| /* |
| * Kernel-based Virtual Machine driver for Linux |
| * |
| * derived from drivers/kvm/kvm_main.c |
| * |
| * Copyright (C) 2006 Qumranet, Inc. |
| * Copyright (C) 2008 Qumranet, Inc. |
| * Copyright IBM Corporation, 2008 |
| * Copyright 2010 Red Hat, Inc. and/or its affiliates. |
| * |
| * Authors: |
| * Avi Kivity <avi@qumranet.com> |
| * Yaniv Kamay <yaniv@qumranet.com> |
| * Amit Shah <amit.shah@qumranet.com> |
| * Ben-Ami Yassour <benami@il.ibm.com> |
| * |
| * This work is licensed under the terms of the GNU GPL, version 2. See |
| * the COPYING file in the top-level directory. |
| * |
| */ |
| |
| #include <linux/kvm_host.h> |
| #include "irq.h" |
| #include "mmu.h" |
| #include "i8254.h" |
| #include "tss.h" |
| #include "kvm_cache_regs.h" |
| #include "x86.h" |
| #include "cpuid.h" |
| #include "pmu.h" |
| #include "hyperv.h" |
| |
| #include <linux/clocksource.h> |
| #include <linux/interrupt.h> |
| #include <linux/kvm.h> |
| #include <linux/fs.h> |
| #include <linux/vmalloc.h> |
| #include <linux/export.h> |
| #include <linux/moduleparam.h> |
| #include <linux/mman.h> |
| #include <linux/highmem.h> |
| #include <linux/iommu.h> |
| #include <linux/intel-iommu.h> |
| #include <linux/cpufreq.h> |
| #include <linux/user-return-notifier.h> |
| #include <linux/srcu.h> |
| #include <linux/slab.h> |
| #include <linux/perf_event.h> |
| #include <linux/uaccess.h> |
| #include <linux/hash.h> |
| #include <linux/pci.h> |
| #include <linux/timekeeper_internal.h> |
| #include <linux/pvclock_gtod.h> |
| #include <linux/kvm_irqfd.h> |
| #include <linux/irqbypass.h> |
| #include <linux/sched/stat.h> |
| #include <linux/mem_encrypt.h> |
| |
| #include <trace/events/kvm.h> |
| |
| #include <asm/debugreg.h> |
| #include <asm/msr.h> |
| #include <asm/desc.h> |
| #include <asm/mce.h> |
| #include <linux/kernel_stat.h> |
| #include <asm/fpu/internal.h> /* Ugh! */ |
| #include <asm/pvclock.h> |
| #include <asm/div64.h> |
| #include <asm/irq_remapping.h> |
| #include <asm/mshyperv.h> |
| #include <asm/hypervisor.h> |
| |
| #define CREATE_TRACE_POINTS |
| #include "trace.h" |
| |
| #define MAX_IO_MSRS 256 |
| #define KVM_MAX_MCE_BANKS 32 |
| u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P; |
| EXPORT_SYMBOL_GPL(kvm_mce_cap_supported); |
| |
| #define emul_to_vcpu(ctxt) \ |
| container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt) |
| |
| /* EFER defaults: |
| * - enable syscall per default because its emulated by KVM |
| * - enable LME and LMA per default on 64 bit KVM |
| */ |
| #ifdef CONFIG_X86_64 |
| static |
| u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA)); |
| #else |
| static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE); |
| #endif |
| |
| #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM |
| #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU |
| |
| #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \ |
| KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK) |
| |
| static void update_cr8_intercept(struct kvm_vcpu *vcpu); |
| static void process_nmi(struct kvm_vcpu *vcpu); |
| static void enter_smm(struct kvm_vcpu *vcpu); |
| static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags); |
| |
| struct kvm_x86_ops *kvm_x86_ops __read_mostly; |
| EXPORT_SYMBOL_GPL(kvm_x86_ops); |
| |
| static bool __read_mostly ignore_msrs = 0; |
| module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR); |
| |
| static bool __read_mostly report_ignored_msrs = true; |
| module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR); |
| |
| unsigned int min_timer_period_us = 500; |
| module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR); |
| |
| static bool __read_mostly kvmclock_periodic_sync = true; |
| module_param(kvmclock_periodic_sync, bool, S_IRUGO); |
| |
| bool __read_mostly kvm_has_tsc_control; |
| EXPORT_SYMBOL_GPL(kvm_has_tsc_control); |
| u32 __read_mostly kvm_max_guest_tsc_khz; |
| EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz); |
| u8 __read_mostly kvm_tsc_scaling_ratio_frac_bits; |
| EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits); |
| u64 __read_mostly kvm_max_tsc_scaling_ratio; |
| EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio); |
| u64 __read_mostly kvm_default_tsc_scaling_ratio; |
| EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio); |
| |
| /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */ |
| static u32 __read_mostly tsc_tolerance_ppm = 250; |
| module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR); |
| |
| /* lapic timer advance (tscdeadline mode only) in nanoseconds */ |
| unsigned int __read_mostly lapic_timer_advance_ns = 0; |
| module_param(lapic_timer_advance_ns, uint, S_IRUGO | S_IWUSR); |
| |
| static bool __read_mostly vector_hashing = true; |
| module_param(vector_hashing, bool, S_IRUGO); |
| |
| #define KVM_NR_SHARED_MSRS 16 |
| |
| struct kvm_shared_msrs_global { |
| int nr; |
| u32 msrs[KVM_NR_SHARED_MSRS]; |
| }; |
| |
| struct kvm_shared_msrs { |
| struct user_return_notifier urn; |
| bool registered; |
| struct kvm_shared_msr_values { |
| u64 host; |
| u64 curr; |
| } values[KVM_NR_SHARED_MSRS]; |
| }; |
| |
| static struct kvm_shared_msrs_global __read_mostly shared_msrs_global; |
| static struct kvm_shared_msrs __percpu *shared_msrs; |
| |
| struct kvm_stats_debugfs_item debugfs_entries[] = { |
| { "pf_fixed", VCPU_STAT(pf_fixed) }, |
| { "pf_guest", VCPU_STAT(pf_guest) }, |
| { "tlb_flush", VCPU_STAT(tlb_flush) }, |
| { "invlpg", VCPU_STAT(invlpg) }, |
| { "exits", VCPU_STAT(exits) }, |
| { "io_exits", VCPU_STAT(io_exits) }, |
| { "mmio_exits", VCPU_STAT(mmio_exits) }, |
| { "signal_exits", VCPU_STAT(signal_exits) }, |
| { "irq_window", VCPU_STAT(irq_window_exits) }, |
| { "nmi_window", VCPU_STAT(nmi_window_exits) }, |
| { "halt_exits", VCPU_STAT(halt_exits) }, |
| { "halt_successful_poll", VCPU_STAT(halt_successful_poll) }, |
| { "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) }, |
| { "halt_poll_invalid", VCPU_STAT(halt_poll_invalid) }, |
| { "halt_wakeup", VCPU_STAT(halt_wakeup) }, |
| { "hypercalls", VCPU_STAT(hypercalls) }, |
| { "request_irq", VCPU_STAT(request_irq_exits) }, |
| { "irq_exits", VCPU_STAT(irq_exits) }, |
| { "host_state_reload", VCPU_STAT(host_state_reload) }, |
| { "fpu_reload", VCPU_STAT(fpu_reload) }, |
| { "insn_emulation", VCPU_STAT(insn_emulation) }, |
| { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) }, |
| { "irq_injections", VCPU_STAT(irq_injections) }, |
| { "nmi_injections", VCPU_STAT(nmi_injections) }, |
| { "req_event", VCPU_STAT(req_event) }, |
| { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) }, |
| { "mmu_pte_write", VM_STAT(mmu_pte_write) }, |
| { "mmu_pte_updated", VM_STAT(mmu_pte_updated) }, |
| { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) }, |
| { "mmu_flooded", VM_STAT(mmu_flooded) }, |
| { "mmu_recycled", VM_STAT(mmu_recycled) }, |
| { "mmu_cache_miss", VM_STAT(mmu_cache_miss) }, |
| { "mmu_unsync", VM_STAT(mmu_unsync) }, |
| { "remote_tlb_flush", VM_STAT(remote_tlb_flush) }, |
| { "largepages", VM_STAT(lpages) }, |
| { "max_mmu_page_hash_collisions", |
| VM_STAT(max_mmu_page_hash_collisions) }, |
| { NULL } |
| }; |
| |
| u64 __read_mostly host_xcr0; |
| |
| static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt); |
| |
| static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu) |
| { |
| int i; |
| for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++) |
| vcpu->arch.apf.gfns[i] = ~0; |
| } |
| |
| static void kvm_on_user_return(struct user_return_notifier *urn) |
| { |
| unsigned slot; |
| struct kvm_shared_msrs *locals |
| = container_of(urn, struct kvm_shared_msrs, urn); |
| struct kvm_shared_msr_values *values; |
| unsigned long flags; |
| |
| /* |
| * Disabling irqs at this point since the following code could be |
| * interrupted and executed through kvm_arch_hardware_disable() |
| */ |
| local_irq_save(flags); |
| if (locals->registered) { |
| locals->registered = false; |
| user_return_notifier_unregister(urn); |
| } |
| local_irq_restore(flags); |
| for (slot = 0; slot < shared_msrs_global.nr; ++slot) { |
| values = &locals->values[slot]; |
| if (values->host != values->curr) { |
| wrmsrl(shared_msrs_global.msrs[slot], values->host); |
| values->curr = values->host; |
| } |
| } |
| } |
| |
| static void shared_msr_update(unsigned slot, u32 msr) |
| { |
| u64 value; |
| unsigned int cpu = smp_processor_id(); |
| struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu); |
| |
| /* only read, and nobody should modify it at this time, |
| * so don't need lock */ |
| if (slot >= shared_msrs_global.nr) { |
| printk(KERN_ERR "kvm: invalid MSR slot!"); |
| return; |
| } |
| rdmsrl_safe(msr, &value); |
| smsr->values[slot].host = value; |
| smsr->values[slot].curr = value; |
| } |
| |
| void kvm_define_shared_msr(unsigned slot, u32 msr) |
| { |
| BUG_ON(slot >= KVM_NR_SHARED_MSRS); |
| shared_msrs_global.msrs[slot] = msr; |
| if (slot >= shared_msrs_global.nr) |
| shared_msrs_global.nr = slot + 1; |
| } |
| EXPORT_SYMBOL_GPL(kvm_define_shared_msr); |
| |
| static void kvm_shared_msr_cpu_online(void) |
| { |
| unsigned i; |
| |
| for (i = 0; i < shared_msrs_global.nr; ++i) |
| shared_msr_update(i, shared_msrs_global.msrs[i]); |
| } |
| |
| int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask) |
| { |
| unsigned int cpu = smp_processor_id(); |
| struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu); |
| int err; |
| |
| if (((value ^ smsr->values[slot].curr) & mask) == 0) |
| return 0; |
| smsr->values[slot].curr = value; |
| err = wrmsrl_safe(shared_msrs_global.msrs[slot], value); |
| if (err) |
| return 1; |
| |
| if (!smsr->registered) { |
| smsr->urn.on_user_return = kvm_on_user_return; |
| user_return_notifier_register(&smsr->urn); |
| smsr->registered = true; |
| } |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(kvm_set_shared_msr); |
| |
| static void drop_user_return_notifiers(void) |
| { |
| unsigned int cpu = smp_processor_id(); |
| struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu); |
| |
| if (smsr->registered) |
| kvm_on_user_return(&smsr->urn); |
| } |
| |
| u64 kvm_get_apic_base(struct kvm_vcpu *vcpu) |
| { |
| return vcpu->arch.apic_base; |
| } |
| EXPORT_SYMBOL_GPL(kvm_get_apic_base); |
| |
| int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info) |
| { |
| u64 old_state = vcpu->arch.apic_base & |
| (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE); |
| u64 new_state = msr_info->data & |
| (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE); |
| u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) | 0x2ff | |
| (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE); |
| |
| if ((msr_info->data & reserved_bits) || new_state == X2APIC_ENABLE) |
| return 1; |
| if (!msr_info->host_initiated && |
| ((new_state == MSR_IA32_APICBASE_ENABLE && |
| old_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE)) || |
| (new_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE) && |
| old_state == 0))) |
| return 1; |
| |
| kvm_lapic_set_base(vcpu, msr_info->data); |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(kvm_set_apic_base); |
| |
| asmlinkage __visible void kvm_spurious_fault(void) |
| { |
| /* Fault while not rebooting. We want the trace. */ |
| BUG(); |
| } |
| EXPORT_SYMBOL_GPL(kvm_spurious_fault); |
| |
| #define EXCPT_BENIGN 0 |
| #define EXCPT_CONTRIBUTORY 1 |
| #define EXCPT_PF 2 |
| |
| static int exception_class(int vector) |
| { |
| switch (vector) { |
| case PF_VECTOR: |
| return EXCPT_PF; |
| case DE_VECTOR: |
| case TS_VECTOR: |
| case NP_VECTOR: |
| case SS_VECTOR: |
| case GP_VECTOR: |
| return EXCPT_CONTRIBUTORY; |
| default: |
| break; |
| } |
| return EXCPT_BENIGN; |
| } |
| |
| #define EXCPT_FAULT 0 |
| #define EXCPT_TRAP 1 |
| #define EXCPT_ABORT 2 |
| #define EXCPT_INTERRUPT 3 |
| |
| static int exception_type(int vector) |
| { |
| unsigned int mask; |
| |
| if (WARN_ON(vector > 31 || vector == NMI_VECTOR)) |
| return EXCPT_INTERRUPT; |
| |
| mask = 1 << vector; |
| |
| /* #DB is trap, as instruction watchpoints are handled elsewhere */ |
| if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR))) |
| return EXCPT_TRAP; |
| |
| if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR))) |
| return EXCPT_ABORT; |
| |
| /* Reserved exceptions will result in fault */ |
| return EXCPT_FAULT; |
| } |
| |
| static void kvm_multiple_exception(struct kvm_vcpu *vcpu, |
| unsigned nr, bool has_error, u32 error_code, |
| bool reinject) |
| { |
| u32 prev_nr; |
| int class1, class2; |
| |
| kvm_make_request(KVM_REQ_EVENT, vcpu); |
| |
| if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) { |
| queue: |
| if (has_error && !is_protmode(vcpu)) |
| has_error = false; |
| if (reinject) { |
| /* |
| * On vmentry, vcpu->arch.exception.pending is only |
| * true if an event injection was blocked by |
| * nested_run_pending. In that case, however, |
| * vcpu_enter_guest requests an immediate exit, |
| * and the guest shouldn't proceed far enough to |
| * need reinjection. |
| */ |
| WARN_ON_ONCE(vcpu->arch.exception.pending); |
| vcpu->arch.exception.injected = true; |
| } else { |
| vcpu->arch.exception.pending = true; |
| vcpu->arch.exception.injected = false; |
| } |
| vcpu->arch.exception.has_error_code = has_error; |
| vcpu->arch.exception.nr = nr; |
| vcpu->arch.exception.error_code = error_code; |
| return; |
| } |
| |
| /* to check exception */ |
| prev_nr = vcpu->arch.exception.nr; |
| if (prev_nr == DF_VECTOR) { |
| /* triple fault -> shutdown */ |
| kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); |
| return; |
| } |
| class1 = exception_class(prev_nr); |
| class2 = exception_class(nr); |
| if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY) |
| || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) { |
| /* |
| * Generate double fault per SDM Table 5-5. Set |
| * exception.pending = true so that the double fault |
| * can trigger a nested vmexit. |
| */ |
| vcpu->arch.exception.pending = true; |
| vcpu->arch.exception.injected = false; |
| vcpu->arch.exception.has_error_code = true; |
| vcpu->arch.exception.nr = DF_VECTOR; |
| vcpu->arch.exception.error_code = 0; |
| } else |
| /* replace previous exception with a new one in a hope |
| that instruction re-execution will regenerate lost |
| exception */ |
| goto queue; |
| } |
| |
| void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr) |
| { |
| kvm_multiple_exception(vcpu, nr, false, 0, false); |
| } |
| EXPORT_SYMBOL_GPL(kvm_queue_exception); |
| |
| void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr) |
| { |
| kvm_multiple_exception(vcpu, nr, false, 0, true); |
| } |
| EXPORT_SYMBOL_GPL(kvm_requeue_exception); |
| |
| int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err) |
| { |
| if (err) |
| kvm_inject_gp(vcpu, 0); |
| else |
| return kvm_skip_emulated_instruction(vcpu); |
| |
| return 1; |
| } |
| EXPORT_SYMBOL_GPL(kvm_complete_insn_gp); |
| |
| void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault) |
| { |
| ++vcpu->stat.pf_guest; |
| vcpu->arch.exception.nested_apf = |
| is_guest_mode(vcpu) && fault->async_page_fault; |
| if (vcpu->arch.exception.nested_apf) |
| vcpu->arch.apf.nested_apf_token = fault->address; |
| else |
| vcpu->arch.cr2 = fault->address; |
| kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code); |
| } |
| EXPORT_SYMBOL_GPL(kvm_inject_page_fault); |
| |
| static bool kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault) |
| { |
| if (mmu_is_nested(vcpu) && !fault->nested_page_fault) |
| vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault); |
| else |
| vcpu->arch.mmu.inject_page_fault(vcpu, fault); |
| |
| return fault->nested_page_fault; |
| } |
| |
| void kvm_inject_nmi(struct kvm_vcpu *vcpu) |
| { |
| atomic_inc(&vcpu->arch.nmi_queued); |
| kvm_make_request(KVM_REQ_NMI, vcpu); |
| } |
| EXPORT_SYMBOL_GPL(kvm_inject_nmi); |
| |
| void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) |
| { |
| kvm_multiple_exception(vcpu, nr, true, error_code, false); |
| } |
| EXPORT_SYMBOL_GPL(kvm_queue_exception_e); |
| |
| void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) |
| { |
| kvm_multiple_exception(vcpu, nr, true, error_code, true); |
| } |
| EXPORT_SYMBOL_GPL(kvm_requeue_exception_e); |
| |
| /* |
| * Checks if cpl <= required_cpl; if true, return true. Otherwise queue |
| * a #GP and return false. |
| */ |
| bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl) |
| { |
| if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl) |
| return true; |
| kvm_queue_exception_e(vcpu, GP_VECTOR, 0); |
| return false; |
| } |
| EXPORT_SYMBOL_GPL(kvm_require_cpl); |
| |
| bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr) |
| { |
| if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE)) |
| return true; |
| |
| kvm_queue_exception(vcpu, UD_VECTOR); |
| return false; |
| } |
| EXPORT_SYMBOL_GPL(kvm_require_dr); |
| |
| /* |
| * This function will be used to read from the physical memory of the currently |
| * running guest. The difference to kvm_vcpu_read_guest_page is that this function |
| * can read from guest physical or from the guest's guest physical memory. |
| */ |
| int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, |
| gfn_t ngfn, void *data, int offset, int len, |
| u32 access) |
| { |
| struct x86_exception exception; |
| gfn_t real_gfn; |
| gpa_t ngpa; |
| |
| ngpa = gfn_to_gpa(ngfn); |
| real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception); |
| if (real_gfn == UNMAPPED_GVA) |
| return -EFAULT; |
| |
| real_gfn = gpa_to_gfn(real_gfn); |
| |
| return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len); |
| } |
| EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu); |
| |
| static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, |
| void *data, int offset, int len, u32 access) |
| { |
| return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn, |
| data, offset, len, access); |
| } |
| |
| /* |
| * Load the pae pdptrs. Return true is they are all valid. |
| */ |
| int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3) |
| { |
| gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT; |
| unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2; |
| int i; |
| int ret; |
| u64 pdpte[ARRAY_SIZE(mmu->pdptrs)]; |
| |
| ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte, |
| offset * sizeof(u64), sizeof(pdpte), |
| PFERR_USER_MASK|PFERR_WRITE_MASK); |
| if (ret < 0) { |
| ret = 0; |
| goto out; |
| } |
| for (i = 0; i < ARRAY_SIZE(pdpte); ++i) { |
| if ((pdpte[i] & PT_PRESENT_MASK) && |
| (pdpte[i] & |
| vcpu->arch.mmu.guest_rsvd_check.rsvd_bits_mask[0][2])) { |
| ret = 0; |
| goto out; |
| } |
| } |
| ret = 1; |
| |
| memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs)); |
| __set_bit(VCPU_EXREG_PDPTR, |
| (unsigned long *)&vcpu->arch.regs_avail); |
| __set_bit(VCPU_EXREG_PDPTR, |
| (unsigned long *)&vcpu->arch.regs_dirty); |
| out: |
| |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(load_pdptrs); |
| |
| bool pdptrs_changed(struct kvm_vcpu *vcpu) |
| { |
| u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)]; |
| bool changed = true; |
| int offset; |
| gfn_t gfn; |
| int r; |
| |
| if (is_long_mode(vcpu) || !is_pae(vcpu)) |
| return false; |
| |
| if (!test_bit(VCPU_EXREG_PDPTR, |
| (unsigned long *)&vcpu->arch.regs_avail)) |
| return true; |
| |
| gfn = (kvm_read_cr3(vcpu) & 0xffffffe0ul) >> PAGE_SHIFT; |
| offset = (kvm_read_cr3(vcpu) & 0xffffffe0ul) & (PAGE_SIZE - 1); |
| r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte), |
| PFERR_USER_MASK | PFERR_WRITE_MASK); |
| if (r < 0) |
| goto out; |
| changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0; |
| out: |
| |
| return changed; |
| } |
| EXPORT_SYMBOL_GPL(pdptrs_changed); |
| |
| int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) |
| { |
| unsigned long old_cr0 = kvm_read_cr0(vcpu); |
| unsigned long update_bits = X86_CR0_PG | X86_CR0_WP; |
| |
| cr0 |= X86_CR0_ET; |
| |
| #ifdef CONFIG_X86_64 |
| if (cr0 & 0xffffffff00000000UL) |
| return 1; |
| #endif |
| |
| cr0 &= ~CR0_RESERVED_BITS; |
| |
| if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) |
| return 1; |
| |
| if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) |
| return 1; |
| |
| if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) { |
| #ifdef CONFIG_X86_64 |
| if ((vcpu->arch.efer & EFER_LME)) { |
| int cs_db, cs_l; |
| |
| if (!is_pae(vcpu)) |
| return 1; |
| kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l); |
| if (cs_l) |
| return 1; |
| } else |
| #endif |
| if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu, |
| kvm_read_cr3(vcpu))) |
| return 1; |
| } |
| |
| if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE)) |
| return 1; |
| |
| kvm_x86_ops->set_cr0(vcpu, cr0); |
| |
| if ((cr0 ^ old_cr0) & X86_CR0_PG) { |
| kvm_clear_async_pf_completion_queue(vcpu); |
| kvm_async_pf_hash_reset(vcpu); |
| } |
| |
| if ((cr0 ^ old_cr0) & update_bits) |
| kvm_mmu_reset_context(vcpu); |
| |
| if (((cr0 ^ old_cr0) & X86_CR0_CD) && |
| kvm_arch_has_noncoherent_dma(vcpu->kvm) && |
| !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED)) |
| kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL); |
| |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(kvm_set_cr0); |
| |
| void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw) |
| { |
| (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f)); |
| } |
| EXPORT_SYMBOL_GPL(kvm_lmsw); |
| |
| static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu) |
| { |
| if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) && |
| !vcpu->guest_xcr0_loaded) { |
| /* kvm_set_xcr() also depends on this */ |
| if (vcpu->arch.xcr0 != host_xcr0) |
| xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0); |
| vcpu->guest_xcr0_loaded = 1; |
| } |
| } |
| |
| static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu) |
| { |
| if (vcpu->guest_xcr0_loaded) { |
| if (vcpu->arch.xcr0 != host_xcr0) |
| xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0); |
| vcpu->guest_xcr0_loaded = 0; |
| } |
| } |
| |
| static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr) |
| { |
| u64 xcr0 = xcr; |
| u64 old_xcr0 = vcpu->arch.xcr0; |
| u64 valid_bits; |
| |
| /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */ |
| if (index != XCR_XFEATURE_ENABLED_MASK) |
| return 1; |
| if (!(xcr0 & XFEATURE_MASK_FP)) |
| return 1; |
| if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE)) |
| return 1; |
| |
| /* |
| * Do not allow the guest to set bits that we do not support |
| * saving. However, xcr0 bit 0 is always set, even if the |
| * emulated CPU does not support XSAVE (see fx_init). |
| */ |
| valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP; |
| if (xcr0 & ~valid_bits) |
| return 1; |
| |
| if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) != |
| (!(xcr0 & XFEATURE_MASK_BNDCSR))) |
| return 1; |
| |
| if (xcr0 & XFEATURE_MASK_AVX512) { |
| if (!(xcr0 & XFEATURE_MASK_YMM)) |
| return 1; |
| if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512) |
| return 1; |
| } |
| vcpu->arch.xcr0 = xcr0; |
| |
| if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND) |
| kvm_update_cpuid(vcpu); |
| return 0; |
| } |
| |
| int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr) |
| { |
| if (kvm_x86_ops->get_cpl(vcpu) != 0 || |
| __kvm_set_xcr(vcpu, index, xcr)) { |
| kvm_inject_gp(vcpu, 0); |
| return 1; |
| } |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(kvm_set_xcr); |
| |
| int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) |
| { |
| unsigned long old_cr4 = kvm_read_cr4(vcpu); |
| unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE | |
| X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE; |
| |
| if (cr4 & CR4_RESERVED_BITS) |
| return 1; |
| |
| if (!guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) && (cr4 & X86_CR4_OSXSAVE)) |
| return 1; |
| |
| if (!guest_cpuid_has(vcpu, X86_FEATURE_SMEP) && (cr4 & X86_CR4_SMEP)) |
| return 1; |
| |
| if (!guest_cpuid_has(vcpu, X86_FEATURE_SMAP) && (cr4 & X86_CR4_SMAP)) |
| return 1; |
| |
| if (!guest_cpuid_has(vcpu, X86_FEATURE_FSGSBASE) && (cr4 & X86_CR4_FSGSBASE)) |
| return 1; |
| |
| if (!guest_cpuid_has(vcpu, X86_FEATURE_PKU) && (cr4 & X86_CR4_PKE)) |
| return 1; |
| |
| if (!guest_cpuid_has(vcpu, X86_FEATURE_LA57) && (cr4 & X86_CR4_LA57)) |
| return 1; |
| |
| if (!guest_cpuid_has(vcpu, X86_FEATURE_UMIP) && (cr4 & X86_CR4_UMIP)) |
| return 1; |
| |
| if (is_long_mode(vcpu)) { |
| if (!(cr4 & X86_CR4_PAE)) |
| return 1; |
| } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE) |
| && ((cr4 ^ old_cr4) & pdptr_bits) |
| && !load_pdptrs(vcpu, vcpu->arch.walk_mmu, |
| kvm_read_cr3(vcpu))) |
| return 1; |
| |
| if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) { |
| if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID)) |
| return 1; |
| |
| /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */ |
| if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu)) |
| return 1; |
| } |
| |
| if (kvm_x86_ops->set_cr4(vcpu, cr4)) |
| return 1; |
| |
| if (((cr4 ^ old_cr4) & pdptr_bits) || |
| (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE))) |
| kvm_mmu_reset_context(vcpu); |
| |
| if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE)) |
| kvm_update_cpuid(vcpu); |
| |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(kvm_set_cr4); |
| |
| int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3) |
| { |
| #ifdef CONFIG_X86_64 |
| cr3 &= ~CR3_PCID_INVD; |
| #endif |
| |
| if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) { |
| kvm_mmu_sync_roots(vcpu); |
| kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); |
| return 0; |
| } |
| |
| if (is_long_mode(vcpu) && |
| (cr3 & rsvd_bits(cpuid_maxphyaddr(vcpu), 62))) |
| return 1; |
| else if (is_pae(vcpu) && is_paging(vcpu) && |
| !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3)) |
| return 1; |
| |
| vcpu->arch.cr3 = cr3; |
| __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail); |
| kvm_mmu_new_cr3(vcpu); |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(kvm_set_cr3); |
| |
| int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8) |
| { |
| if (cr8 & CR8_RESERVED_BITS) |
| return 1; |
| if (lapic_in_kernel(vcpu)) |
| kvm_lapic_set_tpr(vcpu, cr8); |
| else |
| vcpu->arch.cr8 = cr8; |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(kvm_set_cr8); |
| |
| unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu) |
| { |
| if (lapic_in_kernel(vcpu)) |
| return kvm_lapic_get_cr8(vcpu); |
| else |
| return vcpu->arch.cr8; |
| } |
| EXPORT_SYMBOL_GPL(kvm_get_cr8); |
| |
| static void kvm_update_dr0123(struct kvm_vcpu *vcpu) |
| { |
| int i; |
| |
| if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) { |
| for (i = 0; i < KVM_NR_DB_REGS; i++) |
| vcpu->arch.eff_db[i] = vcpu->arch.db[i]; |
| vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD; |
| } |
| } |
| |
| static void kvm_update_dr6(struct kvm_vcpu *vcpu) |
| { |
| if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) |
| kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6); |
| } |
| |
| static void kvm_update_dr7(struct kvm_vcpu *vcpu) |
| { |
| unsigned long dr7; |
| |
| if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) |
| dr7 = vcpu->arch.guest_debug_dr7; |
| else |
| dr7 = vcpu->arch.dr7; |
| kvm_x86_ops->set_dr7(vcpu, dr7); |
| vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED; |
| if (dr7 & DR7_BP_EN_MASK) |
| vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED; |
| } |
| |
| static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu) |
| { |
| u64 fixed = DR6_FIXED_1; |
| |
| if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM)) |
| fixed |= DR6_RTM; |
| return fixed; |
| } |
| |
| static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val) |
| { |
| switch (dr) { |
| case 0 ... 3: |
| vcpu->arch.db[dr] = val; |
| if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) |
| vcpu->arch.eff_db[dr] = val; |
| break; |
| case 4: |
| /* fall through */ |
| case 6: |
| if (val & 0xffffffff00000000ULL) |
| return -1; /* #GP */ |
| vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu); |
| kvm_update_dr6(vcpu); |
| break; |
| case 5: |
| /* fall through */ |
| default: /* 7 */ |
| if (val & 0xffffffff00000000ULL) |
| return -1; /* #GP */ |
| vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1; |
| kvm_update_dr7(vcpu); |
| break; |
| } |
| |
| return 0; |
| } |
| |
| int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val) |
| { |
| if (__kvm_set_dr(vcpu, dr, val)) { |
| kvm_inject_gp(vcpu, 0); |
| return 1; |
| } |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(kvm_set_dr); |
| |
| int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val) |
| { |
| switch (dr) { |
| case 0 ... 3: |
| *val = vcpu->arch.db[dr]; |
| break; |
| case 4: |
| /* fall through */ |
| case 6: |
| if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) |
| *val = vcpu->arch.dr6; |
| else |
| *val = kvm_x86_ops->get_dr6(vcpu); |
| break; |
| case 5: |
| /* fall through */ |
| default: /* 7 */ |
| *val = vcpu->arch.dr7; |
| break; |
| } |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(kvm_get_dr); |
| |
| bool kvm_rdpmc(struct kvm_vcpu *vcpu) |
| { |
| u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX); |
| u64 data; |
| int err; |
| |
| err = kvm_pmu_rdpmc(vcpu, ecx, &data); |
| if (err) |
| return err; |
| kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data); |
| kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32); |
| return err; |
| } |
| EXPORT_SYMBOL_GPL(kvm_rdpmc); |
| |
| /* |
| * List of msr numbers which we expose to userspace through KVM_GET_MSRS |
| * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST. |
| * |
| * This list is modified at module load time to reflect the |
| * capabilities of the host cpu. This capabilities test skips MSRs that are |
| * kvm-specific. Those are put in emulated_msrs; filtering of emulated_msrs |
| * may depend on host virtualization features rather than host cpu features. |
| */ |
| |
| static u32 msrs_to_save[] = { |
| MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP, |
| MSR_STAR, |
| #ifdef CONFIG_X86_64 |
| MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR, |
| #endif |
| MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA, |
| MSR_IA32_FEATURE_CONTROL, MSR_IA32_BNDCFGS, MSR_TSC_AUX, |
| MSR_IA32_SPEC_CTRL, MSR_IA32_ARCH_CAPABILITIES |
| }; |
| |
| static unsigned num_msrs_to_save; |
| |
| static u32 emulated_msrs[] = { |
| MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK, |
| MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW, |
| HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL, |
| HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC, |
| HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY, |
| HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2, |
| HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL, |
| HV_X64_MSR_RESET, |
| HV_X64_MSR_VP_INDEX, |
| HV_X64_MSR_VP_RUNTIME, |
| HV_X64_MSR_SCONTROL, |
| HV_X64_MSR_STIMER0_CONFIG, |
| HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME, |
| MSR_KVM_PV_EOI_EN, |
| |
| MSR_IA32_TSC_ADJUST, |
| MSR_IA32_TSCDEADLINE, |
| MSR_IA32_MISC_ENABLE, |
| MSR_IA32_MCG_STATUS, |
| MSR_IA32_MCG_CTL, |
| MSR_IA32_MCG_EXT_CTL, |
| MSR_IA32_SMBASE, |
| MSR_SMI_COUNT, |
| MSR_PLATFORM_INFO, |
| MSR_MISC_FEATURES_ENABLES, |
| }; |
| |
| static unsigned num_emulated_msrs; |
| |
| /* |
| * List of msr numbers which are used to expose MSR-based features that |
| * can be used by a hypervisor to validate requested CPU features. |
| */ |
| static u32 msr_based_features[] = { |
| MSR_F10H_DECFG, |
| MSR_IA32_UCODE_REV, |
| }; |
| |
| static unsigned int num_msr_based_features; |
| |
| static int kvm_get_msr_feature(struct kvm_msr_entry *msr) |
| { |
| switch (msr->index) { |
| case MSR_IA32_UCODE_REV: |
| rdmsrl(msr->index, msr->data); |
| break; |
| default: |
| if (kvm_x86_ops->get_msr_feature(msr)) |
| return 1; |
| } |
| return 0; |
| } |
| |
| static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data) |
| { |
| struct kvm_msr_entry msr; |
| int r; |
| |
| msr.index = index; |
| r = kvm_get_msr_feature(&msr); |
| if (r) |
| return r; |
| |
| *data = msr.data; |
| |
| return 0; |
| } |
| |
| bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer) |
| { |
| if (efer & efer_reserved_bits) |
| return false; |
| |
| if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT)) |
| return false; |
| |
| if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM)) |
| return false; |
| |
| return true; |
| } |
| EXPORT_SYMBOL_GPL(kvm_valid_efer); |
| |
| static int set_efer(struct kvm_vcpu *vcpu, u64 efer) |
| { |
| u64 old_efer = vcpu->arch.efer; |
| |
| if (!kvm_valid_efer(vcpu, efer)) |
| return 1; |
| |
| if (is_paging(vcpu) |
| && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME)) |
| return 1; |
| |
| efer &= ~EFER_LMA; |
| efer |= vcpu->arch.efer & EFER_LMA; |
| |
| kvm_x86_ops->set_efer(vcpu, efer); |
| |
| /* Update reserved bits */ |
| if ((efer ^ old_efer) & EFER_NX) |
| kvm_mmu_reset_context(vcpu); |
| |
| return 0; |
| } |
| |
| void kvm_enable_efer_bits(u64 mask) |
| { |
| efer_reserved_bits &= ~mask; |
| } |
| EXPORT_SYMBOL_GPL(kvm_enable_efer_bits); |
| |
| /* |
| * Writes msr value into into the appropriate "register". |
| * Returns 0 on success, non-0 otherwise. |
| * Assumes vcpu_load() was already called. |
| */ |
| int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr) |
| { |
| switch (msr->index) { |
| case MSR_FS_BASE: |
| case MSR_GS_BASE: |
| case MSR_KERNEL_GS_BASE: |
| case MSR_CSTAR: |
| case MSR_LSTAR: |
| if (is_noncanonical_address(msr->data, vcpu)) |
| return 1; |
| break; |
| case MSR_IA32_SYSENTER_EIP: |
| case MSR_IA32_SYSENTER_ESP: |
| /* |
| * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if |
| * non-canonical address is written on Intel but not on |
| * AMD (which ignores the top 32-bits, because it does |
| * not implement 64-bit SYSENTER). |
| * |
| * 64-bit code should hence be able to write a non-canonical |
| * value on AMD. Making the address canonical ensures that |
| * vmentry does not fail on Intel after writing a non-canonical |
| * value, and that something deterministic happens if the guest |
| * invokes 64-bit SYSENTER. |
| */ |
| msr->data = get_canonical(msr->data, vcpu_virt_addr_bits(vcpu)); |
| } |
| return kvm_x86_ops->set_msr(vcpu, msr); |
| } |
| EXPORT_SYMBOL_GPL(kvm_set_msr); |
| |
| /* |
| * Adapt set_msr() to msr_io()'s calling convention |
| */ |
| static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data) |
| { |
| struct msr_data msr; |
| int r; |
| |
| msr.index = index; |
| msr.host_initiated = true; |
| r = kvm_get_msr(vcpu, &msr); |
| if (r) |
| return r; |
| |
| *data = msr.data; |
| return 0; |
| } |
| |
| static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data) |
| { |
| struct msr_data msr; |
| |
| msr.data = *data; |
| msr.index = index; |
| msr.host_initiated = true; |
| return kvm_set_msr(vcpu, &msr); |
| } |
| |
| #ifdef CONFIG_X86_64 |
| struct pvclock_gtod_data { |
| seqcount_t seq; |
| |
| struct { /* extract of a clocksource struct */ |
| int vclock_mode; |
| u64 cycle_last; |
| u64 mask; |
| u32 mult; |
| u32 shift; |
| } clock; |
| |
| u64 boot_ns; |
| u64 nsec_base; |
| u64 wall_time_sec; |
| }; |
| |
| static struct pvclock_gtod_data pvclock_gtod_data; |
| |
| static void update_pvclock_gtod(struct timekeeper *tk) |
| { |
| struct pvclock_gtod_data *vdata = &pvclock_gtod_data; |
| u64 boot_ns; |
| |
| boot_ns = ktime_to_ns(ktime_add(tk->tkr_mono.base, tk->offs_boot)); |
| |
| write_seqcount_begin(&vdata->seq); |
| |
| /* copy pvclock gtod data */ |
| vdata->clock.vclock_mode = tk->tkr_mono.clock->archdata.vclock_mode; |
| vdata->clock.cycle_last = tk->tkr_mono.cycle_last; |
| vdata->clock.mask = tk->tkr_mono.mask; |
| vdata->clock.mult = tk->tkr_mono.mult; |
| vdata->clock.shift = tk->tkr_mono.shift; |
| |
| vdata->boot_ns = boot_ns; |
| vdata->nsec_base = tk->tkr_mono.xtime_nsec; |
| |
| vdata->wall_time_sec = tk->xtime_sec; |
| |
| write_seqcount_end(&vdata->seq); |
| } |
| #endif |
| |
| void kvm_set_pending_timer(struct kvm_vcpu *vcpu) |
| { |
| /* |
| * Note: KVM_REQ_PENDING_TIMER is implicitly checked in |
| * vcpu_enter_guest. This function is only called from |
| * the physical CPU that is running vcpu. |
| */ |
| kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu); |
| } |
| |
| static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock) |
| { |
| int version; |
| int r; |
| struct pvclock_wall_clock wc; |
| struct timespec64 boot; |
| |
| if (!wall_clock) |
| return; |
| |
| r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version)); |
| if (r) |
| return; |
| |
| if (version & 1) |
| ++version; /* first time write, random junk */ |
| |
| ++version; |
| |
| if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version))) |
| return; |
| |
| /* |
| * The guest calculates current wall clock time by adding |
| * system time (updated by kvm_guest_time_update below) to the |
| * wall clock specified here. guest system time equals host |
| * system time for us, thus we must fill in host boot time here. |
| */ |
| getboottime64(&boot); |
| |
| if (kvm->arch.kvmclock_offset) { |
| struct timespec64 ts = ns_to_timespec64(kvm->arch.kvmclock_offset); |
| boot = timespec64_sub(boot, ts); |
| } |
| wc.sec = (u32)boot.tv_sec; /* overflow in 2106 guest time */ |
| wc.nsec = boot.tv_nsec; |
| wc.version = version; |
| |
| kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc)); |
| |
| version++; |
| kvm_write_guest(kvm, wall_clock, &version, sizeof(version)); |
| } |
| |
| static uint32_t div_frac(uint32_t dividend, uint32_t divisor) |
| { |
| do_shl32_div32(dividend, divisor); |
| return dividend; |
| } |
| |
| static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz, |
| s8 *pshift, u32 *pmultiplier) |
| { |
| uint64_t scaled64; |
| int32_t shift = 0; |
| uint64_t tps64; |
| uint32_t tps32; |
| |
| tps64 = base_hz; |
| scaled64 = scaled_hz; |
| while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) { |
| tps64 >>= 1; |
| shift--; |
| } |
| |
| tps32 = (uint32_t)tps64; |
| while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) { |
| if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000) |
| scaled64 >>= 1; |
| else |
| tps32 <<= 1; |
| shift++; |
| } |
| |
| *pshift = shift; |
| *pmultiplier = div_frac(scaled64, tps32); |
| |
| pr_debug("%s: base_hz %llu => %llu, shift %d, mul %u\n", |
| __func__, base_hz, scaled_hz, shift, *pmultiplier); |
| } |
| |
| #ifdef CONFIG_X86_64 |
| static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0); |
| #endif |
| |
| static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz); |
| static unsigned long max_tsc_khz; |
| |
| static u32 adjust_tsc_khz(u32 khz, s32 ppm) |
| { |
| u64 v = (u64)khz * (1000000 + ppm); |
| do_div(v, 1000000); |
| return v; |
| } |
| |
| static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale) |
| { |
| u64 ratio; |
| |
| /* Guest TSC same frequency as host TSC? */ |
| if (!scale) { |
| vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio; |
| return 0; |
| } |
| |
| /* TSC scaling supported? */ |
| if (!kvm_has_tsc_control) { |
| if (user_tsc_khz > tsc_khz) { |
| vcpu->arch.tsc_catchup = 1; |
| vcpu->arch.tsc_always_catchup = 1; |
| return 0; |
| } else { |
| WARN(1, "user requested TSC rate below hardware speed\n"); |
| return -1; |
| } |
| } |
| |
| /* TSC scaling required - calculate ratio */ |
| ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits, |
| user_tsc_khz, tsc_khz); |
| |
| if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) { |
| WARN_ONCE(1, "Invalid TSC scaling ratio - virtual-tsc-khz=%u\n", |
| user_tsc_khz); |
| return -1; |
| } |
| |
| vcpu->arch.tsc_scaling_ratio = ratio; |
| return 0; |
| } |
| |
| static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz) |
| { |
| u32 thresh_lo, thresh_hi; |
| int use_scaling = 0; |
| |
| /* tsc_khz can be zero if TSC calibration fails */ |
| if (user_tsc_khz == 0) { |
| /* set tsc_scaling_ratio to a safe value */ |
| vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio; |
| return -1; |
| } |
| |
| /* Compute a scale to convert nanoseconds in TSC cycles */ |
| kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC, |
| &vcpu->arch.virtual_tsc_shift, |
| &vcpu->arch.virtual_tsc_mult); |
| vcpu->arch.virtual_tsc_khz = user_tsc_khz; |
| |
| /* |
| * Compute the variation in TSC rate which is acceptable |
| * within the range of tolerance and decide if the |
| * rate being applied is within that bounds of the hardware |
| * rate. If so, no scaling or compensation need be done. |
| */ |
| thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm); |
| thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm); |
| if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) { |
| pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi); |
| use_scaling = 1; |
| } |
| return set_tsc_khz(vcpu, user_tsc_khz, use_scaling); |
| } |
| |
| static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns) |
| { |
| u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec, |
| vcpu->arch.virtual_tsc_mult, |
| vcpu->arch.virtual_tsc_shift); |
| tsc += vcpu->arch.this_tsc_write; |
| return tsc; |
| } |
| |
| static inline int gtod_is_based_on_tsc(int mode) |
| { |
| return mode == VCLOCK_TSC || mode == VCLOCK_HVCLOCK; |
| } |
| |
| static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu) |
| { |
| #ifdef CONFIG_X86_64 |
| bool vcpus_matched; |
| struct kvm_arch *ka = &vcpu->kvm->arch; |
| struct pvclock_gtod_data *gtod = &pvclock_gtod_data; |
| |
| vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 == |
| atomic_read(&vcpu->kvm->online_vcpus)); |
| |
| /* |
| * Once the masterclock is enabled, always perform request in |
| * order to update it. |
| * |
| * In order to enable masterclock, the host clocksource must be TSC |
| * and the vcpus need to have matched TSCs. When that happens, |
| * perform request to enable masterclock. |
| */ |
| if (ka->use_master_clock || |
| (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched)) |
| kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); |
| |
| trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc, |
| atomic_read(&vcpu->kvm->online_vcpus), |
| ka->use_master_clock, gtod->clock.vclock_mode); |
| #endif |
| } |
| |
| static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset) |
| { |
| u64 curr_offset = vcpu->arch.tsc_offset; |
| vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset; |
| } |
| |
| /* |
| * Multiply tsc by a fixed point number represented by ratio. |
| * |
| * The most significant 64-N bits (mult) of ratio represent the |
| * integral part of the fixed point number; the remaining N bits |
| * (frac) represent the fractional part, ie. ratio represents a fixed |
| * point number (mult + frac * 2^(-N)). |
| * |
| * N equals to kvm_tsc_scaling_ratio_frac_bits. |
| */ |
| static inline u64 __scale_tsc(u64 ratio, u64 tsc) |
| { |
| return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits); |
| } |
| |
| u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc) |
| { |
| u64 _tsc = tsc; |
| u64 ratio = vcpu->arch.tsc_scaling_ratio; |
| |
| if (ratio != kvm_default_tsc_scaling_ratio) |
| _tsc = __scale_tsc(ratio, tsc); |
| |
| return _tsc; |
| } |
| EXPORT_SYMBOL_GPL(kvm_scale_tsc); |
| |
| static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc) |
| { |
| u64 tsc; |
| |
| tsc = kvm_scale_tsc(vcpu, rdtsc()); |
| |
| return target_tsc - tsc; |
| } |
| |
| u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc) |
| { |
| return vcpu->arch.tsc_offset + kvm_scale_tsc(vcpu, host_tsc); |
| } |
| EXPORT_SYMBOL_GPL(kvm_read_l1_tsc); |
| |
| static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset) |
| { |
| kvm_x86_ops->write_tsc_offset(vcpu, offset); |
| vcpu->arch.tsc_offset = offset; |
| } |
| |
| static inline bool kvm_check_tsc_unstable(void) |
| { |
| #ifdef CONFIG_X86_64 |
| /* |
| * TSC is marked unstable when we're running on Hyper-V, |
| * 'TSC page' clocksource is good. |
| */ |
| if (pvclock_gtod_data.clock.vclock_mode == VCLOCK_HVCLOCK) |
| return false; |
| #endif |
| return check_tsc_unstable(); |
| } |
| |
| void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr) |
| { |
| struct kvm *kvm = vcpu->kvm; |
| u64 offset, ns, elapsed; |
| unsigned long flags; |
| bool matched; |
| bool already_matched; |
| u64 data = msr->data; |
| bool synchronizing = false; |
| |
| raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); |
| offset = kvm_compute_tsc_offset(vcpu, data); |
| ns = ktime_get_boot_ns(); |
| elapsed = ns - kvm->arch.last_tsc_nsec; |
| |
| if (vcpu->arch.virtual_tsc_khz) { |
| if (data == 0 && msr->host_initiated) { |
| /* |
| * detection of vcpu initialization -- need to sync |
| * with other vCPUs. This particularly helps to keep |
| * kvm_clock stable after CPU hotplug |
| */ |
| synchronizing = true; |
| } else { |
| u64 tsc_exp = kvm->arch.last_tsc_write + |
| nsec_to_cycles(vcpu, elapsed); |
| u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL; |
| /* |
| * Special case: TSC write with a small delta (1 second) |
| * of virtual cycle time against real time is |
| * interpreted as an attempt to synchronize the CPU. |
| */ |
| synchronizing = data < tsc_exp + tsc_hz && |
| data + tsc_hz > tsc_exp; |
| } |
| } |
| |
| /* |
| * For a reliable TSC, we can match TSC offsets, and for an unstable |
| * TSC, we add elapsed time in this computation. We could let the |
| * compensation code attempt to catch up if we fall behind, but |
| * it's better to try to match offsets from the beginning. |
| */ |
| if (synchronizing && |
| vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) { |
| if (!kvm_check_tsc_unstable()) { |
| offset = kvm->arch.cur_tsc_offset; |
| pr_debug("kvm: matched tsc offset for %llu\n", data); |
| } else { |
| u64 delta = nsec_to_cycles(vcpu, elapsed); |
| data += delta; |
| offset = kvm_compute_tsc_offset(vcpu, data); |
| pr_debug("kvm: adjusted tsc offset by %llu\n", delta); |
| } |
| matched = true; |
| already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation); |
| } else { |
| /* |
| * We split periods of matched TSC writes into generations. |
| * For each generation, we track the original measured |
| * nanosecond time, offset, and write, so if TSCs are in |
| * sync, we can match exact offset, and if not, we can match |
| * exact software computation in compute_guest_tsc() |
| * |
| * These values are tracked in kvm->arch.cur_xxx variables. |
| */ |
| kvm->arch.cur_tsc_generation++; |
| kvm->arch.cur_tsc_nsec = ns; |
| kvm->arch.cur_tsc_write = data; |
| kvm->arch.cur_tsc_offset = offset; |
| matched = false; |
| pr_debug("kvm: new tsc generation %llu, clock %llu\n", |
| kvm->arch.cur_tsc_generation, data); |
| } |
| |
| /* |
| * We also track th most recent recorded KHZ, write and time to |
| * allow the matching interval to be extended at each write. |
| */ |
| kvm->arch.last_tsc_nsec = ns; |
| kvm->arch.last_tsc_write = data; |
| kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz; |
| |
| vcpu->arch.last_guest_tsc = data; |
| |
| /* Keep track of which generation this VCPU has synchronized to */ |
| vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation; |
| vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec; |
| vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write; |
| |
| if (!msr->host_initiated && guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) |
| update_ia32_tsc_adjust_msr(vcpu, offset); |
| |
| kvm_vcpu_write_tsc_offset(vcpu, offset); |
| raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); |
| |
| spin_lock(&kvm->arch.pvclock_gtod_sync_lock); |
| if (!matched) { |
| kvm->arch.nr_vcpus_matched_tsc = 0; |
| } else if (!already_matched) { |
| kvm->arch.nr_vcpus_matched_tsc++; |
| } |
| |
| kvm_track_tsc_matching(vcpu); |
| spin_unlock(&kvm->arch.pvclock_gtod_sync_lock); |
| } |
| |
| EXPORT_SYMBOL_GPL(kvm_write_tsc); |
| |
| static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu, |
| s64 adjustment) |
| { |
| kvm_vcpu_write_tsc_offset(vcpu, vcpu->arch.tsc_offset + adjustment); |
| } |
| |
| static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment) |
| { |
| if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio) |
| WARN_ON(adjustment < 0); |
| adjustment = kvm_scale_tsc(vcpu, (u64) adjustment); |
| adjust_tsc_offset_guest(vcpu, adjustment); |
| } |
| |
| #ifdef CONFIG_X86_64 |
| |
| static u64 read_tsc(void) |
| { |
| u64 ret = (u64)rdtsc_ordered(); |
| u64 last = pvclock_gtod_data.clock.cycle_last; |
| |
| if (likely(ret >= last)) |
| return ret; |
| |
| /* |
| * GCC likes to generate cmov here, but this branch is extremely |
| * predictable (it's just a function of time and the likely is |
| * very likely) and there's a data dependence, so force GCC |
| * to generate a branch instead. I don't barrier() because |
| * we don't actually need a barrier, and if this function |
| * ever gets inlined it will generate worse code. |
| */ |
| asm volatile (""); |
| return last; |
| } |
| |
| static inline u64 vgettsc(u64 *tsc_timestamp, int *mode) |
| { |
| long v; |
| struct pvclock_gtod_data *gtod = &pvclock_gtod_data; |
| u64 tsc_pg_val; |
| |
| switch (gtod->clock.vclock_mode) { |
| case VCLOCK_HVCLOCK: |
| tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(), |
| tsc_timestamp); |
| if (tsc_pg_val != U64_MAX) { |
| /* TSC page valid */ |
| *mode = VCLOCK_HVCLOCK; |
| v = (tsc_pg_val - gtod->clock.cycle_last) & |
| gtod->clock.mask; |
| } else { |
| /* TSC page invalid */ |
| *mode = VCLOCK_NONE; |
| } |
| break; |
| case VCLOCK_TSC: |
| *mode = VCLOCK_TSC; |
| *tsc_timestamp = read_tsc(); |
| v = (*tsc_timestamp - gtod->clock.cycle_last) & |
| gtod->clock.mask; |
| break; |
| default: |
| *mode = VCLOCK_NONE; |
| } |
| |
| if (*mode == VCLOCK_NONE) |
| *tsc_timestamp = v = 0; |
| |
| return v * gtod->clock.mult; |
| } |
| |
| static int do_monotonic_boot(s64 *t, u64 *tsc_timestamp) |
| { |
| struct pvclock_gtod_data *gtod = &pvclock_gtod_data; |
| unsigned long seq; |
| int mode; |
| u64 ns; |
| |
| do { |
| seq = read_seqcount_begin(>od->seq); |
| ns = gtod->nsec_base; |
| ns += vgettsc(tsc_timestamp, &mode); |
| ns >>= gtod->clock.shift; |
| ns += gtod->boot_ns; |
| } while (unlikely(read_seqcount_retry(>od->seq, seq))); |
| *t = ns; |
| |
| return mode; |
| } |
| |
| static int do_realtime(struct timespec *ts, u64 *tsc_timestamp) |
| { |
| struct pvclock_gtod_data *gtod = &pvclock_gtod_data; |
| unsigned long seq; |
| int mode; |
| u64 ns; |
| |
| do { |
| seq = read_seqcount_begin(>od->seq); |
| ts->tv_sec = gtod->wall_time_sec; |
| ns = gtod->nsec_base; |
| ns += vgettsc(tsc_timestamp, &mode); |
| ns >>= gtod->clock.shift; |
| } while (unlikely(read_seqcount_retry(>od->seq, seq))); |
| |
| ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns); |
| ts->tv_nsec = ns; |
| |
| return mode; |
| } |
| |
| /* returns true if host is using TSC based clocksource */ |
| static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp) |
| { |
| /* checked again under seqlock below */ |
| if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode)) |
| return false; |
| |
| return gtod_is_based_on_tsc(do_monotonic_boot(kernel_ns, |
| tsc_timestamp)); |
| } |
| |
| /* returns true if host is using TSC based clocksource */ |
| static bool kvm_get_walltime_and_clockread(struct timespec *ts, |
| u64 *tsc_timestamp) |
| { |
| /* checked again under seqlock below */ |
| if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode)) |
| return false; |
| |
| return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp)); |
| } |
| #endif |
| |
| /* |
| * |
| * Assuming a stable TSC across physical CPUS, and a stable TSC |
| * across virtual CPUs, the following condition is possible. |
| * Each numbered line represents an event visible to both |
| * CPUs at the next numbered event. |
| * |
| * "timespecX" represents host monotonic time. "tscX" represents |
| * RDTSC value. |
| * |
| * VCPU0 on CPU0 | VCPU1 on CPU1 |
| * |
| * 1. read timespec0,tsc0 |
| * 2. | timespec1 = timespec0 + N |
| * | tsc1 = tsc0 + M |
| * 3. transition to guest | transition to guest |
| * 4. ret0 = timespec0 + (rdtsc - tsc0) | |
| * 5. | ret1 = timespec1 + (rdtsc - tsc1) |
| * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M)) |
| * |
| * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity: |
| * |
| * - ret0 < ret1 |
| * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M)) |
| * ... |
| * - 0 < N - M => M < N |
| * |
| * That is, when timespec0 != timespec1, M < N. Unfortunately that is not |
| * always the case (the difference between two distinct xtime instances |
| * might be smaller then the difference between corresponding TSC reads, |
| * when updating guest vcpus pvclock areas). |
| * |
| * To avoid that problem, do not allow visibility of distinct |
| * system_timestamp/tsc_timestamp values simultaneously: use a master |
| * copy of host monotonic time values. Update that master copy |
| * in lockstep. |
| * |
| * Rely on synchronization of host TSCs and guest TSCs for monotonicity. |
| * |
| */ |
| |
| static void pvclock_update_vm_gtod_copy(struct kvm *kvm) |
| { |
| #ifdef CONFIG_X86_64 |
| struct kvm_arch *ka = &kvm->arch; |
| int vclock_mode; |
| bool host_tsc_clocksource, vcpus_matched; |
| |
| vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 == |
| atomic_read(&kvm->online_vcpus)); |
| |
| /* |
| * If the host uses TSC clock, then passthrough TSC as stable |
| * to the guest. |
| */ |
| host_tsc_clocksource = kvm_get_time_and_clockread( |
| &ka->master_kernel_ns, |
| &ka->master_cycle_now); |
| |
| ka->use_master_clock = host_tsc_clocksource && vcpus_matched |
| && !ka->backwards_tsc_observed |
| && !ka->boot_vcpu_runs_old_kvmclock; |
| |
| if (ka->use_master_clock) |
| atomic_set(&kvm_guest_has_master_clock, 1); |
| |
| vclock_mode = pvclock_gtod_data.clock.vclock_mode; |
| trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode, |
| vcpus_matched); |
| #endif |
| } |
| |
| void kvm_make_mclock_inprogress_request(struct kvm *kvm) |
| { |
| kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS); |
| } |
| |
| static void kvm_gen_update_masterclock(struct kvm *kvm) |
| { |
| #ifdef CONFIG_X86_64 |
| int i; |
| struct kvm_vcpu *vcpu; |
| struct kvm_arch *ka = &kvm->arch; |
| |
| spin_lock(&ka->pvclock_gtod_sync_lock); |
| kvm_make_mclock_inprogress_request(kvm); |
| /* no guest entries from this point */ |
| pvclock_update_vm_gtod_copy(kvm); |
| |
| kvm_for_each_vcpu(i, vcpu, kvm) |
| kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); |
| |
| /* guest entries allowed */ |
| kvm_for_each_vcpu(i, vcpu, kvm) |
| kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu); |
| |
| spin_unlock(&ka->pvclock_gtod_sync_lock); |
| #endif |
| } |
| |
| u64 get_kvmclock_ns(struct kvm *kvm) |
| { |
| struct kvm_arch *ka = &kvm->arch; |
| struct pvclock_vcpu_time_info hv_clock; |
| u64 ret; |
| |
| spin_lock(&ka->pvclock_gtod_sync_lock); |
| if (!ka->use_master_clock) { |
| spin_unlock(&ka->pvclock_gtod_sync_lock); |
| return ktime_get_boot_ns() + ka->kvmclock_offset; |
| } |
| |
| hv_clock.tsc_timestamp = ka->master_cycle_now; |
| hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset; |
| spin_unlock(&ka->pvclock_gtod_sync_lock); |
| |
| /* both __this_cpu_read() and rdtsc() should be on the same cpu */ |
| get_cpu(); |
| |
| if (__this_cpu_read(cpu_tsc_khz)) { |
| kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL, |
| &hv_clock.tsc_shift, |
| &hv_clock.tsc_to_system_mul); |
| ret = __pvclock_read_cycles(&hv_clock, rdtsc()); |
| } else |
| ret = ktime_get_boot_ns() + ka->kvmclock_offset; |
| |
| put_cpu(); |
| |
| return ret; |
| } |
| |
| static void kvm_setup_pvclock_page(struct kvm_vcpu *v) |
| { |
| struct kvm_vcpu_arch *vcpu = &v->arch; |
| struct pvclock_vcpu_time_info guest_hv_clock; |
| |
| if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time, |
| &guest_hv_clock, sizeof(guest_hv_clock)))) |
| return; |
| |
| /* This VCPU is paused, but it's legal for a guest to read another |
| * VCPU's kvmclock, so we really have to follow the specification where |
| * it says that version is odd if data is being modified, and even after |
| * it is consistent. |
| * |
| * Version field updates must be kept separate. This is because |
| * kvm_write_guest_cached might use a "rep movs" instruction, and |
| * writes within a string instruction are weakly ordered. So there |
| * are three writes overall. |
| * |
| * As a small optimization, only write the version field in the first |
| * and third write. The vcpu->pv_time cache is still valid, because the |
| * version field is the first in the struct. |
| */ |
| BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0); |
| |
| if (guest_hv_clock.version & 1) |
| ++guest_hv_clock.version; /* first time write, random junk */ |
| |
| vcpu->hv_clock.version = guest_hv_clock.version + 1; |
| kvm_write_guest_cached(v->kvm, &vcpu->pv_time, |
| &vcpu->hv_clock, |
| sizeof(vcpu->hv_clock.version)); |
| |
| smp_wmb(); |
| |
| /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */ |
| vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED); |
| |
| if (vcpu->pvclock_set_guest_stopped_request) { |
| vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED; |
| vcpu->pvclock_set_guest_stopped_request = false; |
| } |
| |
| trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock); |
| |
| kvm_write_guest_cached(v->kvm, &vcpu->pv_time, |
| &vcpu->hv_clock, |
| sizeof(vcpu->hv_clock)); |
| |
| smp_wmb(); |
| |
| vcpu->hv_clock.version++; |
| kvm_write_guest_cached(v->kvm, &vcpu->pv_time, |
| &vcpu->hv_clock, |
| sizeof(vcpu->hv_clock.version)); |
| } |
| |
| static int kvm_guest_time_update(struct kvm_vcpu *v) |
| { |
| unsigned long flags, tgt_tsc_khz; |
| struct kvm_vcpu_arch *vcpu = &v->arch; |
| struct kvm_arch *ka = &v->kvm->arch; |
| s64 kernel_ns; |
| u64 tsc_timestamp, host_tsc; |
| u8 pvclock_flags; |
| bool use_master_clock; |
| |
| kernel_ns = 0; |
| host_tsc = 0; |
| |
| /* |
| * If the host uses TSC clock, then passthrough TSC as stable |
| * to the guest. |
| */ |
| spin_lock(&ka->pvclock_gtod_sync_lock); |
| use_master_clock = ka->use_master_clock; |
| if (use_master_clock) { |
| host_tsc = ka->master_cycle_now; |
| kernel_ns = ka->master_kernel_ns; |
| } |
| spin_unlock(&ka->pvclock_gtod_sync_lock); |
| |
| /* Keep irq disabled to prevent changes to the clock */ |
| local_irq_save(flags); |
| tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz); |
| if (unlikely(tgt_tsc_khz == 0)) { |
| local_irq_restore(flags); |
| kvm_make_request(KVM_REQ_CLOCK_UPDATE, v); |
| return 1; |
| } |
| if (!use_master_clock) { |
| host_tsc = rdtsc(); |
| kernel_ns = ktime_get_boot_ns(); |
| } |
| |
| tsc_timestamp = kvm_read_l1_tsc(v, host_tsc); |
| |
| /* |
| * We may have to catch up the TSC to match elapsed wall clock |
| * time for two reasons, even if kvmclock is used. |
| * 1) CPU could have been running below the maximum TSC rate |
| * 2) Broken TSC compensation resets the base at each VCPU |
| * entry to avoid unknown leaps of TSC even when running |
| * again on the same CPU. This may cause apparent elapsed |
| * time to disappear, and the guest to stand still or run |
| * very slowly. |
| */ |
| if (vcpu->tsc_catchup) { |
| u64 tsc = compute_guest_tsc(v, kernel_ns); |
| if (tsc > tsc_timestamp) { |
| adjust_tsc_offset_guest(v, tsc - tsc_timestamp); |
| tsc_timestamp = tsc; |
| } |
| } |
| |
| local_irq_restore(flags); |
| |
| /* With all the info we got, fill in the values */ |
| |
| if (kvm_has_tsc_control) |
| tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz); |
| |
| if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) { |
| kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL, |
| &vcpu->hv_clock.tsc_shift, |
| &vcpu->hv_clock.tsc_to_system_mul); |
| vcpu->hw_tsc_khz = tgt_tsc_khz; |
| } |
| |
| vcpu->hv_clock.tsc_timestamp = tsc_timestamp; |
| vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset; |
| vcpu->last_guest_tsc = tsc_timestamp; |
| |
| /* If the host uses TSC clocksource, then it is stable */ |
| pvclock_flags = 0; |
| if (use_master_clock) |
| pvclock_flags |= PVCLOCK_TSC_STABLE_BIT; |
| |
| vcpu->hv_clock.flags = pvclock_flags; |
| |
| if (vcpu->pv_time_enabled) |
| kvm_setup_pvclock_page(v); |
| if (v == kvm_get_vcpu(v->kvm, 0)) |
| kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock); |
| return 0; |
| } |
| |
| /* |
| * kvmclock updates which are isolated to a given vcpu, such as |
| * vcpu->cpu migration, should not allow system_timestamp from |
| * the rest of the vcpus to remain static. Otherwise ntp frequency |
| * correction applies to one vcpu's system_timestamp but not |
| * the others. |
| * |
| * So in those cases, request a kvmclock update for all vcpus. |
| * We need to rate-limit these requests though, as they can |
| * considerably slow guests that have a large number of vcpus. |
| * The time for a remote vcpu to update its kvmclock is bound |
| * by the delay we use to rate-limit the updates. |
| */ |
| |
| #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100) |
| |
| static void kvmclock_update_fn(struct work_struct *work) |
| { |
| int i; |
| struct delayed_work *dwork = to_delayed_work(work); |
| struct kvm_arch *ka = container_of(dwork, struct kvm_arch, |
| kvmclock_update_work); |
| struct kvm *kvm = container_of(ka, struct kvm, arch); |
| struct kvm_vcpu *vcpu; |
| |
| kvm_for_each_vcpu(i, vcpu, kvm) { |
| kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); |
| kvm_vcpu_kick(vcpu); |
| } |
| } |
| |
| static void kvm_gen_kvmclock_update(struct kvm_vcpu *v) |
| { |
| struct kvm *kvm = v->kvm; |
| |
| kvm_make_request(KVM_REQ_CLOCK_UPDATE, v); |
| schedule_delayed_work(&kvm->arch.kvmclock_update_work, |
| KVMCLOCK_UPDATE_DELAY); |
| } |
| |
| #define KVMCLOCK_SYNC_PERIOD (300 * HZ) |
| |
| static void kvmclock_sync_fn(struct work_struct *work) |
| { |
| struct delayed_work *dwork = to_delayed_work(work); |
| struct kvm_arch *ka = container_of(dwork, struct kvm_arch, |
| kvmclock_sync_work); |
| struct kvm *kvm = container_of(ka, struct kvm, arch); |
| |
| if (!kvmclock_periodic_sync) |
| return; |
| |
| schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0); |
| schedule_delayed_work(&kvm->arch.kvmclock_sync_work, |
| KVMCLOCK_SYNC_PERIOD); |
| } |
| |
| static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info) |
| { |
| u64 mcg_cap = vcpu->arch.mcg_cap; |
| unsigned bank_num = mcg_cap & 0xff; |
| u32 msr = msr_info->index; |
| u64 data = msr_info->data; |
| |
| switch (msr) { |
| case MSR_IA32_MCG_STATUS: |
| vcpu->arch.mcg_status = data; |
| break; |
| case MSR_IA32_MCG_CTL: |
| if (!(mcg_cap & MCG_CTL_P)) |
| return 1; |
| if (data != 0 && data != ~(u64)0) |
| return -1; |
| vcpu->arch.mcg_ctl = data; |
| break; |
| default: |
| if (msr >= MSR_IA32_MC0_CTL && |
| msr < MSR_IA32_MCx_CTL(bank_num)) { |
| u32 offset = msr - MSR_IA32_MC0_CTL; |
| /* only 0 or all 1s can be written to IA32_MCi_CTL |
| * some Linux kernels though clear bit 10 in bank 4 to |
| * workaround a BIOS/GART TBL issue on AMD K8s, ignore |
| * this to avoid an uncatched #GP in the guest |
| */ |
| if ((offset & 0x3) == 0 && |
| data != 0 && (data | (1 << 10)) != ~(u64)0) |
| return -1; |
| if (!msr_info->host_initiated && |
| (offset & 0x3) == 1 && data != 0) |
| return -1; |
| vcpu->arch.mce_banks[offset] = data; |
| break; |
| } |
| return 1; |
| } |
| return 0; |
| } |
| |
| static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data) |
| { |
| struct kvm *kvm = vcpu->kvm; |
| int lm = is_long_mode(vcpu); |
| u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64 |
| : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32; |
| u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64 |
| : kvm->arch.xen_hvm_config.blob_size_32; |
| u32 page_num = data & ~PAGE_MASK; |
| u64 page_addr = data & PAGE_MASK; |
| u8 *page; |
| int r; |
| |
| r = -E2BIG; |
| if (page_num >= blob_size) |
| goto out; |
| r = -ENOMEM; |
| page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE); |
| if (IS_ERR(page)) { |
| r = PTR_ERR(page); |
| goto out; |
| } |
| if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE)) |
| goto out_free; |
| r = 0; |
| out_free: |
| kfree(page); |
| out: |
| return r; |
| } |
| |
| static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data) |
| { |
| gpa_t gpa = data & ~0x3f; |
| |
| /* Bits 3:5 are reserved, Should be zero */ |
| if (data & 0x38) |
| return 1; |
| |
| vcpu->arch.apf.msr_val = data; |
| |
| if (!(data & KVM_ASYNC_PF_ENABLED)) { |
| kvm_clear_async_pf_completion_queue(vcpu); |
| kvm_async_pf_hash_reset(vcpu); |
| return 0; |
| } |
| |
| if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa, |
| sizeof(u32))) |
| return 1; |
| |
| vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS); |
| vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT; |
| kvm_async_pf_wakeup_all(vcpu); |
| return 0; |
| } |
| |
| static void kvmclock_reset(struct kvm_vcpu *vcpu) |
| { |
| vcpu->arch.pv_time_enabled = false; |
| } |
| |
| static void kvm_vcpu_flush_tlb(struct kvm_vcpu *vcpu, bool invalidate_gpa) |
| { |
| ++vcpu->stat.tlb_flush; |
| kvm_x86_ops->tlb_flush(vcpu, invalidate_gpa); |
| } |
| |
| static void record_steal_time(struct kvm_vcpu *vcpu) |
| { |
| if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) |
| return; |
| |
| if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime, |
| &vcpu->arch.st.steal, sizeof(struct kvm_steal_time)))) |
| return; |
| |
| /* |
| * Doing a TLB flush here, on the guest's behalf, can avoid |
| * expensive IPIs. |
| */ |
| if (xchg(&vcpu->arch.st.steal.preempted, 0) & KVM_VCPU_FLUSH_TLB) |
| kvm_vcpu_flush_tlb(vcpu, false); |
| |
| if (vcpu->arch.st.steal.version & 1) |
| vcpu->arch.st.steal.version += 1; /* first time write, random junk */ |
| |
| vcpu->arch.st.steal.version += 1; |
| |
| kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime, |
| &vcpu->arch.st.steal, sizeof(struct kvm_steal_time)); |
| |
| smp_wmb(); |
| |
| vcpu->arch.st.steal.steal += current->sched_info.run_delay - |
| vcpu->arch.st.last_steal; |
| vcpu->arch.st.last_steal = current->sched_info.run_delay; |
| |
| kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime, |
| &vcpu->arch.st.steal, sizeof(struct kvm_steal_time)); |
| |
| smp_wmb(); |
| |
| vcpu->arch.st.steal.version += 1; |
| |
| kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime, |
| &vcpu->arch.st.steal, sizeof(struct kvm_steal_time)); |
| } |
| |
| int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info) |
| { |
| bool pr = false; |
| u32 msr = msr_info->index; |
| u64 data = msr_info->data; |
| |
| switch (msr) { |
| case MSR_AMD64_NB_CFG: |
| case MSR_IA32_UCODE_WRITE: |
| case MSR_VM_HSAVE_PA: |
| case MSR_AMD64_PATCH_LOADER: |
| case MSR_AMD64_BU_CFG2: |
| case MSR_AMD64_DC_CFG: |
| break; |
| |
| case MSR_IA32_UCODE_REV: |
| if (msr_info->host_initiated) |
| vcpu->arch.microcode_version = data; |
| break; |
| case MSR_EFER: |
| return set_efer(vcpu, data); |
| case MSR_K7_HWCR: |
| data &= ~(u64)0x40; /* ignore flush filter disable */ |
| data &= ~(u64)0x100; /* ignore ignne emulation enable */ |
| data &= ~(u64)0x8; /* ignore TLB cache disable */ |
| data &= ~(u64)0x40000; /* ignore Mc status write enable */ |
| if (data != 0) { |
| vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n", |
| data); |
| return 1; |
| } |
| break; |
| case MSR_FAM10H_MMIO_CONF_BASE: |
| if (data != 0) { |
| vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: " |
| "0x%llx\n", data); |
| return 1; |
| } |
| break; |
| case MSR_IA32_DEBUGCTLMSR: |
| if (!data) { |
| /* We support the non-activated case already */ |
| break; |
| } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) { |
| /* Values other than LBR and BTF are vendor-specific, |
| thus reserved and should throw a #GP */ |
| return 1; |
| } |
| vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n", |
| __func__, data); |
| break; |
| case 0x200 ... 0x2ff: |
| return kvm_mtrr_set_msr(vcpu, msr, data); |
| case MSR_IA32_APICBASE: |
| return kvm_set_apic_base(vcpu, msr_info); |
| case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff: |
| return kvm_x2apic_msr_write(vcpu, msr, data); |
| case MSR_IA32_TSCDEADLINE: |
| kvm_set_lapic_tscdeadline_msr(vcpu, data); |
| break; |
| case MSR_IA32_TSC_ADJUST: |
| if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) { |
| if (!msr_info->host_initiated) { |
| s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr; |
| adjust_tsc_offset_guest(vcpu, adj); |
| } |
| vcpu->arch.ia32_tsc_adjust_msr = data; |
| } |
| break; |
| case MSR_IA32_MISC_ENABLE: |
| vcpu->arch.ia32_misc_enable_msr = data; |
| break; |
| case MSR_IA32_SMBASE: |
| if (!msr_info->host_initiated) |
| return 1; |
| vcpu->arch.smbase = data; |
| break; |
| case MSR_SMI_COUNT: |
| if (!msr_info->host_initiated) |
| return 1; |
| vcpu->arch.smi_count = data; |
| break; |
| case MSR_KVM_WALL_CLOCK_NEW: |
| case MSR_KVM_WALL_CLOCK: |
| vcpu->kvm->arch.wall_clock = data; |
| kvm_write_wall_clock(vcpu->kvm, data); |
| break; |
| case MSR_KVM_SYSTEM_TIME_NEW: |
| case MSR_KVM_SYSTEM_TIME: { |
| struct kvm_arch *ka = &vcpu->kvm->arch; |
| |
| kvmclock_reset(vcpu); |
| |
| if (vcpu->vcpu_id == 0 && !msr_info->host_initiated) { |
| bool tmp = (msr == MSR_KVM_SYSTEM_TIME); |
| |
| if (ka->boot_vcpu_runs_old_kvmclock != tmp) |
| kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); |
| |
| ka->boot_vcpu_runs_old_kvmclock = tmp; |
| } |
| |
| vcpu->arch.time = data; |
| kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu); |
| |
| /* we verify if the enable bit is set... */ |
| if (!(data & 1)) |
| break; |
| |
| if (kvm_gfn_to_hva_cache_init(vcpu->kvm, |
| &vcpu->arch.pv_time, data & ~1ULL, |
| sizeof(struct pvclock_vcpu_time_info))) |
| vcpu->arch.pv_time_enabled = false; |
| else |
| vcpu->arch.pv_time_enabled = true; |
| |
| break; |
| } |
| case MSR_KVM_ASYNC_PF_EN: |
| if (kvm_pv_enable_async_pf(vcpu, data)) |
| return 1; |
| break; |
| case MSR_KVM_STEAL_TIME: |
| |
| if (unlikely(!sched_info_on())) |
| return 1; |
| |
| if (data & KVM_STEAL_RESERVED_MASK) |
| return 1; |
| |
| if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime, |
| data & KVM_STEAL_VALID_BITS, |
| sizeof(struct kvm_steal_time))) |
| return 1; |
| |
| vcpu->arch.st.msr_val = data; |
| |
| if (!(data & KVM_MSR_ENABLED)) |
| break; |
| |
| kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); |
| |
| break; |
| case MSR_KVM_PV_EOI_EN: |
| if (kvm_lapic_enable_pv_eoi(vcpu, data)) |
| return 1; |
| break; |
| |
| case MSR_IA32_MCG_CTL: |
| case MSR_IA32_MCG_STATUS: |
| case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: |
| return set_msr_mce(vcpu, msr_info); |
| |
| case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3: |
| case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1: |
| pr = true; /* fall through */ |
| case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3: |
| case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1: |
| if (kvm_pmu_is_valid_msr(vcpu, msr)) |
| return kvm_pmu_set_msr(vcpu, msr_info); |
| |
| if (pr || data != 0) |
| vcpu_unimpl(vcpu, "disabled perfctr wrmsr: " |
| "0x%x data 0x%llx\n", msr, data); |
| break; |
| case MSR_K7_CLK_CTL: |
| /* |
| * Ignore all writes to this no longer documented MSR. |
| * Writes are only relevant for old K7 processors, |
| * all pre-dating SVM, but a recommended workaround from |
| * AMD for these chips. It is possible to specify the |
| * affected processor models on the command line, hence |
| * the need to ignore the workaround. |
| */ |
| break; |
| case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: |
| case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: |
| case HV_X64_MSR_CRASH_CTL: |
| case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT: |
| return kvm_hv_set_msr_common(vcpu, msr, data, |
| msr_info->host_initiated); |
| case MSR_IA32_BBL_CR_CTL3: |
| /* Drop writes to this legacy MSR -- see rdmsr |
| * counterpart for further detail. |
| */ |
| if (report_ignored_msrs) |
| vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n", |
| msr, data); |
| break; |
| case MSR_AMD64_OSVW_ID_LENGTH: |
| if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) |
| return 1; |
| vcpu->arch.osvw.length = data; |
| break; |
| case MSR_AMD64_OSVW_STATUS: |
| if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) |
| return 1; |
| vcpu->arch.osvw.status = data; |
| break; |
| case MSR_PLATFORM_INFO: |
| if (!msr_info->host_initiated || |
| data & ~MSR_PLATFORM_INFO_CPUID_FAULT || |
| (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) && |
| cpuid_fault_enabled(vcpu))) |
| return 1; |
| vcpu->arch.msr_platform_info = data; |
| break; |
| case MSR_MISC_FEATURES_ENABLES: |
| if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT || |
| (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT && |
| !supports_cpuid_fault(vcpu))) |
| return 1; |
| vcpu->arch.msr_misc_features_enables = data; |
| break; |
| default: |
| if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr)) |
| return xen_hvm_config(vcpu, data); |
| if (kvm_pmu_is_valid_msr(vcpu, msr)) |
| return kvm_pmu_set_msr(vcpu, msr_info); |
| if (!ignore_msrs) { |
| vcpu_debug_ratelimited(vcpu, "unhandled wrmsr: 0x%x data 0x%llx\n", |
| msr, data); |
| return 1; |
| } else { |
| if (report_ignored_msrs) |
| vcpu_unimpl(vcpu, |
| "ignored wrmsr: 0x%x data 0x%llx\n", |
| msr, data); |
| break; |
| } |
| } |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(kvm_set_msr_common); |
| |
| |
| /* |
| * Reads an msr value (of 'msr_index') into 'pdata'. |
| * Returns 0 on success, non-0 otherwise. |
| * Assumes vcpu_load() was already called. |
| */ |
| int kvm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr) |
| { |
| return kvm_x86_ops->get_msr(vcpu, msr); |
| } |
| EXPORT_SYMBOL_GPL(kvm_get_msr); |
| |
| static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata) |
| { |
| u64 data; |
| u64 mcg_cap = vcpu->arch.mcg_cap; |
| unsigned bank_num = mcg_cap & 0xff; |
| |
| switch (msr) { |
| case MSR_IA32_P5_MC_ADDR: |
| case MSR_IA32_P5_MC_TYPE: |
| data = 0; |
| break; |
| case MSR_IA32_MCG_CAP: |
| data = vcpu->arch.mcg_cap; |
| break; |
| case MSR_IA32_MCG_CTL: |
| if (!(mcg_cap & MCG_CTL_P)) |
| return 1; |
| data = vcpu->arch.mcg_ctl; |
| break; |
| case MSR_IA32_MCG_STATUS: |
| data = vcpu->arch.mcg_status; |
| break; |
| default: |
| if (msr >= MSR_IA32_MC0_CTL && |
| msr < MSR_IA32_MCx_CTL(bank_num)) { |
| u32 offset = msr - MSR_IA32_MC0_CTL; |
| data = vcpu->arch.mce_banks[offset]; |
| break; |
| } |
| return 1; |
| } |
| *pdata = data; |
| return 0; |
| } |
| |
| int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info) |
| { |
| switch (msr_info->index) { |
| case MSR_IA32_PLATFORM_ID: |
| case MSR_IA32_EBL_CR_POWERON: |
| case MSR_IA32_DEBUGCTLMSR: |
| case MSR_IA32_LASTBRANCHFROMIP: |
| case MSR_IA32_LASTBRANCHTOIP: |
| case MSR_IA32_LASTINTFROMIP: |
| case MSR_IA32_LASTINTTOIP: |
| case MSR_K8_SYSCFG: |
| case MSR_K8_TSEG_ADDR: |
| case MSR_K8_TSEG_MASK: |
| case MSR_K7_HWCR: |
| case MSR_VM_HSAVE_PA: |
| case MSR_K8_INT_PENDING_MSG: |
| case MSR_AMD64_NB_CFG: |
| case MSR_FAM10H_MMIO_CONF_BASE: |
| case MSR_AMD64_BU_CFG2: |
| case MSR_IA32_PERF_CTL: |
| case MSR_AMD64_DC_CFG: |
| msr_info->data = 0; |
| break; |
| case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3: |
| case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3: |
| case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1: |
| case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1: |
| if (kvm_pmu_is_valid_msr(vcpu, msr_info->index)) |
| return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data); |
| msr_info->data = 0; |
| break; |
| case MSR_IA32_UCODE_REV: |
| msr_info->data = vcpu->arch.microcode_version; |
| break; |
| case MSR_MTRRcap: |
| case 0x200 ... 0x2ff: |
| return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data); |
| case 0xcd: /* fsb frequency */ |
| msr_info->data = 3; |
| break; |
| /* |
| * MSR_EBC_FREQUENCY_ID |
| * Conservative value valid for even the basic CPU models. |
| * Models 0,1: 000 in bits 23:21 indicating a bus speed of |
| * 100MHz, model 2 000 in bits 18:16 indicating 100MHz, |
| * and 266MHz for model 3, or 4. Set Core Clock |
| * Frequency to System Bus Frequency Ratio to 1 (bits |
| * 31:24) even though these are only valid for CPU |
| * models > 2, however guests may end up dividing or |
| * multiplying by zero otherwise. |
| */ |
| case MSR_EBC_FREQUENCY_ID: |
| msr_info->data = 1 << 24; |
| break; |
| case MSR_IA32_APICBASE: |
| msr_info->data = kvm_get_apic_base(vcpu); |
| break; |
| case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff: |
| return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data); |
| break; |
| case MSR_IA32_TSCDEADLINE: |
| msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu); |
| break; |
| case MSR_IA32_TSC_ADJUST: |
| msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr; |
| break; |
| case MSR_IA32_MISC_ENABLE: |
| msr_info->data = vcpu->arch.ia32_misc_enable_msr; |
| break; |
| case MSR_IA32_SMBASE: |
| if (!msr_info->host_initiated) |
| return 1; |
| msr_info->data = vcpu->arch.smbase; |
| break; |
| case MSR_SMI_COUNT: |
| msr_info->data = vcpu->arch.smi_count; |
| break; |
| case MSR_IA32_PERF_STATUS: |
| /* TSC increment by tick */ |
| msr_info->data = 1000ULL; |
| /* CPU multiplier */ |
| msr_info->data |= (((uint64_t)4ULL) << 40); |
| break; |
| case MSR_EFER: |
| msr_info->data = vcpu->arch.efer; |
| break; |
| case MSR_KVM_WALL_CLOCK: |
| case MSR_KVM_WALL_CLOCK_NEW: |
| msr_info->data = vcpu->kvm->arch.wall_clock; |
| break; |
| case MSR_KVM_SYSTEM_TIME: |
| case MSR_KVM_SYSTEM_TIME_NEW: |
| msr_info->data = vcpu->arch.time; |
| break; |
| case MSR_KVM_ASYNC_PF_EN: |
| msr_info->data = vcpu->arch.apf.msr_val; |
| break; |
| case MSR_KVM_STEAL_TIME: |
| msr_info->data = vcpu->arch.st.msr_val; |
| break; |
| case MSR_KVM_PV_EOI_EN: |
| msr_info->data = vcpu->arch.pv_eoi.msr_val; |
| break; |
| case MSR_IA32_P5_MC_ADDR: |
| case MSR_IA32_P5_MC_TYPE: |
| case MSR_IA32_MCG_CAP: |
| case MSR_IA32_MCG_CTL: |
| case MSR_IA32_MCG_STATUS: |
| case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: |
| return get_msr_mce(vcpu, msr_info->index, &msr_info->data); |
| case MSR_K7_CLK_CTL: |
| /* |
| * Provide expected ramp-up count for K7. All other |
| * are set to zero, indicating minimum divisors for |
| * every field. |
| * |
| * This prevents guest kernels on AMD host with CPU |
| * type 6, model 8 and higher from exploding due to |
| * the rdmsr failing. |
| */ |
| msr_info->data = 0x20000000; |
| break; |
| case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: |
| case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: |
| case HV_X64_MSR_CRASH_CTL: |
| case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT: |
| return kvm_hv_get_msr_common(vcpu, |
| msr_info->index, &msr_info->data); |
| break; |
| case MSR_IA32_BBL_CR_CTL3: |
| /* This legacy MSR exists but isn't fully documented in current |
| * silicon. It is however accessed by winxp in very narrow |
| * scenarios where it sets bit #19, itself documented as |
| * a "reserved" bit. Best effort attempt to source coherent |
| * read data here should the balance of the register be |
| * interpreted by the guest: |
| * |
| * L2 cache control register 3: 64GB range, 256KB size, |
| * enabled, latency 0x1, configured |
| */ |
| msr_info->data = 0xbe702111; |
| break; |
| case MSR_AMD64_OSVW_ID_LENGTH: |
| if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) |
| return 1; |
| msr_info->data = vcpu->arch.osvw.length; |
| break; |
| case MSR_AMD64_OSVW_STATUS: |
| if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) |
| return 1; |
| msr_info->data = vcpu->arch.osvw.status; |
| break; |
| case MSR_PLATFORM_INFO: |
| msr_info->data = vcpu->arch.msr_platform_info; |
| break; |
| case MSR_MISC_FEATURES_ENABLES: |
| msr_info->data = vcpu->arch.msr_misc_features_enables; |
| break; |
| default: |
| if (kvm_pmu_is_valid_msr(vcpu, msr_info->index)) |
| return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data); |
| if (!ignore_msrs) { |
| vcpu_debug_ratelimited(vcpu, "unhandled rdmsr: 0x%x\n", |
| msr_info->index); |
| return 1; |
| } else { |
| if (report_ignored_msrs) |
| vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n", |
| msr_info->index); |
| msr_info->data = 0; |
| } |
| break; |
| } |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(kvm_get_msr_common); |
| |
| /* |
| * Read or write a bunch of msrs. All parameters are kernel addresses. |
| * |
| * @return number of msrs set successfully. |
| */ |
| static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs, |
| struct kvm_msr_entry *entries, |
| int (*do_msr)(struct kvm_vcpu *vcpu, |
| unsigned index, u64 *data)) |
| { |
| int i; |
| |
| for (i = 0; i < msrs->nmsrs; ++i) |
| if (do_msr(vcpu, entries[i].index, &entries[i].data)) |
| break; |
| |
| return i; |
| } |
| |
| /* |
| * Read or write a bunch of msrs. Parameters are user addresses. |
| * |
| * @return number of msrs set successfully. |
| */ |
| static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs, |
| int (*do_msr)(struct kvm_vcpu *vcpu, |
| unsigned index, u64 *data), |
| int writeback) |
| { |
| struct kvm_msrs msrs; |
| struct kvm_msr_entry *entries; |
| int r, n; |
| unsigned size; |
| |
| r = -EFAULT; |
| if (copy_from_user(&msrs, user_msrs, sizeof msrs)) |
| goto out; |
| |
| r = -E2BIG; |
| if (msrs.nmsrs >= MAX_IO_MSRS) |
| goto out; |
| |
| size = sizeof(struct kvm_msr_entry) * msrs.nmsrs; |
| entries = memdup_user(user_msrs->entries, size); |
| if (IS_ERR(entries)) { |
| r = PTR_ERR(entries); |
| goto out; |
| } |
| |
| r = n = __msr_io(vcpu, &msrs, entries, do_msr); |
| if (r < 0) |
| goto out_free; |
| |
| r = -EFAULT; |
| if (writeback && copy_to_user(user_msrs->entries, entries, size)) |
| goto out_free; |
| |
| r = n; |
| |
| out_free: |
| kfree(entries); |
| out: |
| return r; |
| } |
| |
| int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext) |
| { |
| int r; |
| |
| switch (ext) { |
| case KVM_CAP_IRQCHIP: |
| case KVM_CAP_HLT: |
| case KVM_CAP_MMU_SHADOW_CACHE_CONTROL: |
| case KVM_CAP_SET_TSS_ADDR: |
| case KVM_CAP_EXT_CPUID: |
| case KVM_CAP_EXT_EMUL_CPUID: |
| case KVM_CAP_CLOCKSOURCE: |
| case KVM_CAP_PIT: |
| case KVM_CAP_NOP_IO_DELAY: |
| case KVM_CAP_MP_STATE: |
| case KVM_CAP_SYNC_MMU: |
| case KVM_CAP_USER_NMI: |
| case KVM_CAP_REINJECT_CONTROL: |
| case KVM_CAP_IRQ_INJECT_STATUS: |
| case KVM_CAP_IOEVENTFD: |
| case KVM_CAP_IOEVENTFD_NO_LENGTH: |
| case KVM_CAP_PIT2: |
| case KVM_CAP_PIT_STATE2: |
| case KVM_CAP_SET_IDENTITY_MAP_ADDR: |
| case KVM_CAP_XEN_HVM: |
| case KVM_CAP_VCPU_EVENTS: |
| case KVM_CAP_HYPERV: |
| case KVM_CAP_HYPERV_VAPIC: |
| case KVM_CAP_HYPERV_SPIN: |
| case KVM_CAP_HYPERV_SYNIC: |
| case KVM_CAP_HYPERV_SYNIC2: |
| case KVM_CAP_HYPERV_VP_INDEX: |
| case KVM_CAP_PCI_SEGMENT: |
| case KVM_CAP_DEBUGREGS: |
| case KVM_CAP_X86_ROBUST_SINGLESTEP: |
| case KVM_CAP_XSAVE: |
| case KVM_CAP_ASYNC_PF: |
| case KVM_CAP_GET_TSC_KHZ: |
| case KVM_CAP_KVMCLOCK_CTRL: |
| case KVM_CAP_READONLY_MEM: |
| case KVM_CAP_HYPERV_TIME: |
| case KVM_CAP_IOAPIC_POLARITY_IGNORED: |
| case KVM_CAP_TSC_DEADLINE_TIMER: |
| case KVM_CAP_ENABLE_CAP_VM: |
| case KVM_CAP_DISABLE_QUIRKS: |
| case KVM_CAP_SET_BOOT_CPU_ID: |
| case KVM_CAP_SPLIT_IRQCHIP: |
| case KVM_CAP_IMMEDIATE_EXIT: |
| case KVM_CAP_GET_MSR_FEATURES: |
| r = 1; |
| break; |
| case KVM_CAP_ADJUST_CLOCK: |
| r = KVM_CLOCK_TSC_STABLE; |
| break; |
| case KVM_CAP_X86_GUEST_MWAIT: |
| r = kvm_mwait_in_guest(); |
| break; |
| case KVM_CAP_X86_SMM: |
| /* SMBASE is usually relocated above 1M on modern chipsets, |
| * and SMM handlers might indeed rely on 4G segment limits, |
| * so do not report SMM to be available if real mode is |
| * emulated via vm86 mode. Still, do not go to great lengths |
| * to avoid userspace's usage of the feature, because it is a |
| * fringe case that is not enabled except via specific settings |
| * of the module parameters. |
| */ |
| r = kvm_x86_ops->cpu_has_high_real_mode_segbase(); |
| break; |
| case KVM_CAP_VAPIC: |
| r = !kvm_x86_ops->cpu_has_accelerated_tpr(); |
| break; |
| case KVM_CAP_NR_VCPUS: |
| r = KVM_SOFT_MAX_VCPUS; |
| break; |
| case KVM_CAP_MAX_VCPUS: |
| r = KVM_MAX_VCPUS; |
| break; |
| case KVM_CAP_NR_MEMSLOTS: |
| r = KVM_USER_MEM_SLOTS; |
| break; |
| case KVM_CAP_PV_MMU: /* obsolete */ |
| r = 0; |
| break; |
| case KVM_CAP_MCE: |
| r = KVM_MAX_MCE_BANKS; |
| break; |
| case KVM_CAP_XCRS: |
| r = boot_cpu_has(X86_FEATURE_XSAVE); |
| break; |
| case KVM_CAP_TSC_CONTROL: |
| r = kvm_has_tsc_control; |
| break; |
| case KVM_CAP_X2APIC_API: |
| r = KVM_X2APIC_API_VALID_FLAGS; |
| break; |
| default: |
| r = 0; |
| break; |
| } |
| return r; |
| |
| } |
| |
| long kvm_arch_dev_ioctl(struct file *filp, |
| unsigned int ioctl, unsigned long arg) |
| { |
| void __user *argp = (void __user *)arg; |
| long r; |
| |
| switch (ioctl) { |
| case KVM_GET_MSR_INDEX_LIST: { |
| struct kvm_msr_list __user *user_msr_list = argp; |
| struct kvm_msr_list msr_list; |
| unsigned n; |
| |
| r = -EFAULT; |
| if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list)) |
| goto out; |
| n = msr_list.nmsrs; |
| msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs; |
| if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list)) |
| goto out; |
| r = -E2BIG; |
| if (n < msr_list.nmsrs) |
| goto out; |
| r = -EFAULT; |
| if (copy_to_user(user_msr_list->indices, &msrs_to_save, |
| num_msrs_to_save * sizeof(u32))) |
| goto out; |
| if (copy_to_user(user_msr_list->indices + num_msrs_to_save, |
| &emulated_msrs, |
| num_emulated_msrs * sizeof(u32))) |
| goto out; |
| r = 0; |
| break; |
| } |
| case KVM_GET_SUPPORTED_CPUID: |
| case KVM_GET_EMULATED_CPUID: { |
| struct kvm_cpuid2 __user *cpuid_arg = argp; |
| struct kvm_cpuid2 cpuid; |
| |
| r = -EFAULT; |
| if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid)) |
| goto out; |
| |
| r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries, |
| ioctl); |
| if (r) |
| goto out; |
| |
| r = -EFAULT; |
| if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid)) |
| goto out; |
| r = 0; |
| break; |
| } |
| case KVM_X86_GET_MCE_CAP_SUPPORTED: { |
| r = -EFAULT; |
| if (copy_to_user(argp, &kvm_mce_cap_supported, |
| sizeof(kvm_mce_cap_supported))) |
| goto out; |
| r = 0; |
| break; |
| case KVM_GET_MSR_FEATURE_INDEX_LIST: { |
| struct kvm_msr_list __user *user_msr_list = argp; |
| struct kvm_msr_list msr_list; |
| unsigned int n; |
| |
| r = -EFAULT; |
| if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list))) |
| goto out; |
| n = msr_list.nmsrs; |
| msr_list.nmsrs = num_msr_based_features; |
| if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list))) |
| goto out; |
| r = -E2BIG; |
| if (n < msr_list.nmsrs) |
| goto out; |
| r = -EFAULT; |
| if (copy_to_user(user_msr_list->indices, &msr_based_features, |
| num_msr_based_features * sizeof(u32))) |
| goto out; |
| r = 0; |
| break; |
| } |
| case KVM_GET_MSRS: |
| r = msr_io(NULL, argp, do_get_msr_feature, 1); |
| break; |
| } |
| default: |
| r = -EINVAL; |
| } |
| out: |
| return r; |
| } |
| |
| static void wbinvd_ipi(void *garbage) |
| { |
| wbinvd(); |
| } |
| |
| static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu) |
| { |
| return kvm_arch_has_noncoherent_dma(vcpu->kvm); |
| } |
| |
| void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) |
| { |
| /* Address WBINVD may be executed by guest */ |
| if (need_emulate_wbinvd(vcpu)) { |
| if (kvm_x86_ops->has_wbinvd_exit()) |
| cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); |
| else if (vcpu->cpu != -1 && vcpu->cpu != cpu) |
| smp_call_function_single(vcpu->cpu, |
| wbinvd_ipi, NULL, 1); |
| } |
| |
| kvm_x86_ops->vcpu_load(vcpu, cpu); |
| |
| /* Apply any externally detected TSC adjustments (due to suspend) */ |
| if (unlikely(vcpu->arch.tsc_offset_adjustment)) { |
| adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment); |
| vcpu->arch.tsc_offset_adjustment = 0; |
| kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); |
| } |
| |
| if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) { |
| s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 : |
| rdtsc() - vcpu->arch.last_host_tsc; |
| if (tsc_delta < 0) |
| mark_tsc_unstable("KVM discovered backwards TSC"); |
| |
| if (kvm_check_tsc_unstable()) { |
| u64 offset = kvm_compute_tsc_offset(vcpu, |
| vcpu->arch.last_guest_tsc); |
| kvm_vcpu_write_tsc_offset(vcpu, offset); |
| vcpu->arch.tsc_catchup = 1; |
| } |
| |
| if (kvm_lapic_hv_timer_in_use(vcpu)) |
| kvm_lapic_restart_hv_timer(vcpu); |
| |
| /* |
| * On a host with synchronized TSC, there is no need to update |
| * kvmclock on vcpu->cpu migration |
| */ |
| if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1) |
| kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu); |
| if (vcpu->cpu != cpu) |
| kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu); |
| vcpu->cpu = cpu; |
| } |
| |
| kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); |
| } |
| |
| static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu) |
| { |
| if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) |
| return; |
| |
| vcpu->arch.st.steal.preempted = KVM_VCPU_PREEMPTED; |
| |
| kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.st.stime, |
| &vcpu->arch.st.steal.preempted, |
| offsetof(struct kvm_steal_time, preempted), |
| sizeof(vcpu->arch.st.steal.preempted)); |
| } |
| |
| void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) |
| { |
| int idx; |
| |
| if (vcpu->preempted) |
| vcpu->arch.preempted_in_kernel = !kvm_x86_ops->get_cpl(vcpu); |
| |
| /* |
| * Disable page faults because we're in atomic context here. |
| * kvm_write_guest_offset_cached() would call might_fault() |
| * that relies on pagefault_disable() to tell if there's a |
| * bug. NOTE: the write to guest memory may not go through if |
| * during postcopy live migration or if there's heavy guest |
| * paging. |
| */ |
| pagefault_disable(); |
| /* |
| * kvm_memslots() will be called by |
| * kvm_write_guest_offset_cached() so take the srcu lock. |
| */ |
| idx = srcu_read_lock(&vcpu->kvm->srcu); |
| kvm_steal_time_set_preempted(vcpu); |
| srcu_read_unlock(&vcpu->kvm->srcu, idx); |
| pagefault_enable(); |
| kvm_x86_ops->vcpu_put(vcpu); |
| vcpu->arch.last_host_tsc = rdtsc(); |
| /* |
| * If userspace has set any breakpoints or watchpoints, dr6 is restored |
| * on every vmexit, but if not, we might have a stale dr6 from the |
| * guest. do_debug expects dr6 to be cleared after it runs, do the same. |
| */ |
| set_debugreg(0, 6); |
| } |
| |
| static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu, |
| struct kvm_lapic_state *s) |
| { |
| if (vcpu->arch.apicv_active) |
| kvm_x86_ops->sync_pir_to_irr(vcpu); |
| |
| return kvm_apic_get_state(vcpu, s); |
| } |
| |
| static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu, |
| struct kvm_lapic_state *s) |
| { |
| int r; |
| |
| r = kvm_apic_set_state(vcpu, s); |
| if (r) |
| return r; |
| update_cr8_intercept(vcpu); |
| |
| return 0; |
| } |
| |
| static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu) |
| { |
| return (!lapic_in_kernel(vcpu) || |
| kvm_apic_accept_pic_intr(vcpu)); |
| } |
| |
| /* |
| * if userspace requested an interrupt window, check that the |
| * interrupt window is open. |
| * |
| * No need to exit to userspace if we already have an interrupt queued. |
| */ |
| static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu) |
| { |
| return kvm_arch_interrupt_allowed(vcpu) && |
| !kvm_cpu_has_interrupt(vcpu) && |
| !kvm_event_needs_reinjection(vcpu) && |
| kvm_cpu_accept_dm_intr(vcpu); |
| } |
| |
| static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, |
| struct kvm_interrupt *irq) |
| { |
| if (irq->irq >= KVM_NR_INTERRUPTS) |
| return -EINVAL; |
| |
| if (!irqchip_in_kernel(vcpu->kvm)) { |
| kvm_queue_interrupt(vcpu, irq->irq, false); |
| kvm_make_request(KVM_REQ_EVENT, vcpu); |
| return 0; |
| } |
| |
| /* |
| * With in-kernel LAPIC, we only use this to inject EXTINT, so |
| * fail for in-kernel 8259. |
| */ |
| if (pic_in_kernel(vcpu->kvm)) |
| return -ENXIO; |
| |
| if (vcpu->arch.pending_external_vector != -1) |
| return -EEXIST; |
| |
| vcpu->arch.pending_external_vector = irq->irq; |
| kvm_make_request(KVM_REQ_EVENT, vcpu); |
| return 0; |
| } |
| |
| static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu) |
| { |
| kvm_inject_nmi(vcpu); |
| |
| return 0; |
| } |
| |
| static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu) |
| { |
| kvm_make_request(KVM_REQ_SMI, vcpu); |
| |
| return 0; |
| } |
| |
| static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu, |
| struct kvm_tpr_access_ctl *tac) |
| { |
| if (tac->flags) |
| return -EINVAL; |
| vcpu->arch.tpr_access_reporting = !!tac->enabled; |
| return 0; |
| } |
| |
| static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu, |
| u64 mcg_cap) |
| { |
| int r; |
| unsigned bank_num = mcg_cap & 0xff, bank; |
| |
| r = -EINVAL; |
| if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS) |
| goto out; |
| if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000)) |
| goto out; |
| r = 0; |
| vcpu->arch.mcg_cap = mcg_cap; |
| /* Init IA32_MCG_CTL to all 1s */ |
| if (mcg_cap & MCG_CTL_P) |
| vcpu->arch.mcg_ctl = ~(u64)0; |
| /* Init IA32_MCi_CTL to all 1s */ |
| for (bank = 0; bank < bank_num; bank++) |
| vcpu->arch.mce_banks[bank*4] = ~(u64)0; |
| |
| if (kvm_x86_ops->setup_mce) |
| kvm_x86_ops->setup_mce(vcpu); |
| out: |
| return r; |
| } |
| |
| static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu, |
| struct kvm_x86_mce *mce) |
| { |
| u64 mcg_cap = vcpu->arch.mcg_cap; |
| unsigned bank_num = mcg_cap & 0xff; |
| u64 *banks = vcpu->arch.mce_banks; |
| |
| if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL)) |
| return -EINVAL; |
| /* |
| * if IA32_MCG_CTL is not all 1s, the uncorrected error |
| * reporting is disabled |
| */ |
| if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) && |
| vcpu->arch.mcg_ctl != ~(u64)0) |
| return 0; |
| banks += 4 * mce->bank; |
| /* |
| * if IA32_MCi_CTL is not all 1s, the uncorrected error |
| * reporting is disabled for the bank |
| */ |
| if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0) |
| return 0; |
| if (mce->status & MCI_STATUS_UC) { |
| if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) || |
| !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) { |
| kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); |
| return 0; |
| } |
| if (banks[1] & MCI_STATUS_VAL) |
| mce->status |= MCI_STATUS_OVER; |
| banks[2] = mce->addr; |
| banks[3] = mce->misc; |
| vcpu->arch.mcg_status = mce->mcg_status; |
| banks[1] = mce->status; |
| kvm_queue_exception(vcpu, MC_VECTOR); |
| } else if (!(banks[1] & MCI_STATUS_VAL) |
| || !(banks[1] & MCI_STATUS_UC)) { |
| if (banks[1] & MCI_STATUS_VAL) |
| mce->status |= MCI_STATUS_OVER; |
| banks[2] = mce->addr; |
| banks[3] = mce->misc; |
| banks[1] = mce->status; |
| } else |
| banks[1] |= MCI_STATUS_OVER; |
| return 0; |
| } |
| |
| static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu, |
| struct kvm_vcpu_events *events) |
| { |
| process_nmi(vcpu); |
| /* |
| * FIXME: pass injected and pending separately. This is only |
| * needed for nested virtualization, whose state cannot be |
| * migrated yet. For now we can combine them. |
| */ |
| events->exception.injected = |
| (vcpu->arch.exception.pending || |
| vcpu->arch.exception.injected) && |
| !kvm_exception_is_soft(vcpu->arch.exception.nr); |
| events->exception.nr = vcpu->arch.exception.nr; |
| events->exception.has_error_code = vcpu->arch.exception.has_error_code; |
| events->exception.pad = 0; |
| events->exception.error_code = vcpu->arch.exception.error_code; |
| |
| events->interrupt.injected = |
| vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft; |
| events->interrupt.nr = vcpu->arch.interrupt.nr; |
| events->interrupt.soft = 0; |
| events->interrupt.shadow = kvm_x86_ops->get_interrupt_shadow(vcpu); |
| |
| events->nmi.injected = vcpu->arch.nmi_injected; |
| events->nmi.pending = vcpu->arch.nmi_pending != 0; |
| events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu); |
| events->nmi.pad = 0; |
| |
| events->sipi_vector = 0; /* never valid when reporting to user space */ |
| |
| events->smi.smm = is_smm(vcpu); |
| events->smi.pending = vcpu->arch.smi_pending; |
| events->smi.smm_inside_nmi = |
| !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK); |
| events->smi.latched_init = kvm_lapic_latched_init(vcpu); |
| |
| events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING |
| | KVM_VCPUEVENT_VALID_SHADOW |
| | KVM_VCPUEVENT_VALID_SMM); |
| memset(&events->reserved, 0, sizeof(events->reserved)); |
| } |
| |
| static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags); |
| |
| static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu, |
| struct kvm_vcpu_events *events) |
| { |
| if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING |
| | KVM_VCPUEVENT_VALID_SIPI_VECTOR |
| | KVM_VCPUEVENT_VALID_SHADOW |
| | KVM_VCPUEVENT_VALID_SMM)) |
| return -EINVAL; |
| |
| if (events->exception.injected && |
| (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR || |
| is_guest_mode(vcpu))) |
| return -EINVAL; |
| |
| /* INITs are latched while in SMM */ |
| if (events->flags & KVM_VCPUEVENT_VALID_SMM && |
| (events->smi.smm || events->smi.pending) && |
| vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) |
| return -EINVAL; |
| |
| process_nmi(vcpu); |
| vcpu->arch.exception.injected = false; |
| vcpu->arch.exception.pending = events->exception.injected; |
| vcpu->arch.exception.nr = events->exception.nr; |
| vcpu->arch.exception.has_error_code = events->exception.has_error_code; |
| vcpu->arch.exception.error_code = events->exception.error_code; |
| |
| vcpu->arch.interrupt.pending = events->interrupt.injected; |
| vcpu->arch.interrupt.nr = events->interrupt.nr; |
| vcpu->arch.interrupt.soft = events->interrupt.soft; |
| if (events->flags & KVM_VCPUEVENT_VALID_SHADOW) |
| kvm_x86_ops->set_interrupt_shadow(vcpu, |
| events->interrupt.shadow); |
| |
| vcpu->arch.nmi_injected = events->nmi.injected; |
| if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING) |
| vcpu->arch.nmi_pending = events->nmi.pending; |
| kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked); |
| |
| if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR && |
| lapic_in_kernel(vcpu)) |
| vcpu->arch.apic->sipi_vector = events->sipi_vector; |
| |
| if (events->flags & KVM_VCPUEVENT_VALID_SMM) { |
| u32 hflags = vcpu->arch.hflags; |
| if (events->smi.smm) |
| hflags |= HF_SMM_MASK; |
| else |
| hflags &= ~HF_SMM_MASK; |
| kvm_set_hflags(vcpu, hflags); |
| |
| vcpu->arch.smi_pending = events->smi.pending; |
| |
| if (events->smi.smm) { |
| if (events->smi.smm_inside_nmi) |
| vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK; |
| else |
| vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK; |
| if (lapic_in_kernel(vcpu)) { |
| if (events->smi.latched_init) |
| set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events); |
| else |
| clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events); |
| } |
| } |
| } |
| |
| kvm_make_request(KVM_REQ_EVENT, vcpu); |
| |
| return 0; |
| } |
| |
| static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu, |
| struct kvm_debugregs *dbgregs) |
| { |
| unsigned long val; |
| |
| memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db)); |
| kvm_get_dr(vcpu, 6, &val); |
| dbgregs->dr6 = val; |
| dbgregs->dr7 = vcpu->arch.dr7; |
| dbgregs->flags = 0; |
| memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved)); |
| } |
| |
| static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu, |
| struct kvm_debugregs *dbgregs) |
| { |
| if (dbgregs->flags) |
| return -EINVAL; |
| |
| if (dbgregs->dr6 & ~0xffffffffull) |
| return -EINVAL; |
| if (dbgregs->dr7 & ~0xffffffffull) |
| return -EINVAL; |
| |
| memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db)); |
| kvm_update_dr0123(vcpu); |
| vcpu->arch.dr6 = dbgregs->dr6; |
| kvm_update_dr6(vcpu); |
| vcpu->arch.dr7 = dbgregs->dr7; |
| kvm_update_dr7(vcpu); |
| |
| return 0; |
| } |
| |
| #define XSTATE_COMPACTION_ENABLED (1ULL << 63) |
| |
| static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu) |
| { |
| struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave; |
| u64 xstate_bv = xsave->header.xfeatures; |
| u64 valid; |
| |
| /* |
| * Copy legacy XSAVE area, to avoid complications with CPUID |
| * leaves 0 and 1 in the loop below. |
| */ |
| memcpy(dest, xsave, XSAVE_HDR_OFFSET); |
| |
| /* Set XSTATE_BV */ |
| xstate_bv &= vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FPSSE; |
| *(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv; |
| |
| /* |
| * Copy each region from the possibly compacted offset to the |
| * non-compacted offset. |
| */ |
| valid = xstate_bv & ~XFEATURE_MASK_FPSSE; |
| while (valid) { |
| u64 feature = valid & -valid; |
| int index = fls64(feature) - 1; |
| void *src = get_xsave_addr(xsave, feature); |
| |
| if (src) { |
| u32 size, offset, ecx, edx; |
| cpuid_count(XSTATE_CPUID, index, |
| &size, &offset, &ecx, &edx); |
| if (feature == XFEATURE_MASK_PKRU) |
| memcpy(dest + offset, &vcpu->arch.pkru, |
| sizeof(vcpu->arch.pkru)); |
| else |
| memcpy(dest + offset, src, size); |
| |
| } |
| |
| valid -= feature; |
| } |
| } |
| |
| static void load_xsave(struct kvm_vcpu *vcpu, u8 *src) |
| { |
| struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave; |
| u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET); |
| u64 valid; |
| |
| /* |
| * Copy legacy XSAVE area, to avoid complications with CPUID |
| * leaves 0 and 1 in the loop below. |
| */ |
| memcpy(xsave, src, XSAVE_HDR_OFFSET); |
| |
| /* Set XSTATE_BV and possibly XCOMP_BV. */ |
| xsave->header.xfeatures = xstate_bv; |
| if (boot_cpu_has(X86_FEATURE_XSAVES)) |
| xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED; |
| |
| /* |
| * Copy each region from the non-compacted offset to the |
| * possibly compacted offset. |
| */ |
| valid = xstate_bv & ~XFEATURE_MASK_FPSSE; |
| while (valid) { |
| u64 feature = valid & -valid; |
| int index = fls64(feature) - 1; |
| void *dest = get_xsave_addr(xsave, feature); |
| |
| if (dest) { |
| u32 size, offset, ecx, edx; |
| cpuid_count(XSTATE_CPUID, index, |
| &size, &offset, &ecx, &edx); |
| if (feature == XFEATURE_MASK_PKRU) |
| memcpy(&vcpu->arch.pkru, src + offset, |
| sizeof(vcpu->arch.pkru)); |
| else |
| memcpy(dest, src + offset, size); |
| } |
| |
| valid -= feature; |
| } |
| } |
| |
| static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu, |
| struct kvm_xsave *guest_xsave) |
| { |
| if (boot_cpu_has(X86_FEATURE_XSAVE)) { |
| memset(guest_xsave, 0, sizeof(struct kvm_xsave)); |
| fill_xsave((u8 *) guest_xsave->region, vcpu); |
| } else { |
| memcpy(guest_xsave->region, |
| &vcpu->arch.guest_fpu.state.fxsave, |
| sizeof(struct fxregs_state)); |
| *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] = |
| XFEATURE_MASK_FPSSE; |
| } |
| } |
| |
| #define XSAVE_MXCSR_OFFSET 24 |
| |
| static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu, |
| struct kvm_xsave *guest_xsave) |
| { |
| u64 xstate_bv = |
| *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)]; |
| u32 mxcsr = *(u32 *)&guest_xsave->region[XSAVE_MXCSR_OFFSET / sizeof(u32)]; |
| |
| if (boot_cpu_has(X86_FEATURE_XSAVE)) { |
| /* |
| * Here we allow setting states that are not present in |
| * CPUID leaf 0xD, index 0, EDX:EAX. This is for compatibility |
| * with old userspace. |
| */ |
| if (xstate_bv & ~kvm_supported_xcr0() || |
| mxcsr & ~mxcsr_feature_mask) |
| return -EINVAL; |
| load_xsave(vcpu, (u8 *)guest_xsave->region); |
| } else { |
| if (xstate_bv & ~XFEATURE_MASK_FPSSE || |
| mxcsr & ~mxcsr_feature_mask) |
| return -EINVAL; |
| memcpy(&vcpu->arch.guest_fpu.state.fxsave, |
| guest_xsave->region, sizeof(struct fxregs_state)); |
| } |
| return 0; |
| } |
| |
| static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu, |
| struct kvm_xcrs *guest_xcrs) |
| { |
| if (!boot_cpu_has(X86_FEATURE_XSAVE)) { |
| guest_xcrs->nr_xcrs = 0; |
| return; |
| } |
| |
| guest_xcrs->nr_xcrs = 1; |
| guest_xcrs->flags = 0; |
| guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK; |
| guest_xcrs->xcrs[0].value = vcpu->arch.xcr0; |
| } |
| |
| static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu, |
| struct kvm_xcrs *guest_xcrs) |
| { |
| int i, r = 0; |
| |
| if (!boot_cpu_has(X86_FEATURE_XSAVE)) |
| return -EINVAL; |
| |
| if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags) |
| return -EINVAL; |
| |
| for (i = 0; i < guest_xcrs->nr_xcrs; i++) |
| /* Only support XCR0 currently */ |
| if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) { |
| r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK, |
| guest_xcrs->xcrs[i].value); |
| break; |
| } |
| if (r) |
| r = -EINVAL; |
| return r; |
| } |
| |
| /* |
| * kvm_set_guest_paused() indicates to the guest kernel that it has been |
| * stopped by the hypervisor. This function will be called from the host only. |
| * EINVAL is returned when the host attempts to set the flag for a guest that |
| * does not support pv clocks. |
| */ |
| static int kvm_set_guest_paused(struct kvm_vcpu *vcpu) |
| { |
| if (!vcpu->arch.pv_time_enabled) |
| return -EINVAL; |
| vcpu->arch.pvclock_set_guest_stopped_request = true; |
| kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); |
| return 0; |
| } |
| |
| static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu, |
| struct kvm_enable_cap *cap) |
| { |
| if (cap->flags) |
| return -EINVAL; |
| |
| switch (cap->cap) { |
| case KVM_CAP_HYPERV_SYNIC2: |
| if (cap->args[0]) |
| return -EINVAL; |
| case KVM_CAP_HYPERV_SYNIC: |
| if (!irqchip_in_kernel(vcpu->kvm)) |
| return -EINVAL; |
| return kvm_hv_activate_synic(vcpu, cap->cap == |
| KVM_CAP_HYPERV_SYNIC2); |
| default: |
| return -EINVAL; |
| } |
| } |
| |
| long kvm_arch_vcpu_ioctl(struct file *filp, |
| unsigned int ioctl, unsigned long arg) |
| { |
| struct kvm_vcpu *vcpu = filp->private_data; |
| void __user *argp = (void __user *)arg; |
| int r; |
| union { |
| struct kvm_lapic_state *lapic; |
| struct kvm_xsave *xsave; |
| struct kvm_xcrs *xcrs; |
| void *buffer; |
| } u; |
| |
| vcpu_load(vcpu); |
| |
| u.buffer = NULL; |
| switch (ioctl) { |
| case KVM_GET_LAPIC: { |
| r = -EINVAL; |
| if (!lapic_in_kernel(vcpu)) |
| goto out; |
| u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL); |
| |
| r = -ENOMEM; |
| if (!u.lapic) |
| goto out; |
| r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic); |
| if (r) |
| goto out; |
| r = -EFAULT; |
| if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state))) |
| goto out; |
| r = 0; |
| break; |
| } |
| case KVM_SET_LAPIC: { |
| r = -EINVAL; |
| if (!lapic_in_kernel(vcpu)) |
| goto out; |
| u.lapic = memdup_user(argp, sizeof(*u.lapic)); |
| if (IS_ERR(u.lapic)) { |
| r = PTR_ERR(u.lapic); |
| goto out_nofree; |
| } |
| |
| r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic); |
| break; |
| } |
| case KVM_INTERRUPT: { |
| struct kvm_interrupt irq; |
| |
| r = -EFAULT; |
| if (copy_from_user(&irq, argp, sizeof irq)) |
| goto out; |
| r = kvm_vcpu_ioctl_interrupt(vcpu, &irq); |
| break; |
| } |
| case KVM_NMI: { |
| r = kvm_vcpu_ioctl_nmi(vcpu); |
| break; |
| } |
| case KVM_SMI: { |
| r = kvm_vcpu_ioctl_smi(vcpu); |
| break; |
| } |
| case KVM_SET_CPUID: { |
| struct kvm_cpuid __user *cpuid_arg = argp; |
| struct kvm_cpuid cpuid; |
| |
| r = -EFAULT; |
| if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid)) |
| goto out; |
| r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries); |
| break; |
| } |
| case KVM_SET_CPUID2: { |
| struct kvm_cpuid2 __user *cpuid_arg = argp; |
| struct kvm_cpuid2 cpuid; |
| |
| r = -EFAULT; |
| if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid)) |
| goto out; |
| r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid, |
| cpuid_arg->entries); |
| break; |
| } |
| case KVM_GET_CPUID2: { |
| struct kvm_cpuid2 __user *cpuid_arg = argp; |
| struct kvm_cpuid2 cpuid; |
| |
| r = -EFAULT; |
| if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid)) |
| goto out; |
| r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid, |
| cpuid_arg->entries); |
| if (r) |
| goto out; |
| r = -EFAULT; |
| if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid)) |
| goto out; |
| r = 0; |
| break; |
| } |
| case KVM_GET_MSRS: { |
| int idx = srcu_read_lock(&vcpu->kvm->srcu); |
| r = msr_io(vcpu, argp, do_get_msr, 1); |
| srcu_read_unlock(&vcpu->kvm->srcu, idx); |
| break; |
| } |
| case KVM_SET_MSRS: { |
| int idx = srcu_read_lock(&vcpu->kvm->srcu); |
| r = msr_io(vcpu, argp, do_set_msr, 0); |
| srcu_read_unlock(&vcpu->kvm->srcu, idx); |
| break; |
| } |
| case KVM_TPR_ACCESS_REPORTING: { |
| struct kvm_tpr_access_ctl tac; |
| |
| r = -EFAULT; |
| if (copy_from_user(&tac, argp, sizeof tac)) |
| goto out; |
| r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac); |
| if (r) |
| goto out; |
| r = -EFAULT; |
| if (copy_to_user(argp, &tac, sizeof tac)) |
| goto out; |
| r = 0; |
| break; |
| }; |
| case KVM_SET_VAPIC_ADDR: { |
| struct kvm_vapic_addr va; |
| int idx; |
| |
| r = -EINVAL; |
| if (!lapic_in_kernel(vcpu)) |
| goto out; |
| r = -EFAULT; |
| if (copy_from_user(&va, argp, sizeof va)) |
| goto out; |
| idx = srcu_read_lock(&vcpu->kvm->srcu); |
| r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr); |
| srcu_read_unlock(&vcpu->kvm->srcu, idx); |
| break; |
| } |
| case KVM_X86_SETUP_MCE: { |
| u64 mcg_cap; |
| |
| r = -EFAULT; |
| if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap)) |
| goto out; |
| r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap); |
| break; |
| } |
| case KVM_X86_SET_MCE: { |
| struct kvm_x86_mce mce; |
| |
| r = -EFAULT; |
| if (copy_from_user(&mce, argp, sizeof mce)) |
| goto out; |
| r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce); |
| break; |
| } |
| case KVM_GET_VCPU_EVENTS: { |
| struct kvm_vcpu_events events; |
| |
| kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events); |
| |
| r = -EFAULT; |
| if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events))) |
| break; |
| r = 0; |
| break; |
| } |
| case KVM_SET_VCPU_EVENTS: { |
| struct kvm_vcpu_events events; |
| |
| r = -EFAULT; |
| if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events))) |
| break; |
| |
| r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events); |
| break; |
| } |
| case KVM_GET_DEBUGREGS: { |
| struct kvm_debugregs dbgregs; |
| |
| kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs); |
| |
| r = -EFAULT; |
| if (copy_to_user(argp, &dbgregs, |
| sizeof(struct kvm_debugregs))) |
| break; |
| r = 0; |
| break; |
| } |
| case KVM_SET_DEBUGREGS: { |
| struct kvm_debugregs dbgregs; |
| |
| r = -EFAULT; |
| if (copy_from_user(&dbgregs, argp, |
| sizeof(struct kvm_debugregs))) |
| break; |
| |
| r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs); |
| break; |
| } |
| case KVM_GET_XSAVE: { |
| u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL); |
| r = -ENOMEM; |
| if (!u.xsave) |
| break; |
| |
| kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave); |
| |
| r = -EFAULT; |
| if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave))) |
| break; |
| r = 0; |
| break; |
| } |
| case KVM_SET_XSAVE: { |
| u.xsave = memdup_user(argp, sizeof(*u.xsave)); |
| if (IS_ERR(u.xsave)) { |
| r = PTR_ERR(u.xsave); |
| goto out_nofree; |
| } |
| |
| r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave); |
| break; |
| } |
| case KVM_GET_XCRS: { |
| u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL); |
| r = -ENOMEM; |
| if (!u.xcrs) |
| break; |
| |
| kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs); |
| |
| r = -EFAULT; |
| if (copy_to_user(argp, u.xcrs, |
| sizeof(struct kvm_xcrs))) |
| break; |
| r = 0; |
| break; |
| } |
| case KVM_SET_XCRS: { |
| u.xcrs = memdup_user(argp, sizeof(*u.xcrs)); |
| if (IS_ERR(u.xcrs)) { |
| r = PTR_ERR(u.xcrs); |
| goto out_nofree; |
| } |
| |
| r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs); |
| break; |
| } |
| case KVM_SET_TSC_KHZ: { |
| u32 user_tsc_khz; |
| |
| r = -EINVAL; |
| user_tsc_khz = (u32)arg; |
| |
| if (user_tsc_khz >= kvm_max_guest_tsc_khz) |
| goto out; |
| |
| if (user_tsc_khz == 0) |
| user_tsc_khz = tsc_khz; |
| |
| if (!kvm_set_tsc_khz(vcpu, user_tsc_khz)) |
| r = 0; |
| |
| goto out; |
| } |
| case KVM_GET_TSC_KHZ: { |
| r = vcpu->arch.virtual_tsc_khz; |
| goto out; |
| } |
| case KVM_KVMCLOCK_CTRL: { |
| r = kvm_set_guest_paused(vcpu); |
| goto out; |
| } |
| case KVM_ENABLE_CAP: { |
| struct kvm_enable_cap cap; |
| |
| r = -EFAULT; |
| if (copy_from_user(&cap, argp, sizeof(cap))) |
| goto out; |
| r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap); |
| break; |
| } |
| default: |
| r = -EINVAL; |
| } |
| out: |
| kfree(u.buffer); |
| out_nofree: |
| vcpu_put(vcpu); |
| return r; |
| } |
| |
| int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf) |
| { |
| return VM_FAULT_SIGBUS; |
| } |
| |
| static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr) |
| { |
| int ret; |
| |
| if (addr > (unsigned int)(-3 * PAGE_SIZE)) |
| return -EINVAL; |
| ret = kvm_x86_ops->set_tss_addr(kvm, addr); |
| return ret; |
| } |
| |
| static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm, |
| u64 ident_addr) |
| { |
| kvm->arch.ept_identity_map_addr = ident_addr; |
| return 0; |
| } |
| |
| static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm, |
| u32 kvm_nr_mmu_pages) |
| { |
| if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES) |
| return -EINVAL; |
| |
| mutex_lock(&kvm->slots_lock); |
| |
| kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages); |
| kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages; |
| |
| mutex_unlock(&kvm->slots_lock); |
| return 0; |
| } |
| |
| static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm) |
| { |
| return kvm->arch.n_max_mmu_pages; |
| } |
| |
| static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) |
| { |
| struct kvm_pic *pic = kvm->arch.vpic; |
| int r; |
| |
| r = 0; |
| switch (chip->chip_id) { |
| case KVM_IRQCHIP_PIC_MASTER: |
| memcpy(&chip->chip.pic, &pic->pics[0], |
| sizeof(struct kvm_pic_state)); |
| break; |
| case KVM_IRQCHIP_PIC_SLAVE: |
| memcpy(&chip->chip.pic, &pic->pics[1], |
| sizeof(struct kvm_pic_state)); |
| break; |
| case KVM_IRQCHIP_IOAPIC: |
| kvm_get_ioapic(kvm, &chip->chip.ioapic); |
| break; |
| default: |
| r = -EINVAL; |
| break; |
| } |
| return r; |
| } |
| |
| static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) |
| { |
| struct kvm_pic *pic = kvm->arch.vpic; |
| int r; |
| |
| r = 0; |
| switch (chip->chip_id) { |
| case KVM_IRQCHIP_PIC_MASTER: |
| spin_lock(&pic->lock); |
| memcpy(&pic->pics[0], &chip->chip.pic, |
| sizeof(struct kvm_pic_state)); |
| spin_unlock(&pic->lock); |
| break; |
| case KVM_IRQCHIP_PIC_SLAVE: |
| spin_lock(&pic->lock); |
| memcpy(&pic->pics[1], &chip->chip.pic, |
| sizeof(struct kvm_pic_state)); |
| spin_unlock(&pic->lock); |
| break; |
| case KVM_IRQCHIP_IOAPIC: |
| kvm_set_ioapic(kvm, &chip->chip.ioapic); |
| break; |
| default: |
| r = -EINVAL; |
| break; |
| } |
| kvm_pic_update_irq(pic); |
| return r; |
| } |
| |
| static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps) |
| { |
| struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state; |
| |
| BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels)); |
| |
| mutex_lock(&kps->lock); |
| memcpy(ps, &kps->channels, sizeof(*ps)); |
| mutex_unlock(&kps->lock); |
| return 0; |
| } |
| |
| static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps) |
| { |
| int i; |
| struct kvm_pit *pit = kvm->arch.vpit; |
| |
| mutex_lock(&pit->pit_state.lock); |
| memcpy(&pit->pit_state.channels, ps, sizeof(*ps)); |
| for (i = 0; i < 3; i++) |
| kvm_pit_load_count(pit, i, ps->channels[i].count, 0); |
| mutex_unlock(&pit->pit_state.lock); |
| return 0; |
| } |
| |
| static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps) |
| { |
| mutex_lock(&kvm->arch.vpit->pit_state.lock); |
| memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels, |
| sizeof(ps->channels)); |
| ps->flags = kvm->arch.vpit->pit_state.flags; |
| mutex_unlock(&kvm->arch.vpit->pit_state.lock); |
| memset(&ps->reserved, 0, sizeof(ps->reserved)); |
| return 0; |
| } |
| |
| static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps) |
| { |
| int start = 0; |
| int i; |
| u32 prev_legacy, cur_legacy; |
| struct kvm_pit *pit = kvm->arch.vpit; |
| |
| mutex_lock(&pit->pit_state.lock); |
| prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY; |
| cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY; |
| if (!prev_legacy && cur_legacy) |
| start = 1; |
| memcpy(&pit->pit_state.channels, &ps->channels, |
| sizeof(pit->pit_state.channels)); |
| pit->pit_state.flags = ps->flags; |
| for (i = 0; i < 3; i++) |
| kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count, |
| start && i == 0); |
| mutex_unlock(&pit->pit_state.lock); |
| return 0; |
| } |
| |
| static int kvm_vm_ioctl_reinject(struct kvm *kvm, |
| struct kvm_reinject_control *control) |
| { |
| struct kvm_pit *pit = kvm->arch.vpit; |
| |
| if (!pit) |
| return -ENXIO; |
| |
| /* pit->pit_state.lock was overloaded to prevent userspace from getting |
| * an inconsistent state after running multiple KVM_REINJECT_CONTROL |
| * ioctls in parallel. Use a separate lock if that ioctl isn't rare. |
| */ |
| mutex_lock(&pit->pit_state.lock); |
| kvm_pit_set_reinject(pit, control->pit_reinject); |
| mutex_unlock(&pit->pit_state.lock); |
| |
| return 0; |
| } |
| |
| /** |
| * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot |
| * @kvm: kvm instance |
| * @log: slot id and address to which we copy the log |
| * |
| * Steps 1-4 below provide general overview of dirty page logging. See |
| * kvm_get_dirty_log_protect() function description for additional details. |
| * |
| * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we |
| * always flush the TLB (step 4) even if previous step failed and the dirty |
| * bitmap may be corrupt. Regardless of previous outcome the KVM logging API |
| * does not preclude user space subsequent dirty log read. Flushing TLB ensures |
| * writes will be marked dirty for next log read. |
| * |
| * 1. Take a snapshot of the bit and clear it if needed. |
| * 2. Write protect the corresponding page. |
| * 3. Copy the snapshot to the userspace. |
| * 4. Flush TLB's if needed. |
| */ |
| int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log) |
| { |
| bool is_dirty = false; |
| int r; |
| |
| mutex_lock(&kvm->slots_lock); |
| |
| /* |
| * Flush potentially hardware-cached dirty pages to dirty_bitmap. |
| */ |
| if (kvm_x86_ops->flush_log_dirty) |
| kvm_x86_ops->flush_log_dirty(kvm); |
| |
| r = kvm_get_dirty_log_protect(kvm, log, &is_dirty); |
| |
| /* |
| * All the TLBs can be flushed out of mmu lock, see the comments in |
| * kvm_mmu_slot_remove_write_access(). |
| */ |
| lockdep_assert_held(&kvm->slots_lock); |
| if (is_dirty) |
| kvm_flush_remote_tlbs(kvm); |
| |
| mutex_unlock(&kvm->slots_lock); |
| return r; |
| } |
| |
| int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event, |
| bool line_status) |
| { |
| if (!irqchip_in_kernel(kvm)) |
| return -ENXIO; |
| |
| irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID, |
| irq_event->irq, irq_event->level, |
| line_status); |
| return 0; |
| } |
| |
| static int kvm_vm_ioctl_enable_cap(struct kvm *kvm, |
| struct kvm_enable_cap *cap) |
| { |
| int r; |
| |
| if (cap->flags) |
| return -EINVAL; |
| |
| switch (cap->cap) { |
| case KVM_CAP_DISABLE_QUIRKS: |
| kvm->arch.disabled_quirks = cap->args[0]; |
| r = 0; |
| break; |
| case KVM_CAP_SPLIT_IRQCHIP: { |
| mutex_lock(&kvm->lock); |
| r = -EINVAL; |
| if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS) |
| goto split_irqchip_unlock; |
| r = -EEXIST; |
| if (irqchip_in_kernel(kvm)) |
| goto split_irqchip_unlock; |
| if (kvm->created_vcpus) |
| goto split_irqchip_unlock; |
| r = kvm_setup_empty_irq_routing(kvm); |
| if (r) |
| goto split_irqchip_unlock; |
| /* Pairs with irqchip_in_kernel. */ |
| smp_wmb(); |
| kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT; |
| kvm->arch.nr_reserved_ioapic_pins = cap->args[0]; |
| r = 0; |
| split_irqchip_unlock: |
| mutex_unlock(&kvm->lock); |
| break; |
| } |
| case KVM_CAP_X2APIC_API: |
| r = -EINVAL; |
| if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS) |
| break; |
| |
| if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS) |
| kvm->arch.x2apic_format = true; |
| if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK) |
| kvm->arch.x2apic_broadcast_quirk_disabled = true; |
| |
| r = 0; |
| break; |
| default: |
| r = -EINVAL; |
| break; |
| } |
| return r; |
| } |
| |
| long kvm_arch_vm_ioctl(struct file *filp, |
| unsigned int ioctl, unsigned long arg) |
| { |
| struct kvm *kvm = filp->private_data; |
| void __user *argp = (void __user *)arg; |
| int r = -ENOTTY; |
| /* |
| * This union makes it completely explicit to gcc-3.x |
| * that these two variables' stack usage should be |
| * combined, not added together. |
| */ |
| union { |
| struct kvm_pit_state ps; |
| struct kvm_pit_state2 ps2; |
| struct kvm_pit_config pit_config; |
| } u; |
| |
| switch (ioctl) { |
| case KVM_SET_TSS_ADDR: |
| r = kvm_vm_ioctl_set_tss_addr(kvm, arg); |
| break; |
| case KVM_SET_IDENTITY_MAP_ADDR: { |
| u64 ident_addr; |
| |
| mutex_lock(&kvm->lock); |
| r = -EINVAL; |
| if (kvm->created_vcpus) |
| goto set_identity_unlock; |
| r = -EFAULT; |
| if (copy_from_user(&ident_addr, argp, sizeof ident_addr)) |
| goto set_identity_unlock; |
| r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr); |
| set_identity_unlock: |
| mutex_unlock(&kvm->lock); |
| break; |
| } |
| case KVM_SET_NR_MMU_PAGES: |
| r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg); |
| break; |
| case KVM_GET_NR_MMU_PAGES: |
| r = kvm_vm_ioctl_get_nr_mmu_pages(kvm); |
| break; |
| case KVM_CREATE_IRQCHIP: { |
| mutex_lock(&kvm->lock); |
| |
| r = -EEXIST; |
| if (irqchip_in_kernel(kvm)) |
| goto create_irqchip_unlock; |
| |
| r = -EINVAL; |
| if (kvm->created_vcpus) |
| goto create_irqchip_unlock; |
| |
| r = kvm_pic_init(kvm); |
| if (r) |
| goto create_irqchip_unlock; |
| |
| r = kvm_ioapic_init(kvm); |
| if (r) { |
| kvm_pic_destroy(kvm); |
| goto create_irqchip_unlock; |
| } |
| |
| r = kvm_setup_default_irq_routing(kvm); |
| if (r) { |
| kvm_ioapic_destroy(kvm); |
| kvm_pic_destroy(kvm); |
| goto create_irqchip_unlock; |
| } |
| /* Write kvm->irq_routing before enabling irqchip_in_kernel. */ |
| smp_wmb(); |
| kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL; |
| create_irqchip_unlock: |
| mutex_unlock(&kvm->lock); |
| break; |
| } |
| case KVM_CREATE_PIT: |
| u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY; |
| goto create_pit; |
| case KVM_CREATE_PIT2: |
| r = -EFAULT; |
| if (copy_from_user(&u.pit_config, argp, |
| sizeof(struct kvm_pit_config))) |
| goto out; |
| create_pit: |
| mutex_lock(&kvm->lock); |
| r = -EEXIST; |
| if (kvm->arch.vpit) |
| goto create_pit_unlock; |
| r = -ENOMEM; |
| kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags); |
| if (kvm->arch.vpit) |
| r = 0; |
| create_pit_unlock: |
| mutex_unlock(&kvm->lock); |
| break; |
| case KVM_GET_IRQCHIP: { |
| /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ |
| struct kvm_irqchip *chip; |
| |
| chip = memdup_user(argp, sizeof(*chip)); |
| if (IS_ERR(chip)) { |
| r = PTR_ERR(chip); |
| goto out; |
| } |
| |
| r = -ENXIO; |
| if (!irqchip_kernel(kvm)) |
| goto get_irqchip_out; |
| r = kvm_vm_ioctl_get_irqchip(kvm, chip); |
| if (r) |
| goto get_irqchip_out; |
| r = -EFAULT; |
| if (copy_to_user(argp, chip, sizeof *chip)) |
| goto get_irqchip_out; |
| r = 0; |
| get_irqchip_out: |
| kfree(chip); |
| break; |
| } |
| case KVM_SET_IRQCHIP: { |
| /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ |
| struct kvm_irqchip *chip; |
| |
| chip = memdup_user(argp, sizeof(*chip)); |
| if (IS_ERR(chip)) { |
| r = PTR_ERR(chip); |
| goto out; |
| } |
| |
| r = -ENXIO; |
| if (!irqchip_kernel(kvm)) |
| goto set_irqchip_out; |
| r = kvm_vm_ioctl_set_irqchip(kvm, chip); |
| if (r) |
| goto set_irqchip_out; |
| r = 0; |
| set_irqchip_out: |
| kfree(chip); |
| break; |
| } |
| case KVM_GET_PIT: { |
| r = -EFAULT; |
| if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state))) |
| goto out; |
| r = -ENXIO; |
| if (!kvm->arch.vpit) |
| goto out; |
| r = kvm_vm_ioctl_get_pit(kvm, &u.ps); |
| if (r) |
| goto out; |
| r = -EFAULT; |
| if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state))) |
| goto out; |
| r = 0; |
| break; |
| } |
| case KVM_SET_PIT: { |
| r = -EFAULT; |
| if (copy_from_user(&u.ps, argp, sizeof u.ps)) |
| goto out; |
| r = -ENXIO; |
| if (!kvm->arch.vpit) |
| goto out; |
| r = kvm_vm_ioctl_set_pit(kvm, &u.ps); |
| break; |
| } |
| case KVM_GET_PIT2: { |
| r = -ENXIO; |
| if (!kvm->arch.vpit) |
| goto out; |
| r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2); |
| if (r) |
| goto out; |
| r = -EFAULT; |
| if (copy_to_user(argp, &u.ps2, sizeof(u.ps2))) |
| goto out; |
| r = 0; |
| break; |
| } |
| case KVM_SET_PIT2: { |
| r = -EFAULT; |
| if (copy_from_user(&u.ps2, argp, sizeof(u.ps2))) |
| goto out; |
| r = -ENXIO; |
| if (!kvm->arch.vpit) |
| goto out; |
| r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2); |
| break; |
| } |
| case KVM_REINJECT_CONTROL: { |
| struct kvm_reinject_control control; |
| r = -EFAULT; |
| if (copy_from_user(&control, argp, sizeof(control))) |
| goto out; |
| r = kvm_vm_ioctl_reinject(kvm, &control); |
| break; |
| } |
| case KVM_SET_BOOT_CPU_ID: |
| r = 0; |
| mutex_lock(&kvm->lock); |
| if (kvm->created_vcpus) |
| r = -EBUSY; |
| else |
| kvm->arch.bsp_vcpu_id = arg; |
| mutex_unlock(&kvm->lock); |
| break; |
| case KVM_XEN_HVM_CONFIG: { |
| struct kvm_xen_hvm_config xhc; |
| r = -EFAULT; |
| if (copy_from_user(&xhc, argp, sizeof(xhc))) |
| goto out; |
| r = -EINVAL; |
| if (xhc.flags) |
| goto out; |
| memcpy(&kvm->arch.xen_hvm_config, &xhc, sizeof(xhc)); |
| r = 0; |
| break; |
| } |
| case KVM_SET_CLOCK: { |
| struct kvm_clock_data user_ns; |
| u64 now_ns; |
| |
| r = -EFAULT; |
| if (copy_from_user(&user_ns, argp, sizeof(user_ns))) |
| goto out; |
| |
| r = -EINVAL; |
| if (user_ns.flags) |
| goto out; |
| |
| r = 0; |
| /* |
| * TODO: userspace has to take care of races with VCPU_RUN, so |
| * kvm_gen_update_masterclock() can be cut down to locked |
| * pvclock_update_vm_gtod_copy(). |
| */ |
| kvm_gen_update_masterclock(kvm); |
| now_ns = get_kvmclock_ns(kvm); |
| kvm->arch.kvmclock_offset += user_ns.clock - now_ns; |
| kvm_make_all_cpus_request(kvm, KVM_REQ_CLOCK_UPDATE); |
| break; |
| } |
| case KVM_GET_CLOCK: { |
| struct kvm_clock_data user_ns; |
| u64 now_ns; |
| |
| now_ns = get_kvmclock_ns(kvm); |
| user_ns.clock = now_ns; |
| user_ns.flags = kvm->arch.use_master_clock ? KVM_CLOCK_TSC_STABLE : 0; |
| memset(&user_ns.pad, 0, sizeof(user_ns.pad)); |
| |
| r = -EFAULT; |
| if (copy_to_user(argp, &user_ns, sizeof(user_ns))) |
| goto out; |
| r = 0; |
| break; |
| } |
| case KVM_ENABLE_CAP: { |
| struct kvm_enable_cap cap; |
| |
| r = -EFAULT; |
| if (copy_from_user(&cap, argp, sizeof(cap))) |
| goto out; |
| r = kvm_vm_ioctl_enable_cap(kvm, &cap); |
| break; |
| } |
| case KVM_MEMORY_ENCRYPT_OP: { |
| r = -ENOTTY; |
| if (kvm_x86_ops->mem_enc_op) |
| r = kvm_x86_ops->mem_enc_op(kvm, argp); |
| break; |
| } |
| case KVM_MEMORY_ENCRYPT_REG_REGION: { |
| struct kvm_enc_region region; |
| |
| r = -EFAULT; |
| if (copy_from_user(®ion, argp, sizeof(region))) |
| goto out; |
| |
| r = -ENOTTY; |
| if (kvm_x86_ops->mem_enc_reg_region) |
| r = kvm_x86_ops->mem_enc_reg_region(kvm, ®ion); |
| break; |
| } |
| case KVM_MEMORY_ENCRYPT_UNREG_REGION: { |
| struct kvm_enc_region region; |
| |
| r = -EFAULT; |
| if (copy_from_user(®ion, argp, sizeof(region))) |
| goto out; |
| |
| r = -ENOTTY; |
| if (kvm_x86_ops->mem_enc_unreg_region) |
| r = kvm_x86_ops->mem_enc_unreg_region(kvm, ®ion); |
| break; |
| } |
| default: |
| r = -ENOTTY; |
| } |
| out: |
| return r; |
| } |
| |
| static void kvm_init_msr_list(void) |
| { |
| u32 dummy[2]; |
| unsigned i, j; |
| |
| for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) { |
| if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0) |
| continue; |
| |
| /* |
| * Even MSRs that are valid in the host may not be exposed |
| * to the guests in some cases. |
| */ |
| switch (msrs_to_save[i]) { |
| case MSR_IA32_BNDCFGS: |
| if (!kvm_x86_ops->mpx_supported()) |
| continue; |
| break; |
| case MSR_TSC_AUX: |
| if (!kvm_x86_ops->rdtscp_supported()) |
| continue; |
| break; |
| default: |
| break; |
| } |
| |
| if (j < i) |
| msrs_to_save[j] = msrs_to_save[i]; |
| j++; |
| } |
| num_msrs_to_save = j; |
| |
| for (i = j = 0; i < ARRAY_SIZE(emulated_msrs); i++) { |
| switch (emulated_msrs[i]) { |
| case MSR_IA32_SMBASE: |
| if (!kvm_x86_ops->cpu_has_high_real_mode_segbase()) |
| continue; |
| break; |
| default: |
| break; |
| } |
| |
| if (j < i) |
| emulated_msrs[j] = emulated_msrs[i]; |
| j++; |
| } |
| num_emulated_msrs = j; |
| |
| for (i = j = 0; i < ARRAY_SIZE(msr_based_features); i++) { |
| struct kvm_msr_entry msr; |
| |
| msr.index = msr_based_features[i]; |
| if (kvm_get_msr_feature(&msr)) |
| continue; |
| |
| if (j < i) |
| msr_based_features[j] = msr_based_features[i]; |
| j++; |
| } |
| num_msr_based_features = j; |
| } |
| |
| static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len, |
| const void *v) |
| { |
| int handled = 0; |
| int n; |
| |
| do { |
| n = min(len, 8); |
| if (!(lapic_in_kernel(vcpu) && |
| !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v)) |
| && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v)) |
| break; |
| handled += n; |
| addr += n; |
| len -= n; |
| v += n; |
| } while (len); |
| |
| return handled; |
| } |
| |
| static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v) |
| { |
| int handled = 0; |
| int n; |
| |
| do { |
| n = min(len, 8); |
| if (!(lapic_in_kernel(vcpu) && |
| !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev, |
| addr, n, v)) |
| && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v)) |
| break; |
| trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v); |
| handled += n; |
| addr += n; |
| len -= n; |
| v += n; |
| } while (len); |
| |
| return handled; |
| } |
| |
| static void kvm_set_segment(struct kvm_vcpu *vcpu, |
| struct kvm_segment *var, int seg) |
| { |
| kvm_x86_ops->set_segment(vcpu, var, seg); |
| } |
| |
| void kvm_get_segment(struct kvm_vcpu *vcpu, |
| struct kvm_segment *var, int seg) |
| { |
| kvm_x86_ops->get_segment(vcpu, var, seg); |
| } |
| |
| gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access, |
| struct x86_exception *exception) |
| { |
| gpa_t t_gpa; |
| |
| BUG_ON(!mmu_is_nested(vcpu)); |
| |
| /* NPT walks are always user-walks */ |
| access |= PFERR_USER_MASK; |
| t_gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, exception); |
| |
| return t_gpa; |
| } |
| |
| gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva, |
| struct x86_exception *exception) |
| { |
| u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; |
| return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); |
| } |
| |
| gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva, |
| struct x86_exception *exception) |
| { |
| u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; |
| access |= PFERR_FETCH_MASK; |
| return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); |
| } |
| |
| gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva, |
| struct x86_exception *exception) |
| { |
| u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; |
| access |= PFERR_WRITE_MASK; |
| return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); |
| } |
| |
| /* uses this to access any guest's mapped memory without checking CPL */ |
| gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva, |
| struct x86_exception *exception) |
| { |
| return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception); |
| } |
| |
| static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes, |
| struct kvm_vcpu *vcpu, u32 access, |
| struct x86_exception *exception) |
| { |
| void *data = val; |
| int r = X86EMUL_CONTINUE; |
| |
| while (bytes) { |
| gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access, |
| exception); |
| unsigned offset = addr & (PAGE_SIZE-1); |
| unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset); |
| int ret; |
| |
| if (gpa == UNMAPPED_GVA) |
| return X86EMUL_PROPAGATE_FAULT; |
| ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data, |
| offset, toread); |
| if (ret < 0) { |
| r = X86EMUL_IO_NEEDED; |
| goto out; |
| } |
| |
| bytes -= toread; |
| data += toread; |
| addr += toread; |
| } |
| out: |
| return r; |
| } |
| |
| /* used for instruction fetching */ |
| static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt, |
| gva_t addr, void *val, unsigned int bytes, |
| struct x86_exception *exception) |
| { |
| struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); |
| u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; |
| unsigned offset; |
| int ret; |
| |
| /* Inline kvm_read_guest_virt_helper for speed. */ |
| gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK, |
| exception); |
| if (unlikely(gpa == UNMAPPED_GVA)) |
| return X86EMUL_PROPAGATE_FAULT; |
| |
| offset = addr & (PAGE_SIZE-1); |
| if (WARN_ON(offset + bytes > PAGE_SIZE)) |
| bytes = (unsigned)PAGE_SIZE - offset; |
| ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val, |
| offset, bytes); |
| if (unlikely(ret < 0)) |
| return X86EMUL_IO_NEEDED; |
| |
| return X86EMUL_CONTINUE; |
| } |
| |
| int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt, |
| gva_t addr, void *val, unsigned int bytes, |
| struct x86_exception *exception) |
| { |
| struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); |
| u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; |
| |
| return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, |
| exception); |
| } |
| EXPORT_SYMBOL_GPL(kvm_read_guest_virt); |
| |
| static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt, |
| gva_t addr, void *val, unsigned int bytes, |
| struct x86_exception *exception) |
| { |
| struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); |
| return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception); |
| } |
| |
| static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt, |
| unsigned long addr, void *val, unsigned int bytes) |
| { |
| struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); |
| int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes); |
| |
| return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE; |
| } |
| |
| int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt, |
| gva_t addr, void *val, |
| unsigned int bytes, |
| struct x86_exception *exception) |
| { |
| struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); |
| void *data = val; |
| int r = X86EMUL_CONTINUE; |
| |
| while (bytes) { |
| gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, |
| PFERR_WRITE_MASK, |
| exception); |
| unsigned offset = addr & (PAGE_SIZE-1); |
| unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset); |
| int ret; |
| |
| if (gpa == UNMAPPED_GVA) |
| return X86EMUL_PROPAGATE_FAULT; |
| ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite); |
| if (ret < 0) { |
| r = X86EMUL_IO_NEEDED; |
| goto out; |
| } |
| |
| bytes -= towrite; |
| data += towrite; |
| addr += towrite; |
| } |
| out: |
| return r; |
| } |
| EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system); |
| |
| static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva, |
| gpa_t gpa, bool write) |
| { |
| /* For APIC access vmexit */ |
| if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) |
| return 1; |
| |
| if (vcpu_match_mmio_gpa(vcpu, gpa)) { |
| trace_vcpu_match_mmio(gva, gpa, write, true); |
| return 1; |
| } |
| |
| return 0; |
| } |
| |
| static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva, |
| gpa_t *gpa, struct x86_exception *exception, |
| bool write) |
| { |
| u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0) |
| | (write ? PFERR_WRITE_MASK : 0); |
| |
| /* |
| * currently PKRU is only applied to ept enabled guest so |
| * there is no pkey in EPT page table for L1 guest or EPT |
| * shadow page table for L2 guest. |
| */ |
| if (vcpu_match_mmio_gva(vcpu, gva) |
| && !permission_fault(vcpu, vcpu->arch.walk_mmu, |
| vcpu->arch.access, 0, access)) { |
| *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT | |
| (gva & (PAGE_SIZE - 1)); |
| trace_vcpu_match_mmio(gva, *gpa, write, false); |
| return 1; |
| } |
| |
| *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); |
| |
| if (*gpa == UNMAPPED_GVA) |
| return -1; |
| |
| return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write); |
| } |
| |
| int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa, |
| const void *val, int bytes) |
| { |
| int ret; |
| |
| ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes); |
| if (ret < 0) |
| return 0; |
| kvm_page_track_write(vcpu, gpa, val, bytes); |
| return 1; |
| } |
| |
| struct read_write_emulator_ops { |
| int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val, |
| int bytes); |
| int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa, |
| void *val, int bytes); |
| int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, |
| int bytes, void *val); |
| int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, |
| void *val, int bytes); |
| bool write; |
| }; |
| |
| static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes) |
| { |
| if (vcpu->mmio_read_completed) { |
| trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, |
| vcpu->mmio_fragments[0].gpa, val); |
| vcpu->mmio_read_completed = 0; |
| return 1; |
| } |
| |
| return 0; |
| } |
| |
| static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, |
| void *val, int bytes) |
| { |
| return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes); |
| } |
| |
| static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, |
| void *val, int bytes) |
| { |
| return emulator_write_phys(vcpu, gpa, val, bytes); |
| } |
| |
| static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val) |
| { |
| trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val); |
| return vcpu_mmio_write(vcpu, gpa, bytes, val); |
| } |
| |
| static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, |
| void *val, int bytes) |
| { |
| trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL); |
| return X86EMUL_IO_NEEDED; |
| } |
| |
| static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, |
| void *val, int bytes) |
| { |
| struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0]; |
| |
| memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len)); |
| return X86EMUL_CONTINUE; |
| } |
| |
| static const struct read_write_emulator_ops read_emultor = { |
| .read_write_prepare = read_prepare, |
| .read_write_emulate = read_emulate, |
| .read_write_mmio = vcpu_mmio_read, |
| .read_write_exit_mmio = read_exit_mmio, |
| }; |
| |
| static const struct read_write_emulator_ops write_emultor = { |
| .read_write_emulate = write_emulate, |
| .read_write_mmio = write_mmio, |
| .read_write_exit_mmio = write_exit_mmio, |
| .write = true, |
| }; |
| |
| static int emulator_read_write_onepage(unsigned long addr, void *val, |
| unsigned int bytes, |
| struct x86_exception *exception, |
| struct kvm_vcpu *vcpu, |
| const struct read_write_emulator_ops *ops) |
| { |
| gpa_t gpa; |
| int handled, ret; |
| bool write = ops->write; |
| struct kvm_mmio_fragment *frag; |
| struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; |
| |
| /* |
| * If the exit was due to a NPF we may already have a GPA. |
| * If the GPA is present, use it to avoid the GVA to GPA table walk. |
| * Note, this cannot be used on string operations since string |
| * operation using rep will only have the initial GPA from the NPF |
| * occurred. |
| */ |
| if (vcpu->arch.gpa_available && |
| emulator_can_use_gpa(ctxt) && |
| (addr & ~PAGE_MASK) == (vcpu->arch.gpa_val & ~PAGE_MASK)) { |
| gpa = vcpu->arch.gpa_val; |
| ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write); |
| } else { |
| ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write); |
| if (ret < 0) |
| return X86EMUL_PROPAGATE_FAULT; |
| } |
| |
| if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes)) |
| return X86EMUL_CONTINUE; |
| |
| /* |
| * Is this MMIO handled locally? |
| */ |
| handled = ops->read_write_mmio(vcpu, gpa, bytes, val); |
| if (handled == bytes) |
| return X86EMUL_CONTINUE; |
| |
| gpa += handled; |
| bytes -= handled; |
| val += handled; |
| |
| WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS); |
| frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++]; |
| frag->gpa = gpa; |
| frag->data = val; |
| frag->len = bytes; |
| return X86EMUL_CONTINUE; |
| } |
| |
| static int emulator_read_write(struct x86_emulate_ctxt *ctxt, |
| unsigned long addr, |
| void *val, unsigned int bytes, |
| struct x86_exception *exception, |
| const struct read_write_emulator_ops *ops) |
| { |
| struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); |
| gpa_t gpa; |
| int rc; |
| |
| if (ops->read_write_prepare && |
| ops->read_write_prepare(vcpu, val, bytes)) |
| return X86EMUL_CONTINUE; |
| |
| vcpu->mmio_nr_fragments = 0; |
| |
| /* Crossing a page boundary? */ |
| if (((addr + bytes - 1) ^ addr) & PAGE_MASK) { |
| int now; |
| |
| now = -addr & ~PAGE_MASK; |
| rc = emulator_read_write_onepage(addr, val, now, exception, |
| vcpu, ops); |
| |
| if (rc != X86EMUL_CONTINUE) |
| return rc; |
| addr += now; |
| if (ctxt->mode != X86EMUL_MODE_PROT64) |
| addr = (u32)addr; |
| val += now; |
| bytes -= now; |
| } |
| |
| rc = emulator_read_write_onepage(addr, val, bytes, exception, |
| vcpu, ops); |
| if (rc != X86EMUL_CONTINUE) |
| return rc; |
| |
| if (!vcpu->mmio_nr_fragments) |
| return rc; |
| |
| gpa = vcpu->mmio_fragments[0].gpa; |
| |
| vcpu->mmio_needed = 1; |
| vcpu->mmio_cur_fragment = 0; |
| |
| vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len); |
| vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write; |
| vcpu->run->exit_reason = KVM_EXIT_MMIO; |
| vcpu->run->mmio.phys_addr = gpa; |
| |
| return ops->read_write_exit_mmio(vcpu, gpa, val, bytes); |
| } |
| |
| static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt, |
| unsigned long addr, |
| void *val, |
| unsigned int bytes, |
| struct x86_exception *exception) |
| { |
| return emulator_read_write(ctxt, addr, val, bytes, |
| exception, &read_emultor); |
| } |
| |
| static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt, |
| unsigned long addr, |
| const void *val, |
| unsigned int bytes, |
| struct x86_exception *exception) |
| { |
| return emulator_read_write(ctxt, addr, (void *)val, bytes, |
| exception, &write_emultor); |
| } |
| |
| #define CMPXCHG_TYPE(t, ptr, old, new) \ |
| (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old)) |
| |
| #ifdef CONFIG_X86_64 |
| # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new) |
| #else |
| # define CMPXCHG64(ptr, old, new) \ |
| (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old)) |
| #endif |
| |
| static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt, |
| unsigned long addr, |
| const void *old, |
| const void *new, |
| unsigned int bytes, |
| struct x86_exception *exception) |
| { |
| struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); |
| gpa_t gpa; |
| struct page *page; |
| char *kaddr; |
| bool exchanged; |
| |
| /* guests cmpxchg8b have to be emulated atomically */ |
| if (bytes > 8 || (bytes & (bytes - 1))) |
| goto emul_write; |
| |
| gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL); |
| |
| if (gpa == UNMAPPED_GVA || |
| (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) |
| goto emul_write; |
| |
| if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK)) |
| goto emul_write; |
| |
| page = kvm_vcpu_gfn_to_page(vcpu, gpa >> PAGE_SHIFT); |
| if (is_error_page(page)) |
| goto emul_write; |
| |
| kaddr = kmap_atomic(page); |
| kaddr += offset_in_page(gpa); |
| switch (bytes) { |
| case 1: |
| exchanged = CMPXCHG_TYPE(u8, kaddr, old, new); |
| break; |
| case 2: |
| exchanged = CMPXCHG_TYPE(u16, kaddr, old, new); |
| break; |
| case 4: |
| exchanged = CMPXCHG_TYPE(u32, kaddr, old, new); |
| break; |
| case 8: |
| exchanged = CMPXCHG64(kaddr, old, new); |
| break; |
| default: |
| BUG(); |
| } |
| kunmap_atomic(kaddr); |
| kvm_release_page_dirty(page); |
| |
| if (!exchanged) |
| return X86EMUL_CMPXCHG_FAILED; |
| |
| kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT); |
| kvm_page_track_write(vcpu, gpa, new, bytes); |
| |
| return X86EMUL_CONTINUE; |
| |
| emul_write: |
| printk_once(KERN_WARNING "kvm: emulating exchange as write\n"); |
| |
| return emulator_write_emulated(ctxt, addr, new, bytes, exception); |
| } |
| |
| static int kernel_pio(struct kvm_vcpu *vcpu, void *pd) |
| { |
| int r = 0, i; |
| |
| for (i = 0; i < vcpu->arch.pio.count; i++) { |
| if (vcpu->arch.pio.in) |
| r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port, |
| vcpu->arch.pio.size, pd); |
| else |
| r = kvm_io_bus_write(vcpu, KVM_PIO_BUS, |
| vcpu->arch.pio.port, vcpu->arch.pio.size, |
| pd); |
| if (r) |
| break; |
| pd += vcpu->arch.pio.size; |
| } |
| return r; |
| } |
| |
| static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size, |
| unsigned short port, void *val, |
| unsigned int count, bool in) |
| { |
| vcpu->arch.pio.port = port; |
| vcpu->arch.pio.in = in; |
| vcpu->arch.pio.count = count; |
| vcpu->arch.pio.size = size; |
| |
| if (!kernel_pio(vcpu, vcpu->arch.pio_data)) { |
| vcpu->arch.pio.count = 0; |
| return 1; |
| } |
| |
| vcpu->run->exit_reason = KVM_EXIT_IO; |
| vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT; |
| vcpu->run->io.size = size; |
| vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE; |
| vcpu->run->io.count = count; |
| vcpu->run->io.port = port; |
| |
| return 0; |
| } |
| |
| static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt, |
| int size, unsigned short port, void *val, |
| unsigned int count) |
| { |
| struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); |
| int ret; |
| |
| if (vcpu->arch.pio.count) |
| goto data_avail; |
| |
| memset(vcpu->arch.pio_data, 0, size * count); |
| |
| ret = emulator_pio_in_out(vcpu, size, port, val, count, true); |
| if (ret) { |
| data_avail: |
| memcpy(val, vcpu->arch.pio_data, size * count); |
| trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data); |
| vcpu->arch.pio.count = 0; |
| return 1; |
| } |
| |
| return 0; |
| } |
| |
| static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt, |
| int size, unsigned short port, |
| const void *val, unsigned int count) |
| { |
| struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); |
| |
| memcpy(vcpu->arch.pio_data, val, size * count); |
| trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data); |
| return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false); |
| } |
| |
| static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg) |
| { |
| return kvm_x86_ops->get_segment_base(vcpu, seg); |
| } |
| |
| static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address) |
| { |
| kvm_mmu_invlpg(emul_to_vcpu(ctxt), address); |
| } |
| |
| static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu) |
| { |
| if (!need_emulate_wbinvd(vcpu)) |
| return X86EMUL_CONTINUE; |
| |
| if (kvm_x86_ops->has_wbinvd_exit()) { |
| int cpu = get_cpu(); |
| |
| cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); |
| smp_call_function_many(vcpu->arch.wbinvd_dirty_mask, |
| wbinvd_ipi, NULL, 1); |
| put_cpu(); |
| cpumask_clear(vcpu->arch.wbinvd_dirty_mask); |
| } else |
| wbinvd(); |
| return X86EMUL_CONTINUE; |
| } |
| |
| int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu) |
| { |
| kvm_emulate_wbinvd_noskip(vcpu); |
| return kvm_skip_emulated_instruction(vcpu); |
| } |
| EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd); |
| |
| |
| |
| static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt) |
| { |
| kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt)); |
| } |
| |
| static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, |
| unsigned long *dest) |
| { |
| return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest); |
| } |
| |
| static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, |
| unsigned long value) |
| { |
| |
| return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value); |
| } |
| |
| static u64 mk_cr_64(u64 curr_cr, u32 new_val) |
| { |
| return (curr_cr & ~((1ULL << 32) - 1)) | new_val; |
| } |
| |
| static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr) |
| { |
| struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); |
| unsigned long value; |
| |
| switch (cr) { |
| case 0: |
| value = kvm_read_cr0(vcpu); |
| break; |
| case 2: |
| value = vcpu->arch.cr2; |
| break; |
| case 3: |
| value = kvm_read_cr3(vcpu); |
| break; |
| case 4: |
| value = kvm_read_cr4(vcpu); |
| break; |
| case 8: |
| value = kvm_get_cr8(vcpu); |
| break; |
| default: |
| kvm_err("%s: unexpected cr %u\n", __func__, cr); |
| return 0; |
| } |
| |
| return value; |
| } |
| |
| static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val) |
| { |
| struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); |
| int res = 0; |
| |
| switch (cr) { |
| case 0: |
| res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val)); |
| break; |
| case 2: |
| vcpu->arch.cr2 = val; |
| break; |
| case 3: |
| res = kvm_set_cr3(vcpu, val); |
| break; |
| case 4: |
| res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val)); |
| break; |
| case 8: |
| res = kvm_set_cr8(vcpu, val); |
| break; |
| default: |
| kvm_err("%s: unexpected cr %u\n", __func__, cr); |
| res = -1; |
| } |
| |
| return res; |
| } |
| |
| static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt) |
| { |
| return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt)); |
| } |
| |
| static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) |
| { |
| kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt); |
| } |
| |
| static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) |
| { |
| kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt); |
| } |
| |
| static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) |
| { |
| kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt); |
| } |
| |
| static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) |
| { |
| kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt); |
| } |
| |
| static unsigned long emulator_get_cached_segment_base( |
| struct x86_emulate_ctxt *ctxt, int seg) |
| { |
| return get_segment_base(emul_to_vcpu(ctxt), seg); |
| } |
| |
| static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector, |
| struct desc_struct *desc, u32 *base3, |
| int seg) |
| { |
| struct kvm_segment var; |
| |
| kvm_get_segment(emul_to_vcpu(ctxt), &var, seg); |
| *selector = var.selector; |
| |
| if (var.unusable) { |
| memset(desc, 0, sizeof(*desc)); |
| if (base3) |
| *base3 = 0; |
| return false; |
| } |
| |
| if (var.g) |
| var.limit >>= 12; |
| set_desc_limit(desc, var.limit); |
| set_desc_base(desc, (unsigned long)var.base); |
| #ifdef CONFIG_X86_64 |
| if (base3) |
| *base3 = var.base >> 32; |
| #endif |
| desc->type = var.type; |
| desc->s = var.s; |
| desc->dpl = var.dpl; |
| desc->p = var.present; |
| desc->avl = var.avl; |
| desc->l = var.l; |
| desc->d = var.db; |
| desc->g = var.g; |
| |
| return true; |
| } |
| |
| static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector, |
| struct desc_struct *desc, u32 base3, |
| int seg) |
| { |
| struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); |
| struct kvm_segment var; |
| |
| var.selector = selector; |
| var.base = get_desc_base(desc); |
| #ifdef CONFIG_X86_64 |
| var.base |= ((u64)base3) << 32; |
| #endif |
| var.limit = get_desc_limit(desc); |
| if (desc->g) |
| var.limit = (var.limit << 12) | 0xfff; |
| var.type = desc->type; |
| var.dpl = desc->dpl; |
| var.db = desc->d; |
| var.s = desc->s; |
| var.l = desc->l; |
| var.g = desc->g; |
| var.avl = desc->avl; |
| var.present = desc->p; |
| var.unusable = !var.present; |
| var.padding = 0; |
| |
| kvm_set_segment(vcpu, &var, seg); |
| return; |
| } |
| |
| static int emulator_get_msr(struct x86_emulate_ctxt *ctxt, |
| u32 msr_index, u64 *pdata) |
| { |
| struct msr_data msr; |
| int r; |
| |
| msr.index = msr_index; |
| msr.host_initiated = false; |
| r = kvm_get_msr(emul_to_vcpu(ctxt), &msr); |
| if (r) |
| return r; |
| |
| *pdata = msr.data; |
| return 0; |
| } |
| |
| static int emulator_set_msr(struct x86_emulate_ctxt *ctxt, |
| u32 msr_index, u64 data) |
| { |
| struct msr_data msr; |
| |
| msr.data = data; |
| msr.index = msr_index; |
| msr.host_initiated = false; |
| return kvm_set_msr(emul_to_vcpu(ctxt), &msr); |
| } |
| |
| static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt) |
| { |
| struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); |
| |
| return vcpu->arch.smbase; |
| } |
| |
| static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase) |
| { |
| struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); |
| |
| vcpu->arch.smbase = smbase; |
| } |
| |
| static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt, |
| u32 pmc) |
| { |
| return kvm_pmu_is_valid_msr_idx(emul_to_vcpu(ctxt), pmc); |
| } |
| |
| static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt, |
| u32 pmc, u64 *pdata) |
| { |
| return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata); |
| } |
| |
| static void emulator_halt(struct x86_emulate_ctxt *ctxt) |
| { |
| emul_to_vcpu(ctxt)->arch.halt_request = 1; |
| } |
| |
| static int emulator_intercept(struct x86_emulate_ctxt *ctxt, |
| struct x86_instruction_info *info, |
| enum x86_intercept_stage stage) |
| { |
| return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage); |
| } |
| |
| static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt, |
| u32 *eax, u32 *ebx, u32 *ecx, u32 *edx, bool check_limit) |
| { |
| return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, check_limit); |
| } |
| |
| static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg) |
| { |
| return kvm_register_read(emul_to_vcpu(ctxt), reg); |
| } |
| |
| static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val) |
| { |
| kvm_register_write(emul_to_vcpu(ctxt), reg, val); |
| } |
| |
| static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked) |
| { |
| kvm_x86_ops->set_nmi_mask(emul_to_vcpu(ctxt), masked); |
| } |
| |
| static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt) |
| { |
| return emul_to_vcpu(ctxt)->arch.hflags; |
| } |
| |
| static void emulator_set_hflags(struct x86_emulate_ctxt *ctxt, unsigned emul_flags) |
| { |
| kvm_set_hflags(emul_to_vcpu(ctxt), emul_flags); |
| } |
| |
| static int emulator_pre_leave_smm(struct x86_emulate_ctxt *ctxt, u64 smbase) |
| { |
| return kvm_x86_ops->pre_leave_smm(emul_to_vcpu(ctxt), smbase); |
| } |
| |
| static const struct x86_emulate_ops emulate_ops = { |
| .read_gpr = emulator_read_gpr, |
| .write_gpr = emulator_write_gpr, |
| .read_std = kvm_read_guest_virt_system, |
| .write_std = kvm_write_guest_virt_system, |
| .read_phys = kvm_read_guest_phys_system, |
| .fetch = kvm_fetch_guest_virt, |
| .read_emulated = emulator_read_emulated, |
| .write_emulated = emulator_write_emulated, |
| .cmpxchg_emulated = emulator_cmpxchg_emulated, |
| .invlpg = emulator_invlpg, |
| .pio_in_emulated = emulator_pio_in_emulated, |
| .pio_out_emulated = emulator_pio_out_emulated, |
| .get_segment = emulator_get_segment, |
| .set_segment = emulator_set_segment, |
| .get_cached_segment_base = emulator_get_cached_segment_base, |
| .get_gdt = emulator_get_gdt, |
| .get_idt = emulator_get_idt, |
| .set_gdt = emulator_set_gdt, |
| .set_idt = emulator_set_idt, |
| .get_cr = emulator_get_cr, |
| .set_cr = emulator_set_cr, |
| .cpl = emulator_get_cpl, |
| .get_dr = emulator_get_dr, |
| .set_dr = emulator_set_dr, |
| .get_smbase = emulator_get_smbase, |
| .set_smbase = emulator_set_smbase, |
| .set_msr = emulator_set_msr, |
| .get_msr = emulator_get_msr, |
| .check_pmc = emulator_check_pmc, |
| .read_pmc = emulator_read_pmc, |
| .halt = emulator_halt, |
| .wbinvd = emulator_wbinvd, |
| .fix_hypercall = emulator_fix_hypercall, |
| .intercept = emulator_intercept, |
| .get_cpuid = emulator_get_cpuid, |
| .set_nmi_mask = emulator_set_nmi_mask, |
| .get_hflags = emulator_get_hflags, |
| .set_hflags = emulator_set_hflags, |
| .pre_leave_smm = emulator_pre_leave_smm, |
| }; |
| |
| static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask) |
| { |
| u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu); |
| /* |
| * an sti; sti; sequence only disable interrupts for the first |
| * instruction. So, if the last instruction, be it emulated or |
| * not, left the system with the INT_STI flag enabled, it |
| * means that the last instruction is an sti. We should not |
| * leave the flag on in this case. The same goes for mov ss |
| */ |
| if (int_shadow & mask) |
| mask = 0; |
| if (unlikely(int_shadow || mask)) { |
| kvm_x86_ops->set_interrupt_shadow(vcpu, mask); |
| if (!mask) |
| kvm_make_request(KVM_REQ_EVENT, vcpu); |
| } |
| } |
| |
| static bool inject_emulated_exception(struct kvm_vcpu *vcpu) |
| { |
| struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; |
| if (ctxt->exception.vector == PF_VECTOR) |
| return kvm_propagate_fault(vcpu, &ctxt->exception); |
| |
| if (ctxt->exception.error_code_valid) |
| kvm_queue_exception_e(vcpu, ctxt->exception.vector, |
| ctxt->exception.error_code); |
| else |
| kvm_queue_exception(vcpu, ctxt->exception.vector); |
| return false; |
| } |
| |
| static void init_emulate_ctxt(struct kvm_vcpu *vcpu) |
| { |
| struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; |
| int cs_db, cs_l; |
| |
| kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l); |
| |
| ctxt->eflags = kvm_get_rflags(vcpu); |
| ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0; |
| |
| ctxt->eip = kvm_rip_read(vcpu); |
| ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL : |
| (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 : |
| (cs_l && is_long_mode(vcpu)) ? X86EMUL_MODE_PROT64 : |
| cs_db ? X86EMUL_MODE_PROT32 : |
| X86EMUL_MODE_PROT16; |
| BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK); |
| BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK); |
| BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK); |
| |
| init_decode_cache(ctxt); |
| vcpu->arch.emulate_regs_need_sync_from_vcpu = false; |
| } |
| |
| int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip) |
| { |
| struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; |
| int ret; |
| |
| init_emulate_ctxt(vcpu); |
| |
| ctxt->op_bytes = 2; |
| ctxt->ad_bytes = 2; |
| ctxt->_eip = ctxt->eip + inc_eip; |
| ret = emulate_int_real(ctxt, irq); |
| |
| if (ret != X86EMUL_CONTINUE) |
| return EMULATE_FAIL; |
| |
| ctxt->eip = ctxt->_eip; |
| kvm_rip_write(vcpu, ctxt->eip); |
| kvm_set_rflags(vcpu, ctxt->eflags); |
| |
| if (irq == NMI_VECTOR) |
| vcpu->arch.nmi_pending = 0; |
| else |
| vcpu->arch.interrupt.pending = false; |
| |
| return EMULATE_DONE; |
| } |
| EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt); |
| |
| static int handle_emulation_failure(struct kvm_vcpu *vcpu) |
| { |
| int r = EMULATE_DONE; |
| |
| ++vcpu->stat.insn_emulation_fail; |
| trace_kvm_emulate_insn_failed(vcpu); |
| if (!is_guest_mode(vcpu) && kvm_x86_ops->get_cpl(vcpu) == 0) { |
| vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; |
| vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; |
| vcpu->run->internal.ndata = 0; |
| r = EMULATE_USER_EXIT; |
| } |
| kvm_queue_exception(vcpu, UD_VECTOR); |
| |
| return r; |
| } |
| |
| static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2, |
| bool write_fault_to_shadow_pgtable, |
| int emulation_type) |
| { |
| gpa_t gpa = cr2; |
| kvm_pfn_t pfn; |
| |
| if (emulation_type & EMULTYPE_NO_REEXECUTE) |
| return false; |
| |
| if (!vcpu->arch.mmu.direct_map) { |
| /* |
| * Write permission should be allowed since only |
| * write access need to be emulated. |
| */ |
| gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL); |
| |
| /* |
| * If the mapping is invalid in guest, let cpu retry |
| * it to generate fault. |
| */ |
| if (gpa == UNMAPPED_GVA) |
| return true; |
| } |
| |
| /* |
| * Do not retry the unhandleable instruction if it faults on the |
| * readonly host memory, otherwise it will goto a infinite loop: |
| * retry instruction -> write #PF -> emulation fail -> retry |
| * instruction -> ... |
| */ |
| pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa)); |
| |
| /* |
| * If the instruction failed on the error pfn, it can not be fixed, |
| * report the error to userspace. |
| */ |
| if (is_error_noslot_pfn(pfn)) |
| return false; |
| |
| kvm_release_pfn_clean(pfn); |
| |
| /* The instructions are well-emulated on direct mmu. */ |
| if (vcpu->arch.mmu.direct_map) { |
| unsigned int indirect_shadow_pages; |
| |
| spin_lock(&vcpu->kvm->mmu_lock); |
| indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages; |
| spin_unlock(&vcpu->kvm->mmu_lock); |
| |
| if (indirect_shadow_pages) |
| kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); |
| |
| return true; |
| } |
| |
| /* |
| * if emulation was due to access to shadowed page table |
| * and it failed try to unshadow page and re-enter the |
| * guest to let CPU execute the instruction. |
| */ |
| kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); |
| |
| /* |
| * If the access faults on its page table, it can not |
| * be fixed by unprotecting shadow page and it should |
| * be reported to userspace. |
| */ |
| return !write_fault_to_shadow_pgtable; |
| } |
| |
| static bool retry_instruction(struct x86_emulate_ctxt *ctxt, |
| unsigned long cr2, int emulation_type) |
| { |
| struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); |
| unsigned long last_retry_eip, last_retry_addr, gpa = cr2; |
| |
| last_retry_eip = vcpu->arch.last_retry_eip; |
| last_retry_addr = vcpu->arch.last_retry_addr; |
| |
| /* |
| * If the emulation is caused by #PF and it is non-page_table |
| * writing instruction, it means the VM-EXIT is caused by shadow |
| * page protected, we can zap the shadow page and retry this |
| * instruction directly. |
| * |
| * Note: if the guest uses a non-page-table modifying instruction |
| * on the PDE that points to the instruction, then we will unmap |
| * the instruction and go to an infinite loop. So, we cache the |
| * last retried eip and the last fault address, if we meet the eip |
| * and the address again, we can break out of the potential infinite |
| * loop. |
| */ |
| vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0; |
| |
| if (!(emulation_type & EMULTYPE_RETRY)) |
| return false; |
| |
| if (x86_page_table_writing_insn(ctxt)) |
| return false; |
| |
| if (ctxt->eip == last_retry_eip && last_retry_addr == cr2) |
| return false; |
| |
| vcpu->arch.last_retry_eip = ctxt->eip; |
| vcpu->arch.last_retry_addr = cr2; |
| |
| if (!vcpu->arch.mmu.direct_map) |
| gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL); |
| |
| kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); |
| |
| return true; |
| } |
| |
| static int complete_emulated_mmio(struct kvm_vcpu *vcpu); |
| static int complete_emulated_pio(struct kvm_vcpu *vcpu); |
| |
| static void kvm_smm_changed(struct kvm_vcpu *vcpu) |
| { |
| if (!(vcpu->arch.hflags & HF_SMM_MASK)) { |
| /* This is a good place to trace that we are exiting SMM. */ |
| trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false); |
| |
| /* Process a latched INIT or SMI, if any. */ |
| kvm_make_request(KVM_REQ_EVENT, vcpu); |
| } |
| |
| kvm_mmu_reset_context(vcpu); |
| } |
| |
| static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags) |
| { |
| unsigned changed = vcpu->arch.hflags ^ emul_flags; |
| |
| vcpu->arch.hflags = emul_flags; |
| |
| if (changed & HF_SMM_MASK) |
| kvm_smm_changed(vcpu); |
| } |
| |
| static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7, |
| unsigned long *db) |
| { |
| u32 dr6 = 0; |
| int i; |
| u32 enable, rwlen; |
| |
| enable = dr7; |
| rwlen = dr7 >> 16; |
| for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4) |
| if ((enable & 3) && (rwlen & 15) == type && db[i] == addr) |
| dr6 |= (1 << i); |
| return dr6; |
| } |
| |
| static void kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu, int *r) |
| { |
| struct kvm_run *kvm_run = vcpu->run; |
| |
| if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) { |
| kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 | DR6_RTM; |
| kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip; |
| kvm_run->debug.arch.exception = DB_VECTOR; |
| kvm_run->exit_reason = KVM_EXIT_DEBUG; |
| *r = EMULATE_USER_EXIT; |
| } else { |
| /* |
| * "Certain debug exceptions may clear bit 0-3. The |
| * remaining contents of the DR6 register are never |
| * cleared by the processor". |
| */ |
| vcpu->arch.dr6 &= ~15; |
| vcpu->arch.dr6 |= DR6_BS | DR6_RTM; |
| kvm_queue_exception(vcpu, DB_VECTOR); |
| } |
| } |
| |
| int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu) |
| { |
| unsigned long rflags = kvm_x86_ops->get_rflags(vcpu); |
| int r = EMULATE_DONE; |
| |
| kvm_x86_ops->skip_emulated_instruction(vcpu); |
| |
| /* |
| * rflags is the old, "raw" value of the flags. The new value has |
| * not been saved yet. |
| * |
| * This is correct even for TF set by the guest, because "the |
| * processor will not generate this exception after the instruction |
| * that sets the TF flag". |
| */ |
| if (unlikely(rflags & X86_EFLAGS_TF)) |
| kvm_vcpu_do_singlestep(vcpu, &r); |
| return r == EMULATE_DONE; |
| } |
| EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction); |
| |
| static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r) |
| { |
| if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) && |
| (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) { |
| struct kvm_run *kvm_run = vcpu->run; |
| unsigned long eip = kvm_get_linear_rip(vcpu); |
| u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0, |
| vcpu->arch.guest_debug_dr7, |
| vcpu->arch.eff_db); |
| |
| if (dr6 != 0) { |
| kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM; |
| kvm_run->debug.arch.pc = eip; |
| kvm_run->debug.arch.exception = DB_VECTOR; |
| kvm_run->exit_reason = KVM_EXIT_DEBUG; |
| *r = EMULATE_USER_EXIT; |
| return true; |
| } |
| } |
| |
| if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) && |
| !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) { |
| unsigned long eip = kvm_get_linear_rip(vcpu); |
| u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0, |
| vcpu->arch.dr7, |
| vcpu->arch.db); |
| |
| if (dr6 != 0) { |
| vcpu->arch.dr6 &= ~15; |
| vcpu->arch.dr6 |= dr6 | DR6_RTM; |
| kvm_queue_exception(vcpu, DB_VECTOR); |
| *r = EMULATE_DONE; |
| return true; |
| } |
| } |
| |
| return false; |
| } |
| |
| int x86_emulate_instruction(struct kvm_vcpu *vcpu, |
| unsigned long cr2, |
| int emulation_type, |
| void *insn, |
| int insn_len) |
| { |
| int r; |
| struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; |
| bool writeback = true; |
| bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable; |
| |
| /* |
| * Clear write_fault_to_shadow_pgtable here to ensure it is |
| * never reused. |
| */ |
| vcpu->arch.write_fault_to_shadow_pgtable = false; |
| kvm_clear_exception_queue(vcpu); |
| |
| if (!(emulation_type & EMULTYPE_NO_DECODE)) { |
| init_emulate_ctxt(vcpu); |
| |
| /* |
| * We will reenter on the same instruction since |
| * we do not set complete_userspace_io. This does not |
| * handle watchpoints yet, those would be handled in |
| * the emulate_ops. |
| */ |
| if (!(emulation_type & EMULTYPE_SKIP) && |
| kvm_vcpu_check_breakpoint(vcpu, &r)) |
| return r; |
| |
| ctxt->interruptibility = 0; |
| ctxt->have_exception = false; |
| ctxt->exception.vector = -1; |
| ctxt->perm_ok = false; |
| |
| ctxt->ud = emulation_type & EMULTYPE_TRAP_UD; |
| |
| r = x86_decode_insn(ctxt, insn, insn_len); |
| |
| trace_kvm_emulate_insn_start(vcpu); |
| ++vcpu->stat.insn_emulation; |
| if (r != EMULATION_OK) { |
| if (emulation_type & EMULTYPE_TRAP_UD) |
| return EMULATE_FAIL; |
| if (reexecute_instruction(vcpu, cr2, write_fault_to_spt, |
| emulation_type)) |
| return EMULATE_DONE; |
| if (ctxt->have_exception && inject_emulated_exception(vcpu)) |
| return EMULATE_DONE; |
| if (emulation_type & EMULTYPE_SKIP) |
| return EMULATE_FAIL; |
| return handle_emulation_failure(vcpu); |
| } |
| } |
| |
| if (emulation_type & EMULTYPE_SKIP) { |
| kvm_rip_write(vcpu, ctxt->_eip); |
| if (ctxt->eflags & X86_EFLAGS_RF) |
| kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF); |
| return EMULATE_DONE; |
| } |
| |
| if (retry_instruction(ctxt, cr2, emulation_type)) |
| return EMULATE_DONE; |
| |
| /* this is needed for vmware backdoor interface to work since it |
| changes registers values during IO operation */ |
| if (vcpu->arch.emulate_regs_need_sync_from_vcpu) { |
| vcpu->arch.emulate_regs_need_sync_from_vcpu = false; |
| emulator_invalidate_register_cache(ctxt); |
| } |
| |
| restart: |
| /* Save the faulting GPA (cr2) in the address field */ |
| ctxt->exception.address = cr2; |
| |
| r = x86_emulate_insn(ctxt); |
| |
| if (r == EMULATION_INTERCEPTED) |
| return EMULATE_DONE; |
| |
| if (r == EMULATION_FAILED) { |
| if (reexecute_instruction(vcpu, cr2, write_fault_to_spt, |
| emulation_type)) |
| return EMULATE_DONE; |
| |
| return handle_emulation_failure(vcpu); |
| } |
| |
| if (ctxt->have_exception) { |
| r = EMULATE_DONE; |
| if (inject_emulated_exception(vcpu)) |
| return r; |
| } else if (vcpu->arch.pio.count) { |
| if (!vcpu->arch.pio.in) { |
| /* FIXME: return into emulator if single-stepping. */ |
| vcpu->arch.pio.count = 0; |
| } else { |
| writeback = false; |
| vcpu->arch.complete_userspace_io = complete_emulated_pio; |
| } |
| r = EMULATE_USER_EXIT; |
| } else if (vcpu->mmio_needed) { |
| if (!vcpu->mmio_is_write) |
| writeback = false; |
| r = EMULATE_USER_EXIT; |
| vcpu->arch.complete_userspace_io = complete_emulated_mmio; |
| } else if (r == EMULATION_RESTART) |
| goto restart; |
| else |
| r = EMULATE_DONE; |
| |
| if (writeback) { |
| unsigned long rflags = kvm_x86_ops->get_rflags(vcpu); |
| toggle_interruptibility(vcpu, ctxt->interruptibility); |
| vcpu->arch.emulate_regs_need_sync_to_vcpu = false; |
| kvm_rip_write(vcpu, ctxt->eip); |
| if (r == EMULATE_DONE && |
| (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP))) |
| kvm_vcpu_do_singlestep(vcpu, &r); |
| if (!ctxt->have_exception || |
| exception_type(ctxt->exception.vector) == EXCPT_TRAP) |
| __kvm_set_rflags(vcpu, ctxt->eflags); |
| |
| /* |
| * For STI, interrupts are shadowed; so KVM_REQ_EVENT will |
| * do nothing, and it will be requested again as soon as |
| * the shadow expires. But we still need to check here, |
| * because POPF has no interrupt shadow. |
| */ |
| if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF)) |
| kvm_make_request(KVM_REQ_EVENT, vcpu); |
| } else |
| vcpu->arch.emulate_regs_need_sync_to_vcpu = true; |
| |
| return r; |
| } |
| EXPORT_SYMBOL_GPL(x86_emulate_instruction); |
| |
| int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port) |
| { |
| unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX); |
| int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt, |
| size, port, &val, 1); |
| /* do not return to emulator after return from userspace */ |
| vcpu->arch.pio.count = 0; |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(kvm_fast_pio_out); |
| |
| static int complete_fast_pio_in(struct kvm_vcpu *vcpu) |
| { |
| unsigned long val; |
| |
| /* We should only ever be called with arch.pio.count equal to 1 */ |
| BUG_ON(vcpu->arch.pio.count != 1); |
| |
| /* For size less than 4 we merge, else we zero extend */ |
| val = (vcpu->arch.pio.size < 4) ? kvm_register_read(vcpu, VCPU_REGS_RAX) |
| : 0; |
| |
| /* |
| * Since vcpu->arch.pio.count == 1 let emulator_pio_in_emulated perform |
| * the copy and tracing |
| */ |
| emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, vcpu->arch.pio.size, |
| vcpu->arch.pio.port, &val, 1); |
| kvm_register_write(vcpu, VCPU_REGS_RAX, val); |
| |
| return 1; |
| } |
| |
| int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size, unsigned short port) |
| { |
| unsigned long val; |
| int ret; |
| |
| /* For size less than 4 we merge, else we zero extend */ |
| val = (size < 4) ? kvm_register_read(vcpu, VCPU_REGS_RAX) : 0; |
| |
| ret = emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, size, port, |
| &val, 1); |
| if (ret) { |
| kvm_register_write(vcpu, VCPU_REGS_RAX, val); |
| return ret; |
| } |
| |
| vcpu->arch.complete_userspace_io = complete_fast_pio_in; |
| |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(kvm_fast_pio_in); |
| |
| static int kvmclock_cpu_down_prep(unsigned int cpu) |
| { |
| __this_cpu_write(cpu_tsc_khz, 0); |
| return 0; |
| } |
| |
| static void tsc_khz_changed(void *data) |
| { |
| struct cpufreq_freqs *freq = data; |
| unsigned long khz = 0; |
| |
| if (data) |
| khz = freq->new; |
| else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) |
| khz = cpufreq_quick_get(raw_smp_processor_id()); |
| if (!khz) |
| khz = tsc_khz; |
| __this_cpu_write(cpu_tsc_khz, khz); |
| } |
| |
| #ifdef CONFIG_X86_64 |
| static void kvm_hyperv_tsc_notifier(void) |
| { |
| struct kvm *kvm; |
| struct kvm_vcpu *vcpu; |
| int cpu; |
| |
| spin_lock(&kvm_lock); |
| list_for_each_entry(kvm, &vm_list, vm_list) |
| kvm_make_mclock_inprogress_request(kvm); |
| |
| hyperv_stop_tsc_emulation(); |
| |
| /* TSC frequency always matches when on Hyper-V */ |
| for_each_present_cpu(cpu) |
| per_cpu(cpu_tsc_khz, cpu) = tsc_khz; |
| kvm_max_guest_tsc_khz = tsc_khz; |
| |
| list_for_each_entry(kvm, &vm_list, vm_list) { |
| struct kvm_arch *ka = &kvm->arch; |
| |
| spin_lock(&ka->pvclock_gtod_sync_lock); |
| |
| pvclock_update_vm_gtod_copy(kvm); |
| |
| kvm_for_each_vcpu(cpu, vcpu, kvm) |
| kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); |
| |
| kvm_for_each_vcpu(cpu, vcpu, kvm) |
| kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu); |
| |
| spin_unlock(&ka->pvclock_gtod_sync_lock); |
| } |
| spin_unlock(&kvm_lock); |
| } |
| #endif |
| |
| static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val, |
| void *data) |
| { |
| struct cpufreq_freqs *freq = data; |
| struct kvm *kvm; |
| struct kvm_vcpu *vcpu; |
| int i, send_ipi = 0; |
| |
| /* |
| * We allow guests to temporarily run on slowing clocks, |
| * provided we notify them after, or to run on accelerating |
| * clocks, provided we notify them before. Thus time never |
| * goes backwards. |
| * |
| * However, we have a problem. We can't atomically update |
| * the frequency of a given CPU from this function; it is |
| * merely a notifier, which can be called from any CPU. |
| * Changing the TSC frequency at arbitrary points in time |
| * requires a recomputation of local variables related to |
| * the TSC for each VCPU. We must flag these local variables |
| * to be updated and be sure the update takes place with the |
| * new frequency before any guests proceed. |
| * |
| * Unfortunately, the combination of hotplug CPU and frequency |
| * change creates an intractable locking scenario; the order |
| * of when these callouts happen is undefined with respect to |
| * CPU hotplug, and they can race with each other. As such, |
| * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is |
| * undefined; you can actually have a CPU frequency change take |
| * place in between the computation of X and the setting of the |
| * variable. To protect against this problem, all updates of |
| * the per_cpu tsc_khz variable are done in an interrupt |
| * protected IPI, and all callers wishing to update the value |
| * must wait for a synchronous IPI to complete (which is trivial |
| * if the caller is on the CPU already). This establishes the |
| * necessary total order on variable updates. |
| * |
| * Note that because a guest time update may take place |
| * anytime after the setting of the VCPU's request bit, the |
| * correct TSC value must be set before the request. However, |
| * to ensure the update actually makes it to any guest which |
| * starts running in hardware virtualization between the set |
| * and the acquisition of the spinlock, we must also ping the |
| * CPU after setting the request bit. |
| * |
| */ |
| |
| if (val == CPUFREQ_PRECHANGE && freq->old > freq->new) |
| return 0; |
| if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new) |
| return 0; |
| |
| smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1); |
| |
| spin_lock(&kvm_lock); |
| list_for_each_entry(kvm, &vm_list, vm_list) { |
| kvm_for_each_vcpu(i, vcpu, kvm) { |
| if (vcpu->cpu != freq->cpu) |
| continue; |
| kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); |
| if (vcpu->cpu != smp_processor_id()) |
| send_ipi = 1; |
| } |
| } |
| spin_unlock(&kvm_lock); |
| |
| if (freq->old < freq->new && send_ipi) { |
| /* |
| * We upscale the frequency. Must make the guest |
| * doesn't see old kvmclock values while running with |
| * the new frequency, otherwise we risk the guest sees |
| * time go backwards. |
| * |
| * In case we update the frequency for another cpu |
| * (which might be in guest context) send an interrupt |
| * to kick the cpu out of guest context. Next time |
| * guest context is entered kvmclock will be updated, |
| * so the guest will not see stale values. |
| */ |
| smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1); |
| } |
| return 0; |
| } |
| |
| static struct notifier_block kvmclock_cpufreq_notifier_block = { |
| .notifier_call = kvmclock_cpufreq_notifier |
| }; |
| |
| static int kvmclock_cpu_online(unsigned int cpu) |
| { |
| tsc_khz_changed(NULL); |
| return 0; |
| } |
| |
| static void kvm_timer_init(void) |
| { |
| max_tsc_khz = tsc_khz; |
| |
| if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { |
| #ifdef CONFIG_CPU_FREQ |
| struct cpufreq_policy policy; |
| int cpu; |
| |
| memset(&policy, 0, sizeof(policy)); |
| cpu = get_cpu(); |
| cpufreq_get_policy(&policy, cpu); |
| if (policy.cpuinfo.max_freq) |
| max_tsc_khz = policy.cpuinfo.max_freq; |
| put_cpu(); |
| #endif |
| cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block, |
| CPUFREQ_TRANSITION_NOTIFIER); |
| } |
| pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz); |
| |
| cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online", |
| kvmclock_cpu_online, kvmclock_cpu_down_prep); |
| } |
| |
| static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu); |
| |
| int kvm_is_in_guest(void) |
| { |
| return __this_cpu_read(current_vcpu) != NULL; |
| } |
| |
| static int kvm_is_user_mode(void) |
| { |
| int user_mode = 3; |
| |
| if (__this_cpu_read(current_vcpu)) |
| user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu)); |
| |
| return user_mode != 0; |
| } |
| |
| static unsigned long kvm_get_guest_ip(void) |
| { |
| unsigned long ip = 0; |
| |
| if (__this_cpu_read(current_vcpu)) |
| ip = kvm_rip_read(__this_cpu_read(current_vcpu)); |
| |
| return ip; |
| } |
| |
| static struct perf_guest_info_callbacks kvm_guest_cbs = { |
| .is_in_guest = kvm_is_in_guest, |
| .is_user_mode = kvm_is_user_mode, |
| .get_guest_ip = kvm_get_guest_ip, |
| }; |
| |
| void kvm_before_handle_nmi(struct kvm_vcpu *vcpu) |
| { |
| __this_cpu_write(current_vcpu, vcpu); |
| } |
| EXPORT_SYMBOL_GPL(kvm_before_handle_nmi); |
| |
| void kvm_after_handle_nmi(struct kvm_vcpu *vcpu) |
| { |
| __this_cpu_write(current_vcpu, NULL); |
| } |
| EXPORT_SYMBOL_GPL(kvm_after_handle_nmi); |
| |
| static void kvm_set_mmio_spte_mask(void) |
| { |
| u64 mask; |
| int maxphyaddr = boot_cpu_data.x86_phys_bits; |
| |
| /* |
| * Set the reserved bits and the present bit of an paging-structure |
| * entry to generate page fault with PFER.RSV = 1. |
| */ |
| /* Mask the reserved physical address bits. */ |
| mask = rsvd_bits(maxphyaddr, 51); |
| |
| /* Set the present bit. */ |
| mask |= 1ull; |
| |
| #ifdef CONFIG_X86_64 |
| /* |
| * If reserved bit is not supported, clear the present bit to disable |
| * mmio page fault. |
| */ |
| if (maxphyaddr == 52) |
| mask &= ~1ull; |
| #endif |
| |
| kvm_mmu_set_mmio_spte_mask(mask, mask); |
| } |
| |
| #ifdef CONFIG_X86_64 |
| static void pvclock_gtod_update_fn(struct work_struct *work) |
| { |
| struct kvm *kvm; |
| |
| struct kvm_vcpu *vcpu; |
| int i; |
| |
| spin_lock(&kvm_lock); |
| list_for_each_entry(kvm, &vm_list, vm_list) |
| kvm_for_each_vcpu(i, vcpu, kvm) |
| kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); |
| atomic_set(&kvm_guest_has_master_clock, 0); |
| spin_unlock(&kvm_lock); |
| } |
| |
| static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn); |
| |
| /* |
| * Notification about pvclock gtod data update. |
| */ |
| static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused, |
| void *priv) |
| { |
| struct pvclock_gtod_data *gtod = &pvclock_gtod_data; |
| struct timekeeper *tk = priv; |
| |
| update_pvclock_gtod(tk); |
| |
| /* disable master clock if host does not trust, or does not |
| * use, TSC based clocksource. |
| */ |
| if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) && |
| atomic_read(&kvm_guest_has_master_clock) != 0) |
| queue_work(system_long_wq, &pvclock_gtod_work); |
| |
| return 0; |
| } |
| |
| static struct notifier_block pvclock_gtod_notifier = { |
| .notifier_call = pvclock_gtod_notify, |
| }; |
| #endif |
| |
| int kvm_arch_init(void *opaque) |
| { |
| int r; |
| struct kvm_x86_ops *ops = opaque; |
| |
| if (kvm_x86_ops) { |
| printk(KERN_ERR "kvm: already loaded the other module\n"); |
| r = -EEXIST; |
| goto out; |
| } |
| |
| if (!ops->cpu_has_kvm_support()) { |
| printk(KERN_ERR "kvm: no hardware support\n"); |
| r = -EOPNOTSUPP; |
| goto out; |
| } |
| if (ops->disabled_by_bios()) { |
| printk(KERN_ERR "kvm: disabled by bios\n"); |
| r = -EOPNOTSUPP; |
| goto out; |
| } |
| |
| r = -ENOMEM; |
| shared_msrs = alloc_percpu(struct kvm_shared_msrs); |
| if (!shared_msrs) { |
| printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n"); |
| goto out; |
| } |
| |
| r = kvm_mmu_module_init(); |
| if (r) |
| goto out_free_percpu; |
| |
| kvm_set_mmio_spte_mask(); |
| |
| kvm_x86_ops = ops; |
| |
| kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK, |
| PT_DIRTY_MASK, PT64_NX_MASK, 0, |
| PT_PRESENT_MASK, 0, sme_me_mask); |
| kvm_timer_init(); |
| |
| perf_register_guest_info_callbacks(&kvm_guest_cbs); |
| |
| if (boot_cpu_has(X86_FEATURE_XSAVE)) |
| host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK); |
| |
| kvm_lapic_init(); |
| #ifdef CONFIG_X86_64 |
| pvclock_gtod_register_notifier(&pvclock_gtod_notifier); |
| |
| if (hypervisor_is_type(X86_HYPER_MS_HYPERV)) |
| set_hv_tscchange_cb(kvm_hyperv_tsc_notifier); |
| #endif |
| |
| return 0; |
| |
| out_free_percpu: |
| free_percpu(shared_msrs); |
| out: |
| return r; |
| } |
| |
| void kvm_arch_exit(void) |
| { |
| #ifdef CONFIG_X86_64 |
| if (hypervisor_is_type(X86_HYPER_MS_HYPERV)) |
| clear_hv_tscchange_cb(); |
| #endif |
| kvm_lapic_exit(); |
| perf_unregister_guest_info_callbacks(&kvm_guest_cbs); |
| |
| if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) |
| cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block, |
| CPUFREQ_TRANSITION_NOTIFIER); |
| cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE); |
| #ifdef CONFIG_X86_64 |
| pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier); |
| #endif |
| kvm_x86_ops = NULL; |
| kvm_mmu_module_exit(); |
| free_percpu(shared_msrs); |
| } |
| |
| int kvm_vcpu_halt(struct kvm_vcpu *vcpu) |
| { |
| ++vcpu->stat.halt_exits; |
| if (lapic_in_kernel(vcpu)) { |
| vcpu->arch.mp_state = KVM_MP_STATE_HALTED; |
| return 1; |
| } else { |
| vcpu->run->exit_reason = KVM_EXIT_HLT; |
| return 0; |
| } |
| } |
| EXPORT_SYMBOL_GPL(kvm_vcpu_halt); |
| |
| int kvm_emulate_halt(struct kvm_vcpu *vcpu) |
| { |
| int ret = kvm_skip_emulated_instruction(vcpu); |
| /* |
| * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered |
| * KVM_EXIT_DEBUG here. |
| */ |
| return kvm_vcpu_halt(vcpu) && ret; |
| } |
| EXPORT_SYMBOL_GPL(kvm_emulate_halt); |
| |
| #ifdef CONFIG_X86_64 |
| static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr, |
| unsigned long clock_type) |
| { |
| struct kvm_clock_pairing clock_pairing; |
| struct timespec ts; |
| u64 cycle; |
| int ret; |
| |
| if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK) |
| return -KVM_EOPNOTSUPP; |
| |
| if (kvm_get_walltime_and_clockread(&ts, &cycle) == false) |
| return -KVM_EOPNOTSUPP; |
| |
| clock_pairing.sec = ts.tv_sec; |
| clock_pairing.nsec = ts.tv_nsec; |
| clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle); |
| clock_pairing.flags = 0; |
| |
| ret = 0; |
| if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing, |
| sizeof(struct kvm_clock_pairing))) |
| ret = -KVM_EFAULT; |
| |
| return ret; |
| } |
| #endif |
| |
| /* |
| * kvm_pv_kick_cpu_op: Kick a vcpu. |
| * |
| * @apicid - apicid of vcpu to be kicked. |
| */ |
| static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid) |
| { |
| struct kvm_lapic_irq lapic_irq; |
| |
| lapic_irq.shorthand = 0; |
| lapic_irq.dest_mode = 0; |
| lapic_irq.level = 0; |
| lapic_irq.dest_id = apicid; |
| lapic_irq.msi_redir_hint = false; |
| |
| lapic_irq.delivery_mode = APIC_DM_REMRD; |
| kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL); |
| } |
| |
| void kvm_vcpu_deactivate_apicv(struct kvm_vcpu *vcpu) |
| { |
| vcpu->arch.apicv_active = false; |
| kvm_x86_ops->refresh_apicv_exec_ctrl(vcpu); |
| } |
| |
| int kvm_emulate_hypercall(struct kvm_vcpu *vcpu) |
| { |
| unsigned long nr, a0, a1, a2, a3, ret; |
| int op_64_bit, r; |
| |
| r = kvm_skip_emulated_instruction(vcpu); |
| |
| if (kvm_hv_hypercall_enabled(vcpu->kvm)) |
| return kvm_hv_hypercall(vcpu); |
| |
| nr = kvm_register_read(vcpu, VCPU_REGS_RAX); |
| a0 = kvm_register_read(vcpu, VCPU_REGS_RBX); |
| a1 = kvm_register_read(vcpu, VCPU_REGS_RCX); |
| a2 = kvm_register_read(vcpu, VCPU_REGS_RDX); |
| a3 = kvm_register_read(vcpu, VCPU_REGS_RSI); |
| |
| trace_kvm_hypercall(nr, a0, a1, a2, a3); |
| |
| op_64_bit = is_64_bit_mode(vcpu); |
| if (!op_64_bit) { |
| nr &= 0xFFFFFFFF; |
| a0 &= 0xFFFFFFFF; |
| a1 &= 0xFFFFFFFF; |
| a2 &= 0xFFFFFFFF; |
| a3 &= 0xFFFFFFFF; |
| } |
| |
| if (kvm_x86_ops->get_cpl(vcpu) != 0) { |
| ret = -KVM_EPERM; |
| goto out; |
| } |
| |
| switch (nr) { |
| case KVM_HC_VAPIC_POLL_IRQ: |
| ret = 0; |
| break; |
| case KVM_HC_KICK_CPU: |
| kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1); |
| ret = 0; |
| break; |
| #ifdef CONFIG_X86_64 |
| case KVM_HC_CLOCK_PAIRING: |
| ret = kvm_pv_clock_pairing(vcpu, a0, a1); |
| break; |
| #endif |
| default: |
| ret = -KVM_ENOSYS; |
| break; |
| } |
| out: |
| if (!op_64_bit) |
| ret = (u32)ret; |
| kvm_register_write(vcpu, VCPU_REGS_RAX, ret); |
| ++vcpu->stat.hypercalls; |
| return r; |
| } |
| EXPORT_SYMBOL_GPL(kvm_emulate_hypercall); |
| |
| static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt) |
| { |
| struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); |
| char instruction[3]; |
| unsigned long rip = kvm_rip_read(vcpu); |
| |
| kvm_x86_ops->patch_hypercall(vcpu, instruction); |
| |
| return emulator_write_emulated(ctxt, rip, instruction, 3, |
| &ctxt->exception); |
| } |
| |
| static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu) |
| { |
| return vcpu->run->request_interrupt_window && |
| likely(!pic_in_kernel(vcpu->kvm)); |
| } |
| |
| static void post_kvm_run_save(struct kvm_vcpu *vcpu) |
| { |
| struct kvm_run *kvm_run = vcpu->run; |
| |
| kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0; |
| kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0; |
| kvm_run->cr8 = kvm_get_cr8(vcpu); |
| kvm_run->apic_base = kvm_get_apic_base(vcpu); |
| kvm_run->ready_for_interrupt_injection = |
| pic_in_kernel(vcpu->kvm) || |
| kvm_vcpu_ready_for_interrupt_injection(vcpu); |
| } |
| |
| static void update_cr8_intercept(struct kvm_vcpu *vcpu) |
| { |
| int max_irr, tpr; |
| |
| if (!kvm_x86_ops->update_cr8_intercept) |
| return; |
| |
| if (!lapic_in_kernel(vcpu)) |
| return; |
| |
| if (vcpu->arch.apicv_active) |
| return; |
| |
| if (!vcpu->arch.apic->vapic_addr) |
| max_irr = kvm_lapic_find_highest_irr(vcpu); |
| else |
| max_irr = -1; |
| |
| if (max_irr != -1) |
| max_irr >>= 4; |
| |
| tpr = kvm_lapic_get_cr8(vcpu); |
| |
| kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr); |
| } |
| |
| static int inject_pending_event(struct kvm_vcpu *vcpu, bool req_int_win) |
| { |
| int r; |
| |
| /* try to reinject previous events if any */ |
| if (vcpu->arch.exception.injected) { |
| kvm_x86_ops->queue_exception(vcpu); |
| return 0; |
| } |
| |
| /* |
| * Exceptions must be injected immediately, or the exception |
| * frame will have the address of the NMI or interrupt handler. |
| */ |
| if (!vcpu->arch.exception.pending) { |
| if (vcpu->arch.nmi_injected) { |
| kvm_x86_ops->set_nmi(vcpu); |
| return 0; |
| } |
| |
| if (vcpu->arch.interrupt.pending) { |
| kvm_x86_ops->set_irq(vcpu); |
| return 0; |
| } |
| } |
| |
| if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) { |
| r = kvm_x86_ops->check_nested_events(vcpu, req_int_win); |
| if (r != 0) |
| return r; |
| } |
| |
| /* try to inject new event if pending */ |
| if (vcpu->arch.exception.pending) { |
| trace_kvm_inj_exception(vcpu->arch.exception.nr, |
| vcpu->arch.exception.has_error_code, |
| vcpu->arch.exception.error_code); |
| |
| vcpu->arch.exception.pending = false; |
| vcpu->arch.exception.injected = true; |
| |
| if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT) |
| __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) | |
| X86_EFLAGS_RF); |
| |
| if (vcpu->arch.exception.nr == DB_VECTOR && |
| (vcpu->arch.dr7 & DR7_GD)) { |
| vcpu->arch.dr7 &= ~DR7_GD; |
| kvm_update_dr7(vcpu); |
| } |
| |
| kvm_x86_ops->queue_exception(vcpu); |
| } else if (vcpu->arch.smi_pending && !is_smm(vcpu) && kvm_x86_ops->smi_allowed(vcpu)) { |
| vcpu->arch.smi_pending = false; |
| ++vcpu->arch.smi_count; |
| enter_smm(vcpu); |
| } else if (vcpu->arch.nmi_pending && kvm_x86_ops->nmi_allowed(vcpu)) { |
| --vcpu->arch.nmi_pending; |
| vcpu->arch.nmi_injected = true; |
| kvm_x86_ops->set_nmi(vcpu); |
| } else if (kvm_cpu_has_injectable_intr(vcpu)) { |
| /* |
| * Because interrupts can be injected asynchronously, we are |
| * calling check_nested_events again here to avoid a race condition. |
| * See https://lkml.org/lkml/2014/7/2/60 for discussion about this |
| * proposal and current concerns. Perhaps we should be setting |
| * KVM_REQ_EVENT only on certain events and not unconditionally? |
| */ |
| if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) { |
| r = kvm_x86_ops->check_nested_events(vcpu, req_int_win); |
| if (r != 0) |
| return r; |
| } |
| if (kvm_x86_ops->interrupt_allowed(vcpu)) { |
| kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu), |
| false); |
| kvm_x86_ops->set_irq(vcpu); |
| } |
| } |
| |
| return 0; |
| } |
| |
| static void process_nmi(struct kvm_vcpu *vcpu) |
| { |
| unsigned limit = 2; |
| |
| /* |
| * x86 is limited to one NMI running, and one NMI pending after it. |
| * If an NMI is already in progress, limit further NMIs to just one. |
| * Otherwise, allow two (and we'll inject the first one immediately). |
| */ |
| if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected) |
| limit = 1; |
| |
| vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0); |
| vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit); |
| kvm_make_request(KVM_REQ_EVENT, vcpu); |
| } |
| |
| static u32 enter_smm_get_segment_flags(struct kvm_segment *seg) |
| { |
| u32 flags = 0; |
| flags |= seg->g << 23; |
| flags |= seg->db << 22; |
| flags |= seg->l << 21; |
| flags |= seg->avl << 20; |
| flags |= seg->present << 15; |
| flags |= seg->dpl << 13; |
| flags |= seg->s << 12; |
| flags |= seg->type << 8; |
| return flags; |
| } |
| |
| static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n) |
| { |
| struct kvm_segment seg; |
| int offset; |
| |
| kvm_get_segment(vcpu, &seg, n); |
| put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector); |
| |
| if (n < 3) |
| offset = 0x7f84 + n * 12; |
| else |
| offset = 0x7f2c + (n - 3) * 12; |
| |
| put_smstate(u32, buf, offset + 8, seg.base); |
| put_smstate(u32, buf, offset + 4, seg.limit); |
| put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg)); |
| } |
| |
| #ifdef CONFIG_X86_64 |
| static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n) |
| { |
| struct kvm_segment seg; |
| int offset; |
| u16 flags; |
| |
| kvm_get_segment(vcpu, &seg, n); |
| offset = 0x7e00 + n * 16; |
| |
| flags = enter_smm_get_segment_flags(&seg) >> 8; |
| put_smstate(u16, buf, offset, seg.selector); |
| put_smstate(u16, buf, offset + 2, flags); |
| put_smstate(u32, buf, offset + 4, seg.limit); |
| put_smstate(u64, buf, offset + 8, seg.base); |
| } |
| #endif |
| |
| static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf) |
| { |
| struct desc_ptr dt; |
| struct kvm_segment seg; |
| unsigned long val; |
| int i; |
| |
| put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu)); |
| put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu)); |
| put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu)); |
| put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu)); |
| |
| for (i = 0; i < 8; i++) |
| put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i)); |
| |
| kvm_get_dr(vcpu, 6, &val); |
| put_smstate(u32, buf, 0x7fcc, (u32)val); |
| kvm_get_dr(vcpu, 7, &val); |
| put_smstate(u32, buf, 0x7fc8, (u32)val); |
| |
| kvm_get_segment(vcpu, &seg, VCPU_SREG_TR); |
| put_smstate(u32, buf, 0x7fc4, seg.selector); |
| put_smstate(u32, buf, 0x7f64, seg.base); |
| put_smstate(u32, buf, 0x7f60, seg.limit); |
| put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg)); |
| |
| kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR); |
| put_smstate(u32, buf, 0x7fc0, seg.selector); |
| put_smstate(u32, buf, 0x7f80, seg.base); |
| put_smstate(u32, buf, 0x7f7c, seg.limit); |
| put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg)); |
| |
| kvm_x86_ops->get_gdt(vcpu, &dt); |
| put_smstate(u32, buf, 0x7f74, dt.address); |
| put_smstate(u32, buf, 0x7f70, dt.size); |
| |
| kvm_x86_ops->get_idt(vcpu, &dt); |
| put_smstate(u32, buf, 0x7f58, dt.address); |
| put_smstate(u32, buf, 0x7f54, dt.size); |
| |
| for (i = 0; i < 6; i++) |
| enter_smm_save_seg_32(vcpu, buf, i); |
| |
| put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu)); |
| |
| /* revision id */ |
| put_smstate(u32, buf, 0x7efc, 0x00020000); |
| put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase); |
| } |
| |
| static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf) |
| { |
| #ifdef CONFIG_X86_64 |
| struct desc_ptr dt; |
| struct kvm_segment seg; |
| unsigned long val; |
| int i; |
| |
| for (i = 0; i < 16; i++) |
| put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i)); |
| |
| put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu)); |
| put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu)); |
| |
| kvm_get_dr(vcpu, 6, &val); |
| put_smstate(u64, buf, 0x7f68, val); |
| kvm_get_dr(vcpu, 7, &val); |
| put_smstate(u64, buf, 0x7f60, val); |
| |
| put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu)); |
| put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu)); |
| put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu)); |
| |
| put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase); |
| |
| /* revision id */ |
| put_smstate(u32, buf, 0x7efc, 0x00020064); |
| |
| put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer); |
| |
| kvm_get_segment(vcpu, &seg, VCPU_SREG_TR); |
| put_smstate(u16, buf, 0x7e90, seg.selector); |
| put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8); |
| put_smstate(u32, buf, 0x7e94, seg.limit); |
| put_smstate(u64, buf, 0x7e98, seg.base); |
| |
| kvm_x86_ops->get_idt(vcpu, &dt); |
| put_smstate(u32, buf, 0x7e84, dt.size); |
| put_smstate(u64, buf, 0x7e88, dt.address); |
| |
| kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR); |
| put_smstate(u16, buf, 0x7e70, seg.selector); |
| put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8); |
| put_smstate(u32, buf, 0x7e74, seg.limit); |
| put_smstate(u64, buf, 0x7e78, seg.base); |
| |
| kvm_x86_ops->get_gdt(vcpu, &dt); |
| put_smstate(u32, buf, 0x7e64, dt.size); |
| put_smstate(u64, buf, 0x7e68, dt.address); |
| |
| for (i = 0; i < 6; i++) |
| enter_smm_save_seg_64(vcpu, buf, i); |
| #else |
| WARN_ON_ONCE(1); |
| #endif |
| } |
| |
| static void enter_smm(struct kvm_vcpu *vcpu) |
| { |
| struct kvm_segment cs, ds; |
| struct desc_ptr dt; |
| char buf[512]; |
| u32 cr0; |
| |
| trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true); |
| memset(buf, 0, 512); |
| if (guest_cpuid_has(vcpu, X86_FEATURE_LM)) |
| enter_smm_save_state_64(vcpu, buf); |
| else |
| enter_smm_save_state_32(vcpu, buf); |
| |
| /* |
| * Give pre_enter_smm() a chance to make ISA-specific changes to the |
| * vCPU state (e.g. leave guest mode) after we've saved the state into |
| * the SMM state-save area. |
| */ |
| kvm_x86_ops->pre_enter_smm(vcpu, buf); |
| |
| vcpu->arch.hflags |= HF_SMM_MASK; |
| kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf)); |
| |
| if (kvm_x86_ops->get_nmi_mask(vcpu)) |
| vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK; |
| else |
| kvm_x86_ops->set_nmi_mask(vcpu, true); |
| |
| kvm_set_rflags(vcpu, X86_EFLAGS_FIXED); |
| kvm_rip_write(vcpu, 0x8000); |
| |
| cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG); |
| kvm_x86_ops->set_cr0(vcpu, cr0); |
| vcpu->arch.cr0 = cr0; |
| |
| kvm_x86_ops->set_cr4(vcpu, 0); |
| |
| /* Undocumented: IDT limit is set to zero on entry to SMM. */ |
| dt.address = dt.size = 0; |
| kvm_x86_ops->set_idt(vcpu, &dt); |
| |
| __kvm_set_dr(vcpu, 7, DR7_FIXED_1); |
| |
| cs.selector = (vcpu->arch.smbase >> 4) & 0xffff; |
| cs.base = vcpu->arch.smbase; |
| |
| ds.selector = 0; |
| ds.base = 0; |
| |
| cs.limit = ds.limit = 0xffffffff; |
| cs.type = ds.type = 0x3; |
| cs.dpl = ds.dpl = 0; |
| cs.db = ds.db = 0; |
| cs.s = ds.s = 1; |
| cs.l = ds.l = 0; |
| cs.g = ds.g = 1; |
| cs.avl = ds.avl = 0; |
| cs.present = ds.present = 1; |
| cs.unusable = ds.unusable = 0; |
| cs.padding = ds.padding = 0; |
| |
| kvm_set_segment(vcpu, &cs, VCPU_SREG_CS); |
| kvm_set_segment(vcpu, &ds, VCPU_SREG_DS); |
| kvm_set_segment(vcpu, &ds, VCPU_SREG_ES); |
| kvm_set_segment(vcpu, &ds, VCPU_SREG_FS); |
| kvm_set_segment(vcpu, &ds, VCPU_SREG_GS); |
| kvm_set_segment(vcpu, &ds, VCPU_SREG_SS); |
| |
| if (guest_cpuid_has(vcpu, X86_FEATURE_LM)) |
| kvm_x86_ops->set_efer(vcpu, 0); |
| |
| kvm_update_cpuid(vcpu); |
| kvm_mmu_reset_context(vcpu); |
| } |
| |
| static void process_smi(struct kvm_vcpu *vcpu) |
| { |
| vcpu->arch.smi_pending = true; |
| kvm_make_request(KVM_REQ_EVENT, vcpu); |
| } |
| |
| void kvm_make_scan_ioapic_request(struct kvm *kvm) |
| { |
| kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC); |
| } |
| |
| static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu) |
| { |
| u64 eoi_exit_bitmap[4]; |
| |
| if (!kvm_apic_hw_enabled(vcpu->arch.apic)) |
| return; |
| |
| bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256); |
| |
| if (irqchip_split(vcpu->kvm)) |
| kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors); |
| else { |
| if (vcpu->arch.apicv_active) |
| kvm_x86_ops->sync_pir_to_irr(vcpu); |
| kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors); |
| } |
| bitmap_or((ulong *)eoi_exit_bitmap, vcpu->arch.ioapic_handled_vectors, |
| vcpu_to_synic(vcpu)->vec_bitmap, 256); |
| kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap); |
| } |
| |
| void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm, |
| unsigned long start, unsigned long end) |
| { |
| unsigned long apic_address; |
| |
| /* |
| * The physical address of apic access page is stored in the VMCS. |
| * Update it when it becomes invalid. |
| */ |
| apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT); |
| if (start <= apic_address && apic_address < end) |
| kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD); |
| } |
| |
| void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu) |
| { |
| struct page *page = NULL; |
| |
| if (!lapic_in_kernel(vcpu)) |
| return; |
| |
| if (!kvm_x86_ops->set_apic_access_page_addr) |
| return; |
| |
| page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT); |
| if (is_error_page(page)) |
| return; |
| kvm_x86_ops->set_apic_access_page_addr(vcpu, page_to_phys(page)); |
| |
| /* |
| * Do not pin apic access page in memory, the MMU notifier |
| * will call us again if it is migrated or swapped out. |
| */ |
| put_page(page); |
| } |
| EXPORT_SYMBOL_GPL(kvm_vcpu_reload_apic_access_page); |
| |
| /* |
| * Returns 1 to let vcpu_run() continue the guest execution loop without |
| * exiting to the userspace. Otherwise, the value will be returned to the |
| * userspace. |
| */ |
| static int vcpu_enter_guest(struct kvm_vcpu *vcpu) |
| { |
| int r; |
| bool req_int_win = |
| dm_request_for_irq_injection(vcpu) && |
| kvm_cpu_accept_dm_intr(vcpu); |
| |
| bool req_immediate_exit = false; |
| |
| if (kvm_request_pending(vcpu)) { |
| if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu)) |
| kvm_mmu_unload(vcpu); |
| if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu)) |
| __kvm_migrate_timers(vcpu); |
| if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu)) |
| kvm_gen_update_masterclock(vcpu->kvm); |
| if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu)) |
| kvm_gen_kvmclock_update(vcpu); |
| if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) { |
| r = kvm_guest_time_update(vcpu); |
| if (unlikely(r)) |
| goto out; |
| } |
| if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu)) |
| kvm_mmu_sync_roots(vcpu); |
| if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) |
| kvm_vcpu_flush_tlb(vcpu, true); |
| if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) { |
| vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS; |
| r = 0; |
| goto out; |
| } |
| if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) { |
| vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN; |
| vcpu->mmio_needed = 0; |
| r = 0; |
| goto out; |
| } |
| if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) { |
| /* Page is swapped out. Do synthetic halt */ |
| vcpu->arch.apf.halted = true; |
| r = 1; |
| goto out; |
| } |
| if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu)) |
| record_steal_time(vcpu); |
| if (kvm_check_request(KVM_REQ_SMI, vcpu)) |
| process_smi(vcpu); |
| if (kvm_check_request(KVM_REQ_NMI, vcpu)) |
| process_nmi(vcpu); |
| if (kvm_check_request(KVM_REQ_PMU, vcpu)) |
| kvm_pmu_handle_event(vcpu); |
| if (kvm_check_request(KVM_REQ_PMI, vcpu)) |
| kvm_pmu_deliver_pmi(vcpu); |
| if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) { |
| BUG_ON(vcpu->arch.pending_ioapic_eoi > 255); |
| if (test_bit(vcpu->arch.pending_ioapic_eoi, |
| vcpu->arch.ioapic_handled_vectors)) { |
| vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI; |
| vcpu->run->eoi.vector = |
| vcpu->arch.pending_ioapic_eoi; |
| r = 0; |
| goto out; |
| } |
| } |
| if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu)) |
| vcpu_scan_ioapic(vcpu); |
| if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu)) |
| kvm_vcpu_reload_apic_access_page(vcpu); |
| if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) { |
| vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; |
| vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH; |
| r = 0; |
| goto out; |
| } |
| if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) { |
| vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; |
| vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET; |
| r = 0; |
| goto out; |
| } |
| if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) { |
| vcpu->run->exit_reason = KVM_EXIT_HYPERV; |
| vcpu->run->hyperv = vcpu->arch.hyperv.exit; |
| r = 0; |
| goto out; |
| } |
| |
| /* |
| * KVM_REQ_HV_STIMER has to be processed after |
| * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers |
| * depend on the guest clock being up-to-date |
| */ |
| if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu)) |
| kvm_hv_process_stimers(vcpu); |
| } |
| |
| if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) { |
| ++vcpu->stat.req_event; |
| kvm_apic_accept_events(vcpu); |
| if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) { |
| r = 1; |
| goto out; |
| } |
| |
| if (inject_pending_event(vcpu, req_int_win) != 0) |
| req_immediate_exit = true; |
| else { |
| /* Enable SMI/NMI/IRQ window open exits if needed. |
| * |
| * SMIs have three cases: |
| * 1) They can be nested, and then there is nothing to |
| * do here because RSM will cause a vmexit anyway. |
| * 2) There is an ISA-specific reason why SMI cannot be |
| * injected, and the moment when this changes can be |
| * intercepted. |
| * 3) Or the SMI can be pending because |
| * inject_pending_event has completed the injection |
| * of an IRQ or NMI from the previous vmexit, and |
| * then we request an immediate exit to inject the |
| * SMI. |
| */ |
| if (vcpu->arch.smi_pending && !is_smm(vcpu)) |
| if (!kvm_x86_ops->enable_smi_window(vcpu)) |
| req_immediate_exit = true; |
| if (vcpu->arch.nmi_pending) |
| kvm_x86_ops->enable_nmi_window(vcpu); |
| if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win) |
| kvm_x86_ops->enable_irq_window(vcpu); |
| WARN_ON(vcpu->arch.exception.pending); |
| } |
| |
| if (kvm_lapic_enabled(vcpu)) { |
| update_cr8_intercept(vcpu); |
| kvm_lapic_sync_to_vapic(vcpu); |
| } |
| } |
| |
| r = kvm_mmu_reload(vcpu); |
| if (unlikely(r)) { |
| goto cancel_injection; |
| } |
| |
| preempt_disable(); |
| |
| kvm_x86_ops->prepare_guest_switch(vcpu); |
| |
| /* |
| * Disable IRQs before setting IN_GUEST_MODE. Posted interrupt |
| * IPI are then delayed after guest entry, which ensures that they |
| * result in virtual interrupt delivery. |
| */ |
| local_irq_disable(); |
| vcpu->mode = IN_GUEST_MODE; |
| |
| srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx); |
| |
| /* |
| * 1) We should set ->mode before checking ->requests. Please see |
| * the comment in kvm_vcpu_exiting_guest_mode(). |
| * |
| * 2) For APICv, we should set ->mode before checking PIR.ON. This |
| * pairs with the memory barrier implicit in pi_test_and_set_on |
| * (see vmx_deliver_posted_interrupt). |
| * |
| * 3) This also orders the write to mode from any reads to the page |
| * tables done while the VCPU is running. Please see the comment |
| * in kvm_flush_remote_tlbs. |
| */ |
| smp_mb__after_srcu_read_unlock(); |
| |
| /* |
| * This handles the case where a posted interrupt was |
| * notified with kvm_vcpu_kick. |
| */ |
| if (kvm_lapic_enabled(vcpu) && vcpu->arch.apicv_active) |
| kvm_x86_ops->sync_pir_to_irr(vcpu); |
| |
| if (vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu) |
| || need_resched() || signal_pending(current)) { |
| vcpu->mode = OUTSIDE_GUEST_MODE; |
| smp_wmb(); |
| local_irq_enable(); |
| preempt_enable(); |
| vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); |
| r = 1; |
| goto cancel_injection; |
| } |
| |
| kvm_load_guest_xcr0(vcpu); |
| |
| if (req_immediate_exit) { |
| kvm_make_request(KVM_REQ_EVENT, vcpu); |
| smp_send_reschedule(vcpu->cpu); |
| } |
| |
| trace_kvm_entry(vcpu->vcpu_id); |
| if (lapic_timer_advance_ns) |
| wait_lapic_expire(vcpu); |
| guest_enter_irqoff(); |
| |
| if (unlikely(vcpu->arch.switch_db_regs)) { |
| set_debugreg(0, 7); |
| set_debugreg(vcpu->arch.eff_db[0], 0); |
| set_debugreg(vcpu->arch.eff_db[1], 1); |
| set_debugreg(vcpu->arch.eff_db[2], 2); |
| set_debugreg(vcpu->arch.eff_db[3], 3); |
| set_debugreg(vcpu->arch.dr6, 6); |
| vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD; |
| } |
| |
| kvm_x86_ops->run(vcpu); |
| |
| /* |
| * Do this here before restoring debug registers on the host. And |
| * since we do this before handling the vmexit, a DR access vmexit |
| * can (a) read the correct value of the debug registers, (b) set |
| * KVM_DEBUGREG_WONT_EXIT again. |
| */ |
| if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) { |
| WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP); |
| kvm_x86_ops->sync_dirty_debug_regs(vcpu); |
| kvm_update_dr0123(vcpu); |
| kvm_update_dr6(vcpu); |
| kvm_update_dr7(vcpu); |
| vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD; |
| } |
| |
| /* |
| * If the guest has used debug registers, at least dr7 |
| * will be disabled while returning to the host. |
| * If we don't have active breakpoints in the host, we don't |
| * care about the messed up debug address registers. But if |
| * we have some of them active, restore the old state. |
| */ |
| if (hw_breakpoint_active()) |
| hw_breakpoint_restore(); |
| |
| vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc()); |
| |
| vcpu->mode = OUTSIDE_GUEST_MODE; |
| smp_wmb(); |
| |
| kvm_put_guest_xcr0(vcpu); |
| |
| kvm_x86_ops->handle_external_intr(vcpu); |
| |
| ++vcpu->stat.exits; |
| |
| guest_exit_irqoff(); |
| |
| local_irq_enable(); |
| preempt_enable(); |
| |
| vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); |
| |
| /* |
| * Profile KVM exit RIPs: |
| */ |
| if (unlikely(prof_on == KVM_PROFILING)) { |
| unsigned long rip = kvm_rip_read(vcpu); |
| profile_hit(KVM_PROFILING, (void *)rip); |
| } |
| |
| if (unlikely(vcpu->arch.tsc_always_catchup)) |
| kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); |
| |
| if (vcpu->arch.apic_attention) |
| kvm_lapic_sync_from_vapic(vcpu); |
| |
| vcpu->arch.gpa_available = false; |
| r = kvm_x86_ops->handle_exit(vcpu); |
| return r; |
| |
| cancel_injection: |
| kvm_x86_ops->cancel_injection(vcpu); |
| if (unlikely(vcpu->arch.apic_attention)) |
| kvm_lapic_sync_from_vapic(vcpu); |
| out: |
| return r; |
| } |
| |
| static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu) |
| { |
| if (!kvm_arch_vcpu_runnable(vcpu) && |
| (!kvm_x86_ops->pre_block || kvm_x86_ops->pre_block(vcpu) == 0)) { |
| srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx); |
| kvm_vcpu_block(vcpu); |
| vcpu->srcu_idx = srcu_read_lock(&kvm->srcu); |
| |
| if (kvm_x86_ops->post_block) |
| kvm_x86_ops->post_block(vcpu); |
| |
| if (!kvm_check_request(KVM_REQ_UNHALT, vcpu)) |
| return 1; |
| } |
| |
| kvm_apic_accept_events(vcpu); |
| switch(vcpu->arch.mp_state) { |
| case KVM_MP_STATE_HALTED: |
| vcpu->arch.pv.pv_unhalted = false; |
| vcpu->arch.mp_state = |
| KVM_MP_STATE_RUNNABLE; |
| case KVM_MP_STATE_RUNNABLE: |
| vcpu->arch.apf.halted = false; |
| break; |
| case KVM_MP_STATE_INIT_RECEIVED: |
| break; |
| default: |
| return -EINTR; |
| break; |
| } |
| return 1; |
| } |
| |
| static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu) |
| { |
| if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) |
| kvm_x86_ops->check_nested_events(vcpu, false); |
| |
| return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE && |
| !vcpu->arch.apf.halted); |
| } |
| |
| static int vcpu_run(struct kvm_vcpu *vcpu) |
| { |
| int r; |
| struct kvm *kvm = vcpu->kvm; |
| |
| vcpu->srcu_idx = srcu_read_lock(&kvm->srcu); |
| |
| for (;;) { |
| if (kvm_vcpu_running(vcpu)) { |
| r = vcpu_enter_guest(vcpu); |
| } else { |
| r = vcpu_block(kvm, vcpu); |
| } |
| |
| if (r <= 0) |
| break; |
| |
| kvm_clear_request(KVM_REQ_PENDING_TIMER, vcpu); |
| if (kvm_cpu_has_pending_timer(vcpu)) |
| kvm_inject_pending_timer_irqs(vcpu); |
| |
| if (dm_request_for_irq_injection(vcpu) && |
| kvm_vcpu_ready_for_interrupt_injection(vcpu)) { |
| r = 0; |
| vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN; |
| ++vcpu->stat.request_irq_exits; |
| break; |
| } |
| |
| kvm_check_async_pf_completion(vcpu); |
| |
| if (signal_pending(current)) { |
| r = -EINTR; |
| vcpu->run->exit_reason = KVM_EXIT_INTR; |
| ++vcpu->stat.signal_exits; |
| break; |
| } |
| if (need_resched()) { |
| srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx); |
| cond_resched(); |
| vcpu->srcu_idx = srcu_read_lock(&kvm->srcu); |
| } |
| } |
| |
| srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx); |
| |
| return r; |
| } |
| |
| static inline int complete_emulated_io(struct kvm_vcpu *vcpu) |
| { |
| int r; |
| vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); |
| r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE); |
| srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx); |
| if (r != EMULATE_DONE) |
| return 0; |
| return 1; |
| } |
| |
| static int complete_emulated_pio(struct kvm_vcpu *vcpu) |
| { |
| BUG_ON(!vcpu->arch.pio.count); |
| |
| return complete_emulated_io(vcpu); |
| } |
| |
| /* |
| * Implements the following, as a state machine: |
| * |
| * read: |
| * for each fragment |
| * for each mmio piece in the fragment |
| * write gpa, len |
| * exit |
| * copy data |
| * execute insn |
| * |
| * write: |
| * for each fragment |
| * for each mmio piece in the fragment |
| * write gpa, len |
| * copy data |
| * exit |
| */ |
| static int complete_emulated_mmio(struct kvm_vcpu *vcpu) |
| { |
| struct kvm_run *run = vcpu->run; |
| struct kvm_mmio_fragment *frag; |
| unsigned len; |
| |
| BUG_ON(!vcpu->mmio_needed); |
| |
| /* Complete previous fragment */ |
| frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment]; |
| len = min(8u, frag->len); |
| if (!vcpu->mmio_is_write) |
| memcpy(frag->data, run->mmio.data, len); |
| |
| if (frag->len <= 8) { |
| /* Switch to the next fragment. */ |
| frag++; |
| vcpu->mmio_cur_fragment++; |
| } else { |
| /* Go forward to the next mmio piece. */ |
| frag->data += len; |
| frag->gpa += len; |
| frag->len -= len; |
| } |
| |
| if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) { |
| vcpu->mmio_needed = 0; |
| |
| /* FIXME: return into emulator if single-stepping. */ |
| if (vcpu->mmio_is_write) |
| return 1; |
| vcpu->mmio_read_completed = 1; |
| return complete_emulated_io(vcpu); |
| } |
| |
| run->exit_reason = KVM_EXIT_MMIO; |
| run->mmio.phys_addr = frag->gpa; |
| if (vcpu->mmio_is_write) |
| memcpy(run->mmio.data, frag->data, min(8u, frag->len)); |
| run->mmio.len = min(8u, frag->len); |
| run->mmio.is_write = vcpu->mmio_is_write; |
| vcpu->arch.complete_userspace_io = complete_emulated_mmio; |
| return 0; |
| } |
| |
| |
| int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run) |
| { |
| int r; |
| |
| vcpu_load(vcpu); |
| kvm_sigset_activate(vcpu); |
| kvm_load_guest_fpu(vcpu); |
| |
| if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) { |
| if (kvm_run->immediate_exit) { |
| r = -EINTR; |
| goto out; |
| } |
| kvm_vcpu_block(vcpu); |
| kvm_apic_accept_events(vcpu); |
| kvm_clear_request(KVM_REQ_UNHALT, vcpu); |
| r = -EAGAIN; |
| if (signal_pending(current)) { |
| r = -EINTR; |
| vcpu->run->exit_reason = KVM_EXIT_INTR; |
| ++vcpu->stat.signal_exits; |
| } |
| goto out; |
| } |
| |
| /* re-sync apic's tpr */ |
| if (!lapic_in_kernel(vcpu)) { |
| if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) { |
| r = -EINVAL; |
| goto out; |
| } |
| } |
| |
| if (unlikely(vcpu->arch.complete_userspace_io)) { |
| int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io; |
| vcpu->arch.complete_userspace_io = NULL; |
| r = cui(vcpu); |
| if (r <= 0) |
| goto out; |
| } else |
| WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed); |
| |
| if (kvm_run->immediate_exit) |
| r = -EINTR; |
| else |
| r = vcpu_run(vcpu); |
| |
| out: |
| kvm_put_guest_fpu(vcpu); |
| post_kvm_run_save(vcpu); |
| kvm_sigset_deactivate(vcpu); |
| |
| vcpu_put(vcpu); |
| return r; |
| } |
| |
| int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) |
| { |
| vcpu_load(vcpu); |
| |
| if (vcpu->arch.emulate_regs_need_sync_to_vcpu) { |
| /* |
| * We are here if userspace calls get_regs() in the middle of |
| * instruction emulation. Registers state needs to be copied |
| * back from emulation context to vcpu. Userspace shouldn't do |
| * that usually, but some bad designed PV devices (vmware |
| * backdoor interface) need this to work |
| */ |
| emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt); |
| vcpu->arch.emulate_regs_need_sync_to_vcpu = false; |
| } |
| regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX); |
| regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX); |
| regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX); |
| regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX); |
| regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI); |
| regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI); |
| regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP); |
| regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP); |
| #ifdef CONFIG_X86_64 |
| regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8); |
| regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9); |
| regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10); |
| regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11); |
| regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12); |
| regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13); |
| regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14); |
| regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15); |
| #endif |
| |
| regs->rip = kvm_rip_read(vcpu); |
| regs->rflags = kvm_get_rflags(vcpu); |
| |
| vcpu_put(vcpu); |
| return 0; |
| } |
| |
| int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) |
| { |
| vcpu_load(vcpu); |
| |
| vcpu->arch.emulate_regs_need_sync_from_vcpu = true; |
| vcpu->arch.emulate_regs_need_sync_to_vcpu = false; |
| |
| kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax); |
| kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx); |
| kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx); |
| kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx); |
| kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi); |
| kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi); |
| kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp); |
| kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp); |
| #ifdef CONFIG_X86_64 |
| kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8); |
| kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9); |
| kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10); |
| kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11); |
| kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12); |
| kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13); |
| kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14); |
| kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15); |
| #endif |
| |
| kvm_rip_write(vcpu, regs->rip); |
| kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED); |
| |
| vcpu->arch.exception.pending = false; |
| |
| kvm_make_request(KVM_REQ_EVENT, vcpu); |
| |
| vcpu_put(vcpu); |
| return 0; |
| } |
| |
| void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l) |
| { |
| struct kvm_segment cs; |
| |
| kvm_get_segment(vcpu, &cs, VCPU_SREG_CS); |
| *db = cs.db; |
| *l = cs.l; |
| } |
| EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits); |
| |
| int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, |
| struct kvm_sregs *sregs) |
| { |
| struct desc_ptr dt; |
| |
| vcpu_load(vcpu); |
| |
| kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS); |
| kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS); |
| kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES); |
| kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS); |
| kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS); |
| kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS); |
| |
| kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR); |
| kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); |
| |
| kvm_x86_ops->get_idt(vcpu, &dt); |
| sregs->idt.limit = dt.size; |
| sregs->idt.base = dt.address; |
| kvm_x86_ops->get_gdt(vcpu, &dt); |
| sregs->gdt.limit = dt.size; |
| sregs->gdt.base = dt.address; |
| |
| sregs->cr0 = kvm_read_cr0(vcpu); |
| sregs->cr2 = vcpu->arch.cr2; |
| sregs->cr3 = kvm_read_cr3(vcpu); |
| sregs->cr4 = kvm_read_cr4(vcpu); |
| sregs->cr8 = kvm_get_cr8(vcpu); |
| sregs->efer = vcpu->arch.efer; |
| sregs->apic_base = kvm_get_apic_base(vcpu); |
| |
| memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap); |
| |
| if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft) |
| set_bit(vcpu->arch.interrupt.nr, |
| (unsigned long *)sregs->interrupt_bitmap); |
| |
| vcpu_put(vcpu); |
| return 0; |
| } |
| |
| int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, |
| struct kvm_mp_state *mp_state) |
| { |
| vcpu_load(vcpu); |
| |
| kvm_apic_accept_events(vcpu); |
| if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED && |
| vcpu->arch.pv.pv_unhalted) |
| mp_state->mp_state = KVM_MP_STATE_RUNNABLE; |
| else |
| mp_state->mp_state = vcpu->arch.mp_state; |
| |
| vcpu_put(vcpu); |
| return 0; |
| } |
| |
| int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, |
| struct kvm_mp_state *mp_state) |
| { |
| int ret = -EINVAL; |
| |
| vcpu_load(vcpu); |
| |
| if (!lapic_in_kernel(vcpu) && |
| mp_state->mp_state != KVM_MP_STATE_RUNNABLE) |
| goto out; |
| |
| /* INITs are latched while in SMM */ |
| if ((is_smm(vcpu) || vcpu->arch.smi_pending) && |
| (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED || |
| mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED)) |
| goto out; |
| |
| if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) { |
| vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED; |
| set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events); |
| } else |
| vcpu->arch.mp_state = mp_state->mp_state; |
| kvm_make_request(KVM_REQ_EVENT, vcpu); |
| |
| ret = 0; |
| out: |
| vcpu_put(vcpu); |
| return ret; |
| } |
| |
| int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index, |
| int reason, bool has_error_code, u32 error_code) |
| { |
| struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; |
| int ret; |
| |
| init_emulate_ctxt(vcpu); |
| |
| ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason, |
| has_error_code, error_code); |
| |
| if (ret) |
| return EMULATE_FAIL; |
| |
| kvm_rip_write(vcpu, ctxt->eip); |
| kvm_set_rflags(vcpu, ctxt->eflags); |
| kvm_make_request(KVM_REQ_EVENT, vcpu); |
| return EMULATE_DONE; |
| } |
| EXPORT_SYMBOL_GPL(kvm_task_switch); |
| |
| int kvm_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) |
| { |
| if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) { |
| /* |
| * When EFER.LME and CR0.PG are set, the processor is in |
| * 64-bit mode (though maybe in a 32-bit code segment). |
| * CR4.PAE and EFER.LMA must be set. |
| */ |
| if (!(sregs->cr4 & X86_CR4_PAE) |
| || !(sregs->efer & EFER_LMA)) |
| return -EINVAL; |
| } else { |
| /* |
| * Not in 64-bit mode: EFER.LMA is clear and the code |
| * segment cannot be 64-bit. |
| */ |
| if (sregs->efer & EFER_LMA || sregs->cs.l) |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, |
| struct kvm_sregs *sregs) |
| { |
| struct msr_data apic_base_msr; |
| int mmu_reset_needed = 0; |
| int pending_vec, max_bits, idx; |
| struct desc_ptr dt; |
| int ret = -EINVAL; |
| |
| vcpu_load(vcpu); |
| |
| if (!guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) && |
| (sregs->cr4 & X86_CR4_OSXSAVE)) |
| goto out; |
| |
| if (kvm_valid_sregs(vcpu, sregs)) |
| goto out; |
| |
| apic_base_msr.data = sregs->apic_base; |
| apic_base_msr.host_initiated = true; |
| if (kvm_set_apic_base(vcpu, &apic_base_msr)) |
| goto out; |
| |
| dt.size = sregs->idt.limit; |
| dt.address = sregs->idt.base; |
| kvm_x86_ops->set_idt(vcpu, &dt); |
| dt.size = sregs->gdt.limit; |
| dt.address = sregs->gdt.base; |
| kvm_x86_ops->set_gdt(vcpu, &dt); |
| |
| vcpu->arch.cr2 = sregs->cr2; |
| mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3; |
| vcpu->arch.cr3 = sregs->cr3; |
| __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail); |
| |
| kvm_set_cr8(vcpu, sregs->cr8); |
| |
| mmu_reset_needed |= vcpu->arch.efer != sregs->efer; |
| kvm_x86_ops->set_efer(vcpu, sregs->efer); |
| |
| mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0; |
| kvm_x86_ops->set_cr0(vcpu, sregs->cr0); |
| vcpu->arch.cr0 = sregs->cr0; |
| |
| mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4; |
| kvm_x86_ops->set_cr4(vcpu, sregs->cr4); |
| if (sregs->cr4 & (X86_CR4_OSXSAVE | X86_CR4_PKE)) |
| kvm_update_cpuid(vcpu); |
| |
| idx = srcu_read_lock(&vcpu->kvm->srcu); |
| if (!is_long_mode(vcpu) && is_pae(vcpu)) { |
| load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu)); |
| mmu_reset_needed = 1; |
| } |
| srcu_read_unlock(&vcpu->kvm->srcu, idx); |
| |
| if (mmu_reset_needed) |
| kvm_mmu_reset_context(vcpu); |
| |
| max_bits = KVM_NR_INTERRUPTS; |
| pending_vec = find_first_bit( |
| (const unsigned long *)sregs->interrupt_bitmap, max_bits); |
| if (pending_vec < max_bits) { |
| kvm_queue_interrupt(vcpu, pending_vec, false); |
| pr_debug("Set back pending irq %d\n", pending_vec); |
| } |
| |
| kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS); |
| kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS); |
| kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES); |
| kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS); |
| kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS); |
| kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS); |
| |
| kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR); |
| kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); |
| |
| update_cr8_intercept(vcpu); |
| |
| /* Older userspace won't unhalt the vcpu on reset. */ |
| if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 && |
| sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 && |
| !is_protmode(vcpu)) |
| vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; |
| |
| kvm_make_request(KVM_REQ_EVENT, vcpu); |
| |
| ret = 0; |
| out: |
| vcpu_put(vcpu); |
| return ret; |
| } |
| |
| int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, |
| struct kvm_guest_debug *dbg) |
| { |
| unsigned long rflags; |
| int i, r; |
| |
| vcpu_load(vcpu); |
| |
| if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) { |
| r = -EBUSY; |
| if (vcpu->arch.exception.pending) |
| goto out; |
| if (dbg->control & KVM_GUESTDBG_INJECT_DB) |
| kvm_queue_exception(vcpu, DB_VECTOR); |
| else |
| kvm_queue_exception(vcpu, BP_VECTOR); |
| } |
| |
| /* |
| * Read rflags as long as potentially injected trace flags are still |
| * filtered out. |
| */ |
| rflags = kvm_get_rflags(vcpu); |
| |
| vcpu->guest_debug = dbg->control; |
| if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE)) |
| vcpu->guest_debug = 0; |
| |
| if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) { |
| for (i = 0; i < KVM_NR_DB_REGS; ++i) |
| vcpu->arch.eff_db[i] = dbg->arch.debugreg[i]; |
| vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7]; |
| } else { |
| for (i = 0; i < KVM_NR_DB_REGS; i++) |
| vcpu->arch.eff_db[i] = vcpu->arch.db[i]; |
| } |
| kvm_update_dr7(vcpu); |
| |
| if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) |
| vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) + |
| get_segment_base(vcpu, VCPU_SREG_CS); |
| |
| /* |
| * Trigger an rflags update that will inject or remove the trace |
| * flags. |
| */ |
| kvm_set_rflags(vcpu, rflags); |
| |
| kvm_x86_ops->update_bp_intercept(vcpu); |
| |
| r = 0; |
| |
| out: |
| vcpu_put(vcpu); |
| return r; |
| } |
| |
| /* |
| * Translate a guest virtual address to a guest physical address. |
| */ |
| int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, |
| struct kvm_translation *tr) |
| { |
| unsigned long vaddr = tr->linear_address; |
| gpa_t gpa; |
| int idx; |
| |
| vcpu_load(vcpu); |
| |
| idx = srcu_read_lock(&vcpu->kvm->srcu); |
| gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL); |
| srcu_read_unlock(&vcpu->kvm->srcu, idx); |
| tr->physical_address = gpa; |
| tr->valid = gpa != UNMAPPED_GVA; |
| tr->writeable = 1; |
| tr->usermode = 0; |
| |
| vcpu_put(vcpu); |
| return 0; |
| } |
| |
| int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) |
| { |
| struct fxregs_state *fxsave; |
| |
| vcpu_load(vcpu); |
| |
| fxsave = &vcpu->arch.guest_fpu.state.fxsave; |
| memcpy(fpu->fpr, fxsave->st_space, 128); |
| fpu->fcw = fxsave->cwd; |
| fpu->fsw = fxsave->swd; |
| fpu->ftwx = fxsave->twd; |
| fpu->last_opcode = fxsave->fop; |
| fpu->last_ip = fxsave->rip; |
| fpu->last_dp = fxsave->rdp; |
| memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space); |
| |
| vcpu_put(vcpu); |
| return 0; |
| } |
| |
| int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) |
| { |
| struct fxregs_state *fxsave; |
| |
| vcpu_load(vcpu); |
| |
| fxsave = &vcpu->arch.guest_fpu.state.fxsave; |
| |
| memcpy(fxsave->st_space, fpu->fpr, 128); |
| fxsave->cwd = fpu->fcw; |
| fxsave->swd = fpu->fsw; |
| fxsave->twd = fpu->ftwx; |
| fxsave->fop = fpu->last_opcode; |
| fxsave->rip = fpu->last_ip; |
| fxsave->rdp = fpu->last_dp; |
| memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space); |
| |
| vcpu_put(vcpu); |
| return 0; |
| } |
| |
| static void fx_init(struct kvm_vcpu *vcpu) |
| { |
| fpstate_init(&vcpu->arch.guest_fpu.state); |
| if (boot_cpu_has(X86_FEATURE_XSAVES)) |
| vcpu->arch.guest_fpu.state.xsave.header.xcomp_bv = |
| host_xcr0 | XSTATE_COMPACTION_ENABLED; |
| |
| /* |
| * Ensure guest xcr0 is valid for loading |
| */ |
| vcpu->arch.xcr0 = XFEATURE_MASK_FP; |
| |
| vcpu->arch.cr0 |= X86_CR0_ET; |
| } |
| |
| /* Swap (qemu) user FPU context for the guest FPU context. */ |
| void kvm_load_guest_fpu(struct kvm_vcpu *vcpu) |
| { |
| preempt_disable(); |
| copy_fpregs_to_fpstate(&vcpu->arch.user_fpu); |
| /* PKRU is separately restored in kvm_x86_ops->run. */ |
| __copy_kernel_to_fpregs(&vcpu->arch.guest_fpu.state, |
| ~XFEATURE_MASK_PKRU); |
| preempt_enable(); |
| trace_kvm_fpu(1); |
| } |
| |
| /* When vcpu_run ends, restore user space FPU context. */ |
| void kvm_put_guest_fpu(struct kvm_vcpu *vcpu) |
| { |
| preempt_disable(); |
| copy_fpregs_to_fpstate(&vcpu->arch.guest_fpu); |
| copy_kernel_to_fpregs(&vcpu->arch.user_fpu.state); |
| preempt_enable(); |
| ++vcpu->stat.fpu_reload; |
| trace_kvm_fpu(0); |
| } |
| |
| void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu) |
| { |
| void *wbinvd_dirty_mask = vcpu->arch.wbinvd_dirty_mask; |
| |
| kvmclock_reset(vcpu); |
| |
| kvm_x86_ops->vcpu_free(vcpu); |
| free_cpumask_var(wbinvd_dirty_mask); |
| } |
| |
| struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, |
| unsigned int id) |
| { |
| struct kvm_vcpu *vcpu; |
| |
| if (kvm_check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0) |
| printk_once(KERN_WARNING |
| "kvm: SMP vm created on host with unstable TSC; " |
| "guest TSC will not be reliable\n"); |
| |
| vcpu = kvm_x86_ops->vcpu_create(kvm, id); |
| |
| return vcpu; |
| } |
| |
| int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu) |
| { |
| kvm_vcpu_mtrr_init(vcpu); |
| vcpu_load(vcpu); |
| kvm_vcpu_reset(vcpu, false); |
| kvm_mmu_setup(vcpu); |
| vcpu_put(vcpu); |
| return 0; |
| } |
| |
| void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu) |
| { |
| struct msr_data msr; |
| struct kvm *kvm = vcpu->kvm; |
| |
| kvm_hv_vcpu_postcreate(vcpu); |
| |
| if (mutex_lock_killable(&vcpu->mutex)) |
| return; |
| vcpu_load(vcpu); |
| msr.data = 0x0; |
| msr.index = MSR_IA32_TSC; |
| msr.host_initiated = true; |
| kvm_write_tsc(vcpu, &msr); |
| vcpu_put(vcpu); |
| mutex_unlock(&vcpu->mutex); |
| |
| if (!kvmclock_periodic_sync) |
| return; |
| |
| schedule_delayed_work(&kvm->arch.kvmclock_sync_work, |
| KVMCLOCK_SYNC_PERIOD); |
| } |
| |
| void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu) |
| { |
| vcpu->arch.apf.msr_val = 0; |
| |
| vcpu_load(vcpu); |
| kvm_mmu_unload(vcpu); |
| vcpu_put(vcpu); |
| |
| kvm_x86_ops->vcpu_free(vcpu); |
| } |
| |
| void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event) |
| { |
| kvm_lapic_reset(vcpu, init_event); |
| |
| vcpu->arch.hflags = 0; |
| |
| vcpu->arch.smi_pending = 0; |
| vcpu->arch.smi_count = 0; |
| atomic_set(&vcpu->arch.nmi_queued, 0); |
| vcpu->arch.nmi_pending = 0; |
| vcpu->arch.nmi_injected = false; |
| kvm_clear_interrupt_queue(vcpu); |
| kvm_clear_exception_queue(vcpu); |
| vcpu->arch.exception.pending = false; |
| |
| memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db)); |
| kvm_update_dr0123(vcpu); |
| vcpu->arch.dr6 = DR6_INIT; |
| kvm_update_dr6(vcpu); |
| vcpu->arch.dr7 = DR7_FIXED_1; |
| kvm_update_dr7(vcpu); |
| |
| vcpu->arch.cr2 = 0; |
| |
| kvm_make_request(KVM_REQ_EVENT, vcpu); |
| vcpu->arch.apf.msr_val = 0; |
| vcpu->arch.st.msr_val = 0; |
| |
| kvmclock_reset(vcpu); |
| |
| kvm_clear_async_pf_completion_queue(vcpu); |
| kvm_async_pf_hash_reset(vcpu); |
| vcpu->arch.apf.halted = false; |
| |
| if (kvm_mpx_supported()) { |
| void *mpx_state_buffer; |
| |
| /* |
| * To avoid have the INIT path from kvm_apic_has_events() that be |
| * called with loaded FPU and does not let userspace fix the state. |
| */ |
| if (init_event) |
| kvm_put_guest_fpu(vcpu); |
| mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu.state.xsave, |
| XFEATURE_MASK_BNDREGS); |
| if (mpx_state_buffer) |
| memset(mpx_state_buffer, 0, sizeof(struct mpx_bndreg_state)); |
| mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu.state.xsave, |
| XFEATURE_MASK_BNDCSR); |
| if (mpx_state_buffer) |
| memset(mpx_state_buffer, 0, sizeof(struct mpx_bndcsr)); |
| if (init_event) |
| kvm_load_guest_fpu(vcpu); |
| } |
| |
| if (!init_event) { |
| kvm_pmu_reset(vcpu); |
| vcpu->arch.smbase = 0x30000; |
| |
| vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT; |
| vcpu->arch.msr_misc_features_enables = 0; |
| |
| vcpu->arch.xcr0 = XFEATURE_MASK_FP; |
| } |
| |
| memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs)); |
| vcpu->arch.regs_avail = ~0; |
| vcpu->arch.regs_dirty = ~0; |
| |
| vcpu->arch.ia32_xss = 0; |
| |
| kvm_x86_ops->vcpu_reset(vcpu, init_event); |
| } |
| |
| void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector) |
| { |
| struct kvm_segment cs; |
| |
| kvm_get_segment(vcpu, &cs, VCPU_SREG_CS); |
| cs.selector = vector << 8; |
| cs.base = vector << 12; |
| kvm_set_segment(vcpu, &cs, VCPU_SREG_CS); |
| kvm_rip_write(vcpu, 0); |
| } |
| |
| int kvm_arch_hardware_enable(void) |
| { |
| struct kvm *kvm; |
| struct kvm_vcpu *vcpu; |
| int i; |
| int ret; |
| u64 local_tsc; |
| u64 max_tsc = 0; |
| bool stable, backwards_tsc = false; |
| |
| kvm_shared_msr_cpu_online(); |
| ret = kvm_x86_ops->hardware_enable(); |
| if (ret != 0) |
| return ret; |
| |
| local_tsc = rdtsc(); |
| stable = !kvm_check_tsc_unstable(); |
| list_for_each_entry(kvm, &vm_list, vm_list) { |
| kvm_for_each_vcpu(i, vcpu, kvm) { |
| if (!stable && vcpu->cpu == smp_processor_id()) |
| kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); |
| if (stable && vcpu->arch.last_host_tsc > local_tsc) { |
| backwards_tsc = true; |
| if (vcpu->arch.last_host_tsc > max_tsc) |
| max_tsc = vcpu->arch.last_host_tsc; |
| } |
| } |
| } |
| |
| /* |
| * Sometimes, even reliable TSCs go backwards. This happens on |
| * platforms that reset TSC during suspend or hibernate actions, but |
| * maintain synchronization. We must compensate. Fortunately, we can |
| * detect that condition here, which happens early in CPU bringup, |
| * before any KVM threads can be running. Unfortunately, we can't |
| * bring the TSCs fully up to date with real time, as we aren't yet far |
| * enough into CPU bringup that we know how much real time has actually |
| * elapsed; our helper function, ktime_get_boot_ns() will be using boot |
| * variables that haven't been updated yet. |
| * |
| * So we simply find the maximum observed TSC above, then record the |
| * adjustment to TSC in each VCPU. When the VCPU later gets loaded, |
| * the adjustment will be applied. Note that we accumulate |
| * adjustments, in case multiple suspend cycles happen before some VCPU |
| * gets a chance to run again. In the event that no KVM threads get a |
| * chance to run, we will miss the entire elapsed period, as we'll have |
| * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may |
| * loose cycle time. This isn't too big a deal, since the loss will be |
| * uniform across all VCPUs (not to mention the scenario is extremely |
| * unlikely). It is possible that a second hibernate recovery happens |
| * much faster than a first, causing the observed TSC here to be |
| * smaller; this would require additional padding adjustment, which is |
| * why we set last_host_tsc to the local tsc observed here. |
| * |
| * N.B. - this code below runs only on platforms with reliable TSC, |
| * as that is the only way backwards_tsc is set above. Also note |
| * that this runs for ALL vcpus, which is not a bug; all VCPUs should |
| * have the same delta_cyc adjustment applied if backwards_tsc |
| * is detected. Note further, this adjustment is only done once, |
| * as we reset last_host_tsc on all VCPUs to stop this from being |
| * called multiple times (one for each physical CPU bringup). |
| * |
| * Platforms with unreliable TSCs don't have to deal with this, they |
| * will be compensated by the logic in vcpu_load, which sets the TSC to |
| * catchup mode. This will catchup all VCPUs to real time, but cannot |
| * guarantee that they stay in perfect synchronization. |
| */ |
| if (backwards_tsc) { |
| u64 delta_cyc = max_tsc - local_tsc; |
| list_for_each_entry(kvm, &vm_list, vm_list) { |
| kvm->arch.backwards_tsc_observed = true; |
| kvm_for_each_vcpu(i, vcpu, kvm) { |
| vcpu->arch.tsc_offset_adjustment += delta_cyc; |
| vcpu->arch.last_host_tsc = local_tsc; |
| kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); |
| } |
| |
| /* |
| * We have to disable TSC offset matching.. if you were |
| * booting a VM while issuing an S4 host suspend.... |
| * you may have some problem. Solving this issue is |
| * left as an exercise to the reader. |
| */ |
| kvm->arch.last_tsc_nsec = 0; |
| kvm->arch.last_tsc_write = 0; |
| } |
| |
| } |
| return 0; |
| } |
| |
| void kvm_arch_hardware_disable(void) |
| { |
| kvm_x86_ops->hardware_disable(); |
| drop_user_return_notifiers(); |
| } |
| |
| int kvm_arch_hardware_setup(void) |
| { |
| int r; |
| |
| r = kvm_x86_ops->hardware_setup(); |
| if (r != 0) |
| return r; |
| |
| if (kvm_has_tsc_control) { |
| /* |
| * Make sure the user can only configure tsc_khz values that |
| * fit into a signed integer. |
| * A min value is not calculated needed because it will always |
| * be 1 on all machines. |
| */ |
| u64 max = min(0x7fffffffULL, |
| __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz)); |
| kvm_max_guest_tsc_khz = max; |
| |
| kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits; |
| } |
| |
| kvm_init_msr_list(); |
| return 0; |
| } |
| |
| void kvm_arch_hardware_unsetup(void) |
| { |
| kvm_x86_ops->hardware_unsetup(); |
| } |
| |
| void kvm_arch_check_processor_compat(void *rtn) |
| { |
| kvm_x86_ops->check_processor_compatibility(rtn); |
| } |
| |
| bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu) |
| { |
| return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id; |
| } |
| EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp); |
| |
| bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu) |
| { |
| return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0; |
| } |
| |
| struct static_key kvm_no_apic_vcpu __read_mostly; |
| EXPORT_SYMBOL_GPL(kvm_no_apic_vcpu); |
| |
| int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu) |
| { |
| struct page *page; |
| int r; |
| |
| vcpu->arch.apicv_active = kvm_x86_ops->get_enable_apicv(vcpu); |
| vcpu->arch.emulate_ctxt.ops = &emulate_ops; |
| if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu)) |
| vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; |
| else |
| vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED; |
| |
| page = alloc_page(GFP_KERNEL | __GFP_ZERO); |
| if (!page) { |
| r = -ENOMEM; |
| goto fail; |
| } |
| vcpu->arch.pio_data = page_address(page); |
| |
| kvm_set_tsc_khz(vcpu, max_tsc_khz); |
| |
| r = kvm_mmu_create(vcpu); |
| if (r < 0) |
| goto fail_free_pio_data; |
| |
| if (irqchip_in_kernel(vcpu->kvm)) { |
| r = kvm_create_lapic(vcpu); |
| if (r < 0) |
| goto fail_mmu_destroy; |
| } else |
| static_key_slow_inc(&kvm_no_apic_vcpu); |
| |
| vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4, |
| GFP_KERNEL); |
| if (!vcpu->arch.mce_banks) { |
| r = -ENOMEM; |
| goto fail_free_lapic; |
| } |
| vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS; |
| |
| if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) { |
| r = -ENOMEM; |
| goto fail_free_mce_banks; |
| } |
| |
| fx_init(vcpu); |
| |
| vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET; |
| |
| vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu); |
| |
| vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT; |
| |
| kvm_async_pf_hash_reset(vcpu); |
| kvm_pmu_init(vcpu); |
| |
| vcpu->arch.pending_external_vector = -1; |
| vcpu->arch.preempted_in_kernel = false; |
| |
| kvm_hv_vcpu_init(vcpu); |
| |
| return 0; |
| |
| fail_free_mce_banks: |
| kfree(vcpu->arch.mce_banks); |
| fail_free_lapic: |
| kvm_free_lapic(vcpu); |
| fail_mmu_destroy: |
| kvm_mmu_destroy(vcpu); |
| fail_free_pio_data: |
| free_page((unsigned long)vcpu->arch.pio_data); |
| fail: |
| return r; |
| } |
| |
| void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu) |
| { |
| int idx; |
| |
| kvm_hv_vcpu_uninit(vcpu); |
| kvm_pmu_destroy(vcpu); |
| kfree(vcpu->arch.mce_banks); |
| kvm_free_lapic(vcpu); |
| idx = srcu_read_lock(&vcpu->kvm->srcu); |
| kvm_mmu_destroy(vcpu); |
| srcu_read_unlock(&vcpu->kvm->srcu, idx); |
| free_page((unsigned long)vcpu->arch.pio_data); |
| if (!lapic_in_kernel(vcpu)) |
| static_key_slow_dec(&kvm_no_apic_vcpu); |
| } |
| |
| void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu) |
| { |
| kvm_x86_ops->sched_in(vcpu, cpu); |
| } |
| |
| int kvm_arch_init_vm(struct kvm *kvm, unsigned long type) |
| { |
| if (type) |
| return -EINVAL; |
| |
| INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list); |
| INIT_LIST_HEAD(&kvm->arch.active_mmu_pages); |
| INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages); |
| INIT_LIST_HEAD(&kvm->arch.assigned_dev_head); |
| atomic_set(&kvm->arch.noncoherent_dma_count, 0); |
| |
| /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */ |
| set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap); |
| /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */ |
| set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID, |
| &kvm->arch.irq_sources_bitmap); |
| |
| raw_spin_lock_init(&kvm->arch.tsc_write_lock); |
| mutex_init(&kvm->arch.apic_map_lock); |
| mutex_init(&kvm->arch.hyperv.hv_lock); |
| spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock); |
| |
| kvm->arch.kvmclock_offset = -ktime_get_boot_ns(); |
| pvclock_update_vm_gtod_copy(kvm); |
| |
| INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn); |
| INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn); |
| |
| kvm_page_track_init(kvm); |
| kvm_mmu_init_vm(kvm); |
| |
| if (kvm_x86_ops->vm_init) |
| return kvm_x86_ops->vm_init(kvm); |
| |
| return 0; |
| } |
| |
| static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu) |
| { |
| vcpu_load(vcpu); |
| kvm_mmu_unload(vcpu); |
| vcpu_put(vcpu); |
| } |
| |
| static void kvm_free_vcpus(struct kvm *kvm) |
| { |
| unsigned int i; |
| struct kvm_vcpu *vcpu; |
| |
| /* |
| * Unpin any mmu pages first. |
| */ |
| kvm_for_each_vcpu(i, vcpu, kvm) { |
| kvm_clear_async_pf_completion_queue(vcpu); |
| kvm_unload_vcpu_mmu(vcpu); |
| } |
| kvm_for_each_vcpu(i, vcpu, kvm) |
| kvm_arch_vcpu_free(vcpu); |
| |
| mutex_lock(&kvm->lock); |
| for (i = 0; i < atomic_read(&kvm->online_vcpus); i++) |
| kvm->vcpus[i] = NULL; |
| |
| atomic_set(&kvm->online_vcpus, 0); |
| mutex_unlock(&kvm->lock); |
| } |
| |
| void kvm_arch_sync_events(struct kvm *kvm) |
| { |
| cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work); |
| cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work); |
| kvm_free_pit(kvm); |
| } |
| |
| int __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size) |
| { |
| int i, r; |
| unsigned long hva; |
| struct kvm_memslots *slots = kvm_memslots(kvm); |
| struct kvm_memory_slot *slot, old; |
| |
| /* Called with kvm->slots_lock held. */ |
| if (WARN_ON(id >= KVM_MEM_SLOTS_NUM)) |
| return -EINVAL; |
| |
| slot = id_to_memslot(slots, id); |
| if (size) { |
| if (slot->npages) |
| return -EEXIST; |
| |
| /* |
| * MAP_SHARED to prevent internal slot pages from being moved |
| * by fork()/COW. |
| */ |
| hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE, |
| MAP_SHARED | MAP_ANONYMOUS, 0); |
| if (IS_ERR((void *)hva)) |
| return PTR_ERR((void *)hva); |
| } else { |
| if (!slot->npages) |
| return 0; |
| |
| hva = 0; |
| } |
| |
| old = *slot; |
| for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { |
| struct kvm_userspace_memory_region m; |
| |
| m.slot = id | (i << 16); |
| m.flags = 0; |
| m.guest_phys_addr = gpa; |
| m.userspace_addr = hva; |
| m.memory_size = size; |
| r = __kvm_set_memory_region(kvm, &m); |
| if (r < 0) |
| return r; |
| } |
| |
| if (!size) |
| vm_munmap(old.userspace_addr, old.npages * PAGE_SIZE); |
| |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(__x86_set_memory_region); |
| |
| int x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size) |
| { |
| int r; |
| |
| mutex_lock(&kvm->slots_lock); |
| r = __x86_set_memory_region(kvm, id, gpa, size); |
| mutex_unlock(&kvm->slots_lock); |
| |
| return r; |
| } |
| EXPORT_SYMBOL_GPL(x86_set_memory_region); |
| |
| void kvm_arch_destroy_vm(struct kvm *kvm) |
| { |
| if (current->mm == kvm->mm) { |
| /* |
| * Free memory regions allocated on behalf of userspace, |
| * unless the the memory map has changed due to process exit |
| * or fd copying. |
| */ |
| x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 0, 0); |
| x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 0, 0); |
| x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0); |
| } |
| if (kvm_x86_ops->vm_destroy) |
| kvm_x86_ops->vm_destroy(kvm); |
| kvm_pic_destroy(kvm); |
| kvm_ioapic_destroy(kvm); |
| kvm_free_vcpus(kvm); |
| kvfree(rcu_dereference_check(kvm->arch.apic_map, 1)); |
| kvm_mmu_uninit_vm(kvm); |
| kvm_page_track_cleanup(kvm); |
| } |
| |
| void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free, |
| struct kvm_memory_slot *dont) |
| { |
| int i; |
| |
| for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { |
| if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) { |
| kvfree(free->arch.rmap[i]); |
| free->arch.rmap[i] = NULL; |
| } |
| if (i == 0) |
| continue; |
| |
| if (!dont || free->arch.lpage_info[i - 1] != |
| dont->arch.lpage_info[i - 1]) { |
| kvfree(free->arch.lpage_info[i - 1]); |
| free->arch.lpage_info[i - 1] = NULL; |
| } |
| } |
| |
| kvm_page_track_free_memslot(free, dont); |
| } |
| |
| int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot, |
| unsigned long npages) |
| { |
| int i; |
| |
| for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { |
| struct kvm_lpage_info *linfo; |
| unsigned long ugfn; |
| int lpages; |
| int level = i + 1; |
| |
| lpages = gfn_to_index(slot->base_gfn + npages - 1, |
| slot->base_gfn, level) + 1; |
| |
| slot->arch.rmap[i] = |
| kvzalloc(lpages * sizeof(*slot->arch.rmap[i]), GFP_KERNEL); |
| if (!slot->arch.rmap[i]) |
| goto out_free; |
| if (i == 0) |
| continue; |
| |
| linfo = kvzalloc(lpages * sizeof(*linfo), GFP_KERNEL); |
| if (!linfo) |
| goto out_free; |
| |
| slot->arch.lpage_info[i - 1] = linfo; |
| |
| if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1)) |
| linfo[0].disallow_lpage = 1; |
| if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1)) |
| linfo[lpages - 1].disallow_lpage = 1; |
| ugfn = slot->userspace_addr >> PAGE_SHIFT; |
| /* |
| * If the gfn and userspace address are not aligned wrt each |
| * other, or if explicitly asked to, disable large page |
| * support for this slot |
| */ |
| if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) || |
| !kvm_largepages_enabled()) { |
| unsigned long j; |
| |
| for (j = 0; j < lpages; ++j) |
| linfo[j].disallow_lpage = 1; |
| } |
| } |
| |
| if (kvm_page_track_create_memslot(slot, npages)) |
| goto out_free; |
| |
| return 0; |
| |
| out_free: |
| for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { |
| kvfree(slot->arch.rmap[i]); |
| slot->arch.rmap[i] = NULL; |
| if (i == 0) |
| continue; |
| |
| kvfree(slot->arch.lpage_info[i - 1]); |
| slot->arch.lpage_info[i - 1] = NULL; |
| } |
| return -ENOMEM; |
| } |
| |
| void kvm_arch_memslots_updated(struct kvm *kvm, struct kvm_memslots *slots) |
| { |
| /* |
| * memslots->generation has been incremented. |
| * mmio generation may have reached its maximum value. |
| */ |
| kvm_mmu_invalidate_mmio_sptes(kvm, slots); |
| } |
| |
| int kvm_arch_prepare_memory_region(struct kvm *kvm, |
| struct kvm_memory_slot *memslot, |
| const struct kvm_userspace_memory_region *mem, |
| enum kvm_mr_change change) |
| { |
| return 0; |
| } |
| |
| static void kvm_mmu_slot_apply_flags(struct kvm *kvm, |
| struct kvm_memory_slot *new) |
| { |
| /* Still write protect RO slot */ |
| if (new->flags & KVM_MEM_READONLY) { |
| kvm_mmu_slot_remove_write_access(kvm, new); |
| return; |
| } |
| |
| /* |
| * Call kvm_x86_ops dirty logging hooks when they are valid. |
| * |
| * kvm_x86_ops->slot_disable_log_dirty is called when: |
| * |
| * - KVM_MR_CREATE with dirty logging is disabled |
| * - KVM_MR_FLAGS_ONLY with dirty logging is disabled in new flag |
| * |
| * The reason is, in case of PML, we need to set D-bit for any slots |
| * with dirty logging disabled in order to eliminate unnecessary GPA |
| * logging in PML buffer (and potential PML buffer full VMEXT). This |
| * guarantees leaving PML enabled during guest's lifetime won't have |
| * any additonal overhead from PML when guest is running with dirty |
| * logging disabled for memory slots. |
| * |
| * kvm_x86_ops->slot_enable_log_dirty is called when switching new slot |
| * to dirty logging mode. |
| * |
| * If kvm_x86_ops dirty logging hooks are invalid, use write protect. |
| * |
| * In case of write protect: |
| * |
| * Write protect all pages for dirty logging. |
| * |
| * All the sptes including the large sptes which point to this |
| * slot are set to readonly. We can not create any new large |
| * spte on this slot until the end of the logging. |
| * |
| * See the comments in fast_page_fault(). |
| */ |
| if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) { |
| if (kvm_x86_ops->slot_enable_log_dirty) |
| kvm_x86_ops->slot_enable_log_dirty(kvm, new); |
| else |
| kvm_mmu_slot_remove_write_access(kvm, new); |
| } else { |
| if (kvm_x86_ops->slot_disable_log_dirty) |
| kvm_x86_ops->slot_disable_log_dirty(kvm, new); |
| } |
| } |
| |
| void kvm_arch_commit_memory_region(struct kvm *kvm, |
| const struct kvm_userspace_memory_region *mem, |
| const struct kvm_memory_slot *old, |
| const struct kvm_memory_slot *new, |
| enum kvm_mr_change change) |
| { |
| int nr_mmu_pages = 0; |
| |
| if (!kvm->arch.n_requested_mmu_pages) |
| nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm); |
| |
| if (nr_mmu_pages) |
| kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages); |
| |
| /* |
| * Dirty logging tracks sptes in 4k granularity, meaning that large |
| * sptes have to be split. If live migration is successful, the guest |
| * in the source machine will be destroyed and large sptes will be |
| * created in the destination. However, if the guest continues to run |
| * in the source machine (for example if live migration fails), small |
| * sptes will remain around and cause bad performance. |
| * |
| * Scan sptes if dirty logging has been stopped, dropping those |
| * which can be collapsed into a single large-page spte. Later |
| * page faults will create the large-page sptes. |
| */ |
| if ((change != KVM_MR_DELETE) && |
| (old->flags & KVM_MEM_LOG_DIRTY_PAGES) && |
| !(new->flags & KVM_MEM_LOG_DIRTY_PAGES)) |
| kvm_mmu_zap_collapsible_sptes(kvm, new); |
| |
| /* |
| * Set up write protection and/or dirty logging for the new slot. |
| * |
| * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of old slot have |
| * been zapped so no dirty logging staff is needed for old slot. For |
| * KVM_MR_FLAGS_ONLY, the old slot is essentially the same one as the |
| * new and it's also covered when dealing with the new slot. |
| * |
| * FIXME: const-ify all uses of struct kvm_memory_slot. |
| */ |
| if (change != KVM_MR_DELETE) |
| kvm_mmu_slot_apply_flags(kvm, (struct kvm_memory_slot *) new); |
| } |
| |
| void kvm_arch_flush_shadow_all(struct kvm *kvm) |
| { |
| kvm_mmu_invalidate_zap_all_pages(kvm); |
| } |
| |
| void kvm_arch_flush_shadow_memslot(struct kvm *kvm, |
| struct kvm_memory_slot *slot) |
| { |
| kvm_page_track_flush_slot(kvm, slot); |
| } |
| |
| static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu) |
| { |
| if (!list_empty_careful(&vcpu->async_pf.done)) |
| return true; |
| |
| if (kvm_apic_has_events(vcpu)) |
| return true; |
| |
| if (vcpu->arch.pv.pv_unhalted) |
| return true; |
| |
| if (vcpu->arch.exception.pending) |
| return true; |
| |
| if (kvm_test_request(KVM_REQ_NMI, vcpu) || |
| (vcpu->arch.nmi_pending && |
| kvm_x86_ops->nmi_allowed(vcpu))) |
| return true; |
| |
| if (kvm_test_request(KVM_REQ_SMI, vcpu) || |
| (vcpu->arch.smi_pending && !is_smm(vcpu))) |
| return true; |
| |
| if (kvm_arch_interrupt_allowed(vcpu) && |
| kvm_cpu_has_interrupt(vcpu)) |
| return true; |
| |
| if (kvm_hv_has_stimer_pending(vcpu)) |
| return true; |
| |
| return false; |
| } |
| |
| int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu) |
| { |
| return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu); |
| } |
| |
| bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu) |
| { |
| return vcpu->arch.preempted_in_kernel; |
| } |
| |
| int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu) |
| { |
| return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE; |
| } |
| |
| int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu) |
| { |
| return kvm_x86_ops->interrupt_allowed(vcpu); |
| } |
| |
| unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu) |
| { |
| if (is_64_bit_mode(vcpu)) |
| return kvm_rip_read(vcpu); |
| return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) + |
| kvm_rip_read(vcpu)); |
| } |
| EXPORT_SYMBOL_GPL(kvm_get_linear_rip); |
| |
| bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip) |
| { |
| return kvm_get_linear_rip(vcpu) == linear_rip; |
| } |
| EXPORT_SYMBOL_GPL(kvm_is_linear_rip); |
| |
| unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu) |
| { |
| unsigned long rflags; |
| |
| rflags = kvm_x86_ops->get_rflags(vcpu); |
| if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) |
| rflags &= ~X86_EFLAGS_TF; |
| return rflags; |
| } |
| EXPORT_SYMBOL_GPL(kvm_get_rflags); |
| |
| static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) |
| { |
| if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP && |
| kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip)) |
| rflags |= X86_EFLAGS_TF; |
| kvm_x86_ops->set_rflags(vcpu, rflags); |
| } |
| |
| void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) |
| { |
| __kvm_set_rflags(vcpu, rflags); |
| kvm_make_request(KVM_REQ_EVENT, vcpu); |
| } |
| EXPORT_SYMBOL_GPL(kvm_set_rflags); |
| |
| void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work) |
| { |
| int r; |
| |
| if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) || |
| work->wakeup_all) |
| return; |
| |
| r = kvm_mmu_reload(vcpu); |
| if (unlikely(r)) |
| return; |
| |
| if (!vcpu->arch.mmu.direct_map && |
| work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu)) |
| return; |
| |
| vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true); |
| } |
| |
| static inline u32 kvm_async_pf_hash_fn(gfn_t gfn) |
| { |
| return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU)); |
| } |
| |
| static inline u32 kvm_async_pf_next_probe(u32 key) |
| { |
| return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1); |
| } |
| |
| static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) |
| { |
| u32 key = kvm_async_pf_hash_fn(gfn); |
| |
| while (vcpu->arch.apf.gfns[key] != ~0) |
| key = kvm_async_pf_next_probe(key); |
| |
| vcpu->arch.apf.gfns[key] = gfn; |
| } |
| |
| static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn) |
| { |
| int i; |
| u32 key = kvm_async_pf_hash_fn(gfn); |
| |
| for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) && |
| (vcpu->arch.apf.gfns[key] != gfn && |
| vcpu->arch.apf.gfns[key] != ~0); i++) |
| key = kvm_async_pf_next_probe(key); |
| |
| return key; |
| } |
| |
| bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) |
| { |
| return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn; |
| } |
| |
| static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) |
| { |
| u32 i, j, k; |
| |
| i = j = kvm_async_pf_gfn_slot(vcpu, gfn); |
| while (true) { |
| vcpu->arch.apf.gfns[i] = ~0; |
| do { |
| j = kvm_async_pf_next_probe(j); |
| if (vcpu->arch.apf.gfns[j] == ~0) |
| return; |
| k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]); |
| /* |
| * k lies cyclically in ]i,j] |
| * | i.k.j | |
| * |....j i.k.| or |.k..j i...| |
| */ |
| } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j)); |
| vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j]; |
| i = j; |
| } |
| } |
| |
| static int apf_put_user(struct kvm_vcpu *vcpu, u32 val) |
| { |
| |
| return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val, |
| sizeof(val)); |
| } |
| |
| static int apf_get_user(struct kvm_vcpu *vcpu, u32 *val) |
| { |
| |
| return kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, val, |
| sizeof(u32)); |
| } |
| |
| void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu, |
| struct kvm_async_pf *work) |
| { |
| struct x86_exception fault; |
| |
| trace_kvm_async_pf_not_present(work->arch.token, work->gva); |
| kvm_add_async_pf_gfn(vcpu, work->arch.gfn); |
| |
| if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) || |
| (vcpu->arch.apf.send_user_only && |
| kvm_x86_ops->get_cpl(vcpu) == 0)) |
| kvm_make_request(KVM_REQ_APF_HALT, vcpu); |
| else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) { |
| fault.vector = PF_VECTOR; |
| fault.error_code_valid = true; |
| fault.error_code = 0; |
| fault.nested_page_fault = false; |
| fault.address = work->arch.token; |
| fault.async_page_fault = true; |
| kvm_inject_page_fault(vcpu, &fault); |
| } |
| } |
| |
| void kvm_arch_async_page_present(struct kvm_vcpu *vcpu, |
| struct kvm_async_pf *work) |
| { |
| struct x86_exception fault; |
| u32 val; |
| |
| if (work->wakeup_all) |
| work->arch.token = ~0; /* broadcast wakeup */ |
| else |
| kvm_del_async_pf_gfn(vcpu, work->arch.gfn); |
| trace_kvm_async_pf_ready(work->arch.token, work->gva); |
| |
| if (vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED && |
| !apf_get_user(vcpu, &val)) { |
| if (val == KVM_PV_REASON_PAGE_NOT_PRESENT && |
| vcpu->arch.exception.pending && |
| vcpu->arch.exception.nr == PF_VECTOR && |
| !apf_put_user(vcpu, 0)) { |
| vcpu->arch.exception.injected = false; |
| vcpu->arch.exception.pending = false; |
| vcpu->arch.exception.nr = 0; |
| vcpu->arch.exception.has_error_code = false; |
| vcpu->arch.exception.error_code = 0; |
| } else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) { |
| fault.vector = PF_VECTOR; |
| fault.error_code_valid = true; |
| fault.error_code = 0; |
| fault.nested_page_fault = false; |
| fault.address = work->arch.token; |
| fault.async_page_fault = true; |
| kvm_inject_page_fault(vcpu, &fault); |
| } |
| } |
| vcpu->arch.apf.halted = false; |
| vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; |
| } |
| |
| bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu) |
| { |
| if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED)) |
| return true; |
| else |
| return kvm_can_do_async_pf(vcpu); |
| } |
| |
| void kvm_arch_start_assignment(struct kvm *kvm) |
| { |
| atomic_inc(&kvm->arch.assigned_device_count); |
| } |
| EXPORT_SYMBOL_GPL(kvm_arch_start_assignment); |
| |
| void kvm_arch_end_assignment(struct kvm *kvm) |
| { |
| atomic_dec(&kvm->arch.assigned_device_count); |
| } |
| EXPORT_SYMBOL_GPL(kvm_arch_end_assignment); |
| |
| bool kvm_arch_has_assigned_device(struct kvm *kvm) |
| { |
| return atomic_read(&kvm->arch.assigned_device_count); |
| } |
| EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device); |
| |
| void kvm_arch_register_noncoherent_dma(struct kvm *kvm) |
| { |
| atomic_inc(&kvm->arch.noncoherent_dma_count); |
| } |
| EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma); |
| |
| void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm) |
| { |
| atomic_dec(&kvm->arch.noncoherent_dma_count); |
| } |
| EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma); |
| |
| bool kvm_arch_has_noncoherent_dma(struct kvm *kvm) |
| { |
| return atomic_read(&kvm->arch.noncoherent_dma_count); |
| } |
| EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma); |
| |
| bool kvm_arch_has_irq_bypass(void) |
| { |
| return kvm_x86_ops->update_pi_irte != NULL; |
| } |
| |
| int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons, |
| struct irq_bypass_producer *prod) |
| { |
| struct kvm_kernel_irqfd *irqfd = |
| container_of(cons, struct kvm_kernel_irqfd, consumer); |
| |
| irqfd->producer = prod; |
| |
| return kvm_x86_ops->update_pi_irte(irqfd->kvm, |
| prod->irq, irqfd->gsi, 1); |
| } |
| |
| void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons, |
| struct irq_bypass_producer *prod) |
| { |
| int ret; |
| struct kvm_kernel_irqfd *irqfd = |
| container_of(cons, struct kvm_kernel_irqfd, consumer); |
| |
| WARN_ON(irqfd->producer != prod); |
| irqfd->producer = NULL; |
| |
| /* |
| * When producer of consumer is unregistered, we change back to |
| * remapped mode, so we can re-use the current implementation |
| * when the irq is masked/disabled or the consumer side (KVM |
| * int this case doesn't want to receive the interrupts. |
| */ |
| ret = kvm_x86_ops->update_pi_irte(irqfd->kvm, prod->irq, irqfd->gsi, 0); |
| if (ret) |
| printk(KERN_INFO "irq bypass consumer (token %p) unregistration" |
| " fails: %d\n", irqfd->consumer.token, ret); |
| } |
| |
| int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq, |
| uint32_t guest_irq, bool set) |
| { |
| if (!kvm_x86_ops->update_pi_irte) |
| return -EINVAL; |
| |
| return kvm_x86_ops->update_pi_irte(kvm, host_irq, guest_irq, set); |
| } |
| |
| bool kvm_vector_hashing_enabled(void) |
| { |
| return vector_hashing; |
| } |
| EXPORT_SYMBOL_GPL(kvm_vector_hashing_enabled); |
| |
| EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit); |
| EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio); |
| EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq); |
| EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault); |
| EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr); |
| EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr); |
| EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun); |
| EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit); |
| EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject); |
| EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit); |
| EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga); |
| EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit); |
| EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts); |
| EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset); |
| EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window); |
| EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full); |
| EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update); |
| EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access); |
| EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi); |