| /* SPDX-License-Identifier: GPL-2.0 */ |
| #ifndef _INTEL_RINGBUFFER_H_ |
| #define _INTEL_RINGBUFFER_H_ |
| |
| #include <linux/hashtable.h> |
| #include <linux/seqlock.h> |
| |
| #include "i915_gem_batch_pool.h" |
| |
| #include "i915_reg.h" |
| #include "i915_pmu.h" |
| #include "i915_request.h" |
| #include "i915_selftest.h" |
| #include "i915_timeline.h" |
| #include "intel_gpu_commands.h" |
| |
| struct drm_printer; |
| struct i915_sched_attr; |
| |
| #define I915_CMD_HASH_ORDER 9 |
| |
| /* Early gen2 devices have a cacheline of just 32 bytes, using 64 is overkill, |
| * but keeps the logic simple. Indeed, the whole purpose of this macro is just |
| * to give some inclination as to some of the magic values used in the various |
| * workarounds! |
| */ |
| #define CACHELINE_BYTES 64 |
| #define CACHELINE_DWORDS (CACHELINE_BYTES / sizeof(uint32_t)) |
| |
| struct intel_hw_status_page { |
| struct i915_vma *vma; |
| u32 *page_addr; |
| u32 ggtt_offset; |
| }; |
| |
| #define I915_READ_TAIL(engine) I915_READ(RING_TAIL((engine)->mmio_base)) |
| #define I915_WRITE_TAIL(engine, val) I915_WRITE(RING_TAIL((engine)->mmio_base), val) |
| |
| #define I915_READ_START(engine) I915_READ(RING_START((engine)->mmio_base)) |
| #define I915_WRITE_START(engine, val) I915_WRITE(RING_START((engine)->mmio_base), val) |
| |
| #define I915_READ_HEAD(engine) I915_READ(RING_HEAD((engine)->mmio_base)) |
| #define I915_WRITE_HEAD(engine, val) I915_WRITE(RING_HEAD((engine)->mmio_base), val) |
| |
| #define I915_READ_CTL(engine) I915_READ(RING_CTL((engine)->mmio_base)) |
| #define I915_WRITE_CTL(engine, val) I915_WRITE(RING_CTL((engine)->mmio_base), val) |
| |
| #define I915_READ_IMR(engine) I915_READ(RING_IMR((engine)->mmio_base)) |
| #define I915_WRITE_IMR(engine, val) I915_WRITE(RING_IMR((engine)->mmio_base), val) |
| |
| #define I915_READ_MODE(engine) I915_READ(RING_MI_MODE((engine)->mmio_base)) |
| #define I915_WRITE_MODE(engine, val) I915_WRITE(RING_MI_MODE((engine)->mmio_base), val) |
| |
| /* seqno size is actually only a uint32, but since we plan to use MI_FLUSH_DW to |
| * do the writes, and that must have qw aligned offsets, simply pretend it's 8b. |
| */ |
| enum intel_engine_hangcheck_action { |
| ENGINE_IDLE = 0, |
| ENGINE_WAIT, |
| ENGINE_ACTIVE_SEQNO, |
| ENGINE_ACTIVE_HEAD, |
| ENGINE_ACTIVE_SUBUNITS, |
| ENGINE_WAIT_KICK, |
| ENGINE_DEAD, |
| }; |
| |
| static inline const char * |
| hangcheck_action_to_str(const enum intel_engine_hangcheck_action a) |
| { |
| switch (a) { |
| case ENGINE_IDLE: |
| return "idle"; |
| case ENGINE_WAIT: |
| return "wait"; |
| case ENGINE_ACTIVE_SEQNO: |
| return "active seqno"; |
| case ENGINE_ACTIVE_HEAD: |
| return "active head"; |
| case ENGINE_ACTIVE_SUBUNITS: |
| return "active subunits"; |
| case ENGINE_WAIT_KICK: |
| return "wait kick"; |
| case ENGINE_DEAD: |
| return "dead"; |
| } |
| |
| return "unknown"; |
| } |
| |
| #define I915_MAX_SLICES 3 |
| #define I915_MAX_SUBSLICES 8 |
| |
| #define instdone_slice_mask(dev_priv__) \ |
| (INTEL_GEN(dev_priv__) == 7 ? \ |
| 1 : INTEL_INFO(dev_priv__)->sseu.slice_mask) |
| |
| #define instdone_subslice_mask(dev_priv__) \ |
| (INTEL_GEN(dev_priv__) == 7 ? \ |
| 1 : INTEL_INFO(dev_priv__)->sseu.subslice_mask[0]) |
| |
| #define for_each_instdone_slice_subslice(dev_priv__, slice__, subslice__) \ |
| for ((slice__) = 0, (subslice__) = 0; \ |
| (slice__) < I915_MAX_SLICES; \ |
| (subslice__) = ((subslice__) + 1) < I915_MAX_SUBSLICES ? (subslice__) + 1 : 0, \ |
| (slice__) += ((subslice__) == 0)) \ |
| for_each_if((BIT(slice__) & instdone_slice_mask(dev_priv__)) && \ |
| (BIT(subslice__) & instdone_subslice_mask(dev_priv__))) |
| |
| struct intel_instdone { |
| u32 instdone; |
| /* The following exist only in the RCS engine */ |
| u32 slice_common; |
| u32 sampler[I915_MAX_SLICES][I915_MAX_SUBSLICES]; |
| u32 row[I915_MAX_SLICES][I915_MAX_SUBSLICES]; |
| }; |
| |
| struct intel_engine_hangcheck { |
| u64 acthd; |
| u32 seqno; |
| enum intel_engine_hangcheck_action action; |
| unsigned long action_timestamp; |
| int deadlock; |
| struct intel_instdone instdone; |
| struct i915_request *active_request; |
| bool stalled:1; |
| bool wedged:1; |
| }; |
| |
| struct intel_ring { |
| struct i915_vma *vma; |
| void *vaddr; |
| |
| struct i915_timeline *timeline; |
| struct list_head request_list; |
| struct list_head active_link; |
| |
| u32 head; |
| u32 tail; |
| u32 emit; |
| |
| u32 space; |
| u32 size; |
| u32 effective_size; |
| }; |
| |
| struct i915_gem_context; |
| struct drm_i915_reg_table; |
| |
| /* |
| * we use a single page to load ctx workarounds so all of these |
| * values are referred in terms of dwords |
| * |
| * struct i915_wa_ctx_bb: |
| * offset: specifies batch starting position, also helpful in case |
| * if we want to have multiple batches at different offsets based on |
| * some criteria. It is not a requirement at the moment but provides |
| * an option for future use. |
| * size: size of the batch in DWORDS |
| */ |
| struct i915_ctx_workarounds { |
| struct i915_wa_ctx_bb { |
| u32 offset; |
| u32 size; |
| } indirect_ctx, per_ctx; |
| struct i915_vma *vma; |
| }; |
| |
| struct i915_request; |
| |
| #define I915_MAX_VCS 4 |
| #define I915_MAX_VECS 2 |
| |
| /* |
| * Engine IDs definitions. |
| * Keep instances of the same type engine together. |
| */ |
| enum intel_engine_id { |
| RCS = 0, |
| BCS, |
| VCS, |
| VCS2, |
| VCS3, |
| VCS4, |
| #define _VCS(n) (VCS + (n)) |
| VECS, |
| VECS2 |
| #define _VECS(n) (VECS + (n)) |
| }; |
| |
| struct i915_priolist { |
| struct rb_node node; |
| struct list_head requests; |
| int priority; |
| }; |
| |
| struct st_preempt_hang { |
| struct completion completion; |
| bool inject_hang; |
| }; |
| |
| /** |
| * struct intel_engine_execlists - execlist submission queue and port state |
| * |
| * The struct intel_engine_execlists represents the combined logical state of |
| * driver and the hardware state for execlist mode of submission. |
| */ |
| struct intel_engine_execlists { |
| /** |
| * @tasklet: softirq tasklet for bottom handler |
| */ |
| struct tasklet_struct tasklet; |
| |
| /** |
| * @default_priolist: priority list for I915_PRIORITY_NORMAL |
| */ |
| struct i915_priolist default_priolist; |
| |
| /** |
| * @no_priolist: priority lists disabled |
| */ |
| bool no_priolist; |
| |
| /** |
| * @submit_reg: gen-specific execlist submission register |
| * set to the ExecList Submission Port (elsp) register pre-Gen11 and to |
| * the ExecList Submission Queue Contents register array for Gen11+ |
| */ |
| u32 __iomem *submit_reg; |
| |
| /** |
| * @ctrl_reg: the enhanced execlists control register, used to load the |
| * submit queue on the HW and to request preemptions to idle |
| */ |
| u32 __iomem *ctrl_reg; |
| |
| /** |
| * @port: execlist port states |
| * |
| * For each hardware ELSP (ExecList Submission Port) we keep |
| * track of the last request and the number of times we submitted |
| * that port to hw. We then count the number of times the hw reports |
| * a context completion or preemption. As only one context can |
| * be active on hw, we limit resubmission of context to port[0]. This |
| * is called Lite Restore, of the context. |
| */ |
| struct execlist_port { |
| /** |
| * @request_count: combined request and submission count |
| */ |
| struct i915_request *request_count; |
| #define EXECLIST_COUNT_BITS 2 |
| #define port_request(p) ptr_mask_bits((p)->request_count, EXECLIST_COUNT_BITS) |
| #define port_count(p) ptr_unmask_bits((p)->request_count, EXECLIST_COUNT_BITS) |
| #define port_pack(rq, count) ptr_pack_bits(rq, count, EXECLIST_COUNT_BITS) |
| #define port_unpack(p, count) ptr_unpack_bits((p)->request_count, count, EXECLIST_COUNT_BITS) |
| #define port_set(p, packed) ((p)->request_count = (packed)) |
| #define port_isset(p) ((p)->request_count) |
| #define port_index(p, execlists) ((p) - (execlists)->port) |
| |
| /** |
| * @context_id: context ID for port |
| */ |
| GEM_DEBUG_DECL(u32 context_id); |
| |
| #define EXECLIST_MAX_PORTS 2 |
| } port[EXECLIST_MAX_PORTS]; |
| |
| /** |
| * @active: is the HW active? We consider the HW as active after |
| * submitting any context for execution and until we have seen the |
| * last context completion event. After that, we do not expect any |
| * more events until we submit, and so can park the HW. |
| * |
| * As we have a small number of different sources from which we feed |
| * the HW, we track the state of each inside a single bitfield. |
| */ |
| unsigned int active; |
| #define EXECLISTS_ACTIVE_USER 0 |
| #define EXECLISTS_ACTIVE_PREEMPT 1 |
| #define EXECLISTS_ACTIVE_HWACK 2 |
| |
| /** |
| * @port_mask: number of execlist ports - 1 |
| */ |
| unsigned int port_mask; |
| |
| /** |
| * @queue_priority: Highest pending priority. |
| * |
| * When we add requests into the queue, or adjust the priority of |
| * executing requests, we compute the maximum priority of those |
| * pending requests. We can then use this value to determine if |
| * we need to preempt the executing requests to service the queue. |
| */ |
| int queue_priority; |
| |
| /** |
| * @queue: queue of requests, in priority lists |
| */ |
| struct rb_root_cached queue; |
| |
| /** |
| * @csb_read: control register for Context Switch buffer |
| * |
| * Note this register is always in mmio. |
| */ |
| u32 __iomem *csb_read; |
| |
| /** |
| * @csb_write: control register for Context Switch buffer |
| * |
| * Note this register may be either mmio or HWSP shadow. |
| */ |
| u32 *csb_write; |
| |
| /** |
| * @csb_status: status array for Context Switch buffer |
| * |
| * Note these register may be either mmio or HWSP shadow. |
| */ |
| u32 *csb_status; |
| |
| /** |
| * @preempt_complete_status: expected CSB upon completing preemption |
| */ |
| u32 preempt_complete_status; |
| |
| /** |
| * @csb_write_reset: reset value for CSB write pointer |
| * |
| * As the CSB write pointer maybe either in HWSP or as a field |
| * inside an mmio register, we want to reprogram it slightly |
| * differently to avoid later confusion. |
| */ |
| u32 csb_write_reset; |
| |
| /** |
| * @csb_head: context status buffer head |
| */ |
| u8 csb_head; |
| |
| I915_SELFTEST_DECLARE(struct st_preempt_hang preempt_hang;) |
| }; |
| |
| #define INTEL_ENGINE_CS_MAX_NAME 8 |
| |
| struct intel_engine_cs { |
| struct drm_i915_private *i915; |
| char name[INTEL_ENGINE_CS_MAX_NAME]; |
| |
| enum intel_engine_id id; |
| unsigned int hw_id; |
| unsigned int guc_id; |
| |
| u8 uabi_id; |
| u8 uabi_class; |
| |
| u8 class; |
| u8 instance; |
| u32 context_size; |
| u32 mmio_base; |
| |
| struct intel_ring *buffer; |
| |
| struct i915_timeline timeline; |
| |
| struct drm_i915_gem_object *default_state; |
| void *pinned_default_state; |
| |
| unsigned long irq_posted; |
| #define ENGINE_IRQ_BREADCRUMB 0 |
| |
| /* Rather than have every client wait upon all user interrupts, |
| * with the herd waking after every interrupt and each doing the |
| * heavyweight seqno dance, we delegate the task (of being the |
| * bottom-half of the user interrupt) to the first client. After |
| * every interrupt, we wake up one client, who does the heavyweight |
| * coherent seqno read and either goes back to sleep (if incomplete), |
| * or wakes up all the completed clients in parallel, before then |
| * transferring the bottom-half status to the next client in the queue. |
| * |
| * Compared to walking the entire list of waiters in a single dedicated |
| * bottom-half, we reduce the latency of the first waiter by avoiding |
| * a context switch, but incur additional coherent seqno reads when |
| * following the chain of request breadcrumbs. Since it is most likely |
| * that we have a single client waiting on each seqno, then reducing |
| * the overhead of waking that client is much preferred. |
| */ |
| struct intel_breadcrumbs { |
| spinlock_t irq_lock; /* protects irq_*; irqsafe */ |
| struct intel_wait *irq_wait; /* oldest waiter by retirement */ |
| |
| spinlock_t rb_lock; /* protects the rb and wraps irq_lock */ |
| struct rb_root waiters; /* sorted by retirement, priority */ |
| struct list_head signals; /* sorted by retirement */ |
| struct task_struct *signaler; /* used for fence signalling */ |
| |
| struct timer_list fake_irq; /* used after a missed interrupt */ |
| struct timer_list hangcheck; /* detect missed interrupts */ |
| |
| unsigned int hangcheck_interrupts; |
| unsigned int irq_enabled; |
| unsigned int irq_count; |
| |
| bool irq_armed : 1; |
| I915_SELFTEST_DECLARE(bool mock : 1); |
| } breadcrumbs; |
| |
| struct { |
| /** |
| * @enable: Bitmask of enable sample events on this engine. |
| * |
| * Bits correspond to sample event types, for instance |
| * I915_SAMPLE_QUEUED is bit 0 etc. |
| */ |
| u32 enable; |
| /** |
| * @enable_count: Reference count for the enabled samplers. |
| * |
| * Index number corresponds to the bit number from @enable. |
| */ |
| unsigned int enable_count[I915_PMU_SAMPLE_BITS]; |
| /** |
| * @sample: Counter values for sampling events. |
| * |
| * Our internal timer stores the current counters in this field. |
| */ |
| #define I915_ENGINE_SAMPLE_MAX (I915_SAMPLE_SEMA + 1) |
| struct i915_pmu_sample sample[I915_ENGINE_SAMPLE_MAX]; |
| } pmu; |
| |
| /* |
| * A pool of objects to use as shadow copies of client batch buffers |
| * when the command parser is enabled. Prevents the client from |
| * modifying the batch contents after software parsing. |
| */ |
| struct i915_gem_batch_pool batch_pool; |
| |
| struct intel_hw_status_page status_page; |
| struct i915_ctx_workarounds wa_ctx; |
| struct i915_vma *scratch; |
| |
| u32 irq_keep_mask; /* always keep these interrupts */ |
| u32 irq_enable_mask; /* bitmask to enable ring interrupt */ |
| void (*irq_enable)(struct intel_engine_cs *engine); |
| void (*irq_disable)(struct intel_engine_cs *engine); |
| |
| int (*init_hw)(struct intel_engine_cs *engine); |
| |
| struct { |
| struct i915_request *(*prepare)(struct intel_engine_cs *engine); |
| void (*reset)(struct intel_engine_cs *engine, |
| struct i915_request *rq); |
| void (*finish)(struct intel_engine_cs *engine); |
| } reset; |
| |
| void (*park)(struct intel_engine_cs *engine); |
| void (*unpark)(struct intel_engine_cs *engine); |
| |
| void (*set_default_submission)(struct intel_engine_cs *engine); |
| |
| struct intel_context *(*context_pin)(struct intel_engine_cs *engine, |
| struct i915_gem_context *ctx); |
| |
| int (*request_alloc)(struct i915_request *rq); |
| int (*init_context)(struct i915_request *rq); |
| |
| int (*emit_flush)(struct i915_request *request, u32 mode); |
| #define EMIT_INVALIDATE BIT(0) |
| #define EMIT_FLUSH BIT(1) |
| #define EMIT_BARRIER (EMIT_INVALIDATE | EMIT_FLUSH) |
| int (*emit_bb_start)(struct i915_request *rq, |
| u64 offset, u32 length, |
| unsigned int dispatch_flags); |
| #define I915_DISPATCH_SECURE BIT(0) |
| #define I915_DISPATCH_PINNED BIT(1) |
| void (*emit_breadcrumb)(struct i915_request *rq, u32 *cs); |
| int emit_breadcrumb_sz; |
| |
| /* Pass the request to the hardware queue (e.g. directly into |
| * the legacy ringbuffer or to the end of an execlist). |
| * |
| * This is called from an atomic context with irqs disabled; must |
| * be irq safe. |
| */ |
| void (*submit_request)(struct i915_request *rq); |
| |
| /* Call when the priority on a request has changed and it and its |
| * dependencies may need rescheduling. Note the request itself may |
| * not be ready to run! |
| * |
| * Called under the struct_mutex. |
| */ |
| void (*schedule)(struct i915_request *request, |
| const struct i915_sched_attr *attr); |
| |
| /* |
| * Cancel all requests on the hardware, or queued for execution. |
| * This should only cancel the ready requests that have been |
| * submitted to the engine (via the engine->submit_request callback). |
| * This is called when marking the device as wedged. |
| */ |
| void (*cancel_requests)(struct intel_engine_cs *engine); |
| |
| /* Some chipsets are not quite as coherent as advertised and need |
| * an expensive kick to force a true read of the up-to-date seqno. |
| * However, the up-to-date seqno is not always required and the last |
| * seen value is good enough. Note that the seqno will always be |
| * monotonic, even if not coherent. |
| */ |
| void (*irq_seqno_barrier)(struct intel_engine_cs *engine); |
| void (*cleanup)(struct intel_engine_cs *engine); |
| |
| /* GEN8 signal/wait table - never trust comments! |
| * signal to signal to signal to signal to signal to |
| * RCS VCS BCS VECS VCS2 |
| * -------------------------------------------------------------------- |
| * RCS | NOP (0x00) | VCS (0x08) | BCS (0x10) | VECS (0x18) | VCS2 (0x20) | |
| * |------------------------------------------------------------------- |
| * VCS | RCS (0x28) | NOP (0x30) | BCS (0x38) | VECS (0x40) | VCS2 (0x48) | |
| * |------------------------------------------------------------------- |
| * BCS | RCS (0x50) | VCS (0x58) | NOP (0x60) | VECS (0x68) | VCS2 (0x70) | |
| * |------------------------------------------------------------------- |
| * VECS | RCS (0x78) | VCS (0x80) | BCS (0x88) | NOP (0x90) | VCS2 (0x98) | |
| * |------------------------------------------------------------------- |
| * VCS2 | RCS (0xa0) | VCS (0xa8) | BCS (0xb0) | VECS (0xb8) | NOP (0xc0) | |
| * |------------------------------------------------------------------- |
| * |
| * Generalization: |
| * f(x, y) := (x->id * NUM_RINGS * seqno_size) + (seqno_size * y->id) |
| * ie. transpose of g(x, y) |
| * |
| * sync from sync from sync from sync from sync from |
| * RCS VCS BCS VECS VCS2 |
| * -------------------------------------------------------------------- |
| * RCS | NOP (0x00) | VCS (0x28) | BCS (0x50) | VECS (0x78) | VCS2 (0xa0) | |
| * |------------------------------------------------------------------- |
| * VCS | RCS (0x08) | NOP (0x30) | BCS (0x58) | VECS (0x80) | VCS2 (0xa8) | |
| * |------------------------------------------------------------------- |
| * BCS | RCS (0x10) | VCS (0x38) | NOP (0x60) | VECS (0x88) | VCS2 (0xb0) | |
| * |------------------------------------------------------------------- |
| * VECS | RCS (0x18) | VCS (0x40) | BCS (0x68) | NOP (0x90) | VCS2 (0xb8) | |
| * |------------------------------------------------------------------- |
| * VCS2 | RCS (0x20) | VCS (0x48) | BCS (0x70) | VECS (0x98) | NOP (0xc0) | |
| * |------------------------------------------------------------------- |
| * |
| * Generalization: |
| * g(x, y) := (y->id * NUM_RINGS * seqno_size) + (seqno_size * x->id) |
| * ie. transpose of f(x, y) |
| */ |
| struct { |
| #define GEN6_SEMAPHORE_LAST VECS_HW |
| #define GEN6_NUM_SEMAPHORES (GEN6_SEMAPHORE_LAST + 1) |
| #define GEN6_SEMAPHORES_MASK GENMASK(GEN6_SEMAPHORE_LAST, 0) |
| struct { |
| /* our mbox written by others */ |
| u32 wait[GEN6_NUM_SEMAPHORES]; |
| /* mboxes this ring signals to */ |
| i915_reg_t signal[GEN6_NUM_SEMAPHORES]; |
| } mbox; |
| |
| /* AKA wait() */ |
| int (*sync_to)(struct i915_request *rq, |
| struct i915_request *signal); |
| u32 *(*signal)(struct i915_request *rq, u32 *cs); |
| } semaphore; |
| |
| struct intel_engine_execlists execlists; |
| |
| /* Contexts are pinned whilst they are active on the GPU. The last |
| * context executed remains active whilst the GPU is idle - the |
| * switch away and write to the context object only occurs on the |
| * next execution. Contexts are only unpinned on retirement of the |
| * following request ensuring that we can always write to the object |
| * on the context switch even after idling. Across suspend, we switch |
| * to the kernel context and trash it as the save may not happen |
| * before the hardware is powered down. |
| */ |
| struct intel_context *last_retired_context; |
| |
| /* status_notifier: list of callbacks for context-switch changes */ |
| struct atomic_notifier_head context_status_notifier; |
| |
| struct intel_engine_hangcheck hangcheck; |
| |
| #define I915_ENGINE_NEEDS_CMD_PARSER BIT(0) |
| #define I915_ENGINE_SUPPORTS_STATS BIT(1) |
| #define I915_ENGINE_HAS_PREEMPTION BIT(2) |
| unsigned int flags; |
| |
| /* |
| * Table of commands the command parser needs to know about |
| * for this engine. |
| */ |
| DECLARE_HASHTABLE(cmd_hash, I915_CMD_HASH_ORDER); |
| |
| /* |
| * Table of registers allowed in commands that read/write registers. |
| */ |
| const struct drm_i915_reg_table *reg_tables; |
| int reg_table_count; |
| |
| /* |
| * Returns the bitmask for the length field of the specified command. |
| * Return 0 for an unrecognized/invalid command. |
| * |
| * If the command parser finds an entry for a command in the engine's |
| * cmd_tables, it gets the command's length based on the table entry. |
| * If not, it calls this function to determine the per-engine length |
| * field encoding for the command (i.e. different opcode ranges use |
| * certain bits to encode the command length in the header). |
| */ |
| u32 (*get_cmd_length_mask)(u32 cmd_header); |
| |
| struct { |
| /** |
| * @lock: Lock protecting the below fields. |
| */ |
| seqlock_t lock; |
| /** |
| * @enabled: Reference count indicating number of listeners. |
| */ |
| unsigned int enabled; |
| /** |
| * @active: Number of contexts currently scheduled in. |
| */ |
| unsigned int active; |
| /** |
| * @enabled_at: Timestamp when busy stats were enabled. |
| */ |
| ktime_t enabled_at; |
| /** |
| * @start: Timestamp of the last idle to active transition. |
| * |
| * Idle is defined as active == 0, active is active > 0. |
| */ |
| ktime_t start; |
| /** |
| * @total: Total time this engine was busy. |
| * |
| * Accumulated time not counting the most recent block in cases |
| * where engine is currently busy (active > 0). |
| */ |
| ktime_t total; |
| } stats; |
| }; |
| |
| static inline bool |
| intel_engine_needs_cmd_parser(const struct intel_engine_cs *engine) |
| { |
| return engine->flags & I915_ENGINE_NEEDS_CMD_PARSER; |
| } |
| |
| static inline bool |
| intel_engine_supports_stats(const struct intel_engine_cs *engine) |
| { |
| return engine->flags & I915_ENGINE_SUPPORTS_STATS; |
| } |
| |
| static inline bool |
| intel_engine_has_preemption(const struct intel_engine_cs *engine) |
| { |
| return engine->flags & I915_ENGINE_HAS_PREEMPTION; |
| } |
| |
| static inline bool __execlists_need_preempt(int prio, int last) |
| { |
| return prio > max(0, last); |
| } |
| |
| static inline void |
| execlists_set_active(struct intel_engine_execlists *execlists, |
| unsigned int bit) |
| { |
| __set_bit(bit, (unsigned long *)&execlists->active); |
| } |
| |
| static inline bool |
| execlists_set_active_once(struct intel_engine_execlists *execlists, |
| unsigned int bit) |
| { |
| return !__test_and_set_bit(bit, (unsigned long *)&execlists->active); |
| } |
| |
| static inline void |
| execlists_clear_active(struct intel_engine_execlists *execlists, |
| unsigned int bit) |
| { |
| __clear_bit(bit, (unsigned long *)&execlists->active); |
| } |
| |
| static inline void |
| execlists_clear_all_active(struct intel_engine_execlists *execlists) |
| { |
| execlists->active = 0; |
| } |
| |
| static inline bool |
| execlists_is_active(const struct intel_engine_execlists *execlists, |
| unsigned int bit) |
| { |
| return test_bit(bit, (unsigned long *)&execlists->active); |
| } |
| |
| void execlists_user_begin(struct intel_engine_execlists *execlists, |
| const struct execlist_port *port); |
| void execlists_user_end(struct intel_engine_execlists *execlists); |
| |
| void |
| execlists_cancel_port_requests(struct intel_engine_execlists * const execlists); |
| |
| void |
| execlists_unwind_incomplete_requests(struct intel_engine_execlists *execlists); |
| |
| static inline unsigned int |
| execlists_num_ports(const struct intel_engine_execlists * const execlists) |
| { |
| return execlists->port_mask + 1; |
| } |
| |
| static inline struct execlist_port * |
| execlists_port_complete(struct intel_engine_execlists * const execlists, |
| struct execlist_port * const port) |
| { |
| const unsigned int m = execlists->port_mask; |
| |
| GEM_BUG_ON(port_index(port, execlists) != 0); |
| GEM_BUG_ON(!execlists_is_active(execlists, EXECLISTS_ACTIVE_USER)); |
| |
| memmove(port, port + 1, m * sizeof(struct execlist_port)); |
| memset(port + m, 0, sizeof(struct execlist_port)); |
| |
| return port; |
| } |
| |
| static inline unsigned int |
| intel_engine_flag(const struct intel_engine_cs *engine) |
| { |
| return BIT(engine->id); |
| } |
| |
| static inline u32 |
| intel_read_status_page(const struct intel_engine_cs *engine, int reg) |
| { |
| /* Ensure that the compiler doesn't optimize away the load. */ |
| return READ_ONCE(engine->status_page.page_addr[reg]); |
| } |
| |
| static inline void |
| intel_write_status_page(struct intel_engine_cs *engine, int reg, u32 value) |
| { |
| /* Writing into the status page should be done sparingly. Since |
| * we do when we are uncertain of the device state, we take a bit |
| * of extra paranoia to try and ensure that the HWS takes the value |
| * we give and that it doesn't end up trapped inside the CPU! |
| */ |
| if (static_cpu_has(X86_FEATURE_CLFLUSH)) { |
| mb(); |
| clflush(&engine->status_page.page_addr[reg]); |
| engine->status_page.page_addr[reg] = value; |
| clflush(&engine->status_page.page_addr[reg]); |
| mb(); |
| } else { |
| WRITE_ONCE(engine->status_page.page_addr[reg], value); |
| } |
| } |
| |
| /* |
| * Reads a dword out of the status page, which is written to from the command |
| * queue by automatic updates, MI_REPORT_HEAD, MI_STORE_DATA_INDEX, or |
| * MI_STORE_DATA_IMM. |
| * |
| * The following dwords have a reserved meaning: |
| * 0x00: ISR copy, updated when an ISR bit not set in the HWSTAM changes. |
| * 0x04: ring 0 head pointer |
| * 0x05: ring 1 head pointer (915-class) |
| * 0x06: ring 2 head pointer (915-class) |
| * 0x10-0x1b: Context status DWords (GM45) |
| * 0x1f: Last written status offset. (GM45) |
| * 0x20-0x2f: Reserved (Gen6+) |
| * |
| * The area from dword 0x30 to 0x3ff is available for driver usage. |
| */ |
| #define I915_GEM_HWS_INDEX 0x30 |
| #define I915_GEM_HWS_INDEX_ADDR (I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT) |
| #define I915_GEM_HWS_PREEMPT_INDEX 0x32 |
| #define I915_GEM_HWS_PREEMPT_ADDR (I915_GEM_HWS_PREEMPT_INDEX << MI_STORE_DWORD_INDEX_SHIFT) |
| #define I915_GEM_HWS_SCRATCH_INDEX 0x40 |
| #define I915_GEM_HWS_SCRATCH_ADDR (I915_GEM_HWS_SCRATCH_INDEX << MI_STORE_DWORD_INDEX_SHIFT) |
| |
| #define I915_HWS_CSB_BUF0_INDEX 0x10 |
| #define I915_HWS_CSB_WRITE_INDEX 0x1f |
| #define CNL_HWS_CSB_WRITE_INDEX 0x2f |
| |
| struct intel_ring * |
| intel_engine_create_ring(struct intel_engine_cs *engine, |
| struct i915_timeline *timeline, |
| int size); |
| int intel_ring_pin(struct intel_ring *ring); |
| void intel_ring_reset(struct intel_ring *ring, u32 tail); |
| unsigned int intel_ring_update_space(struct intel_ring *ring); |
| void intel_ring_unpin(struct intel_ring *ring); |
| void intel_ring_free(struct intel_ring *ring); |
| |
| void intel_engine_stop(struct intel_engine_cs *engine); |
| void intel_engine_cleanup(struct intel_engine_cs *engine); |
| |
| void intel_legacy_submission_resume(struct drm_i915_private *dev_priv); |
| |
| int __must_check intel_ring_cacheline_align(struct i915_request *rq); |
| |
| int intel_ring_wait_for_space(struct intel_ring *ring, unsigned int bytes); |
| u32 __must_check *intel_ring_begin(struct i915_request *rq, unsigned int n); |
| |
| static inline void intel_ring_advance(struct i915_request *rq, u32 *cs) |
| { |
| /* Dummy function. |
| * |
| * This serves as a placeholder in the code so that the reader |
| * can compare against the preceding intel_ring_begin() and |
| * check that the number of dwords emitted matches the space |
| * reserved for the command packet (i.e. the value passed to |
| * intel_ring_begin()). |
| */ |
| GEM_BUG_ON((rq->ring->vaddr + rq->ring->emit) != cs); |
| } |
| |
| static inline u32 intel_ring_wrap(const struct intel_ring *ring, u32 pos) |
| { |
| return pos & (ring->size - 1); |
| } |
| |
| static inline bool |
| intel_ring_offset_valid(const struct intel_ring *ring, |
| unsigned int pos) |
| { |
| if (pos & -ring->size) /* must be strictly within the ring */ |
| return false; |
| |
| if (!IS_ALIGNED(pos, 8)) /* must be qword aligned */ |
| return false; |
| |
| return true; |
| } |
| |
| static inline u32 intel_ring_offset(const struct i915_request *rq, void *addr) |
| { |
| /* Don't write ring->size (equivalent to 0) as that hangs some GPUs. */ |
| u32 offset = addr - rq->ring->vaddr; |
| GEM_BUG_ON(offset > rq->ring->size); |
| return intel_ring_wrap(rq->ring, offset); |
| } |
| |
| static inline void |
| assert_ring_tail_valid(const struct intel_ring *ring, unsigned int tail) |
| { |
| GEM_BUG_ON(!intel_ring_offset_valid(ring, tail)); |
| |
| /* |
| * "Ring Buffer Use" |
| * Gen2 BSpec "1. Programming Environment" / 1.4.4.6 |
| * Gen3 BSpec "1c Memory Interface Functions" / 2.3.4.5 |
| * Gen4+ BSpec "1c Memory Interface and Command Stream" / 5.3.4.5 |
| * "If the Ring Buffer Head Pointer and the Tail Pointer are on the |
| * same cacheline, the Head Pointer must not be greater than the Tail |
| * Pointer." |
| * |
| * We use ring->head as the last known location of the actual RING_HEAD, |
| * it may have advanced but in the worst case it is equally the same |
| * as ring->head and so we should never program RING_TAIL to advance |
| * into the same cacheline as ring->head. |
| */ |
| #define cacheline(a) round_down(a, CACHELINE_BYTES) |
| GEM_BUG_ON(cacheline(tail) == cacheline(ring->head) && |
| tail < ring->head); |
| #undef cacheline |
| } |
| |
| static inline unsigned int |
| intel_ring_set_tail(struct intel_ring *ring, unsigned int tail) |
| { |
| /* Whilst writes to the tail are strictly order, there is no |
| * serialisation between readers and the writers. The tail may be |
| * read by i915_request_retire() just as it is being updated |
| * by execlists, as although the breadcrumb is complete, the context |
| * switch hasn't been seen. |
| */ |
| assert_ring_tail_valid(ring, tail); |
| ring->tail = tail; |
| return tail; |
| } |
| |
| void intel_engine_init_global_seqno(struct intel_engine_cs *engine, u32 seqno); |
| |
| void intel_engine_setup_common(struct intel_engine_cs *engine); |
| int intel_engine_init_common(struct intel_engine_cs *engine); |
| void intel_engine_cleanup_common(struct intel_engine_cs *engine); |
| |
| int intel_engine_create_scratch(struct intel_engine_cs *engine, |
| unsigned int size); |
| void intel_engine_cleanup_scratch(struct intel_engine_cs *engine); |
| |
| int intel_init_render_ring_buffer(struct intel_engine_cs *engine); |
| int intel_init_bsd_ring_buffer(struct intel_engine_cs *engine); |
| int intel_init_blt_ring_buffer(struct intel_engine_cs *engine); |
| int intel_init_vebox_ring_buffer(struct intel_engine_cs *engine); |
| |
| int intel_engine_stop_cs(struct intel_engine_cs *engine); |
| void intel_engine_cancel_stop_cs(struct intel_engine_cs *engine); |
| |
| u64 intel_engine_get_active_head(const struct intel_engine_cs *engine); |
| u64 intel_engine_get_last_batch_head(const struct intel_engine_cs *engine); |
| |
| static inline u32 intel_engine_last_submit(struct intel_engine_cs *engine) |
| { |
| /* |
| * We are only peeking at the tail of the submit queue (and not the |
| * queue itself) in order to gain a hint as to the current active |
| * state of the engine. Callers are not expected to be taking |
| * engine->timeline->lock, nor are they expected to be concerned |
| * wtih serialising this hint with anything, so document it as |
| * a hint and nothing more. |
| */ |
| return READ_ONCE(engine->timeline.seqno); |
| } |
| |
| static inline u32 intel_engine_get_seqno(struct intel_engine_cs *engine) |
| { |
| return intel_read_status_page(engine, I915_GEM_HWS_INDEX); |
| } |
| |
| static inline bool intel_engine_signaled(struct intel_engine_cs *engine, |
| u32 seqno) |
| { |
| return i915_seqno_passed(intel_engine_get_seqno(engine), seqno); |
| } |
| |
| static inline bool intel_engine_has_completed(struct intel_engine_cs *engine, |
| u32 seqno) |
| { |
| GEM_BUG_ON(!seqno); |
| return intel_engine_signaled(engine, seqno); |
| } |
| |
| static inline bool intel_engine_has_started(struct intel_engine_cs *engine, |
| u32 seqno) |
| { |
| GEM_BUG_ON(!seqno); |
| return intel_engine_signaled(engine, seqno - 1); |
| } |
| |
| void intel_engine_get_instdone(struct intel_engine_cs *engine, |
| struct intel_instdone *instdone); |
| |
| /* |
| * Arbitrary size for largest possible 'add request' sequence. The code paths |
| * are complex and variable. Empirical measurement shows that the worst case |
| * is BDW at 192 bytes (6 + 6 + 36 dwords), then ILK at 136 bytes. However, |
| * we need to allocate double the largest single packet within that emission |
| * to account for tail wraparound (so 6 + 6 + 72 dwords for BDW). |
| */ |
| #define MIN_SPACE_FOR_ADD_REQUEST 336 |
| |
| static inline u32 intel_hws_seqno_address(struct intel_engine_cs *engine) |
| { |
| return engine->status_page.ggtt_offset + I915_GEM_HWS_INDEX_ADDR; |
| } |
| |
| static inline u32 intel_hws_preempt_done_address(struct intel_engine_cs *engine) |
| { |
| return engine->status_page.ggtt_offset + I915_GEM_HWS_PREEMPT_ADDR; |
| } |
| |
| /* intel_breadcrumbs.c -- user interrupt bottom-half for waiters */ |
| int intel_engine_init_breadcrumbs(struct intel_engine_cs *engine); |
| |
| static inline void intel_wait_init(struct intel_wait *wait) |
| { |
| wait->tsk = current; |
| wait->request = NULL; |
| } |
| |
| static inline void intel_wait_init_for_seqno(struct intel_wait *wait, u32 seqno) |
| { |
| wait->tsk = current; |
| wait->seqno = seqno; |
| } |
| |
| static inline bool intel_wait_has_seqno(const struct intel_wait *wait) |
| { |
| return wait->seqno; |
| } |
| |
| static inline bool |
| intel_wait_update_seqno(struct intel_wait *wait, u32 seqno) |
| { |
| wait->seqno = seqno; |
| return intel_wait_has_seqno(wait); |
| } |
| |
| static inline bool |
| intel_wait_update_request(struct intel_wait *wait, |
| const struct i915_request *rq) |
| { |
| return intel_wait_update_seqno(wait, i915_request_global_seqno(rq)); |
| } |
| |
| static inline bool |
| intel_wait_check_seqno(const struct intel_wait *wait, u32 seqno) |
| { |
| return wait->seqno == seqno; |
| } |
| |
| static inline bool |
| intel_wait_check_request(const struct intel_wait *wait, |
| const struct i915_request *rq) |
| { |
| return intel_wait_check_seqno(wait, i915_request_global_seqno(rq)); |
| } |
| |
| static inline bool intel_wait_complete(const struct intel_wait *wait) |
| { |
| return RB_EMPTY_NODE(&wait->node); |
| } |
| |
| bool intel_engine_add_wait(struct intel_engine_cs *engine, |
| struct intel_wait *wait); |
| void intel_engine_remove_wait(struct intel_engine_cs *engine, |
| struct intel_wait *wait); |
| bool intel_engine_enable_signaling(struct i915_request *request, bool wakeup); |
| void intel_engine_cancel_signaling(struct i915_request *request); |
| |
| static inline bool intel_engine_has_waiter(const struct intel_engine_cs *engine) |
| { |
| return READ_ONCE(engine->breadcrumbs.irq_wait); |
| } |
| |
| unsigned int intel_engine_wakeup(struct intel_engine_cs *engine); |
| #define ENGINE_WAKEUP_WAITER BIT(0) |
| #define ENGINE_WAKEUP_ASLEEP BIT(1) |
| |
| void intel_engine_pin_breadcrumbs_irq(struct intel_engine_cs *engine); |
| void intel_engine_unpin_breadcrumbs_irq(struct intel_engine_cs *engine); |
| |
| void __intel_engine_disarm_breadcrumbs(struct intel_engine_cs *engine); |
| void intel_engine_disarm_breadcrumbs(struct intel_engine_cs *engine); |
| |
| void intel_engine_reset_breadcrumbs(struct intel_engine_cs *engine); |
| void intel_engine_fini_breadcrumbs(struct intel_engine_cs *engine); |
| |
| static inline u32 *gen8_emit_pipe_control(u32 *batch, u32 flags, u32 offset) |
| { |
| memset(batch, 0, 6 * sizeof(u32)); |
| |
| batch[0] = GFX_OP_PIPE_CONTROL(6); |
| batch[1] = flags; |
| batch[2] = offset; |
| |
| return batch + 6; |
| } |
| |
| static inline u32 * |
| gen8_emit_ggtt_write_rcs(u32 *cs, u32 value, u32 gtt_offset) |
| { |
| /* We're using qword write, offset should be aligned to 8 bytes. */ |
| GEM_BUG_ON(!IS_ALIGNED(gtt_offset, 8)); |
| |
| /* w/a for post sync ops following a GPGPU operation we |
| * need a prior CS_STALL, which is emitted by the flush |
| * following the batch. |
| */ |
| *cs++ = GFX_OP_PIPE_CONTROL(6); |
| *cs++ = PIPE_CONTROL_GLOBAL_GTT_IVB | PIPE_CONTROL_CS_STALL | |
| PIPE_CONTROL_QW_WRITE; |
| *cs++ = gtt_offset; |
| *cs++ = 0; |
| *cs++ = value; |
| /* We're thrashing one dword of HWS. */ |
| *cs++ = 0; |
| |
| return cs; |
| } |
| |
| static inline u32 * |
| gen8_emit_ggtt_write(u32 *cs, u32 value, u32 gtt_offset) |
| { |
| /* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */ |
| GEM_BUG_ON(gtt_offset & (1 << 5)); |
| /* Offset should be aligned to 8 bytes for both (QW/DW) write types */ |
| GEM_BUG_ON(!IS_ALIGNED(gtt_offset, 8)); |
| |
| *cs++ = (MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW; |
| *cs++ = gtt_offset | MI_FLUSH_DW_USE_GTT; |
| *cs++ = 0; |
| *cs++ = value; |
| |
| return cs; |
| } |
| |
| void intel_engines_sanitize(struct drm_i915_private *i915); |
| |
| bool intel_engine_is_idle(struct intel_engine_cs *engine); |
| bool intel_engines_are_idle(struct drm_i915_private *dev_priv); |
| |
| bool intel_engine_has_kernel_context(const struct intel_engine_cs *engine); |
| void intel_engine_lost_context(struct intel_engine_cs *engine); |
| |
| void intel_engines_park(struct drm_i915_private *i915); |
| void intel_engines_unpark(struct drm_i915_private *i915); |
| |
| void intel_engines_reset_default_submission(struct drm_i915_private *i915); |
| unsigned int intel_engines_has_context_isolation(struct drm_i915_private *i915); |
| |
| bool intel_engine_can_store_dword(struct intel_engine_cs *engine); |
| |
| __printf(3, 4) |
| void intel_engine_dump(struct intel_engine_cs *engine, |
| struct drm_printer *m, |
| const char *header, ...); |
| |
| struct intel_engine_cs * |
| intel_engine_lookup_user(struct drm_i915_private *i915, u8 class, u8 instance); |
| |
| static inline void intel_engine_context_in(struct intel_engine_cs *engine) |
| { |
| unsigned long flags; |
| |
| if (READ_ONCE(engine->stats.enabled) == 0) |
| return; |
| |
| write_seqlock_irqsave(&engine->stats.lock, flags); |
| |
| if (engine->stats.enabled > 0) { |
| if (engine->stats.active++ == 0) |
| engine->stats.start = ktime_get(); |
| GEM_BUG_ON(engine->stats.active == 0); |
| } |
| |
| write_sequnlock_irqrestore(&engine->stats.lock, flags); |
| } |
| |
| static inline void intel_engine_context_out(struct intel_engine_cs *engine) |
| { |
| unsigned long flags; |
| |
| if (READ_ONCE(engine->stats.enabled) == 0) |
| return; |
| |
| write_seqlock_irqsave(&engine->stats.lock, flags); |
| |
| if (engine->stats.enabled > 0) { |
| ktime_t last; |
| |
| if (engine->stats.active && --engine->stats.active == 0) { |
| /* |
| * Decrement the active context count and in case GPU |
| * is now idle add up to the running total. |
| */ |
| last = ktime_sub(ktime_get(), engine->stats.start); |
| |
| engine->stats.total = ktime_add(engine->stats.total, |
| last); |
| } else if (engine->stats.active == 0) { |
| /* |
| * After turning on engine stats, context out might be |
| * the first event in which case we account from the |
| * time stats gathering was turned on. |
| */ |
| last = ktime_sub(ktime_get(), engine->stats.enabled_at); |
| |
| engine->stats.total = ktime_add(engine->stats.total, |
| last); |
| } |
| } |
| |
| write_sequnlock_irqrestore(&engine->stats.lock, flags); |
| } |
| |
| int intel_enable_engine_stats(struct intel_engine_cs *engine); |
| void intel_disable_engine_stats(struct intel_engine_cs *engine); |
| |
| ktime_t intel_engine_get_busy_time(struct intel_engine_cs *engine); |
| |
| #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) |
| |
| static inline bool inject_preempt_hang(struct intel_engine_execlists *execlists) |
| { |
| if (!execlists->preempt_hang.inject_hang) |
| return false; |
| |
| complete(&execlists->preempt_hang.completion); |
| return true; |
| } |
| |
| #else |
| |
| static inline bool inject_preempt_hang(struct intel_engine_execlists *execlists) |
| { |
| return false; |
| } |
| |
| #endif |
| |
| #endif /* _INTEL_RINGBUFFER_H_ */ |