| /* SPDX-License-Identifier: GPL-2.0+ */ |
| /* |
| * RCU expedited grace periods |
| * |
| * Copyright IBM Corporation, 2016 |
| * |
| * Authors: Paul E. McKenney <paulmck@linux.ibm.com> |
| */ |
| |
| #include <linux/lockdep.h> |
| |
| static void rcu_exp_handler(void *unused); |
| static int rcu_print_task_exp_stall(struct rcu_node *rnp); |
| |
| /* |
| * Record the start of an expedited grace period. |
| */ |
| static void rcu_exp_gp_seq_start(void) |
| { |
| rcu_seq_start(&rcu_state.expedited_sequence); |
| } |
| |
| /* |
| * Return then value that expedited-grace-period counter will have |
| * at the end of the current grace period. |
| */ |
| static __maybe_unused unsigned long rcu_exp_gp_seq_endval(void) |
| { |
| return rcu_seq_endval(&rcu_state.expedited_sequence); |
| } |
| |
| /* |
| * Record the end of an expedited grace period. |
| */ |
| static void rcu_exp_gp_seq_end(void) |
| { |
| rcu_seq_end(&rcu_state.expedited_sequence); |
| smp_mb(); /* Ensure that consecutive grace periods serialize. */ |
| } |
| |
| /* |
| * Take a snapshot of the expedited-grace-period counter. |
| */ |
| static unsigned long rcu_exp_gp_seq_snap(void) |
| { |
| unsigned long s; |
| |
| smp_mb(); /* Caller's modifications seen first by other CPUs. */ |
| s = rcu_seq_snap(&rcu_state.expedited_sequence); |
| trace_rcu_exp_grace_period(rcu_state.name, s, TPS("snap")); |
| return s; |
| } |
| |
| /* |
| * Given a counter snapshot from rcu_exp_gp_seq_snap(), return true |
| * if a full expedited grace period has elapsed since that snapshot |
| * was taken. |
| */ |
| static bool rcu_exp_gp_seq_done(unsigned long s) |
| { |
| return rcu_seq_done(&rcu_state.expedited_sequence, s); |
| } |
| |
| /* |
| * Reset the ->expmaskinit values in the rcu_node tree to reflect any |
| * recent CPU-online activity. Note that these masks are not cleared |
| * when CPUs go offline, so they reflect the union of all CPUs that have |
| * ever been online. This means that this function normally takes its |
| * no-work-to-do fastpath. |
| */ |
| static void sync_exp_reset_tree_hotplug(void) |
| { |
| bool done; |
| unsigned long flags; |
| unsigned long mask; |
| unsigned long oldmask; |
| int ncpus = smp_load_acquire(&rcu_state.ncpus); /* Order vs. locking. */ |
| struct rcu_node *rnp; |
| struct rcu_node *rnp_up; |
| |
| /* If no new CPUs onlined since last time, nothing to do. */ |
| if (likely(ncpus == rcu_state.ncpus_snap)) |
| return; |
| rcu_state.ncpus_snap = ncpus; |
| |
| /* |
| * Each pass through the following loop propagates newly onlined |
| * CPUs for the current rcu_node structure up the rcu_node tree. |
| */ |
| rcu_for_each_leaf_node(rnp) { |
| raw_spin_lock_irqsave_rcu_node(rnp, flags); |
| if (rnp->expmaskinit == rnp->expmaskinitnext) { |
| raw_spin_unlock_irqrestore_rcu_node(rnp, flags); |
| continue; /* No new CPUs, nothing to do. */ |
| } |
| |
| /* Update this node's mask, track old value for propagation. */ |
| oldmask = rnp->expmaskinit; |
| rnp->expmaskinit = rnp->expmaskinitnext; |
| raw_spin_unlock_irqrestore_rcu_node(rnp, flags); |
| |
| /* If was already nonzero, nothing to propagate. */ |
| if (oldmask) |
| continue; |
| |
| /* Propagate the new CPU up the tree. */ |
| mask = rnp->grpmask; |
| rnp_up = rnp->parent; |
| done = false; |
| while (rnp_up) { |
| raw_spin_lock_irqsave_rcu_node(rnp_up, flags); |
| if (rnp_up->expmaskinit) |
| done = true; |
| rnp_up->expmaskinit |= mask; |
| raw_spin_unlock_irqrestore_rcu_node(rnp_up, flags); |
| if (done) |
| break; |
| mask = rnp_up->grpmask; |
| rnp_up = rnp_up->parent; |
| } |
| } |
| } |
| |
| /* |
| * Reset the ->expmask values in the rcu_node tree in preparation for |
| * a new expedited grace period. |
| */ |
| static void __maybe_unused sync_exp_reset_tree(void) |
| { |
| unsigned long flags; |
| struct rcu_node *rnp; |
| |
| sync_exp_reset_tree_hotplug(); |
| rcu_for_each_node_breadth_first(rnp) { |
| raw_spin_lock_irqsave_rcu_node(rnp, flags); |
| WARN_ON_ONCE(rnp->expmask); |
| rnp->expmask = rnp->expmaskinit; |
| raw_spin_unlock_irqrestore_rcu_node(rnp, flags); |
| } |
| } |
| |
| /* |
| * Return non-zero if there is no RCU expedited grace period in progress |
| * for the specified rcu_node structure, in other words, if all CPUs and |
| * tasks covered by the specified rcu_node structure have done their bit |
| * for the current expedited grace period. Works only for preemptible |
| * RCU -- other RCU implementation use other means. |
| * |
| * Caller must hold the specificed rcu_node structure's ->lock |
| */ |
| static bool sync_rcu_preempt_exp_done(struct rcu_node *rnp) |
| { |
| raw_lockdep_assert_held_rcu_node(rnp); |
| |
| return rnp->exp_tasks == NULL && |
| READ_ONCE(rnp->expmask) == 0; |
| } |
| |
| /* |
| * Like sync_rcu_preempt_exp_done(), but this function assumes the caller |
| * doesn't hold the rcu_node's ->lock, and will acquire and release the lock |
| * itself |
| */ |
| static bool sync_rcu_preempt_exp_done_unlocked(struct rcu_node *rnp) |
| { |
| unsigned long flags; |
| bool ret; |
| |
| raw_spin_lock_irqsave_rcu_node(rnp, flags); |
| ret = sync_rcu_preempt_exp_done(rnp); |
| raw_spin_unlock_irqrestore_rcu_node(rnp, flags); |
| |
| return ret; |
| } |
| |
| |
| /* |
| * Report the exit from RCU read-side critical section for the last task |
| * that queued itself during or before the current expedited preemptible-RCU |
| * grace period. This event is reported either to the rcu_node structure on |
| * which the task was queued or to one of that rcu_node structure's ancestors, |
| * recursively up the tree. (Calm down, calm down, we do the recursion |
| * iteratively!) |
| * |
| * Caller must hold the specified rcu_node structure's ->lock. |
| */ |
| static void __rcu_report_exp_rnp(struct rcu_node *rnp, |
| bool wake, unsigned long flags) |
| __releases(rnp->lock) |
| { |
| unsigned long mask; |
| |
| for (;;) { |
| if (!sync_rcu_preempt_exp_done(rnp)) { |
| if (!rnp->expmask) |
| rcu_initiate_boost(rnp, flags); |
| else |
| raw_spin_unlock_irqrestore_rcu_node(rnp, flags); |
| break; |
| } |
| if (rnp->parent == NULL) { |
| raw_spin_unlock_irqrestore_rcu_node(rnp, flags); |
| if (wake) { |
| smp_mb(); /* EGP done before wake_up(). */ |
| swake_up_one(&rcu_state.expedited_wq); |
| } |
| break; |
| } |
| mask = rnp->grpmask; |
| raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled */ |
| rnp = rnp->parent; |
| raw_spin_lock_rcu_node(rnp); /* irqs already disabled */ |
| WARN_ON_ONCE(!(rnp->expmask & mask)); |
| rnp->expmask &= ~mask; |
| } |
| } |
| |
| /* |
| * Report expedited quiescent state for specified node. This is a |
| * lock-acquisition wrapper function for __rcu_report_exp_rnp(). |
| */ |
| static void __maybe_unused rcu_report_exp_rnp(struct rcu_node *rnp, bool wake) |
| { |
| unsigned long flags; |
| |
| raw_spin_lock_irqsave_rcu_node(rnp, flags); |
| __rcu_report_exp_rnp(rnp, wake, flags); |
| } |
| |
| /* |
| * Report expedited quiescent state for multiple CPUs, all covered by the |
| * specified leaf rcu_node structure. |
| */ |
| static void rcu_report_exp_cpu_mult(struct rcu_node *rnp, |
| unsigned long mask, bool wake) |
| { |
| unsigned long flags; |
| |
| raw_spin_lock_irqsave_rcu_node(rnp, flags); |
| if (!(rnp->expmask & mask)) { |
| raw_spin_unlock_irqrestore_rcu_node(rnp, flags); |
| return; |
| } |
| rnp->expmask &= ~mask; |
| __rcu_report_exp_rnp(rnp, wake, flags); /* Releases rnp->lock. */ |
| } |
| |
| /* |
| * Report expedited quiescent state for specified rcu_data (CPU). |
| */ |
| static void rcu_report_exp_rdp(struct rcu_data *rdp) |
| { |
| WRITE_ONCE(rdp->deferred_qs, false); |
| rcu_report_exp_cpu_mult(rdp->mynode, rdp->grpmask, true); |
| } |
| |
| /* Common code for work-done checking. */ |
| static bool sync_exp_work_done(unsigned long s) |
| { |
| if (rcu_exp_gp_seq_done(s)) { |
| trace_rcu_exp_grace_period(rcu_state.name, s, TPS("done")); |
| /* Ensure test happens before caller kfree(). */ |
| smp_mb__before_atomic(); /* ^^^ */ |
| return true; |
| } |
| return false; |
| } |
| |
| /* |
| * Funnel-lock acquisition for expedited grace periods. Returns true |
| * if some other task completed an expedited grace period that this task |
| * can piggy-back on, and with no mutex held. Otherwise, returns false |
| * with the mutex held, indicating that the caller must actually do the |
| * expedited grace period. |
| */ |
| static bool exp_funnel_lock(unsigned long s) |
| { |
| struct rcu_data *rdp = per_cpu_ptr(&rcu_data, raw_smp_processor_id()); |
| struct rcu_node *rnp = rdp->mynode; |
| struct rcu_node *rnp_root = rcu_get_root(); |
| |
| /* Low-contention fastpath. */ |
| if (ULONG_CMP_LT(READ_ONCE(rnp->exp_seq_rq), s) && |
| (rnp == rnp_root || |
| ULONG_CMP_LT(READ_ONCE(rnp_root->exp_seq_rq), s)) && |
| mutex_trylock(&rcu_state.exp_mutex)) |
| goto fastpath; |
| |
| /* |
| * Each pass through the following loop works its way up |
| * the rcu_node tree, returning if others have done the work or |
| * otherwise falls through to acquire ->exp_mutex. The mapping |
| * from CPU to rcu_node structure can be inexact, as it is just |
| * promoting locality and is not strictly needed for correctness. |
| */ |
| for (; rnp != NULL; rnp = rnp->parent) { |
| if (sync_exp_work_done(s)) |
| return true; |
| |
| /* Work not done, either wait here or go up. */ |
| spin_lock(&rnp->exp_lock); |
| if (ULONG_CMP_GE(rnp->exp_seq_rq, s)) { |
| |
| /* Someone else doing GP, so wait for them. */ |
| spin_unlock(&rnp->exp_lock); |
| trace_rcu_exp_funnel_lock(rcu_state.name, rnp->level, |
| rnp->grplo, rnp->grphi, |
| TPS("wait")); |
| wait_event(rnp->exp_wq[rcu_seq_ctr(s) & 0x3], |
| sync_exp_work_done(s)); |
| return true; |
| } |
| rnp->exp_seq_rq = s; /* Followers can wait on us. */ |
| spin_unlock(&rnp->exp_lock); |
| trace_rcu_exp_funnel_lock(rcu_state.name, rnp->level, |
| rnp->grplo, rnp->grphi, TPS("nxtlvl")); |
| } |
| mutex_lock(&rcu_state.exp_mutex); |
| fastpath: |
| if (sync_exp_work_done(s)) { |
| mutex_unlock(&rcu_state.exp_mutex); |
| return true; |
| } |
| rcu_exp_gp_seq_start(); |
| trace_rcu_exp_grace_period(rcu_state.name, s, TPS("start")); |
| return false; |
| } |
| |
| /* |
| * Select the CPUs within the specified rcu_node that the upcoming |
| * expedited grace period needs to wait for. |
| */ |
| static void sync_rcu_exp_select_node_cpus(struct work_struct *wp) |
| { |
| int cpu; |
| unsigned long flags; |
| unsigned long mask_ofl_test; |
| unsigned long mask_ofl_ipi; |
| int ret; |
| struct rcu_exp_work *rewp = |
| container_of(wp, struct rcu_exp_work, rew_work); |
| struct rcu_node *rnp = container_of(rewp, struct rcu_node, rew); |
| |
| raw_spin_lock_irqsave_rcu_node(rnp, flags); |
| |
| /* Each pass checks a CPU for identity, offline, and idle. */ |
| mask_ofl_test = 0; |
| for_each_leaf_node_cpu_mask(rnp, cpu, rnp->expmask) { |
| unsigned long mask = leaf_node_cpu_bit(rnp, cpu); |
| struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); |
| int snap; |
| |
| if (raw_smp_processor_id() == cpu || |
| !(rnp->qsmaskinitnext & mask)) { |
| mask_ofl_test |= mask; |
| } else { |
| snap = rcu_dynticks_snap(rdp); |
| if (rcu_dynticks_in_eqs(snap)) |
| mask_ofl_test |= mask; |
| else |
| rdp->exp_dynticks_snap = snap; |
| } |
| } |
| mask_ofl_ipi = rnp->expmask & ~mask_ofl_test; |
| |
| /* |
| * Need to wait for any blocked tasks as well. Note that |
| * additional blocking tasks will also block the expedited GP |
| * until such time as the ->expmask bits are cleared. |
| */ |
| if (rcu_preempt_has_tasks(rnp)) |
| rnp->exp_tasks = rnp->blkd_tasks.next; |
| raw_spin_unlock_irqrestore_rcu_node(rnp, flags); |
| |
| /* IPI the remaining CPUs for expedited quiescent state. */ |
| for_each_leaf_node_cpu_mask(rnp, cpu, rnp->expmask) { |
| unsigned long mask = leaf_node_cpu_bit(rnp, cpu); |
| struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); |
| |
| if (!(mask_ofl_ipi & mask)) |
| continue; |
| retry_ipi: |
| if (rcu_dynticks_in_eqs_since(rdp, rdp->exp_dynticks_snap)) { |
| mask_ofl_test |= mask; |
| continue; |
| } |
| ret = smp_call_function_single(cpu, rcu_exp_handler, NULL, 0); |
| if (!ret) { |
| mask_ofl_ipi &= ~mask; |
| continue; |
| } |
| /* Failed, raced with CPU hotplug operation. */ |
| raw_spin_lock_irqsave_rcu_node(rnp, flags); |
| if ((rnp->qsmaskinitnext & mask) && |
| (rnp->expmask & mask)) { |
| /* Online, so delay for a bit and try again. */ |
| raw_spin_unlock_irqrestore_rcu_node(rnp, flags); |
| trace_rcu_exp_grace_period(rcu_state.name, rcu_exp_gp_seq_endval(), TPS("selectofl")); |
| schedule_timeout_uninterruptible(1); |
| goto retry_ipi; |
| } |
| /* CPU really is offline, so we can ignore it. */ |
| if (!(rnp->expmask & mask)) |
| mask_ofl_ipi &= ~mask; |
| raw_spin_unlock_irqrestore_rcu_node(rnp, flags); |
| } |
| /* Report quiescent states for those that went offline. */ |
| mask_ofl_test |= mask_ofl_ipi; |
| if (mask_ofl_test) |
| rcu_report_exp_cpu_mult(rnp, mask_ofl_test, false); |
| } |
| |
| /* |
| * Select the nodes that the upcoming expedited grace period needs |
| * to wait for. |
| */ |
| static void sync_rcu_exp_select_cpus(void) |
| { |
| int cpu; |
| struct rcu_node *rnp; |
| |
| trace_rcu_exp_grace_period(rcu_state.name, rcu_exp_gp_seq_endval(), TPS("reset")); |
| sync_exp_reset_tree(); |
| trace_rcu_exp_grace_period(rcu_state.name, rcu_exp_gp_seq_endval(), TPS("select")); |
| |
| /* Schedule work for each leaf rcu_node structure. */ |
| rcu_for_each_leaf_node(rnp) { |
| rnp->exp_need_flush = false; |
| if (!READ_ONCE(rnp->expmask)) |
| continue; /* Avoid early boot non-existent wq. */ |
| if (!READ_ONCE(rcu_par_gp_wq) || |
| rcu_scheduler_active != RCU_SCHEDULER_RUNNING || |
| rcu_is_last_leaf_node(rnp)) { |
| /* No workqueues yet or last leaf, do direct call. */ |
| sync_rcu_exp_select_node_cpus(&rnp->rew.rew_work); |
| continue; |
| } |
| INIT_WORK(&rnp->rew.rew_work, sync_rcu_exp_select_node_cpus); |
| cpu = find_next_bit(&rnp->ffmask, BITS_PER_LONG, -1); |
| /* If all offline, queue the work on an unbound CPU. */ |
| if (unlikely(cpu > rnp->grphi - rnp->grplo)) |
| cpu = WORK_CPU_UNBOUND; |
| else |
| cpu += rnp->grplo; |
| queue_work_on(cpu, rcu_par_gp_wq, &rnp->rew.rew_work); |
| rnp->exp_need_flush = true; |
| } |
| |
| /* Wait for workqueue jobs (if any) to complete. */ |
| rcu_for_each_leaf_node(rnp) |
| if (rnp->exp_need_flush) |
| flush_work(&rnp->rew.rew_work); |
| } |
| |
| static void synchronize_sched_expedited_wait(void) |
| { |
| int cpu; |
| unsigned long jiffies_stall; |
| unsigned long jiffies_start; |
| unsigned long mask; |
| int ndetected; |
| struct rcu_node *rnp; |
| struct rcu_node *rnp_root = rcu_get_root(); |
| int ret; |
| |
| trace_rcu_exp_grace_period(rcu_state.name, rcu_exp_gp_seq_endval(), TPS("startwait")); |
| jiffies_stall = rcu_jiffies_till_stall_check(); |
| jiffies_start = jiffies; |
| |
| for (;;) { |
| ret = swait_event_timeout_exclusive( |
| rcu_state.expedited_wq, |
| sync_rcu_preempt_exp_done_unlocked(rnp_root), |
| jiffies_stall); |
| if (ret > 0 || sync_rcu_preempt_exp_done_unlocked(rnp_root)) |
| return; |
| WARN_ON(ret < 0); /* workqueues should not be signaled. */ |
| if (rcu_cpu_stall_suppress) |
| continue; |
| panic_on_rcu_stall(); |
| pr_err("INFO: %s detected expedited stalls on CPUs/tasks: {", |
| rcu_state.name); |
| ndetected = 0; |
| rcu_for_each_leaf_node(rnp) { |
| ndetected += rcu_print_task_exp_stall(rnp); |
| for_each_leaf_node_possible_cpu(rnp, cpu) { |
| struct rcu_data *rdp; |
| |
| mask = leaf_node_cpu_bit(rnp, cpu); |
| if (!(rnp->expmask & mask)) |
| continue; |
| ndetected++; |
| rdp = per_cpu_ptr(&rcu_data, cpu); |
| pr_cont(" %d-%c%c%c", cpu, |
| "O."[!!cpu_online(cpu)], |
| "o."[!!(rdp->grpmask & rnp->expmaskinit)], |
| "N."[!!(rdp->grpmask & rnp->expmaskinitnext)]); |
| } |
| } |
| pr_cont(" } %lu jiffies s: %lu root: %#lx/%c\n", |
| jiffies - jiffies_start, rcu_state.expedited_sequence, |
| rnp_root->expmask, ".T"[!!rnp_root->exp_tasks]); |
| if (ndetected) { |
| pr_err("blocking rcu_node structures:"); |
| rcu_for_each_node_breadth_first(rnp) { |
| if (rnp == rnp_root) |
| continue; /* printed unconditionally */ |
| if (sync_rcu_preempt_exp_done_unlocked(rnp)) |
| continue; |
| pr_cont(" l=%u:%d-%d:%#lx/%c", |
| rnp->level, rnp->grplo, rnp->grphi, |
| rnp->expmask, |
| ".T"[!!rnp->exp_tasks]); |
| } |
| pr_cont("\n"); |
| } |
| rcu_for_each_leaf_node(rnp) { |
| for_each_leaf_node_possible_cpu(rnp, cpu) { |
| mask = leaf_node_cpu_bit(rnp, cpu); |
| if (!(rnp->expmask & mask)) |
| continue; |
| dump_cpu_task(cpu); |
| } |
| } |
| jiffies_stall = 3 * rcu_jiffies_till_stall_check() + 3; |
| } |
| } |
| |
| /* |
| * Wait for the current expedited grace period to complete, and then |
| * wake up everyone who piggybacked on the just-completed expedited |
| * grace period. Also update all the ->exp_seq_rq counters as needed |
| * in order to avoid counter-wrap problems. |
| */ |
| static void rcu_exp_wait_wake(unsigned long s) |
| { |
| struct rcu_node *rnp; |
| |
| synchronize_sched_expedited_wait(); |
| rcu_exp_gp_seq_end(); |
| trace_rcu_exp_grace_period(rcu_state.name, s, TPS("end")); |
| |
| /* |
| * Switch over to wakeup mode, allowing the next GP, but -only- the |
| * next GP, to proceed. |
| */ |
| mutex_lock(&rcu_state.exp_wake_mutex); |
| |
| rcu_for_each_node_breadth_first(rnp) { |
| if (ULONG_CMP_LT(READ_ONCE(rnp->exp_seq_rq), s)) { |
| spin_lock(&rnp->exp_lock); |
| /* Recheck, avoid hang in case someone just arrived. */ |
| if (ULONG_CMP_LT(rnp->exp_seq_rq, s)) |
| rnp->exp_seq_rq = s; |
| spin_unlock(&rnp->exp_lock); |
| } |
| smp_mb(); /* All above changes before wakeup. */ |
| wake_up_all(&rnp->exp_wq[rcu_seq_ctr(rcu_state.expedited_sequence) & 0x3]); |
| } |
| trace_rcu_exp_grace_period(rcu_state.name, s, TPS("endwake")); |
| mutex_unlock(&rcu_state.exp_wake_mutex); |
| } |
| |
| /* |
| * Common code to drive an expedited grace period forward, used by |
| * workqueues and mid-boot-time tasks. |
| */ |
| static void rcu_exp_sel_wait_wake(unsigned long s) |
| { |
| /* Initialize the rcu_node tree in preparation for the wait. */ |
| sync_rcu_exp_select_cpus(); |
| |
| /* Wait and clean up, including waking everyone. */ |
| rcu_exp_wait_wake(s); |
| } |
| |
| /* |
| * Work-queue handler to drive an expedited grace period forward. |
| */ |
| static void wait_rcu_exp_gp(struct work_struct *wp) |
| { |
| struct rcu_exp_work *rewp; |
| |
| rewp = container_of(wp, struct rcu_exp_work, rew_work); |
| rcu_exp_sel_wait_wake(rewp->rew_s); |
| } |
| |
| #ifdef CONFIG_PREEMPT_RCU |
| |
| /* |
| * Remote handler for smp_call_function_single(). If there is an |
| * RCU read-side critical section in effect, request that the |
| * next rcu_read_unlock() record the quiescent state up the |
| * ->expmask fields in the rcu_node tree. Otherwise, immediately |
| * report the quiescent state. |
| */ |
| static void rcu_exp_handler(void *unused) |
| { |
| unsigned long flags; |
| struct rcu_data *rdp = this_cpu_ptr(&rcu_data); |
| struct rcu_node *rnp = rdp->mynode; |
| struct task_struct *t = current; |
| |
| /* |
| * First, the common case of not being in an RCU read-side |
| * critical section. If also enabled or idle, immediately |
| * report the quiescent state, otherwise defer. |
| */ |
| if (!t->rcu_read_lock_nesting) { |
| if (!(preempt_count() & (PREEMPT_MASK | SOFTIRQ_MASK)) || |
| rcu_dynticks_curr_cpu_in_eqs()) { |
| rcu_report_exp_rdp(rdp); |
| } else { |
| rdp->deferred_qs = true; |
| set_tsk_need_resched(t); |
| set_preempt_need_resched(); |
| } |
| return; |
| } |
| |
| /* |
| * Second, the less-common case of being in an RCU read-side |
| * critical section. In this case we can count on a future |
| * rcu_read_unlock(). However, this rcu_read_unlock() might |
| * execute on some other CPU, but in that case there will be |
| * a future context switch. Either way, if the expedited |
| * grace period is still waiting on this CPU, set ->deferred_qs |
| * so that the eventual quiescent state will be reported. |
| * Note that there is a large group of race conditions that |
| * can have caused this quiescent state to already have been |
| * reported, so we really do need to check ->expmask. |
| */ |
| if (t->rcu_read_lock_nesting > 0) { |
| raw_spin_lock_irqsave_rcu_node(rnp, flags); |
| if (rnp->expmask & rdp->grpmask) { |
| rdp->deferred_qs = true; |
| t->rcu_read_unlock_special.b.exp_hint = true; |
| } |
| raw_spin_unlock_irqrestore_rcu_node(rnp, flags); |
| return; |
| } |
| |
| /* |
| * The final and least likely case is where the interrupted |
| * code was just about to or just finished exiting the RCU-preempt |
| * read-side critical section, and no, we can't tell which. |
| * So either way, set ->deferred_qs to flag later code that |
| * a quiescent state is required. |
| * |
| * If the CPU is fully enabled (or if some buggy RCU-preempt |
| * read-side critical section is being used from idle), just |
| * invoke rcu_preempt_deferred_qs() to immediately report the |
| * quiescent state. We cannot use rcu_read_unlock_special() |
| * because we are in an interrupt handler, which will cause that |
| * function to take an early exit without doing anything. |
| * |
| * Otherwise, force a context switch after the CPU enables everything. |
| */ |
| rdp->deferred_qs = true; |
| if (!(preempt_count() & (PREEMPT_MASK | SOFTIRQ_MASK)) || |
| WARN_ON_ONCE(rcu_dynticks_curr_cpu_in_eqs())) { |
| rcu_preempt_deferred_qs(t); |
| } else { |
| set_tsk_need_resched(t); |
| set_preempt_need_resched(); |
| } |
| } |
| |
| /* PREEMPT=y, so no PREEMPT=n expedited grace period to clean up after. */ |
| static void sync_sched_exp_online_cleanup(int cpu) |
| { |
| } |
| |
| /* |
| * Scan the current list of tasks blocked within RCU read-side critical |
| * sections, printing out the tid of each that is blocking the current |
| * expedited grace period. |
| */ |
| static int rcu_print_task_exp_stall(struct rcu_node *rnp) |
| { |
| struct task_struct *t; |
| int ndetected = 0; |
| |
| if (!rnp->exp_tasks) |
| return 0; |
| t = list_entry(rnp->exp_tasks->prev, |
| struct task_struct, rcu_node_entry); |
| list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) { |
| pr_cont(" P%d", t->pid); |
| ndetected++; |
| } |
| return ndetected; |
| } |
| |
| #else /* #ifdef CONFIG_PREEMPT_RCU */ |
| |
| /* Invoked on each online non-idle CPU for expedited quiescent state. */ |
| static void rcu_exp_handler(void *unused) |
| { |
| struct rcu_data *rdp; |
| struct rcu_node *rnp; |
| |
| rdp = this_cpu_ptr(&rcu_data); |
| rnp = rdp->mynode; |
| if (!(READ_ONCE(rnp->expmask) & rdp->grpmask) || |
| __this_cpu_read(rcu_data.cpu_no_qs.b.exp)) |
| return; |
| if (rcu_is_cpu_rrupt_from_idle()) { |
| rcu_report_exp_rdp(this_cpu_ptr(&rcu_data)); |
| return; |
| } |
| __this_cpu_write(rcu_data.cpu_no_qs.b.exp, true); |
| /* Store .exp before .rcu_urgent_qs. */ |
| smp_store_release(this_cpu_ptr(&rcu_data.rcu_urgent_qs), true); |
| set_tsk_need_resched(current); |
| set_preempt_need_resched(); |
| } |
| |
| /* Send IPI for expedited cleanup if needed at end of CPU-hotplug operation. */ |
| static void sync_sched_exp_online_cleanup(int cpu) |
| { |
| struct rcu_data *rdp; |
| int ret; |
| struct rcu_node *rnp; |
| |
| rdp = per_cpu_ptr(&rcu_data, cpu); |
| rnp = rdp->mynode; |
| if (!(READ_ONCE(rnp->expmask) & rdp->grpmask)) |
| return; |
| ret = smp_call_function_single(cpu, rcu_exp_handler, NULL, 0); |
| WARN_ON_ONCE(ret); |
| } |
| |
| /* |
| * Because preemptible RCU does not exist, we never have to check for |
| * tasks blocked within RCU read-side critical sections that are |
| * blocking the current expedited grace period. |
| */ |
| static int rcu_print_task_exp_stall(struct rcu_node *rnp) |
| { |
| return 0; |
| } |
| |
| #endif /* #else #ifdef CONFIG_PREEMPT_RCU */ |
| |
| /** |
| * synchronize_rcu_expedited - Brute-force RCU grace period |
| * |
| * Wait for an RCU grace period, but expedite it. The basic idea is to |
| * IPI all non-idle non-nohz online CPUs. The IPI handler checks whether |
| * the CPU is in an RCU critical section, and if so, it sets a flag that |
| * causes the outermost rcu_read_unlock() to report the quiescent state |
| * for RCU-preempt or asks the scheduler for help for RCU-sched. On the |
| * other hand, if the CPU is not in an RCU read-side critical section, |
| * the IPI handler reports the quiescent state immediately. |
| * |
| * Although this is a greate improvement over previous expedited |
| * implementations, it is still unfriendly to real-time workloads, so is |
| * thus not recommended for any sort of common-case code. In fact, if |
| * you are using synchronize_rcu_expedited() in a loop, please restructure |
| * your code to batch your updates, and then Use a single synchronize_rcu() |
| * instead. |
| * |
| * This has the same semantics as (but is more brutal than) synchronize_rcu(). |
| */ |
| void synchronize_rcu_expedited(void) |
| { |
| struct rcu_data *rdp; |
| struct rcu_exp_work rew; |
| struct rcu_node *rnp; |
| unsigned long s; |
| |
| RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) || |
| lock_is_held(&rcu_lock_map) || |
| lock_is_held(&rcu_sched_lock_map), |
| "Illegal synchronize_rcu_expedited() in RCU read-side critical section"); |
| |
| /* Is the state is such that the call is a grace period? */ |
| if (rcu_blocking_is_gp()) |
| return; |
| |
| /* If expedited grace periods are prohibited, fall back to normal. */ |
| if (rcu_gp_is_normal()) { |
| wait_rcu_gp(call_rcu); |
| return; |
| } |
| |
| /* Take a snapshot of the sequence number. */ |
| s = rcu_exp_gp_seq_snap(); |
| if (exp_funnel_lock(s)) |
| return; /* Someone else did our work for us. */ |
| |
| /* Ensure that load happens before action based on it. */ |
| if (unlikely(rcu_scheduler_active == RCU_SCHEDULER_INIT)) { |
| /* Direct call during scheduler init and early_initcalls(). */ |
| rcu_exp_sel_wait_wake(s); |
| } else { |
| /* Marshall arguments & schedule the expedited grace period. */ |
| rew.rew_s = s; |
| INIT_WORK_ONSTACK(&rew.rew_work, wait_rcu_exp_gp); |
| queue_work(rcu_gp_wq, &rew.rew_work); |
| } |
| |
| /* Wait for expedited grace period to complete. */ |
| rdp = per_cpu_ptr(&rcu_data, raw_smp_processor_id()); |
| rnp = rcu_get_root(); |
| wait_event(rnp->exp_wq[rcu_seq_ctr(s) & 0x3], |
| sync_exp_work_done(s)); |
| smp_mb(); /* Workqueue actions happen before return. */ |
| |
| /* Let the next expedited grace period start. */ |
| mutex_unlock(&rcu_state.exp_mutex); |
| } |
| EXPORT_SYMBOL_GPL(synchronize_rcu_expedited); |