, |
| wbc, io_type); |
| if (!err) |
| return 0; |
| f2fs_bug_on(F2FS_I_SB(cc->inode), err != -EAGAIN); |
| } |
| write: |
| f2fs_bug_on(F2FS_I_SB(cc->inode), *submitted); |
| |
| err = f2fs_write_raw_pages(cc, submitted, wbc, io_type); |
| f2fs_put_rpages_wbc(cc, wbc, false, 0); |
| destroy_out: |
| f2fs_destroy_compress_ctx(cc, false); |
| return err; |
| } |
| |
| static void f2fs_free_dic(struct decompress_io_ctx *dic); |
| |
| struct decompress_io_ctx *f2fs_alloc_dic(struct compress_ctx *cc) |
| { |
| struct decompress_io_ctx *dic; |
| pgoff_t start_idx = start_idx_of_cluster(cc); |
| int i; |
| |
| dic = f2fs_kmem_cache_alloc(dic_entry_slab, GFP_F2FS_ZERO, |
| false, F2FS_I_SB(cc->inode)); |
| if (!dic) |
| return ERR_PTR(-ENOMEM); |
| |
| dic->rpages = page_array_alloc(cc->inode, cc->cluster_size); |
| if (!dic->rpages) { |
| kmem_cache_free(dic_entry_slab, dic); |
| return ERR_PTR(-ENOMEM); |
| } |
| |
| dic->magic = F2FS_COMPRESSED_PAGE_MAGIC; |
| dic->inode = cc->inode; |
| atomic_set(&dic->remaining_pages, cc->nr_cpages); |
| dic->cluster_idx = cc->cluster_idx; |
| dic->cluster_size = cc->cluster_size; |
| dic->log_cluster_size = cc->log_cluster_size; |
| dic->nr_cpages = cc->nr_cpages; |
| refcount_set(&dic->refcnt, 1); |
| dic->failed = false; |
| dic->need_verity = f2fs_need_verity(cc->inode, start_idx); |
| |
| for (i = 0; i < dic->cluster_size; i++) |
| dic->rpages[i] = cc->rpages[i]; |
| dic->nr_rpages = cc->cluster_size; |
| |
| dic->cpages = page_array_alloc(dic->inode, dic->nr_cpages); |
| if (!dic->cpages) |
| goto out_free; |
| |
| for (i = 0; i < dic->nr_cpages; i++) { |
| struct page *page; |
| |
| page = f2fs_compress_alloc_page(); |
| if (!page) |
| goto out_free; |
| |
| f2fs_set_compressed_page(page, cc->inode, |
| start_idx + i + 1, dic); |
| dic->cpages[i] = page; |
| } |
| |
| return dic; |
| |
| out_free: |
| f2fs_free_dic(dic); |
| return ERR_PTR(-ENOMEM); |
| } |
| |
| static void f2fs_free_dic(struct decompress_io_ctx *dic) |
| { |
| int i; |
| |
| if (dic->tpages) { |
| for (i = 0; i < dic->cluster_size; i++) { |
| if (dic->rpages[i]) |
| continue; |
| if (!dic->tpages[i]) |
| continue; |
| f2fs_compress_free_page(dic->tpages[i]); |
| } |
| page_array_free(dic->inode, dic->tpages, dic->cluster_size); |
| } |
| |
| if (dic->cpages) { |
| for (i = 0; i < dic->nr_cpages; i++) { |
| if (!dic->cpages[i]) |
| continue; |
| f2fs_compress_free_page(dic->cpages[i]); |
| } |
| page_array_free(dic->inode, dic->cpages, dic->nr_cpages); |
| } |
| |
| page_array_free(dic->inode, dic->rpages, dic->nr_rpages); |
| kmem_cache_free(dic_entry_slab, dic); |
| } |
| |
| static void f2fs_put_dic(struct decompress_io_ctx *dic) |
| { |
| if (refcount_dec_and_test(&dic->refcnt)) |
| f2fs_free_dic(dic); |
| } |
| |
| /* |
| * Update and unlock the cluster's pagecache pages, and release the reference to |
| * the decompress_io_ctx that was being held for I/O completion. |
| */ |
| static void __f2fs_decompress_end_io(struct decompress_io_ctx *dic, bool failed) |
| { |
| int i; |
| |
| for (i = 0; i < dic->cluster_size; i++) { |
| struct page *rpage = dic->rpages[i]; |
| |
| if (!rpage) |
| continue; |
| |
| /* PG_error was set if verity failed. */ |
| if (failed || PageError(rpage)) { |
| ClearPageUptodate(rpage); |
| /* will re-read again later */ |
| ClearPageError(rpage); |
| } else { |
| SetPageUptodate(rpage); |
| } |
| unlock_page(rpage); |
| } |
| |
| f2fs_put_dic(dic); |
| } |
| |
| static void f2fs_verify_cluster(struct work_struct *work) |
| { |
| struct decompress_io_ctx *dic = |
| container_of(work, struct decompress_io_ctx, verity_work); |
| int i; |
| |
| /* Verify the cluster's decompressed pages with fs-verity. */ |
| for (i = 0; i < dic->cluster_size; i++) { |
| struct page *rpage = dic->rpages[i]; |
| |
| if (rpage && !fsverity_verify_page(rpage)) |
| SetPageError(rpage); |
| } |
| |
| __f2fs_decompress_end_io(dic, false); |
| } |
| |
| /* |
| * This is called when a compressed cluster has been decompressed |
| * (or failed to be read and/or decompressed). |
| */ |
| void f2fs_decompress_end_io(struct decompress_io_ctx *dic, bool failed) |
| { |
| if (!failed && dic->need_verity) { |
| /* |
| * Note that to avoid deadlocks, the verity work can't be done |
| * on the decompression workqueue. This is because verifying |
| * the data pages can involve reading metadata pages from the |
| * file, and these metadata pages may be compressed. |
| */ |
| INIT_WORK(&dic->verity_work, f2fs_verify_cluster); |
| fsverity_enqueue_verify_work(&dic->verity_work); |
| } else { |
| __f2fs_decompress_end_io(dic, failed); |
| } |
| } |
| |
| /* |
| * Put a reference to a compressed page's decompress_io_ctx. |
| * |
| * This is called when the page is no longer needed and can be freed. |
| */ |
| void f2fs_put_page_dic(struct page *page) |
| { |
| struct decompress_io_ctx *dic = |
| (struct decompress_io_ctx *)page_private(page); |
| |
| f2fs_put_dic(dic); |
| } |
| |
| /* |
| * check whether cluster blocks are contiguous, and add extent cache entry |
| * only if cluster blocks are logically and physically contiguous. |
| */ |
| unsigned int f2fs_cluster_blocks_are_contiguous(struct dnode_of_data *dn) |
| { |
| bool compressed = f2fs_data_blkaddr(dn) == COMPRESS_ADDR; |
| int i = compressed ? 1 : 0; |
| block_t first_blkaddr = data_blkaddr(dn->inode, dn->node_page, |
| dn->ofs_in_node + i); |
| |
| for (i += 1; i < F2FS_I(dn->inode)->i_cluster_size; i++) { |
| block_t blkaddr = data_blkaddr(dn->inode, dn->node_page, |
| dn->ofs_in_node + i); |
| |
| if (!__is_valid_data_blkaddr(blkaddr)) |
| break; |
| if (first_blkaddr + i - (compressed ? 1 : 0) != blkaddr) |
| return 0; |
| } |
| |
| return compressed ? i - 1 : i; |
| } |
| |
| const struct address_space_operations f2fs_compress_aops = { |
| .releasepage = f2fs_release_page, |
| .invalidatepage = f2fs_invalidate_page, |
| }; |
| |
| struct address_space *COMPRESS_MAPPING(struct f2fs_sb_info *sbi) |
| { |
| return sbi->compress_inode->i_mapping; |
| } |
| |
| void f2fs_invalidate_compress_page(struct f2fs_sb_info *sbi, block_t blkaddr) |
| { |
| if (!sbi->compress_inode) |
| return; |
| invalidate_mapping_pages(COMPRESS_MAPPING(sbi), blkaddr, blkaddr); |
| } |
| |
| void f2fs_cache_compressed_page(struct f2fs_sb_info *sbi, struct page *page, |
| nid_t ino, block_t blkaddr) |
| { |
| struct page *cpage; |
| int ret; |
| |
| if (!test_opt(sbi, COMPRESS_CACHE)) |
| return; |
| |
| if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE_READ)) |
| return; |
| |
| if (!f2fs_available_free_memory(sbi, COMPRESS_PAGE)) |
| return; |
| |
| cpage = find_get_page(COMPRESS_MAPPING(sbi), blkaddr); |
| if (cpage) { |
| f2fs_put_page(cpage, 0); |
| return; |
| } |
| |
| cpage = alloc_page(__GFP_NOWARN | __GFP_IO); |
| if (!cpage) |
| return; |
| |
| ret = add_to_page_cache_lru(cpage, COMPRESS_MAPPING(sbi), |
| blkaddr, GFP_NOFS); |
| if (ret) { |
| f2fs_put_page(cpage, 0); |
| return; |
| } |
| |
| set_page_private_data(cpage, ino); |
| |
| if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE_READ)) |
| goto out; |
| |
| memcpy(page_address(cpage), page_address(page), PAGE_SIZE); |
| SetPageUptodate(cpage); |
| out: |
| f2fs_put_page(cpage, 1); |
| } |
| |
| bool f2fs_load_compressed_page(struct f2fs_sb_info *sbi, struct page *page, |
| block_t blkaddr) |
| { |
| struct page *cpage; |
| bool hitted = false; |
| |
| if (!test_opt(sbi, COMPRESS_CACHE)) |
| return false; |
| |
| cpage = f2fs_pagecache_get_page(COMPRESS_MAPPING(sbi), |
| blkaddr, FGP_LOCK | FGP_NOWAIT, GFP_NOFS); |
| if (cpage) { |
| if (PageUptodate(cpage)) { |
| atomic_inc(&sbi->compress_page_hit); |
| memcpy(page_address(page), |
| page_address(cpage), PAGE_SIZE); |
| hitted = true; |
| } |
| f2fs_put_page(cpage, 1); |
| } |
| |
| return hitted; |
| } |
| |
| void f2fs_invalidate_compress_pages(struct f2fs_sb_info *sbi, nid_t ino) |
| { |
| struct address_space *mapping = sbi->compress_inode->i_mapping; |
| struct pagevec pvec; |
| pgoff_t index = 0; |
| pgoff_t end = MAX_BLKADDR(sbi); |
| |
| if (!mapping->nrpages) |
| return; |
| |
| pagevec_init(&pvec); |
| |
| do { |
| unsigned int nr_pages; |
| int i; |
| |
| nr_pages = pagevec_lookup_range(&pvec, mapping, |
| &index, end - 1); |
| if (!nr_pages) |
| break; |
| |
| for (i = 0; i < nr_pages; i++) { |
| struct page *page = pvec.pages[i]; |
| |
| if (page->index > end) |
| break; |
| |
| lock_page(page); |
| if (page->mapping != mapping) { |
| unlock_page(page); |
| continue; |
| } |
| |
| if (ino != get_page_private_data(page)) { |
| unlock_page(page); |
| continue; |
| } |
| |
| generic_error_remove_page(mapping, page); |
| unlock_page(page); |
| } |
| pagevec_release(&pvec); |
| cond_resched(); |
| } while (index < end); |
| } |
| |
| int f2fs_init_compress_inode(struct f2fs_sb_info *sbi) |
| { |
| struct inode *inode; |
| |
| if (!test_opt(sbi, COMPRESS_CACHE)) |
| return 0; |
| |
| inode = f2fs_iget(sbi->sb, F2FS_COMPRESS_INO(sbi)); |
| if (IS_ERR(inode)) |
| return PTR_ERR(inode); |
| sbi->compress_inode = inode; |
| |
| sbi->compress_percent = COMPRESS_PERCENT; |
| sbi->compress_watermark = COMPRESS_WATERMARK; |
| |
| atomic_set(&sbi->compress_page_hit, 0); |
| |
| return 0; |
| } |
| |
| void f2fs_destroy_compress_inode(struct f2fs_sb_info *sbi) |
| { |
| if (!sbi->compress_inode) |
| return; |
| iput(sbi->compress_inode); |
| sbi->compress_inode = NULL; |
| } |
| |
| int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi) |
| { |
| dev_t dev = sbi->sb->s_bdev->bd_dev; |
| char slab_name[32]; |
| |
| sprintf(slab_name, "f2fs_page_array_entry-%u:%u", MAJOR(dev), MINOR(dev)); |
| |
| sbi->page_array_slab_size = sizeof(struct page *) << |
| F2FS_OPTION(sbi).compress_log_size; |
| |
| sbi->page_array_slab = f2fs_kmem_cache_create(slab_name, |
| sbi->page_array_slab_size); |
| if (!sbi->page_array_slab) |
| return -ENOMEM; |
| return 0; |
| } |
| |
| void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi) |
| { |
| kmem_cache_destroy(sbi->page_array_slab); |
| } |
| |
| static int __init f2fs_init_cic_cache(void) |
| { |
| cic_entry_slab = f2fs_kmem_cache_create("f2fs_cic_entry", |
| sizeof(struct compress_io_ctx)); |
| if (!cic_entry_slab) |
| return -ENOMEM; |
| return 0; |
| } |
| |
| static void f2fs_destroy_cic_cache(void) |
| { |
| kmem_cache_destroy(cic_entry_slab); |
| } |
| |
| static int __init f2fs_init_dic_cache(void) |
| { |
| dic_entry_slab = f2fs_kmem_cache_create("f2fs_dic_entry", |
| sizeof(struct decompress_io_ctx)); |
| if (!dic_entry_slab) |
| return -ENOMEM; |
| return 0; |
| } |
| |
| static void f2fs_destroy_dic_cache(void) |
| { |
| kmem_cache_destroy(dic_entry_slab); |
| } |
| |
| int __init f2fs_init_compress_cache(void) |
| { |
| int err; |
| |
| err = f2fs_init_cic_cache(); |
| if (err) |
| goto out; |
| err = f2fs_init_dic_cache(); |
| if (err) |
| goto free_cic; |
| return 0; |
| free_cic: |
| f2fs_destroy_cic_cache(); |
| out: |
| return -ENOMEM; |
| } |
| |
| void f2fs_destroy_compress_cache(void) |
| { |
| f2fs_destroy_dic_cache(); |
| f2fs_destroy_cic_cache(); |
| } |