| /* |
| * PHY functions |
| * |
| * Copyright (c) 2004-2007 Reyk Floeter <reyk@openbsd.org> |
| * Copyright (c) 2006-2009 Nick Kossifidis <mickflemm@gmail.com> |
| * Copyright (c) 2007-2008 Jiri Slaby <jirislaby@gmail.com> |
| * Copyright (c) 2008-2009 Felix Fietkau <nbd@openwrt.org> |
| * |
| * Permission to use, copy, modify, and distribute this software for any |
| * purpose with or without fee is hereby granted, provided that the above |
| * copyright notice and this permission notice appear in all copies. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES |
| * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF |
| * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR |
| * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES |
| * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN |
| * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF |
| * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. |
| * |
| */ |
| |
| #include <linux/delay.h> |
| #include <linux/slab.h> |
| #include <asm/unaligned.h> |
| |
| #include "ath5k.h" |
| #include "reg.h" |
| #include "rfbuffer.h" |
| #include "rfgain.h" |
| #include "../regd.h" |
| |
| |
| /******************\ |
| * Helper functions * |
| \******************/ |
| |
| /* |
| * Get the PHY Chip revision |
| */ |
| u16 ath5k_hw_radio_revision(struct ath5k_hw *ah, enum ieee80211_band band) |
| { |
| unsigned int i; |
| u32 srev; |
| u16 ret; |
| |
| /* |
| * Set the radio chip access register |
| */ |
| switch (band) { |
| case IEEE80211_BAND_2GHZ: |
| ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_2GHZ, AR5K_PHY(0)); |
| break; |
| case IEEE80211_BAND_5GHZ: |
| ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0)); |
| break; |
| default: |
| return 0; |
| } |
| |
| mdelay(2); |
| |
| /* ...wait until PHY is ready and read the selected radio revision */ |
| ath5k_hw_reg_write(ah, 0x00001c16, AR5K_PHY(0x34)); |
| |
| for (i = 0; i < 8; i++) |
| ath5k_hw_reg_write(ah, 0x00010000, AR5K_PHY(0x20)); |
| |
| if (ah->ah_version == AR5K_AR5210) { |
| srev = ath5k_hw_reg_read(ah, AR5K_PHY(256) >> 28) & 0xf; |
| ret = (u16)ath5k_hw_bitswap(srev, 4) + 1; |
| } else { |
| srev = (ath5k_hw_reg_read(ah, AR5K_PHY(0x100)) >> 24) & 0xff; |
| ret = (u16)ath5k_hw_bitswap(((srev & 0xf0) >> 4) | |
| ((srev & 0x0f) << 4), 8); |
| } |
| |
| /* Reset to the 5GHz mode */ |
| ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0)); |
| |
| return ret; |
| } |
| |
| /* |
| * Check if a channel is supported |
| */ |
| bool ath5k_channel_ok(struct ath5k_hw *ah, struct ieee80211_channel *channel) |
| { |
| u16 freq = channel->center_freq; |
| |
| /* Check if the channel is in our supported range */ |
| if (channel->band == IEEE80211_BAND_2GHZ) { |
| if ((freq >= ah->ah_capabilities.cap_range.range_2ghz_min) && |
| (freq <= ah->ah_capabilities.cap_range.range_2ghz_max)) |
| return true; |
| } else if (channel->band == IEEE80211_BAND_5GHZ) |
| if ((freq >= ah->ah_capabilities.cap_range.range_5ghz_min) && |
| (freq <= ah->ah_capabilities.cap_range.range_5ghz_max)) |
| return true; |
| |
| return false; |
| } |
| |
| bool ath5k_hw_chan_has_spur_noise(struct ath5k_hw *ah, |
| struct ieee80211_channel *channel) |
| { |
| u8 refclk_freq; |
| |
| if ((ah->ah_radio == AR5K_RF5112) || |
| (ah->ah_radio == AR5K_RF5413) || |
| (ah->ah_radio == AR5K_RF2413) || |
| (ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4))) |
| refclk_freq = 40; |
| else |
| refclk_freq = 32; |
| |
| if ((channel->center_freq % refclk_freq != 0) && |
| ((channel->center_freq % refclk_freq < 10) || |
| (channel->center_freq % refclk_freq > 22))) |
| return true; |
| else |
| return false; |
| } |
| |
| /* |
| * Used to modify RF Banks before writing them to AR5K_RF_BUFFER |
| */ |
| static unsigned int ath5k_hw_rfb_op(struct ath5k_hw *ah, |
| const struct ath5k_rf_reg *rf_regs, |
| u32 val, u8 reg_id, bool set) |
| { |
| const struct ath5k_rf_reg *rfreg = NULL; |
| u8 offset, bank, num_bits, col, position; |
| u16 entry; |
| u32 mask, data, last_bit, bits_shifted, first_bit; |
| u32 *rfb; |
| s32 bits_left; |
| int i; |
| |
| data = 0; |
| rfb = ah->ah_rf_banks; |
| |
| for (i = 0; i < ah->ah_rf_regs_count; i++) { |
| if (rf_regs[i].index == reg_id) { |
| rfreg = &rf_regs[i]; |
| break; |
| } |
| } |
| |
| if (rfb == NULL || rfreg == NULL) { |
| ATH5K_PRINTF("Rf register not found!\n"); |
| /* should not happen */ |
| return 0; |
| } |
| |
| bank = rfreg->bank; |
| num_bits = rfreg->field.len; |
| first_bit = rfreg->field.pos; |
| col = rfreg->field.col; |
| |
| /* first_bit is an offset from bank's |
| * start. Since we have all banks on |
| * the same array, we use this offset |
| * to mark each bank's start */ |
| offset = ah->ah_offset[bank]; |
| |
| /* Boundary check */ |
| if (!(col <= 3 && num_bits <= 32 && first_bit + num_bits <= 319)) { |
| ATH5K_PRINTF("invalid values at offset %u\n", offset); |
| return 0; |
| } |
| |
| entry = ((first_bit - 1) / 8) + offset; |
| position = (first_bit - 1) % 8; |
| |
| if (set) |
| data = ath5k_hw_bitswap(val, num_bits); |
| |
| for (bits_shifted = 0, bits_left = num_bits; bits_left > 0; |
| position = 0, entry++) { |
| |
| last_bit = (position + bits_left > 8) ? 8 : |
| position + bits_left; |
| |
| mask = (((1 << last_bit) - 1) ^ ((1 << position) - 1)) << |
| (col * 8); |
| |
| if (set) { |
| rfb[entry] &= ~mask; |
| rfb[entry] |= ((data << position) << (col * 8)) & mask; |
| data >>= (8 - position); |
| } else { |
| data |= (((rfb[entry] & mask) >> (col * 8)) >> position) |
| << bits_shifted; |
| bits_shifted += last_bit - position; |
| } |
| |
| bits_left -= 8 - position; |
| } |
| |
| data = set ? 1 : ath5k_hw_bitswap(data, num_bits); |
| |
| return data; |
| } |
| |
| /** |
| * ath5k_hw_write_ofdm_timings - set OFDM timings on AR5212 |
| * |
| * @ah: the &struct ath5k_hw |
| * @channel: the currently set channel upon reset |
| * |
| * Write the delta slope coefficient (used on pilot tracking ?) for OFDM |
| * operation on the AR5212 upon reset. This is a helper for ath5k_hw_phy_init. |
| * |
| * Since delta slope is floating point we split it on its exponent and |
| * mantissa and provide these values on hw. |
| * |
| * For more infos i think this patent is related |
| * http://www.freepatentsonline.com/7184495.html |
| */ |
| static inline int ath5k_hw_write_ofdm_timings(struct ath5k_hw *ah, |
| struct ieee80211_channel *channel) |
| { |
| /* Get exponent and mantissa and set it */ |
| u32 coef_scaled, coef_exp, coef_man, |
| ds_coef_exp, ds_coef_man, clock; |
| |
| BUG_ON(!(ah->ah_version == AR5K_AR5212) || |
| (channel->hw_value == AR5K_MODE_11B)); |
| |
| /* Get coefficient |
| * ALGO: coef = (5 * clock / carrier_freq) / 2 |
| * we scale coef by shifting clock value by 24 for |
| * better precision since we use integers */ |
| switch (ah->ah_bwmode) { |
| case AR5K_BWMODE_40MHZ: |
| clock = 40 * 2; |
| break; |
| case AR5K_BWMODE_10MHZ: |
| clock = 40 / 2; |
| break; |
| case AR5K_BWMODE_5MHZ: |
| clock = 40 / 4; |
| break; |
| default: |
| clock = 40; |
| break; |
| } |
| coef_scaled = ((5 * (clock << 24)) / 2) / channel->center_freq; |
| |
| /* Get exponent |
| * ALGO: coef_exp = 14 - highest set bit position */ |
| coef_exp = ilog2(coef_scaled); |
| |
| /* Doesn't make sense if it's zero*/ |
| if (!coef_scaled || !coef_exp) |
| return -EINVAL; |
| |
| /* Note: we've shifted coef_scaled by 24 */ |
| coef_exp = 14 - (coef_exp - 24); |
| |
| |
| /* Get mantissa (significant digits) |
| * ALGO: coef_mant = floor(coef_scaled* 2^coef_exp+0.5) */ |
| coef_man = coef_scaled + |
| (1 << (24 - coef_exp - 1)); |
| |
| /* Calculate delta slope coefficient exponent |
| * and mantissa (remove scaling) and set them on hw */ |
| ds_coef_man = coef_man >> (24 - coef_exp); |
| ds_coef_exp = coef_exp - 16; |
| |
| AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_3, |
| AR5K_PHY_TIMING_3_DSC_MAN, ds_coef_man); |
| AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_3, |
| AR5K_PHY_TIMING_3_DSC_EXP, ds_coef_exp); |
| |
| return 0; |
| } |
| |
| int ath5k_hw_phy_disable(struct ath5k_hw *ah) |
| { |
| /*Just a try M.F.*/ |
| ath5k_hw_reg_write(ah, AR5K_PHY_ACT_DISABLE, AR5K_PHY_ACT); |
| |
| return 0; |
| } |
| |
| /* |
| * Wait for synth to settle |
| */ |
| static void ath5k_hw_wait_for_synth(struct ath5k_hw *ah, |
| struct ieee80211_channel *channel) |
| { |
| /* |
| * On 5211+ read activation -> rx delay |
| * and use it (100ns steps). |
| */ |
| if (ah->ah_version != AR5K_AR5210) { |
| u32 delay; |
| delay = ath5k_hw_reg_read(ah, AR5K_PHY_RX_DELAY) & |
| AR5K_PHY_RX_DELAY_M; |
| delay = (channel->hw_value == AR5K_MODE_11B) ? |
| ((delay << 2) / 22) : (delay / 10); |
| if (ah->ah_bwmode == AR5K_BWMODE_10MHZ) |
| delay = delay << 1; |
| if (ah->ah_bwmode == AR5K_BWMODE_5MHZ) |
| delay = delay << 2; |
| /* XXX: /2 on turbo ? Let's be safe |
| * for now */ |
| udelay(100 + delay); |
| } else { |
| mdelay(1); |
| } |
| } |
| |
| |
| /**********************\ |
| * RF Gain optimization * |
| \**********************/ |
| |
| /* |
| * This code is used to optimize RF gain on different environments |
| * (temperature mostly) based on feedback from a power detector. |
| * |
| * It's only used on RF5111 and RF5112, later RF chips seem to have |
| * auto adjustment on hw -notice they have a much smaller BANK 7 and |
| * no gain optimization ladder-. |
| * |
| * For more infos check out this patent doc |
| * http://www.freepatentsonline.com/7400691.html |
| * |
| * This paper describes power drops as seen on the receiver due to |
| * probe packets |
| * http://www.cnri.dit.ie/publications/ICT08%20-%20Practical%20Issues |
| * %20of%20Power%20Control.pdf |
| * |
| * And this is the MadWiFi bug entry related to the above |
| * http://madwifi-project.org/ticket/1659 |
| * with various measurements and diagrams |
| * |
| * TODO: Deal with power drops due to probes by setting an appropriate |
| * tx power on the probe packets ! Make this part of the calibration process. |
| */ |
| |
| /* Initialize ah_gain during attach */ |
| int ath5k_hw_rfgain_opt_init(struct ath5k_hw *ah) |
| { |
| /* Initialize the gain optimization values */ |
| switch (ah->ah_radio) { |
| case AR5K_RF5111: |
| ah->ah_gain.g_step_idx = rfgain_opt_5111.go_default; |
| ah->ah_gain.g_low = 20; |
| ah->ah_gain.g_high = 35; |
| ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE; |
| break; |
| case AR5K_RF5112: |
| ah->ah_gain.g_step_idx = rfgain_opt_5112.go_default; |
| ah->ah_gain.g_low = 20; |
| ah->ah_gain.g_high = 85; |
| ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE; |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| /* Schedule a gain probe check on the next transmitted packet. |
| * That means our next packet is going to be sent with lower |
| * tx power and a Peak to Average Power Detector (PAPD) will try |
| * to measure the gain. |
| * |
| * XXX: How about forcing a tx packet (bypassing PCU arbitrator etc) |
| * just after we enable the probe so that we don't mess with |
| * standard traffic ? Maybe it's time to use sw interrupts and |
| * a probe tasklet !!! |
| */ |
| static void ath5k_hw_request_rfgain_probe(struct ath5k_hw *ah) |
| { |
| |
| /* Skip if gain calibration is inactive or |
| * we already handle a probe request */ |
| if (ah->ah_gain.g_state != AR5K_RFGAIN_ACTIVE) |
| return; |
| |
| /* Send the packet with 2dB below max power as |
| * patent doc suggest */ |
| ath5k_hw_reg_write(ah, AR5K_REG_SM(ah->ah_txpower.txp_ofdm - 4, |
| AR5K_PHY_PAPD_PROBE_TXPOWER) | |
| AR5K_PHY_PAPD_PROBE_TX_NEXT, AR5K_PHY_PAPD_PROBE); |
| |
| ah->ah_gain.g_state = AR5K_RFGAIN_READ_REQUESTED; |
| |
| } |
| |
| /* Calculate gain_F measurement correction |
| * based on the current step for RF5112 rev. 2 */ |
| static u32 ath5k_hw_rf_gainf_corr(struct ath5k_hw *ah) |
| { |
| u32 mix, step; |
| u32 *rf; |
| const struct ath5k_gain_opt *go; |
| const struct ath5k_gain_opt_step *g_step; |
| const struct ath5k_rf_reg *rf_regs; |
| |
| /* Only RF5112 Rev. 2 supports it */ |
| if ((ah->ah_radio != AR5K_RF5112) || |
| (ah->ah_radio_5ghz_revision <= AR5K_SREV_RAD_5112A)) |
| return 0; |
| |
| go = &rfgain_opt_5112; |
| rf_regs = rf_regs_5112a; |
| ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112a); |
| |
| g_step = &go->go_step[ah->ah_gain.g_step_idx]; |
| |
| if (ah->ah_rf_banks == NULL) |
| return 0; |
| |
| rf = ah->ah_rf_banks; |
| ah->ah_gain.g_f_corr = 0; |
| |
| /* No VGA (Variable Gain Amplifier) override, skip */ |
| if (ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXVGA_OVR, false) != 1) |
| return 0; |
| |
| /* Mix gain stepping */ |
| step = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXGAIN_STEP, false); |
| |
| /* Mix gain override */ |
| mix = g_step->gos_param[0]; |
| |
| switch (mix) { |
| case 3: |
| ah->ah_gain.g_f_corr = step * 2; |
| break; |
| case 2: |
| ah->ah_gain.g_f_corr = (step - 5) * 2; |
| break; |
| case 1: |
| ah->ah_gain.g_f_corr = step; |
| break; |
| default: |
| ah->ah_gain.g_f_corr = 0; |
| break; |
| } |
| |
| return ah->ah_gain.g_f_corr; |
| } |
| |
| /* Check if current gain_F measurement is in the range of our |
| * power detector windows. If we get a measurement outside range |
| * we know it's not accurate (detectors can't measure anything outside |
| * their detection window) so we must ignore it */ |
| static bool ath5k_hw_rf_check_gainf_readback(struct ath5k_hw *ah) |
| { |
| const struct ath5k_rf_reg *rf_regs; |
| u32 step, mix_ovr, level[4]; |
| u32 *rf; |
| |
| if (ah->ah_rf_banks == NULL) |
| return false; |
| |
| rf = ah->ah_rf_banks; |
| |
| if (ah->ah_radio == AR5K_RF5111) { |
| |
| rf_regs = rf_regs_5111; |
| ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5111); |
| |
| step = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_RFGAIN_STEP, |
| false); |
| |
| level[0] = 0; |
| level[1] = (step == 63) ? 50 : step + 4; |
| level[2] = (step != 63) ? 64 : level[0]; |
| level[3] = level[2] + 50; |
| |
| ah->ah_gain.g_high = level[3] - |
| (step == 63 ? AR5K_GAIN_DYN_ADJUST_HI_MARGIN : -5); |
| ah->ah_gain.g_low = level[0] + |
| (step == 63 ? AR5K_GAIN_DYN_ADJUST_LO_MARGIN : 0); |
| } else { |
| |
| rf_regs = rf_regs_5112; |
| ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112); |
| |
| mix_ovr = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXVGA_OVR, |
| false); |
| |
| level[0] = level[2] = 0; |
| |
| if (mix_ovr == 1) { |
| level[1] = level[3] = 83; |
| } else { |
| level[1] = level[3] = 107; |
| ah->ah_gain.g_high = 55; |
| } |
| } |
| |
| return (ah->ah_gain.g_current >= level[0] && |
| ah->ah_gain.g_current <= level[1]) || |
| (ah->ah_gain.g_current >= level[2] && |
| ah->ah_gain.g_current <= level[3]); |
| } |
| |
| /* Perform gain_F adjustment by choosing the right set |
| * of parameters from RF gain optimization ladder */ |
| static s8 ath5k_hw_rf_gainf_adjust(struct ath5k_hw *ah) |
| { |
| const struct ath5k_gain_opt *go; |
| const struct ath5k_gain_opt_step *g_step; |
| int ret = 0; |
| |
| switch (ah->ah_radio) { |
| case AR5K_RF5111: |
| go = &rfgain_opt_5111; |
| break; |
| case AR5K_RF5112: |
| go = &rfgain_opt_5112; |
| break; |
| default: |
| return 0; |
| } |
| |
| g_step = &go->go_step[ah->ah_gain.g_step_idx]; |
| |
| if (ah->ah_gain.g_current >= ah->ah_gain.g_high) { |
| |
| /* Reached maximum */ |
| if (ah->ah_gain.g_step_idx == 0) |
| return -1; |
| |
| for (ah->ah_gain.g_target = ah->ah_gain.g_current; |
| ah->ah_gain.g_target >= ah->ah_gain.g_high && |
| ah->ah_gain.g_step_idx > 0; |
| g_step = &go->go_step[ah->ah_gain.g_step_idx]) |
| ah->ah_gain.g_target -= 2 * |
| (go->go_step[--(ah->ah_gain.g_step_idx)].gos_gain - |
| g_step->gos_gain); |
| |
| ret = 1; |
| goto done; |
| } |
| |
| if (ah->ah_gain.g_current <= ah->ah_gain.g_low) { |
| |
| /* Reached minimum */ |
| if (ah->ah_gain.g_step_idx == (go->go_steps_count - 1)) |
| return -2; |
| |
| for (ah->ah_gain.g_target = ah->ah_gain.g_current; |
| ah->ah_gain.g_target <= ah->ah_gain.g_low && |
| ah->ah_gain.g_step_idx < go->go_steps_count - 1; |
| g_step = &go->go_step[ah->ah_gain.g_step_idx]) |
| ah->ah_gain.g_target -= 2 * |
| (go->go_step[++ah->ah_gain.g_step_idx].gos_gain - |
| g_step->gos_gain); |
| |
| ret = 2; |
| goto done; |
| } |
| |
| done: |
| ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE, |
| "ret %d, gain step %u, current gain %u, target gain %u\n", |
| ret, ah->ah_gain.g_step_idx, ah->ah_gain.g_current, |
| ah->ah_gain.g_target); |
| |
| return ret; |
| } |
| |
| /* Main callback for thermal RF gain calibration engine |
| * Check for a new gain reading and schedule an adjustment |
| * if needed. |
| * |
| * TODO: Use sw interrupt to schedule reset if gain_F needs |
| * adjustment */ |
| enum ath5k_rfgain ath5k_hw_gainf_calibrate(struct ath5k_hw *ah) |
| { |
| u32 data, type; |
| struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; |
| |
| if (ah->ah_rf_banks == NULL || |
| ah->ah_gain.g_state == AR5K_RFGAIN_INACTIVE) |
| return AR5K_RFGAIN_INACTIVE; |
| |
| /* No check requested, either engine is inactive |
| * or an adjustment is already requested */ |
| if (ah->ah_gain.g_state != AR5K_RFGAIN_READ_REQUESTED) |
| goto done; |
| |
| /* Read the PAPD (Peak to Average Power Detector) |
| * register */ |
| data = ath5k_hw_reg_read(ah, AR5K_PHY_PAPD_PROBE); |
| |
| /* No probe is scheduled, read gain_F measurement */ |
| if (!(data & AR5K_PHY_PAPD_PROBE_TX_NEXT)) { |
| ah->ah_gain.g_current = data >> AR5K_PHY_PAPD_PROBE_GAINF_S; |
| type = AR5K_REG_MS(data, AR5K_PHY_PAPD_PROBE_TYPE); |
| |
| /* If tx packet is CCK correct the gain_F measurement |
| * by cck ofdm gain delta */ |
| if (type == AR5K_PHY_PAPD_PROBE_TYPE_CCK) { |
| if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) |
| ah->ah_gain.g_current += |
| ee->ee_cck_ofdm_gain_delta; |
| else |
| ah->ah_gain.g_current += |
| AR5K_GAIN_CCK_PROBE_CORR; |
| } |
| |
| /* Further correct gain_F measurement for |
| * RF5112A radios */ |
| if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) { |
| ath5k_hw_rf_gainf_corr(ah); |
| ah->ah_gain.g_current = |
| ah->ah_gain.g_current >= ah->ah_gain.g_f_corr ? |
| (ah->ah_gain.g_current - ah->ah_gain.g_f_corr) : |
| 0; |
| } |
| |
| /* Check if measurement is ok and if we need |
| * to adjust gain, schedule a gain adjustment, |
| * else switch back to the active state */ |
| if (ath5k_hw_rf_check_gainf_readback(ah) && |
| AR5K_GAIN_CHECK_ADJUST(&ah->ah_gain) && |
| ath5k_hw_rf_gainf_adjust(ah)) { |
| ah->ah_gain.g_state = AR5K_RFGAIN_NEED_CHANGE; |
| } else { |
| ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE; |
| } |
| } |
| |
| done: |
| return ah->ah_gain.g_state; |
| } |
| |
| /* Write initial RF gain table to set the RF sensitivity |
| * this one works on all RF chips and has nothing to do |
| * with gain_F calibration */ |
| static int ath5k_hw_rfgain_init(struct ath5k_hw *ah, enum ieee80211_band band) |
| { |
| const struct ath5k_ini_rfgain *ath5k_rfg; |
| unsigned int i, size, index; |
| |
| switch (ah->ah_radio) { |
| case AR5K_RF5111: |
| ath5k_rfg = rfgain_5111; |
| size = ARRAY_SIZE(rfgain_5111); |
| break; |
| case AR5K_RF5112: |
| ath5k_rfg = rfgain_5112; |
| size = ARRAY_SIZE(rfgain_5112); |
| break; |
| case AR5K_RF2413: |
| ath5k_rfg = rfgain_2413; |
| size = ARRAY_SIZE(rfgain_2413); |
| break; |
| case AR5K_RF2316: |
| ath5k_rfg = rfgain_2316; |
| size = ARRAY_SIZE(rfgain_2316); |
| break; |
| case AR5K_RF5413: |
| ath5k_rfg = rfgain_5413; |
| size = ARRAY_SIZE(rfgain_5413); |
| break; |
| case AR5K_RF2317: |
| case AR5K_RF2425: |
| ath5k_rfg = rfgain_2425; |
| size = ARRAY_SIZE(rfgain_2425); |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| index = (band == IEEE80211_BAND_2GHZ) ? 1 : 0; |
| |
| for (i = 0; i < size; i++) { |
| AR5K_REG_WAIT(i); |
| ath5k_hw_reg_write(ah, ath5k_rfg[i].rfg_value[index], |
| (u32)ath5k_rfg[i].rfg_register); |
| } |
| |
| return 0; |
| } |
| |
| |
| |
| /********************\ |
| * RF Registers setup * |
| \********************/ |
| |
| /* |
| * Setup RF registers by writing RF buffer on hw |
| */ |
| static int ath5k_hw_rfregs_init(struct ath5k_hw *ah, |
| struct ieee80211_channel *channel, unsigned int mode) |
| { |
| const struct ath5k_rf_reg *rf_regs; |
| const struct ath5k_ini_rfbuffer *ini_rfb; |
| const struct ath5k_gain_opt *go = NULL; |
| const struct ath5k_gain_opt_step *g_step; |
| struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; |
| u8 ee_mode = 0; |
| u32 *rfb; |
| int i, obdb = -1, bank = -1; |
| |
| switch (ah->ah_radio) { |
| case AR5K_RF5111: |
| rf_regs = rf_regs_5111; |
| ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5111); |
| ini_rfb = rfb_5111; |
| ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5111); |
| go = &rfgain_opt_5111; |
| break; |
| case AR5K_RF5112: |
| if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) { |
| rf_regs = rf_regs_5112a; |
| ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112a); |
| ini_rfb = rfb_5112a; |
| ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5112a); |
| } else { |
| rf_regs = rf_regs_5112; |
| ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112); |
| ini_rfb = rfb_5112; |
| ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5112); |
| } |
| go = &rfgain_opt_5112; |
| break; |
| case AR5K_RF2413: |
| rf_regs = rf_regs_2413; |
| ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2413); |
| ini_rfb = rfb_2413; |
| ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2413); |
| break; |
| case AR5K_RF2316: |
| rf_regs = rf_regs_2316; |
| ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2316); |
| ini_rfb = rfb_2316; |
| ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2316); |
| break; |
| case AR5K_RF5413: |
| rf_regs = rf_regs_5413; |
| ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5413); |
| ini_rfb = rfb_5413; |
| ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5413); |
| break; |
| case AR5K_RF2317: |
| rf_regs = rf_regs_2425; |
| ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2425); |
| ini_rfb = rfb_2317; |
| ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2317); |
| break; |
| case AR5K_RF2425: |
| rf_regs = rf_regs_2425; |
| ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2425); |
| if (ah->ah_mac_srev < AR5K_SREV_AR2417) { |
| ini_rfb = rfb_2425; |
| ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2425); |
| } else { |
| ini_rfb = rfb_2417; |
| ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2417); |
| } |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| /* If it's the first time we set RF buffer, allocate |
| * ah->ah_rf_banks based on ah->ah_rf_banks_size |
| * we set above */ |
| if (ah->ah_rf_banks == NULL) { |
| ah->ah_rf_banks = kmalloc(sizeof(u32) * ah->ah_rf_banks_size, |
| GFP_KERNEL); |
| if (ah->ah_rf_banks == NULL) { |
| ATH5K_ERR(ah, "out of memory\n"); |
| return -ENOMEM; |
| } |
| } |
| |
| /* Copy values to modify them */ |
| rfb = ah->ah_rf_banks; |
| |
| for (i = 0; i < ah->ah_rf_banks_size; i++) { |
| if (ini_rfb[i].rfb_bank >= AR5K_MAX_RF_BANKS) { |
| ATH5K_ERR(ah, "invalid bank\n"); |
| return -EINVAL; |
| } |
| |
| /* Bank changed, write down the offset */ |
| if (bank != ini_rfb[i].rfb_bank) { |
| bank = ini_rfb[i].rfb_bank; |
| ah->ah_offset[bank] = i; |
| } |
| |
| rfb[i] = ini_rfb[i].rfb_mode_data[mode]; |
| } |
| |
| /* Set Output and Driver bias current (OB/DB) */ |
| if (channel->band == IEEE80211_BAND_2GHZ) { |
| |
| if (channel->hw_value == AR5K_MODE_11B) |
| ee_mode = AR5K_EEPROM_MODE_11B; |
| else |
| ee_mode = AR5K_EEPROM_MODE_11G; |
| |
| /* For RF511X/RF211X combination we |
| * use b_OB and b_DB parameters stored |
| * in eeprom on ee->ee_ob[ee_mode][0] |
| * |
| * For all other chips we use OB/DB for 2GHz |
| * stored in the b/g modal section just like |
| * 802.11a on ee->ee_ob[ee_mode][1] */ |
| if ((ah->ah_radio == AR5K_RF5111) || |
| (ah->ah_radio == AR5K_RF5112)) |
| obdb = 0; |
| else |
| obdb = 1; |
| |
| ath5k_hw_rfb_op(ah, rf_regs, ee->ee_ob[ee_mode][obdb], |
| AR5K_RF_OB_2GHZ, true); |
| |
| ath5k_hw_rfb_op(ah, rf_regs, ee->ee_db[ee_mode][obdb], |
| AR5K_RF_DB_2GHZ, true); |
| |
| /* RF5111 always needs OB/DB for 5GHz, even if we use 2GHz */ |
| } else if ((channel->band == IEEE80211_BAND_5GHZ) || |
| (ah->ah_radio == AR5K_RF5111)) { |
| |
| /* For 11a, Turbo and XR we need to choose |
| * OB/DB based on frequency range */ |
| ee_mode = AR5K_EEPROM_MODE_11A; |
| obdb = channel->center_freq >= 5725 ? 3 : |
| (channel->center_freq >= 5500 ? 2 : |
| (channel->center_freq >= 5260 ? 1 : |
| (channel->center_freq > 4000 ? 0 : -1))); |
| |
| if (obdb < 0) |
| return -EINVAL; |
| |
| ath5k_hw_rfb_op(ah, rf_regs, ee->ee_ob[ee_mode][obdb], |
| AR5K_RF_OB_5GHZ, true); |
| |
| ath5k_hw_rfb_op(ah, rf_regs, ee->ee_db[ee_mode][obdb], |
| AR5K_RF_DB_5GHZ, true); |
| } |
| |
| g_step = &go->go_step[ah->ah_gain.g_step_idx]; |
| |
| /* Set turbo mode (N/A on RF5413) */ |
| if ((ah->ah_bwmode == AR5K_BWMODE_40MHZ) && |
| (ah->ah_radio != AR5K_RF5413)) |
| ath5k_hw_rfb_op(ah, rf_regs, 1, AR5K_RF_TURBO, false); |
| |
| /* Bank Modifications (chip-specific) */ |
| if (ah->ah_radio == AR5K_RF5111) { |
| |
| /* Set gain_F settings according to current step */ |
| if (channel->hw_value != AR5K_MODE_11B) { |
| |
| AR5K_REG_WRITE_BITS(ah, AR5K_PHY_FRAME_CTL, |
| AR5K_PHY_FRAME_CTL_TX_CLIP, |
| g_step->gos_param[0]); |
| |
| ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[1], |
| AR5K_RF_PWD_90, true); |
| |
| ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[2], |
| AR5K_RF_PWD_84, true); |
| |
| ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[3], |
| AR5K_RF_RFGAIN_SEL, true); |
| |
| /* We programmed gain_F parameters, switch back |
| * to active state */ |
| ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE; |
| |
| } |
| |
| /* Bank 6/7 setup */ |
| |
| ath5k_hw_rfb_op(ah, rf_regs, !ee->ee_xpd[ee_mode], |
| AR5K_RF_PWD_XPD, true); |
| |
| ath5k_hw_rfb_op(ah, rf_regs, ee->ee_x_gain[ee_mode], |
| AR5K_RF_XPD_GAIN, true); |
| |
| ath5k_hw_rfb_op(ah, rf_regs, ee->ee_i_gain[ee_mode], |
| AR5K_RF_GAIN_I, true); |
| |
| ath5k_hw_rfb_op(ah, rf_regs, ee->ee_xpd[ee_mode], |
| AR5K_RF_PLO_SEL, true); |
| |
| /* Tweak power detectors for half/quarter rate support */ |
| if (ah->ah_bwmode == AR5K_BWMODE_5MHZ || |
| ah->ah_bwmode == AR5K_BWMODE_10MHZ) { |
| u8 wait_i; |
| |
| ath5k_hw_rfb_op(ah, rf_regs, 0x1f, |
| AR5K_RF_WAIT_S, true); |
| |
| wait_i = (ah->ah_bwmode == AR5K_BWMODE_5MHZ) ? |
| 0x1f : 0x10; |
| |
| ath5k_hw_rfb_op(ah, rf_regs, wait_i, |
| AR5K_RF_WAIT_I, true); |
| ath5k_hw_rfb_op(ah, rf_regs, 3, |
| AR5K_RF_MAX_TIME, true); |
| |
| } |
| } |
| |
| if (ah->ah_radio == AR5K_RF5112) { |
| |
| /* Set gain_F settings according to current step */ |
| if (channel->hw_value != AR5K_MODE_11B) { |
| |
| ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[0], |
| AR5K_RF_MIXGAIN_OVR, true); |
| |
| ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[1], |
| AR5K_RF_PWD_138, true); |
| |
| ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[2], |
| AR5K_RF_PWD_137, true); |
| |
| ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[3], |
| AR5K_RF_PWD_136, true); |
| |
| ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[4], |
| AR5K_RF_PWD_132, true); |
| |
| ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[5], |
| AR5K_RF_PWD_131, true); |
| |
| ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[6], |
| AR5K_RF_PWD_130, true); |
| |
| /* We programmed gain_F parameters, switch back |
| * to active state */ |
| ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE; |
| } |
| |
| /* Bank 6/7 setup */ |
| |
| ath5k_hw_rfb_op(ah, rf_regs, ee->ee_xpd[ee_mode], |
| AR5K_RF_XPD_SEL, true); |
| |
| if (ah->ah_radio_5ghz_revision < AR5K_SREV_RAD_5112A) { |
| /* Rev. 1 supports only one xpd */ |
| ath5k_hw_rfb_op(ah, rf_regs, |
| ee->ee_x_gain[ee_mode], |
| AR5K_RF_XPD_GAIN, true); |
| |
| } else { |
| u8 *pdg_curve_to_idx = ee->ee_pdc_to_idx[ee_mode]; |
| if (ee->ee_pd_gains[ee_mode] > 1) { |
| ath5k_hw_rfb_op(ah, rf_regs, |
| pdg_curve_to_idx[0], |
| AR5K_RF_PD_GAIN_LO, true); |
| ath5k_hw_rfb_op(ah, rf_regs, |
| pdg_curve_to_idx[1], |
| AR5K_RF_PD_GAIN_HI, true); |
| } else { |
| ath5k_hw_rfb_op(ah, rf_regs, |
| pdg_curve_to_idx[0], |
| AR5K_RF_PD_GAIN_LO, true); |
| ath5k_hw_rfb_op(ah, rf_regs, |
| pdg_curve_to_idx[0], |
| AR5K_RF_PD_GAIN_HI, true); |
| } |
| |
| /* Lower synth voltage on Rev 2 */ |
| if (ah->ah_radio == AR5K_RF5112 && |
| (ah->ah_radio_5ghz_revision & AR5K_SREV_REV) > 0) { |
| ath5k_hw_rfb_op(ah, rf_regs, 2, |
| AR5K_RF_HIGH_VC_CP, true); |
| |
| ath5k_hw_rfb_op(ah, rf_regs, 2, |
| AR5K_RF_MID_VC_CP, true); |
| |
| ath5k_hw_rfb_op(ah, rf_regs, 2, |
| AR5K_RF_LOW_VC_CP, true); |
| |
| ath5k_hw_rfb_op(ah, rf_regs, 2, |
| AR5K_RF_PUSH_UP, true); |
| } |
| |
| /* Decrease power consumption on 5213+ BaseBand */ |
| if (ah->ah_phy_revision >= AR5K_SREV_PHY_5212A) { |
| ath5k_hw_rfb_op(ah, rf_regs, 1, |
| AR5K_RF_PAD2GND, true); |
| |
| ath5k_hw_rfb_op(ah, rf_regs, 1, |
| AR5K_RF_XB2_LVL, true); |
| |
| ath5k_hw_rfb_op(ah, rf_regs, 1, |
| AR5K_RF_XB5_LVL, true); |
| |
| ath5k_hw_rfb_op(ah, rf_regs, 1, |
| AR5K_RF_PWD_167, true); |
| |
| ath5k_hw_rfb_op(ah, rf_regs, 1, |
| AR5K_RF_PWD_166, true); |
| } |
| } |
| |
| ath5k_hw_rfb_op(ah, rf_regs, ee->ee_i_gain[ee_mode], |
| AR5K_RF_GAIN_I, true); |
| |
| /* Tweak power detector for half/quarter rates */ |
| if (ah->ah_bwmode == AR5K_BWMODE_5MHZ || |
| ah->ah_bwmode == AR5K_BWMODE_10MHZ) { |
| u8 pd_delay; |
| |
| pd_delay = (ah->ah_bwmode == AR5K_BWMODE_5MHZ) ? |
| 0xf : 0x8; |
| |
| ath5k_hw_rfb_op(ah, rf_regs, pd_delay, |
| AR5K_RF_PD_PERIOD_A, true); |
| ath5k_hw_rfb_op(ah, rf_regs, 0xf, |
| AR5K_RF_PD_DELAY_A, true); |
| |
| } |
| } |
| |
| if (ah->ah_radio == AR5K_RF5413 && |
| channel->band == IEEE80211_BAND_2GHZ) { |
| |
| ath5k_hw_rfb_op(ah, rf_regs, 1, AR5K_RF_DERBY_CHAN_SEL_MODE, |
| true); |
| |
| /* Set optimum value for early revisions (on pci-e chips) */ |
| if (ah->ah_mac_srev >= AR5K_SREV_AR5424 && |
| ah->ah_mac_srev < AR5K_SREV_AR5413) |
| ath5k_hw_rfb_op(ah, rf_regs, ath5k_hw_bitswap(6, 3), |
| AR5K_RF_PWD_ICLOBUF_2G, true); |
| |
| } |
| |
| /* Write RF banks on hw */ |
| for (i = 0; i < ah->ah_rf_banks_size; i++) { |
| AR5K_REG_WAIT(i); |
| ath5k_hw_reg_write(ah, rfb[i], ini_rfb[i].rfb_ctrl_register); |
| } |
| |
| return 0; |
| } |
| |
| |
| /**************************\ |
| PHY/RF channel functions |
| \**************************/ |
| |
| /* |
| * Conversion needed for RF5110 |
| */ |
| static u32 ath5k_hw_rf5110_chan2athchan(struct ieee80211_channel *channel) |
| { |
| u32 athchan; |
| |
| /* |
| * Convert IEEE channel/MHz to an internal channel value used |
| * by the AR5210 chipset. This has not been verified with |
| * newer chipsets like the AR5212A who have a completely |
| * different RF/PHY part. |
| */ |
| athchan = (ath5k_hw_bitswap( |
| (ieee80211_frequency_to_channel( |
| channel->center_freq) - 24) / 2, 5) |
| << 1) | (1 << 6) | 0x1; |
| return athchan; |
| } |
| |
| /* |
| * Set channel on RF5110 |
| */ |
| static int ath5k_hw_rf5110_channel(struct ath5k_hw *ah, |
| struct ieee80211_channel *channel) |
| { |
| u32 data; |
| |
| /* |
| * Set the channel and wait |
| */ |
| data = ath5k_hw_rf5110_chan2athchan(channel); |
| ath5k_hw_reg_write(ah, data, AR5K_RF_BUFFER); |
| ath5k_hw_reg_write(ah, 0, AR5K_RF_BUFFER_CONTROL_0); |
| mdelay(1); |
| |
| return 0; |
| } |
| |
| /* |
| * Conversion needed for 5111 |
| */ |
| static int ath5k_hw_rf5111_chan2athchan(unsigned int ieee, |
| struct ath5k_athchan_2ghz *athchan) |
| { |
| int channel; |
| |
| /* Cast this value to catch negative channel numbers (>= -19) */ |
| channel = (int)ieee; |
| |
| /* |
| * Map 2GHz IEEE channel to 5GHz Atheros channel |
| */ |
| if (channel <= 13) { |
| athchan->a2_athchan = 115 + channel; |
| athchan->a2_flags = 0x46; |
| } else if (channel == 14) { |
| athchan->a2_athchan = 124; |
| athchan->a2_flags = 0x44; |
| } else if (channel >= 15 && channel <= 26) { |
| athchan->a2_athchan = ((channel - 14) * 4) + 132; |
| athchan->a2_flags = 0x46; |
| } else |
| return -EINVAL; |
| |
| return 0; |
| } |
| |
| /* |
| * Set channel on 5111 |
| */ |
| static int ath5k_hw_rf5111_channel(struct ath5k_hw *ah, |
| struct ieee80211_channel *channel) |
| { |
| struct ath5k_athchan_2ghz ath5k_channel_2ghz; |
| unsigned int ath5k_channel = |
| ieee80211_frequency_to_channel(channel->center_freq); |
| u32 data0, data1, clock; |
| int ret; |
| |
| /* |
| * Set the channel on the RF5111 radio |
| */ |
| data0 = data1 = 0; |
| |
| if (channel->band == IEEE80211_BAND_2GHZ) { |
| /* Map 2GHz channel to 5GHz Atheros channel ID */ |
| ret = ath5k_hw_rf5111_chan2athchan( |
| ieee80211_frequency_to_channel(channel->center_freq), |
| &ath5k_channel_2ghz); |
| if (ret) |
| return ret; |
| |
| ath5k_channel = ath5k_channel_2ghz.a2_athchan; |
| data0 = ((ath5k_hw_bitswap(ath5k_channel_2ghz.a2_flags, 8) & 0xff) |
| << 5) | (1 << 4); |
| } |
| |
| if (ath5k_channel < 145 || !(ath5k_channel & 1)) { |
| clock = 1; |
| data1 = ((ath5k_hw_bitswap(ath5k_channel - 24, 8) & 0xff) << 2) | |
| (clock << 1) | (1 << 10) | 1; |
| } else { |
| clock = 0; |
| data1 = ((ath5k_hw_bitswap((ath5k_channel - 24) / 2, 8) & 0xff) |
| << 2) | (clock << 1) | (1 << 10) | 1; |
| } |
| |
| ath5k_hw_reg_write(ah, (data1 & 0xff) | ((data0 & 0xff) << 8), |
| AR5K_RF_BUFFER); |
| ath5k_hw_reg_write(ah, ((data1 >> 8) & 0xff) | (data0 & 0xff00), |
| AR5K_RF_BUFFER_CONTROL_3); |
| |
| return 0; |
| } |
| |
| /* |
| * Set channel on 5112 and newer |
| */ |
| static int ath5k_hw_rf5112_channel(struct ath5k_hw *ah, |
| struct ieee80211_channel *channel) |
| { |
| u32 data, data0, data1, data2; |
| u16 c; |
| |
| data = data0 = data1 = data2 = 0; |
| c = channel->center_freq; |
| |
| if (c < 4800) { |
| if (!((c - 2224) % 5)) { |
| data0 = ((2 * (c - 704)) - 3040) / 10; |
| data1 = 1; |
| } else if (!((c - 2192) % 5)) { |
| data0 = ((2 * (c - 672)) - 3040) / 10; |
| data1 = 0; |
| } else |
| return -EINVAL; |
| |
| data0 = ath5k_hw_bitswap((data0 << 2) & 0xff, 8); |
| } else if ((c % 5) != 2 || c > 5435) { |
| if (!(c % 20) && c >= 5120) { |
| data0 = ath5k_hw_bitswap(((c - 4800) / 20 << 2), 8); |
| data2 = ath5k_hw_bitswap(3, 2); |
| } else if (!(c % 10)) { |
| data0 = ath5k_hw_bitswap(((c - 4800) / 10 << 1), 8); |
| data2 = ath5k_hw_bitswap(2, 2); |
| } else if (!(c % 5)) { |
| data0 = ath5k_hw_bitswap((c - 4800) / 5, 8); |
| data2 = ath5k_hw_bitswap(1, 2); |
| } else |
| return -EINVAL; |
| } else { |
| data0 = ath5k_hw_bitswap((10 * (c - 2 - 4800)) / 25 + 1, 8); |
| data2 = ath5k_hw_bitswap(0, 2); |
| } |
| |
| data = (data0 << 4) | (data1 << 1) | (data2 << 2) | 0x1001; |
| |
| ath5k_hw_reg_write(ah, data & 0xff, AR5K_RF_BUFFER); |
| ath5k_hw_reg_write(ah, (data >> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5); |
| |
| return 0; |
| } |
| |
| /* |
| * Set the channel on the RF2425 |
| */ |
| static int ath5k_hw_rf2425_channel(struct ath5k_hw *ah, |
| struct ieee80211_channel *channel) |
| { |
| u32 data, data0, data2; |
| u16 c; |
| |
| data = data0 = data2 = 0; |
| c = channel->center_freq; |
| |
| if (c < 4800) { |
| data0 = ath5k_hw_bitswap((c - 2272), 8); |
| data2 = 0; |
| /* ? 5GHz ? */ |
| } else if ((c % 5) != 2 || c > 5435) { |
| if (!(c % 20) && c < 5120) |
| data0 = ath5k_hw_bitswap(((c - 4800) / 20 << 2), 8); |
| else if (!(c % 10)) |
| data0 = ath5k_hw_bitswap(((c - 4800) / 10 << 1), 8); |
| else if (!(c % 5)) |
| data0 = ath5k_hw_bitswap((c - 4800) / 5, 8); |
| else |
| return -EINVAL; |
| data2 = ath5k_hw_bitswap(1, 2); |
| } else { |
| data0 = ath5k_hw_bitswap((10 * (c - 2 - 4800)) / 25 + 1, 8); |
| data2 = ath5k_hw_bitswap(0, 2); |
| } |
| |
| data = (data0 << 4) | data2 << 2 | 0x1001; |
| |
| ath5k_hw_reg_write(ah, data & 0xff, AR5K_RF_BUFFER); |
| ath5k_hw_reg_write(ah, (data >> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5); |
| |
| return 0; |
| } |
| |
| /* |
| * Set a channel on the radio chip |
| */ |
| static int ath5k_hw_channel(struct ath5k_hw *ah, |
| struct ieee80211_channel *channel) |
| { |
| int ret; |
| /* |
| * Check bounds supported by the PHY (we don't care about regulatory |
| * restrictions at this point). |
| */ |
| if (!ath5k_channel_ok(ah, channel)) { |
| ATH5K_ERR(ah, |
| "channel frequency (%u MHz) out of supported " |
| "band range\n", |
| channel->center_freq); |
| return -EINVAL; |
| } |
| |
| /* |
| * Set the channel and wait |
| */ |
| switch (ah->ah_radio) { |
| case AR5K_RF5110: |
| ret = ath5k_hw_rf5110_channel(ah, channel); |
| break; |
| case AR5K_RF5111: |
| ret = ath5k_hw_rf5111_channel(ah, channel); |
| break; |
| case AR5K_RF2317: |
| case AR5K_RF2425: |
| ret = ath5k_hw_rf2425_channel(ah, channel); |
| break; |
| default: |
| ret = ath5k_hw_rf5112_channel(ah, channel); |
| break; |
| } |
| |
| if (ret) |
| return ret; |
| |
| /* Set JAPAN setting for channel 14 */ |
| if (channel->center_freq == 2484) { |
| AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_CCKTXCTL, |
| AR5K_PHY_CCKTXCTL_JAPAN); |
| } else { |
| AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_CCKTXCTL, |
| AR5K_PHY_CCKTXCTL_WORLD); |
| } |
| |
| ah->ah_current_channel = channel; |
| |
| return 0; |
| } |
| |
| /*****************\ |
| PHY calibration |
| \*****************/ |
| |
| static s32 ath5k_hw_read_measured_noise_floor(struct ath5k_hw *ah) |
| { |
| s32 val; |
| |
| val = ath5k_hw_reg_read(ah, AR5K_PHY_NF); |
| return sign_extend32(AR5K_REG_MS(val, AR5K_PHY_NF_MINCCA_PWR), 8); |
| } |
| |
| void ath5k_hw_init_nfcal_hist(struct ath5k_hw *ah) |
| { |
| int i; |
| |
| ah->ah_nfcal_hist.index = 0; |
| for (i = 0; i < ATH5K_NF_CAL_HIST_MAX; i++) |
| ah->ah_nfcal_hist.nfval[i] = AR5K_TUNE_CCA_MAX_GOOD_VALUE; |
| } |
| |
| static void ath5k_hw_update_nfcal_hist(struct ath5k_hw *ah, s16 noise_floor) |
| { |
| struct ath5k_nfcal_hist *hist = &ah->ah_nfcal_hist; |
| hist->index = (hist->index + 1) & (ATH5K_NF_CAL_HIST_MAX - 1); |
| hist->nfval[hist->index] = noise_floor; |
| } |
| |
| static s16 ath5k_hw_get_median_noise_floor(struct ath5k_hw *ah) |
| { |
| s16 sort[ATH5K_NF_CAL_HIST_MAX]; |
| s16 tmp; |
| int i, j; |
| |
| memcpy(sort, ah->ah_nfcal_hist.nfval, sizeof(sort)); |
| for (i = 0; i < ATH5K_NF_CAL_HIST_MAX - 1; i++) { |
| for (j = 1; j < ATH5K_NF_CAL_HIST_MAX - i; j++) { |
| if (sort[j] > sort[j - 1]) { |
| tmp = sort[j]; |
| sort[j] = sort[j - 1]; |
| sort[j - 1] = tmp; |
| } |
| } |
| } |
| for (i = 0; i < ATH5K_NF_CAL_HIST_MAX; i++) { |
| ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE, |
| "cal %d:%d\n", i, sort[i]); |
| } |
| return sort[(ATH5K_NF_CAL_HIST_MAX - 1) / 2]; |
| } |
| |
| /* |
| * When we tell the hardware to perform a noise floor calibration |
| * by setting the AR5K_PHY_AGCCTL_NF bit, it will periodically |
| * sample-and-hold the minimum noise level seen at the antennas. |
| * This value is then stored in a ring buffer of recently measured |
| * noise floor values so we have a moving window of the last few |
| * samples. |
| * |
| * The median of the values in the history is then loaded into the |
| * hardware for its own use for RSSI and CCA measurements. |
| */ |
| void ath5k_hw_update_noise_floor(struct ath5k_hw *ah) |
| { |
| struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; |
| u32 val; |
| s16 nf, threshold; |
| u8 ee_mode; |
| |
| /* keep last value if calibration hasn't completed */ |
| if (ath5k_hw_reg_read(ah, AR5K_PHY_AGCCTL) & AR5K_PHY_AGCCTL_NF) { |
| ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE, |
| "NF did not complete in calibration window\n"); |
| |
| return; |
| } |
| |
| ee_mode = ath5k_eeprom_mode_from_channel(ah->ah_current_channel); |
| |
| /* completed NF calibration, test threshold */ |
| nf = ath5k_hw_read_measured_noise_floor(ah); |
| threshold = ee->ee_noise_floor_thr[ee_mode]; |
| |
| if (nf > threshold) { |
| ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE, |
| "noise floor failure detected; " |
| "read %d, threshold %d\n", |
| nf, threshold); |
| |
| nf = AR5K_TUNE_CCA_MAX_GOOD_VALUE; |
| } |
| |
| ath5k_hw_update_nfcal_hist(ah, nf); |
| nf = ath5k_hw_get_median_noise_floor(ah); |
| |
| /* load noise floor (in .5 dBm) so the hardware will use it */ |
| val = ath5k_hw_reg_read(ah, AR5K_PHY_NF) & ~AR5K_PHY_NF_M; |
| val |= (nf * 2) & AR5K_PHY_NF_M; |
| ath5k_hw_reg_write(ah, val, AR5K_PHY_NF); |
| |
| AR5K_REG_MASKED_BITS(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_NF, |
| ~(AR5K_PHY_AGCCTL_NF_EN | AR5K_PHY_AGCCTL_NF_NOUPDATE)); |
| |
| ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_NF, |
| 0, false); |
| |
| /* |
| * Load a high max CCA Power value (-50 dBm in .5 dBm units) |
| * so that we're not capped by the median we just loaded. |
| * This will be used as the initial value for the next noise |
| * floor calibration. |
| */ |
| val = (val & ~AR5K_PHY_NF_M) | ((-50 * 2) & AR5K_PHY_NF_M); |
| ath5k_hw_reg_write(ah, val, AR5K_PHY_NF); |
| AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL, |
| AR5K_PHY_AGCCTL_NF_EN | |
| AR5K_PHY_AGCCTL_NF_NOUPDATE | |
| AR5K_PHY_AGCCTL_NF); |
| |
| ah->ah_noise_floor = nf; |
| |
| ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE, |
| "noise floor calibrated: %d\n", nf); |
| } |
| |
| /* |
| * Perform a PHY calibration on RF5110 |
| * -Fix BPSK/QAM Constellation (I/Q correction) |
| */ |
| static int ath5k_hw_rf5110_calibrate(struct ath5k_hw *ah, |
| struct ieee80211_channel *channel) |
| { |
| u32 phy_sig, phy_agc, phy_sat, beacon; |
| int ret; |
| |
| /* |
| * Disable beacons and RX/TX queues, wait |
| */ |
| AR5K_REG_ENABLE_BITS(ah, AR5K_DIAG_SW_5210, |
| AR5K_DIAG_SW_DIS_TX_5210 | AR5K_DIAG_SW_DIS_RX_5210); |
| beacon = ath5k_hw_reg_read(ah, AR5K_BEACON_5210); |
| ath5k_hw_reg_write(ah, beacon & ~AR5K_BEACON_ENABLE, AR5K_BEACON_5210); |
| |
| mdelay(2); |
| |
| /* |
| * Set the channel (with AGC turned off) |
| */ |
| AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE); |
| udelay(10); |
| ret = ath5k_hw_channel(ah, channel); |
| |
| /* |
| * Activate PHY and wait |
| */ |
| ath5k_hw_reg_write(ah, AR5K_PHY_ACT_ENABLE, AR5K_PHY_ACT); |
| mdelay(1); |
| |
| AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE); |
| |
| if (ret) |
| return ret; |
| |
| /* |
| * Calibrate the radio chip |
| */ |
| |
| /* Remember normal state */ |
| phy_sig = ath5k_hw_reg_read(ah, AR5K_PHY_SIG); |
| phy_agc = ath5k_hw_reg_read(ah, AR5K_PHY_AGCCOARSE); |
| phy_sat = ath5k_hw_reg_read(ah, AR5K_PHY_ADCSAT); |
| |
| /* Update radio registers */ |
| ath5k_hw_reg_write(ah, (phy_sig & ~(AR5K_PHY_SIG_FIRPWR)) | |
| AR5K_REG_SM(-1, AR5K_PHY_SIG_FIRPWR), AR5K_PHY_SIG); |
| |
| ath5k_hw_reg_write(ah, (phy_agc & ~(AR5K_PHY_AGCCOARSE_HI | |
| AR5K_PHY_AGCCOARSE_LO)) | |
| AR5K_REG_SM(-1, AR5K_PHY_AGCCOARSE_HI) | |
| AR5K_REG_SM(-127, AR5K_PHY_AGCCOARSE_LO), AR5K_PHY_AGCCOARSE); |
| |
| ath5k_hw_reg_write(ah, (phy_sat & ~(AR5K_PHY_ADCSAT_ICNT | |
| AR5K_PHY_ADCSAT_THR)) | |
| AR5K_REG_SM(2, AR5K_PHY_ADCSAT_ICNT) | |
| AR5K_REG_SM(12, AR5K_PHY_ADCSAT_THR), AR5K_PHY_ADCSAT); |
| |
| udelay(20); |
| |
| AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE); |
| udelay(10); |
| ath5k_hw_reg_write(ah, AR5K_PHY_RFSTG_DISABLE, AR5K_PHY_RFSTG); |
| AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE); |
| |
| mdelay(1); |
| |
| /* |
| * Enable calibration and wait until completion |
| */ |
| AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_CAL); |
| |
| ret = ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL, |
| AR5K_PHY_AGCCTL_CAL, 0, false); |
| |
| /* Reset to normal state */ |
| ath5k_hw_reg_write(ah, phy_sig, AR5K_PHY_SIG); |
| ath5k_hw_reg_write(ah, phy_agc, AR5K_PHY_AGCCOARSE); |
| ath5k_hw_reg_write(ah, phy_sat, AR5K_PHY_ADCSAT); |
| |
| if (ret) { |
| ATH5K_ERR(ah, "calibration timeout (%uMHz)\n", |
| channel->center_freq); |
| return ret; |
| } |
| |
| /* |
| * Re-enable RX/TX and beacons |
| */ |
| AR5K_REG_DISABLE_BITS(ah, AR5K_DIAG_SW_5210, |
| AR5K_DIAG_SW_DIS_TX_5210 | AR5K_DIAG_SW_DIS_RX_5210); |
| ath5k_hw_reg_write(ah, beacon, AR5K_BEACON_5210); |
| |
| return 0; |
| } |
| |
| /* |
| * Perform I/Q calibration on RF5111/5112 and newer chips |
| */ |
| static int |
| ath5k_hw_rf511x_iq_calibrate(struct ath5k_hw *ah) |
| { |
| u32 i_pwr, q_pwr; |
| s32 iq_corr, i_coff, i_coffd, q_coff, q_coffd; |
| int i; |
| |
| if (!ah->ah_calibration || |
| ath5k_hw_reg_read(ah, AR5K_PHY_IQ) & AR5K_PHY_IQ_RUN) |
| return 0; |
| |
| /* Calibration has finished, get the results and re-run */ |
| /* work around empty results which can apparently happen on 5212 */ |
| for (i = 0; i <= 10; i++) { |
| iq_corr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_CORR); |
| i_pwr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_PWR_I); |
| q_pwr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_PWR_Q); |
| ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_CALIBRATE, |
| "iq_corr:%x i_pwr:%x q_pwr:%x", iq_corr, i_pwr, q_pwr); |
| if (i_pwr && q_pwr) |
| break; |
| } |
| |
| i_coffd = ((i_pwr >> 1) + (q_pwr >> 1)) >> 7; |
| |
| if (ah->ah_version == AR5K_AR5211) |
| q_coffd = q_pwr >> 6; |
| else |
| q_coffd = q_pwr >> 7; |
| |
| /* protect against divide by 0 and loss of sign bits */ |
| if (i_coffd == 0 || q_coffd < 2) |
| return 0; |
| |
| i_coff = (-iq_corr) / i_coffd; |
| i_coff = clamp(i_coff, -32, 31); /* signed 6 bit */ |
| |
| if (ah->ah_version == AR5K_AR5211) |
| q_coff = (i_pwr / q_coffd) - 64; |
| else |
| q_coff = (i_pwr / q_coffd) - 128; |
| q_coff = clamp(q_coff, -16, 15); /* signed 5 bit */ |
| |
| ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_CALIBRATE, |
| "new I:%d Q:%d (i_coffd:%x q_coffd:%x)", |
| i_coff, q_coff, i_coffd, q_coffd); |
| |
| /* Commit new I/Q values (set enable bit last to match HAL sources) */ |
| AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_Q_I_COFF, i_coff); |
| AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_Q_Q_COFF, q_coff); |
| AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_ENABLE); |
| |
| /* Re-enable calibration -if we don't we'll commit |
| * the same values again and again */ |
| AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ, |
| AR5K_PHY_IQ_CAL_NUM_LOG_MAX, 15); |
| AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_RUN); |
| |
| return 0; |
| } |
| |
| /* |
| * Perform a PHY calibration |
| */ |
| int ath5k_hw_phy_calibrate(struct ath5k_hw *ah, |
| struct ieee80211_channel *channel) |
| { |
| int ret; |
| |
| if (ah->ah_radio == AR5K_RF5110) |
| return ath5k_hw_rf5110_calibrate(ah, channel); |
| |
| ret = ath5k_hw_rf511x_iq_calibrate(ah); |
| |
| if ((ah->ah_radio == AR5K_RF5111 || ah->ah_radio == AR5K_RF5112) && |
| (channel->hw_value != AR5K_MODE_11B)) |
| ath5k_hw_request_rfgain_probe(ah); |
| |
| return ret; |
| } |
| |
| |
| /***************************\ |
| * Spur mitigation functions * |
| \***************************/ |
| |
| static void |
| ath5k_hw_set_spur_mitigation_filter(struct ath5k_hw *ah, |
| struct ieee80211_channel *channel) |
| { |
| struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; |
| u32 mag_mask[4] = {0, 0, 0, 0}; |
| u32 pilot_mask[2] = {0, 0}; |
| /* Note: fbin values are scaled up by 2 */ |
| u16 spur_chan_fbin, chan_fbin, symbol_width, spur_detection_window; |
| s32 spur_delta_phase, spur_freq_sigma_delta; |
| s32 spur_offset, num_symbols_x16; |
| u8 num_symbol_offsets, i, freq_band; |
| |
| /* Convert current frequency to fbin value (the same way channels |
| * are stored on EEPROM, check out ath5k_eeprom_bin2freq) and scale |
| * up by 2 so we can compare it later */ |
| if (channel->band == IEEE80211_BAND_2GHZ) { |
| chan_fbin = (channel->center_freq - 2300) * 10; |
| freq_band = AR5K_EEPROM_BAND_2GHZ; |
| } else { |
| chan_fbin = (channel->center_freq - 4900) * 10; |
| freq_band = AR5K_EEPROM_BAND_5GHZ; |
| } |
| |
| /* Check if any spur_chan_fbin from EEPROM is |
| * within our current channel's spur detection range */ |
| spur_chan_fbin = AR5K_EEPROM_NO_SPUR; |
| spur_detection_window = AR5K_SPUR_CHAN_WIDTH; |
| /* XXX: Half/Quarter channels ?*/ |
| if (ah->ah_bwmode == AR5K_BWMODE_40MHZ) |
| spur_detection_window *= 2; |
| |
| for (i = 0; i < AR5K_EEPROM_N_SPUR_CHANS; i++) { |
| spur_chan_fbin = ee->ee_spur_chans[i][freq_band]; |
| |
| /* Note: mask cleans AR5K_EEPROM_NO_SPUR flag |
| * so it's zero if we got nothing from EEPROM */ |
| if (spur_chan_fbin == AR5K_EEPROM_NO_SPUR) { |
| spur_chan_fbin &= AR5K_EEPROM_SPUR_CHAN_MASK; |
| break; |
| } |
| |
| if ((chan_fbin - spur_detection_window <= |
| (spur_chan_fbin & AR5K_EEPROM_SPUR_CHAN_MASK)) && |
| (chan_fbin + spur_detection_window >= |
| (spur_chan_fbin & AR5K_EEPROM_SPUR_CHAN_MASK))) { |
| spur_chan_fbin &= AR5K_EEPROM_SPUR_CHAN_MASK; |
| break; |
| } |
| } |
| |
| /* We need to enable spur filter for this channel */ |
| if (spur_chan_fbin) { |
| spur_offset = spur_chan_fbin - chan_fbin; |
| /* |
| * Calculate deltas: |
| * spur_freq_sigma_delta -> spur_offset / sample_freq << 21 |
| * spur_delta_phase -> spur_offset / chip_freq << 11 |
| * Note: Both values have 100Hz resolution |
| */ |
| switch (ah->ah_bwmode) { |
| case AR5K_BWMODE_40MHZ: |
| /* Both sample_freq and chip_freq are 80MHz */ |
| spur_delta_phase = (spur_offset << 16) / 25; |
| spur_freq_sigma_delta = (spur_delta_phase >> 10); |
| symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz * 2; |
| break; |
| case AR5K_BWMODE_10MHZ: |
| /* Both sample_freq and chip_freq are 20MHz (?) */ |
| spur_delta_phase = (spur_offset << 18) / 25; |
| spur_freq_sigma_delta = (spur_delta_phase >> 10); |
| symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz / 2; |
| case AR5K_BWMODE_5MHZ: |
| /* Both sample_freq and chip_freq are 10MHz (?) */ |
| spur_delta_phase = (spur_offset << 19) / 25; |
| spur_freq_sigma_delta = (spur_delta_phase >> 10); |
| symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz / 4; |
| default: |
| if (channel->band == IEEE80211_BAND_5GHZ) { |
| /* Both sample_freq and chip_freq are 40MHz */ |
| spur_delta_phase = (spur_offset << 17) / 25; |
| spur_freq_sigma_delta = |
| (spur_delta_phase >> 10); |
| symbol_width = |
| AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz; |
| } else { |
| /* sample_freq -> 40MHz chip_freq -> 44MHz |
| * (for b compatibility) */ |
| spur_delta_phase = (spur_offset << 17) / 25; |
| spur_freq_sigma_delta = |
| (spur_offset << 8) / 55; |
| symbol_width = |
| AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz; |
| } |
| break; |
| } |
| |
| /* Calculate pilot and magnitude masks */ |
| |
| /* Scale up spur_offset by 1000 to switch to 100HZ resolution |
| * and divide by symbol_width to find how many symbols we have |
| * Note: number of symbols is scaled up by 16 */ |
| num_symbols_x16 = ((spur_offset * 1000) << 4) / symbol_width; |
| |
| /* Spur is on a symbol if num_symbols_x16 % 16 is zero */ |
| if (!(num_symbols_x16 & 0xF)) |
| /* _X_ */ |
| num_symbol_offsets = 3; |
| else |
| /* _xx_ */ |
| num_symbol_offsets = 4; |
| |
| for (i = 0; i < num_symbol_offsets; i++) { |
| |
| /* Calculate pilot mask */ |
| s32 curr_sym_off = |
| (num_symbols_x16 / 16) + i + 25; |
| |
| /* Pilot magnitude mask seems to be a way to |
| * declare the boundaries for our detection |
| * window or something, it's 2 for the middle |
| * value(s) where the symbol is expected to be |
| * and 1 on the boundary values */ |
| u8 plt_mag_map = |
| (i == 0 || i == (num_symbol_offsets - 1)) |
| ? 1 : 2; |
| |
| if (curr_sym_off >= 0 && curr_sym_off <= 32) { |
| if (curr_sym_off <= 25) |
| pilot_mask[0] |= 1 << curr_sym_off; |
| else if (curr_sym_off >= 27) |
| pilot_mask[0] |= 1 << (curr_sym_off - 1); |
| } else if (curr_sym_off >= 33 && curr_sym_off <= 52) |
| pilot_mask[1] |= 1 << (curr_sym_off - 33); |
| |
| /* Calculate magnitude mask (for viterbi decoder) */ |
| if (curr_sym_off >= -1 && curr_sym_off <= 14) |
| mag_mask[0] |= |
| plt_mag_map << (curr_sym_off + 1) * 2; |
| else if (curr_sym_off >= 15 && curr_sym_off <= 30) |
| mag_mask[1] |= |
| plt_mag_map << (curr_sym_off - 15) * 2; |
| else if (curr_sym_off >= 31 && curr_sym_off <= 46) |
| mag_mask[2] |= |
| plt_mag_map << (curr_sym_off - 31) * 2; |
| else if (curr_sym_off >= 47 && curr_sym_off <= 53) |
| mag_mask[3] |= |
| plt_mag_map << (curr_sym_off - 47) * 2; |
| |
| } |
| |
| /* Write settings on hw to enable spur filter */ |
| AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL, |
| AR5K_PHY_BIN_MASK_CTL_RATE, 0xff); |
| /* XXX: Self correlator also ? */ |
| AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, |
| AR5K_PHY_IQ_PILOT_MASK_EN | |
| AR5K_PHY_IQ_CHAN_MASK_EN | |
| AR5K_PHY_IQ_SPUR_FILT_EN); |
| |
| /* Set delta phase and freq sigma delta */ |
| ath5k_hw_reg_write(ah, |
| AR5K_REG_SM(spur_delta_phase, |
| AR5K_PHY_TIMING_11_SPUR_DELTA_PHASE) | |
| AR5K_REG_SM(spur_freq_sigma_delta, |
| AR5K_PHY_TIMING_11_SPUR_FREQ_SD) | |
| AR5K_PHY_TIMING_11_USE_SPUR_IN_AGC, |
| AR5K_PHY_TIMING_11); |
| |
| /* Write pilot masks */ |
| ath5k_hw_reg_write(ah, pilot_mask[0], AR5K_PHY_TIMING_7); |
| AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_8, |
| AR5K_PHY_TIMING_8_PILOT_MASK_2, |
| pilot_mask[1]); |
| |
| ath5k_hw_reg_write(ah, pilot_mask[0], AR5K_PHY_TIMING_9); |
| AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_10, |
| AR5K_PHY_TIMING_10_PILOT_MASK_2, |
| pilot_mask[1]); |
| |
| /* Write magnitude masks */ |
| ath5k_hw_reg_write(ah, mag_mask[0], AR5K_PHY_BIN_MASK_1); |
| ath5k_hw_reg_write(ah, mag_mask[1], AR5K_PHY_BIN_MASK_2); |
| ath5k_hw_reg_write(ah, mag_mask[2], AR5K_PHY_BIN_MASK_3); |
| AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL, |
| AR5K_PHY_BIN_MASK_CTL_MASK_4, |
| mag_mask[3]); |
| |
| ath5k_hw_reg_write(ah, mag_mask[0], AR5K_PHY_BIN_MASK2_1); |
| ath5k_hw_reg_write(ah, mag_mask[1], AR5K_PHY_BIN_MASK2_2); |
| ath5k_hw_reg_write(ah, mag_mask[2], AR5K_PHY_BIN_MASK2_3); |
| AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK2_4, |
| AR5K_PHY_BIN_MASK2_4_MASK_4, |
| mag_mask[3]); |
| |
| } else if (ath5k_hw_reg_read(ah, AR5K_PHY_IQ) & |
| AR5K_PHY_IQ_SPUR_FILT_EN) { |
| /* Clean up spur mitigation settings and disable filter */ |
| AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL, |
| AR5K_PHY_BIN_MASK_CTL_RATE, 0); |
| AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_IQ, |
| AR5K_PHY_IQ_PILOT_MASK_EN | |
| AR5K_PHY_IQ_CHAN_MASK_EN | |
| AR5K_PHY_IQ_SPUR_FILT_EN); |
| ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_11); |
| |
| /* Clear pilot masks */ |
| ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_7); |
| AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_8, |
| AR5K_PHY_TIMING_8_PILOT_MASK_2, |
| 0); |
| |
| ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_9); |
| AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_10, |
| AR5K_PHY_TIMING_10_PILOT_MASK_2, |
| 0); |
| |
| /* Clear magnitude masks */ |
| ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_1); |
| ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_2); |
| ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_3); |
| AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL, |
| AR5K_PHY_BIN_MASK_CTL_MASK_4, |
| 0); |
| |
| ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_1); |
| ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_2); |
| ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_3); |
| AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK2_4, |
| AR5K_PHY_BIN_MASK2_4_MASK_4, |
| 0); |
| } |
| } |
| |
| |
| /*****************\ |
| * Antenna control * |
| \*****************/ |
| |
| static void /*TODO:Boundary check*/ |
| ath5k_hw_set_def_antenna(struct ath5k_hw *ah, u8 ant) |
| { |
| if (ah->ah_version != AR5K_AR5210) |
| ath5k_hw_reg_write(ah, ant & 0x7, AR5K_DEFAULT_ANTENNA); |
| } |
| |
| /* |
| * Enable/disable fast rx antenna diversity |
| */ |
| static void |
| ath5k_hw_set_fast_div(struct ath5k_hw *ah, u8 ee_mode, bool enable) |
| { |
| switch (ee_mode) { |
| case AR5K_EEPROM_MODE_11G: |
| /* XXX: This is set to |
| * disabled on initvals !!! */ |
| case AR5K_EEPROM_MODE_11A: |
| if (enable) |
| AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGCCTL, |
| AR5K_PHY_AGCCTL_OFDM_DIV_DIS); |
| else |
| AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL, |
| AR5K_PHY_AGCCTL_OFDM_DIV_DIS); |
| break; |
| case AR5K_EEPROM_MODE_11B: |
| AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL, |
| AR5K_PHY_AGCCTL_OFDM_DIV_DIS); |
| break; |
| default: |
| return; |
| } |
| |
| if (enable) { |
| AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RESTART, |
| AR5K_PHY_RESTART_DIV_GC, 4); |
| |
| AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_FAST_ANT_DIV, |
| AR5K_PHY_FAST_ANT_DIV_EN); |
| } else { |
| AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RESTART, |
| AR5K_PHY_RESTART_DIV_GC, 0); |
| |
| AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_FAST_ANT_DIV, |
| AR5K_PHY_FAST_ANT_DIV_EN); |
| } |
| } |
| |
| void |
| ath5k_hw_set_antenna_switch(struct ath5k_hw *ah, u8 ee_mode) |
| { |
| u8 ant0, ant1; |
| |
| /* |
| * In case a fixed antenna was set as default |
| * use the same switch table twice. |
| */ |
| if (ah->ah_ant_mode == AR5K_ANTMODE_FIXED_A) |
| ant0 = ant1 = AR5K_ANT_SWTABLE_A; |
| else if (ah->ah_ant_mode == AR5K_ANTMODE_FIXED_B) |
| ant0 = ant1 = AR5K_ANT_SWTABLE_B; |
| else { |
| ant0 = AR5K_ANT_SWTABLE_A; |
| ant1 = AR5K_ANT_SWTABLE_B; |
| } |
| |
| /* Set antenna idle switch table */ |
| AR5K_REG_WRITE_BITS(ah, AR5K_PHY_ANT_CTL, |
| AR5K_PHY_ANT_CTL_SWTABLE_IDLE, |
| (ah->ah_ant_ctl[ee_mode][AR5K_ANT_CTL] | |
| AR5K_PHY_ANT_CTL_TXRX_EN)); |
| |
| /* Set antenna switch tables */ |
| ath5k_hw_reg_write(ah, ah->ah_ant_ctl[ee_mode][ant0], |
| AR5K_PHY_ANT_SWITCH_TABLE_0); |
| ath5k_hw_reg_write(ah, ah->ah_ant_ctl[ee_mode][ant1], |
| AR5K_PHY_ANT_SWITCH_TABLE_1); |
| } |
| |
| /* |
| * Set antenna operating mode |
| */ |
| void |
| ath5k_hw_set_antenna_mode(struct ath5k_hw *ah, u8 ant_mode) |
| { |
| struct ieee80211_channel *channel = ah->ah_current_channel; |
| bool use_def_for_tx, update_def_on_tx, use_def_for_rts, fast_div; |
| bool use_def_for_sg; |
| int ee_mode; |
| u8 def_ant, tx_ant; |
| u32 sta_id1 = 0; |
| |
| /* if channel is not initialized yet we can't set the antennas |
| * so just store the mode. it will be set on the next reset */ |
| if (channel == NULL) { |
| ah->ah_ant_mode = ant_mode; |
| return; |
| } |
| |
| def_ant = ah->ah_def_ant; |
| |
| ee_mode = ath5k_eeprom_mode_from_channel(channel); |
| if (ee_mode < 0) { |
| ATH5K_ERR(ah, |
| "invalid channel: %d\n", channel->center_freq); |
| return; |
| } |
| |
| switch (ant_mode) { |
| case AR5K_ANTMODE_DEFAULT: |
| tx_ant = 0; |
| use_def_for_tx = false; |
| update_def_on_tx = false; |
| use_def_for_rts = false; |
| use_def_for_sg = false; |
| fast_div = true; |
| break; |
| case AR5K_ANTMODE_FIXED_A: |
| def_ant = 1; |
| tx_ant = 1; |
| use_def_for_tx = true; |
| update_def_on_tx = false; |
| use_def_for_rts = true; |
| use_def_for_sg = true; |
| fast_div = false; |
| break; |
| case AR5K_ANTMODE_FIXED_B: |
| def_ant = 2; |
| tx_ant = 2; |
| use_def_for_tx = true; |
| update_def_on_tx = false; |
| use_def_for_rts = true; |
| use_def_for_sg = true; |
| fast_div = false; |
| break; |
| case AR5K_ANTMODE_SINGLE_AP: |
| def_ant = 1; /* updated on tx */ |
| tx_ant = 0; |
| use_def_for_tx = true; |
| update_def_on_tx = true; |
| use_def_for_rts = true; |
| use_def_for_sg = true; |
| fast_div = true; |
| break; |
| case AR5K_ANTMODE_SECTOR_AP: |
| tx_ant = 1; /* variable */ |
| use_def_for_tx = false; |
| update_def_on_tx = false; |
| use_def_for_rts = true; |
| use_def_for_sg = false; |
| fast_div = false; |
| break; |
| case AR5K_ANTMODE_SECTOR_STA: |
| tx_ant = 1; /* variable */ |
| use_def_for_tx = true; |
| update_def_on_tx = false; |
| use_def_for_rts = true; |
| use_def_for_sg = false; |
| fast_div = true; |
| break; |
| case AR5K_ANTMODE_DEBUG: |
| def_ant = 1; |
| tx_ant = 2; |
| use_def_for_tx = false; |
| update_def_on_tx = false; |
| use_def_for_rts = false; |
| use_def_for_sg = false; |
| fast_div = false; |
| break; |
| default: |
| return; |
| } |
| |
| ah->ah_tx_ant = tx_ant; |
| ah->ah_ant_mode = ant_mode; |
| ah->ah_def_ant = def_ant; |
| |
| sta_id1 |= use_def_for_tx ? AR5K_STA_ID1_DEFAULT_ANTENNA : 0; |
| sta_id1 |= update_def_on_tx ? AR5K_STA_ID1_DESC_ANTENNA : 0; |
| sta_id1 |= use_def_for_rts ? AR5K_STA_ID1_RTS_DEF_ANTENNA : 0; |
| sta_id1 |= use_def_for_sg ? AR5K_STA_ID1_SELFGEN_DEF_ANT : 0; |
| |
| AR5K_REG_DISABLE_BITS(ah, AR5K_STA_ID1, AR5K_STA_ID1_ANTENNA_SETTINGS); |
| |
| if (sta_id1) |
| AR5K_REG_ENABLE_BITS(ah, AR5K_STA_ID1, sta_id1); |
| |
| ath5k_hw_set_antenna_switch(ah, ee_mode); |
| /* Note: set diversity before default antenna |
| * because it won't work correctly */ |
| ath5k_hw_set_fast_div(ah, ee_mode, fast_div); |
| ath5k_hw_set_def_antenna(ah, def_ant); |
| } |
| |
| |
| /****************\ |
| * TX power setup * |
| \****************/ |
| |
| /* |
| * Helper functions |
| */ |
| |
| /* |
| * Do linear interpolation between two given (x, y) points |
| */ |
| static s16 |
| ath5k_get_interpolated_value(s16 target, s16 x_left, s16 x_right, |
| s16 y_left, s16 y_right) |
| { |
| s16 ratio, result; |
| |
| /* Avoid divide by zero and skip interpolation |
| * if we have the same point */ |
| if ((x_left == x_right) || (y_left == y_right)) |
| return y_left; |
| |
| /* |
| * Since we use ints and not fps, we need to scale up in |
| * order to get a sane ratio value (or else we 'll eg. get |
| * always 1 instead of 1.25, 1.75 etc). We scale up by 100 |
| * to have some accuracy both for 0.5 and 0.25 steps. |
| */ |
| ratio = ((100 * y_right - 100 * y_left) / (x_right - x_left)); |
| |
| /* Now scale down to be in range */ |
| result = y_left + (ratio * (target - x_left) / 100); |
| |
| return result; |
| } |
| |
| /* |
| * Find vertical boundary (min pwr) for the linear PCDAC curve. |
| * |
| * Since we have the top of the curve and we draw the line below |
| * until we reach 1 (1 pcdac step) we need to know which point |
| * (x value) that is so that we don't go below y axis and have negative |
| * pcdac values when creating the curve, or fill the table with zeroes. |
| */ |
| static s16 |
| ath5k_get_linear_pcdac_min(const u8 *stepL, const u8 *stepR, |
| const s16 *pwrL, const s16 *pwrR) |
| { |
| s8 tmp; |
| s16 min_pwrL, min_pwrR; |
| s16 pwr_i; |
| |
| /* Some vendors write the same pcdac value twice !!! */ |
| if (stepL[0] == stepL[1] || stepR[0] == stepR[1]) |
| return max(pwrL[0], pwrR[0]); |
| |
| if (pwrL[0] == pwrL[1]) |
| min_pwrL = pwrL[0]; |
| else { |
| pwr_i = pwrL[0]; |
| do { |
| pwr_i--; |
| tmp = (s8) ath5k_get_interpolated_value(pwr_i, |
| pwrL[0], pwrL[1], |
| stepL[0], stepL[1]); |
| } while (tmp > 1); |
| |
| min_pwrL = pwr_i; |
| } |
| |
| if (pwrR[0] == pwrR[1]) |
| min_pwrR = pwrR[0]; |
| else { |
| pwr_i = pwrR[0]; |
| do { |
| pwr_i--; |
| tmp = (s8) ath5k_get_interpolated_value(pwr_i, |
| pwrR[0], pwrR[1], |
| stepR[0], stepR[1]); |
| } while (tmp > 1); |
| |
| min_pwrR = pwr_i; |
| } |
| |
| /* Keep the right boundary so that it works for both curves */ |
| return max(min_pwrL, min_pwrR); |
| } |
| |
| /* |
| * Interpolate (pwr,vpd) points to create a Power to PDADC or a |
| * Power to PCDAC curve. |
| * |
| * Each curve has power on x axis (in 0.5dB units) and PCDAC/PDADC |
| * steps (offsets) on y axis. Power can go up to 31.5dB and max |
| * PCDAC/PDADC step for each curve is 64 but we can write more than |
| * one curves on hw so we can go up to 128 (which is the max step we |
| * can write on the final table). |
| * |
| * We write y values (PCDAC/PDADC steps) on hw. |
| */ |
| static void |
| ath5k_create_power_curve(s16 pmin, s16 pmax, |
| const s16 *pwr, const u8 *vpd, |
| u8 num_points, |
| u8 *vpd_table, u8 type) |
| { |
| u8 idx[2] = { 0, 1 }; |
| s16 pwr_i = 2 * pmin; |
| int i; |
| |
| if (num_points < 2) |
| return; |
| |
| /* We want the whole line, so adjust boundaries |
| * to cover the entire power range. Note that |
| * power values are already 0.25dB so no need |
| * to multiply pwr_i by 2 */ |
| if (type == AR5K_PWRTABLE_LINEAR_PCDAC) { |
| pwr_i = pmin; |
| pmin = 0; |
| pmax = 63; |
| } |
| |
| /* Find surrounding turning points (TPs) |
| * and interpolate between them */ |
| for (i = 0; (i <= (u16) (pmax - pmin)) && |
| (i < AR5K_EEPROM_POWER_TABLE_SIZE); i++) { |
| |
| /* We passed the right TP, move to the next set of TPs |
| * if we pass the last TP, extrapolate above using the last |
| * two TPs for ratio */ |
| if ((pwr_i > pwr[idx[1]]) && (idx[1] < num_points - 1)) { |
| idx[0]++; |
| idx[1]++; |
| } |
| |
| vpd_table[i] = (u8) ath5k_get_interpolated_value(pwr_i, |
| pwr[idx[0]], pwr[idx[1]], |
| vpd[idx[0]], vpd[idx[1]]); |
| |
| /* Increase by 0.5dB |
| * (0.25 dB units) */ |
| pwr_i += 2; |
| } |
| } |
| |
| /* |
| * Get the surrounding per-channel power calibration piers |
| * for a given frequency so that we can interpolate between |
| * them and come up with an appropriate dataset for our current |
| * channel. |
| */ |
| static void |
| ath5k_get_chan_pcal_surrounding_piers(struct ath5k_hw *ah, |
| struct ieee80211_channel *channel, |
| struct ath5k_chan_pcal_info **pcinfo_l, |
| struct ath5k_chan_pcal_info **pcinfo_r) |
| { |
| struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; |
| struct ath5k_chan_pcal_info *pcinfo; |
| u8 idx_l, idx_r; |
| u8 mode, max, i; |
| u32 target = channel->center_freq; |
| |
| idx_l = 0; |
| idx_r = 0; |
| |
| switch (channel->hw_value) { |
| case AR5K_EEPROM_MODE_11A: |
| pcinfo = ee->ee_pwr_cal_a; |
| mode = AR5K_EEPROM_MODE_11A; |
| break; |
| case AR5K_EEPROM_MODE_11B: |
| pcinfo = ee->ee_pwr_cal_b; |
| mode = AR5K_EEPROM_MODE_11B; |
| break; |
| case AR5K_EEPROM_MODE_11G: |
| default: |
| pcinfo = ee->ee_pwr_cal_g; |
| mode = AR5K_EEPROM_MODE_11G; |
| break; |
| } |
| max = ee->ee_n_piers[mode] - 1; |
| |
| /* Frequency is below our calibrated |
| * range. Use the lowest power curve |
| * we have */ |
| if (target < pcinfo[0].freq) { |
| idx_l = idx_r = 0; |
| goto done; |
| } |
| |
| /* Frequency is above our calibrated |
| * range. Use the highest power curve |
| * we have */ |
| if (target > pcinfo[max].freq) { |
| idx_l = idx_r = max; |
| goto done; |
| } |
| |
| /* Frequency is inside our calibrated |
| * channel range. Pick the surrounding |
| * calibration piers so that we can |
| * interpolate */ |
| for (i = 0; i <= max; i++) { |
| |
| /* Frequency matches one of our calibration |
| * piers, no need to interpolate, just use |
| * that calibration pier */ |
| if (pcinfo[i].freq == target) { |
| idx_l = idx_r = i; |
| goto done; |
| } |
| |
| /* We found a calibration pier that's above |
| * frequency, use this pier and the previous |
| * one to interpolate */ |
| if (target < pcinfo[i].freq) { |
| idx_r = i; |
| idx_l = idx_r - 1; |
| goto done; |
| } |
| } |
| |
| done: |
| *pcinfo_l = &pcinfo[idx_l]; |
| *pcinfo_r = &pcinfo[idx_r]; |
| } |
| |
| /* |
| * Get the surrounding per-rate power calibration data |
| * for a given frequency and interpolate between power |
| * values to set max target power supported by hw for |
| * each rate. |
| */ |
| static void |
| ath5k_get_rate_pcal_data(struct ath5k_hw *ah, |
| struct ieee80211_channel *channel, |
| struct ath5k_rate_pcal_info *rates) |
| { |
| struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; |
| struct ath5k_rate_pcal_info *rpinfo; |
| u8 idx_l, idx_r; |
| u8 mode, max, i; |
| u32 target = channel->center_freq; |
| |
| idx_l = 0; |
| idx_r = 0; |
| |
| switch (channel->hw_value) { |
| case AR5K_MODE_11A: |
| rpinfo = ee->ee_rate_tpwr_a; |
| mode = AR5K_EEPROM_MODE_11A; |
| break; |
| case AR5K_MODE_11B: |
| rpinfo = ee->ee_rate_tpwr_b; |
| mode = AR5K_EEPROM_MODE_11B; |
| break; |
| case AR5K_MODE_11G: |
| default: |
| rpinfo = ee->ee_rate_tpwr_g; |
| mode = AR5K_EEPROM_MODE_11G; |
| break; |
| } |
| max = ee->ee_rate_target_pwr_num[mode] - 1; |
| |
| /* Get the surrounding calibration |
| * piers - same as above */ |
| if (target < rpinfo[0].freq) { |
| idx_l = idx_r = 0; |
| goto done; |
| } |
| |
| if (target > rpinfo[max].freq) { |
| idx_l = idx_r = max; |
| goto done; |
| } |
| |
| for (i = 0; i <= max; i++) { |
| |
| if (rpinfo[i].freq == target) { |
| idx_l = idx_r = i; |
| goto done; |
| } |
| |
| if (target < rpinfo[i].freq) { |
| idx_r = i; |
| idx_l = idx_r - 1; |
| goto done; |
| } |
| } |
| |
| done: |
| /* Now interpolate power value, based on the frequency */ |
| rates->freq = target; |
| |
| rates->target_power_6to24 = |
| ath5k_get_interpolated_value(target, rpinfo[idx_l].freq, |
| rpinfo[idx_r].freq, |
| rpinfo[idx_l].target_power_6to24, |
| rpinfo[idx_r].target_power_6to24); |
| |
| rates->target_power_36 = |
| ath5k_get_interpolated_value(target, rpinfo[idx_l].freq, |
| rpinfo[idx_r].freq, |
| rpinfo[idx_l].target_power_36, |
| rpinfo[idx_r].target_power_36); |
| |
| rates->target_power_48 = |
| ath5k_get_interpolated_value(target, rpinfo[idx_l].freq, |
| rpinfo[idx_r].freq, |
| rpinfo[idx_l].target_power_48, |
| rpinfo[idx_r].target_power_48); |
| |
| rates->target_power_54 = |
| ath5k_get_interpolated_value(target, rpinfo[idx_l].freq, |
| rpinfo[idx_r].freq, |
| rpinfo[idx_l].target_power_54, |
| rpinfo[idx_r].target_power_54); |
| } |
| |
| /* |
| * Get the max edge power for this channel if |
| * we have such data from EEPROM's Conformance Test |
| * Limits (CTL), and limit max power if needed. |
| */ |
| static void |
| ath5k_get_max_ctl_power(struct ath5k_hw *ah, |
| struct ieee80211_channel *channel) |
| { |
| struct ath_regulatory *regulatory = ath5k_hw_regulatory(ah); |
| struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; |
| struct ath5k_edge_power *rep = ee->ee_ctl_pwr; |
| u8 *ctl_val = ee->ee_ctl; |
| s16 max_chan_pwr = ah->ah_txpower.txp_max_pwr / 4; |
| s16 edge_pwr = 0; |
| u8 rep_idx; |
| u8 i, ctl_mode; |
| u8 ctl_idx = 0xFF; |
| u32 target = channel->center_freq; |
| |
| ctl_mode = ath_regd_get_band_ctl(regulatory, channel->band); |
| |
| switch (channel->hw_value) { |
| case AR5K_MODE_11A: |
| if (ah->ah_bwmode == AR5K_BWMODE_40MHZ) |
| ctl_mode |= AR5K_CTL_TURBO; |
| else |
| ctl_mode |= AR5K_CTL_11A; |
| break; |
| case AR5K_MODE_11G: |
| if (ah->ah_bwmode == AR5K_BWMODE_40MHZ) |
| ctl_mode |= AR5K_CTL_TURBOG; |
| else |
| ctl_mode |= AR5K_CTL_11G; |
| break; |
| case AR5K_MODE_11B: |
| ctl_mode |= AR5K_CTL_11B; |
| break; |
| default: |
| return; |
| } |
| |
| for (i = 0; i < ee->ee_ctls; i++) { |
| if (ctl_val[i] == ctl_mode) { |
| ctl_idx = i; |
| break; |
| } |
| } |
| |
| /* If we have a CTL dataset available grab it and find the |
| * edge power for our frequency */ |
| if (ctl_idx == 0xFF) |
| return; |
| |
| /* Edge powers are sorted by frequency from lower |
| * to higher. Each CTL corresponds to 8 edge power |
| * measurements. */ |
| rep_idx = ctl_idx * AR5K_EEPROM_N_EDGES; |
| |
| /* Don't do boundaries check because we |
| * might have more that one bands defined |
| * for this mode */ |
| |
| /* Get the edge power that's closer to our |
| * frequency */ |
| for (i = 0; i < AR5K_EEPROM_N_EDGES; i++) { |
| rep_idx += i; |
| if (target <= rep[rep_idx].freq) |
| edge_pwr = (s16) rep[rep_idx].edge; |
| } |
| |
| if (edge_pwr) |
| ah->ah_txpower.txp_max_pwr = 4 * min(edge_pwr, max_chan_pwr); |
| } |
| |
| |
| /* |
| * Power to PCDAC table functions |
| */ |
| |
| /* |
| * Fill Power to PCDAC table on RF5111 |
| * |
| * No further processing is needed for RF5111, the only thing we have to |
| * do is fill the values below and above calibration range since eeprom data |
| * may not cover the entire PCDAC table. |
| */ |
| static void |
| ath5k_fill_pwr_to_pcdac_table(struct ath5k_hw *ah, s16* table_min, |
| s16 *table_max) |
| { |
| u8 *pcdac_out = ah->ah_txpower.txp_pd_table; |
| u8 *pcdac_tmp = ah->ah_txpower.tmpL[0]; |
| u8 pcdac_0, pcdac_n, pcdac_i, pwr_idx, i; |
| s16 min_pwr, max_pwr; |
| |
| /* Get table boundaries */ |
| min_pwr = table_min[0]; |
| pcdac_0 = pcdac_tmp[0]; |
| |
| max_pwr = table_max[0]; |
| pcdac_n = pcdac_tmp[table_max[0] - table_min[0]]; |
| |
| /* Extrapolate below minimum using pcdac_0 */ |
| pcdac_i = 0; |
| for (i = 0; i < min_pwr; i++) |
| pcdac_out[pcdac_i++] = pcdac_0; |
| |
| /* Copy values from pcdac_tmp */ |
| pwr_idx = min_pwr; |
| for (i = 0; pwr_idx <= max_pwr && |
| pcdac_i < AR5K_EEPROM_POWER_TABLE_SIZE; i++) { |
| pcdac_out[pcdac_i++] = pcdac_tmp[i]; |
| pwr_idx++; |
| } |
| |
| /* Extrapolate above maximum */ |
| while (pcdac_i < AR5K_EEPROM_POWER_TABLE_SIZE) |
| pcdac_out[pcdac_i++] = pcdac_n; |
| |
| } |
| |
| /* |
| * Combine available XPD Curves and fill Linear Power to PCDAC table |
| * on RF5112 |
| * |
| * RFX112 can have up to 2 curves (one for low txpower range and one for |
| * higher txpower range). We need to put them both on pcdac_out and place |
| * them in the correct location. In case we only have one curve available |
| * just fit it on pcdac_out (it's supposed to cover the entire range of |
| * available pwr levels since it's always the higher power curve). Extrapolate |
| * below and above final table if needed. |
| */ |
| static void |
| ath5k_combine_linear_pcdac_curves(struct ath5k_hw *ah, s16* table_min, |
| s16 *table_max, u8 pdcurves) |
| { |
| u8 *pcdac_out = ah->ah_txpower.txp_pd_table; |
| u8 *pcdac_low_pwr; |
| u8 *pcdac_high_pwr; |
| u8 *pcdac_tmp; |
| u8 pwr; |
| s16 max_pwr_idx; |
| s16 min_pwr_idx; |
| s16 mid_pwr_idx = 0; |
| /* Edge flag turns on the 7nth bit on the PCDAC |
| * to declare the higher power curve (force values |
| * to be greater than 64). If we only have one curve |
| * we don't need to set this, if we have 2 curves and |
| * fill the table backwards this can also be used to |
| * switch from higher power curve to lower power curve */ |
| u8 edge_flag; |
| int i; |
| |
| /* When we have only one curve available |
| * that's the higher power curve. If we have |
| * two curves the first is the high power curve |
| * and the next is the low power curve. */ |
| if (pdcurves > 1) { |
| pcdac_low_pwr = ah->ah_txpower.tmpL[1]; |
| pcdac_high_pwr = ah->ah_txpower.tmpL[0]; |
| mid_pwr_idx = table_max[1] - table_min[1] - 1; |
| max_pwr_idx = (table_max[0] - table_min[0]) / 2; |
| |
| /* If table size goes beyond 31.5dB, keep the |
| * upper 31.5dB range when setting tx power. |
| * Note: 126 = 31.5 dB in quarter dB steps */ |
| if (table_max[0] - table_min[1] > 126) |
| min_pwr_idx = table_max[0] - 126; |
| else |
| min_pwr_idx = table_min[1]; |
| |
| /* Since we fill table backwards |
| * start from high power curve */ |
| pcdac_tmp = pcdac_high_pwr; |
| |
| edge_flag = 0x40; |
| } else { |
| pcdac_low_pwr = ah->ah_txpower.tmpL[1]; /* Zeroed */ |
| pcdac_high_pwr = ah->ah_txpower.tmpL[0]; |
| min_pwr_idx = table_min[0]; |
| max_pwr_idx = (table_max[0] - table_min[0]) / 2; |
| pcdac_tmp = pcdac_high_pwr; |
| edge_flag = 0; |
| } |
| |
| /* This is used when setting tx power*/ |
| ah->ah_txpower.txp_min_idx = min_pwr_idx / 2; |
| |
| /* Fill Power to PCDAC table backwards */ |
| pwr = max_pwr_idx; |
| for (i = 63; i >= 0; i--) { |
| /* Entering lower power range, reset |
| * edge flag and set pcdac_tmp to lower |
| * power curve.*/ |
| if (edge_flag == 0x40 && |
| (2 * pwr <= (table_max[1] - table_min[0]) || pwr == 0)) { |
| edge_flag = 0x00; |
| pcdac_tmp = pcdac_low_pwr; |
| pwr = mid_pwr_idx / 2; |
| } |
| |
| /* Don't go below 1, extrapolate below if we have |
| * already switched to the lower power curve -or |
| * we only have one curve and edge_flag is zero |
| * anyway */ |
| if (pcdac_tmp[pwr] < 1 && (edge_flag == 0x00)) { |
| while (i >= 0) { |
| pcdac_out[i] = pcdac_out[i + 1]; |
| i--; |
| } |
| break; |
| } |
| |
| pcdac_out[i] = pcdac_tmp[pwr] | edge_flag; |
| |
| /* Extrapolate above if pcdac is greater than |
| * 126 -this can happen because we OR pcdac_out |
| * value with edge_flag on high power curve */ |
| if (pcdac_out[i] > 126) |
| pcdac_out[i] = 126; |
| |
| /* Decrease by a 0.5dB step */ |
| pwr--; |
| } |
| } |
| |
| /* Write PCDAC values on hw */ |
| static void |
| ath5k_write_pcdac_table(struct ath5k_hw *ah) |
| { |
| u8 *pcdac_out = ah->ah_txpower.txp_pd_table; |
| int i; |
| |
| /* |
| * Write TX power values |
| */ |
| for (i = 0; i < (AR5K_EEPROM_POWER_TABLE_SIZE / 2); i++) { |
| ath5k_hw_reg_write(ah, |
| (((pcdac_out[2 * i + 0] << 8 | 0xff) & 0xffff) << 0) | |
| (((pcdac_out[2 * i + 1] << 8 | 0xff) & 0xffff) << 16), |
| AR5K_PHY_PCDAC_TXPOWER(i)); |
| } |
| } |
| |
| |
| /* |
| * Power to PDADC table functions |
| */ |
| |
| /* |
| * Set the gain boundaries and create final Power to PDADC table |
| * |
| * We can have up to 4 pd curves, we need to do a similar process |
| * as we do for RF5112. This time we don't have an edge_flag but we |
| * set the gain boundaries on a separate register. |
| */ |
| static void |
| ath5k_combine_pwr_to_pdadc_curves(struct ath5k_hw *ah, |
| s16 *pwr_min, s16 *pwr_max, u8 pdcurves) |
| { |
| u8 gain_boundaries[AR5K_EEPROM_N_PD_GAINS]; |
| u8 *pdadc_out = ah->ah_txpower.txp_pd_table; |
| u8 *pdadc_tmp; |
| s16 pdadc_0; |
| u8 pdadc_i, pdadc_n, pwr_step, pdg, max_idx, table_size; |
| u8 pd_gain_overlap; |
| |
| /* Note: Register value is initialized on initvals |
| * there is no feedback from hw. |
| * XXX: What about pd_gain_overlap from EEPROM ? */ |
| pd_gain_overlap = (u8) ath5k_hw_reg_read(ah, AR5K_PHY_TPC_RG5) & |
| AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP; |
| |
| /* Create final PDADC table */ |
| for (pdg = 0, pdadc_i = 0; pdg < pdcurves; pdg++) { |
| pdadc_tmp = ah->ah_txpower.tmpL[pdg]; |
| |
| if (pdg == pdcurves - 1) |
| /* 2 dB boundary stretch for last |
| * (higher power) curve */ |
| gain_boundaries[pdg] = pwr_max[pdg] + 4; |
| else |
| /* Set gain boundary in the middle |
| * between this curve and the next one */ |
| gain_boundaries[pdg] = |
| (pwr_max[pdg] + pwr_min[pdg + 1]) / 2; |
| |
| /* Sanity check in case our 2 db stretch got out of |
| * range. */ |
| if (gain_boundaries[pdg] > AR5K_TUNE_MAX_TXPOWER) |
| gain_boundaries[pdg] = AR5K_TUNE_MAX_TXPOWER; |
| |
| /* For the first curve (lower power) |
| * start from 0 dB */ |
| if (pdg == 0) |
| pdadc_0 = 0; |
| else |
| /* For the other curves use the gain overlap */ |
| pdadc_0 = (gain_boundaries[pdg - 1] - pwr_min[pdg]) - |
| pd_gain_overlap; |
| |
| /* Force each power step to be at least 0.5 dB */ |
| if ((pdadc_tmp[1] - pdadc_tmp[0]) > 1) |
| pwr_step = pdadc_tmp[1] - pdadc_tmp[0]; |
| else |
| pwr_step = 1; |
| |
| /* If pdadc_0 is negative, we need to extrapolate |
| * below this pdgain by a number of pwr_steps */ |
| while ((pdadc_0 < 0) && (pdadc_i < 128)) { |
| s16 tmp = pdadc_tmp[0] + pdadc_0 * pwr_step; |
| pdadc_out[pdadc_i++] = (tmp < 0) ? 0 : (u8) tmp; |
| pdadc_0++; |
| } |
| |
| /* Set last pwr level, using gain boundaries */ |
| pdadc_n = gain_boundaries[pdg] + pd_gain_overlap - pwr_min[pdg]; |
| /* Limit it to be inside pwr range */ |
| table_size = pwr_max[pdg] - pwr_min[pdg]; |
| max_idx = (pdadc_n < table_size) ? pdadc_n : table_size; |
| |
| /* Fill pdadc_out table */ |
| while (pdadc_0 < max_idx && pdadc_i < 128) |
| pdadc_out[pdadc_i++] = pdadc_tmp[pdadc_0++]; |
| |
| /* Need to extrapolate above this pdgain? */ |
| if (pdadc_n <= max_idx) |
| continue; |
| |
| /* Force each power step to be at least 0.5 dB */ |
| if ((pdadc_tmp[table_size - 1] - pdadc_tmp[table_size - 2]) > 1) |
| pwr_step = pdadc_tmp[table_size - 1] - |
| pdadc_tmp[table_size - 2]; |
| else |
| pwr_step = 1; |
| |
| /* Extrapolate above */ |
| while ((pdadc_0 < (s16) pdadc_n) && |
| (pdadc_i < AR5K_EEPROM_POWER_TABLE_SIZE * 2)) { |
| s16 tmp = pdadc_tmp[table_size - 1] + |
| (pdadc_0 - max_idx) * pwr_step; |
| pdadc_out[pdadc_i++] = (tmp > 127) ? 127 : (u8) tmp; |
| pdadc_0++; |
| } |
| } |
| |
| while (pdg < AR5K_EEPROM_N_PD_GAINS) { |
| gain_boundaries[pdg] = gain_boundaries[pdg - 1]; |
| pdg++; |
| } |
| |
| while (pdadc_i < AR5K_EEPROM_POWER_TABLE_SIZE * 2) { |
| pdadc_out[pdadc_i] = pdadc_out[pdadc_i - 1]; |
| pdadc_i++; |
| } |
| |
| /* Set gain boundaries */ |
| ath5k_hw_reg_write(ah, |
| AR5K_REG_SM(pd_gain_overlap, |
| AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP) | |
| AR5K_REG_SM(gain_boundaries[0], |
| AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_1) | |
| AR5K_REG_SM(gain_boundaries[1], |
| AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_2) | |
| AR5K_REG_SM(gain_boundaries[2], |
| AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_3) | |
| AR5K_REG_SM(gain_boundaries[3], |
| AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_4), |
| AR5K_PHY_TPC_RG5); |
| |
| /* Used for setting rate power table */ |
| ah->ah_txpower.txp_min_idx = pwr_min[0]; |
| |
| } |
| |
| /* Write PDADC values on hw */ |
| static void |
| ath5k_write_pwr_to_pdadc_table(struct ath5k_hw *ah, u8 ee_mode) |
| { |
| struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; |
| u8 *pdadc_out = ah->ah_txpower.txp_pd_table; |
| u8 *pdg_to_idx = ee->ee_pdc_to_idx[ee_mode]; |
| u8 pdcurves = ee->ee_pd_gains[ee_mode]; |
| u32 reg; |
| u8 i; |
| |
| /* Select the right pdgain curves */ |
| |
| /* Clear current settings */ |
| reg = ath5k_hw_reg_read(ah, AR5K_PHY_TPC_RG1); |
| reg &= ~(AR5K_PHY_TPC_RG1_PDGAIN_1 | |
| AR5K_PHY_TPC_RG1_PDGAIN_2 | |
| AR5K_PHY_TPC_RG1_PDGAIN_3 | |
| AR5K_PHY_TPC_RG1_NUM_PD_GAIN); |
| |
| /* |
| * Use pd_gains curve from eeprom |
| * |
| * This overrides the default setting from initvals |
| * in case some vendors (e.g. Zcomax) don't use the default |
| * curves. If we don't honor their settings we 'll get a |
| * 5dB (1 * gain overlap ?) drop. |
| */ |
| reg |= AR5K_REG_SM(pdcurves, AR5K_PHY_TPC_RG1_NUM_PD_GAIN); |
| |
| switch (pdcurves) { |
| case 3: |
| reg |= AR5K_REG_SM(pdg_to_idx[2], AR5K_PHY_TPC_RG1_PDGAIN_3); |
| /* Fall through */ |
| case 2: |
| reg |= AR5K_REG_SM(pdg_to_idx[1], AR5K_PHY_TPC_RG1_PDGAIN_2); |
| /* Fall through */ |
| case 1: |
| reg |= AR5K_REG_SM(pdg_to_idx[0], AR5K_PHY_TPC_RG1_PDGAIN_1); |
| break; |
| } |
| ath5k_hw_reg_write(ah, reg, AR5K_PHY_TPC_RG1); |
| |
| /* |
| * Write TX power values |
| */ |
| for (i = 0; i < (AR5K_EEPROM_POWER_TABLE_SIZE / 2); i++) { |
| u32 val = get_unaligned_le32(&pdadc_out[4 * i]); |
| ath5k_hw_reg_write(ah, val, AR5K_PHY_PDADC_TXPOWER(i)); |
| } |
| } |
| |
| |
| /* |
| * Common code for PCDAC/PDADC tables |
| */ |
| |
| /* |
| * This is the main function that uses all of the above |
| * to set PCDAC/PDADC table on hw for the current channel. |
| * This table is used for tx power calibration on the baseband, |
| * without it we get weird tx power levels and in some cases |
| * distorted spectral mask |
| */ |
| static int |
| ath5k_setup_channel_powertable(struct ath5k_hw *ah, |
| struct ieee80211_channel *channel, |
| u8 ee_mode, u8 type) |
| { |
| struct ath5k_pdgain_info *pdg_L, *pdg_R; |
| struct ath5k_chan_pcal_info *pcinfo_L; |
| struct ath5k_chan_pcal_info *pcinfo_R; |
| struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; |
| u8 *pdg_curve_to_idx = ee->ee_pdc_to_idx[ee_mode]; |
| s16 table_min[AR5K_EEPROM_N_PD_GAINS]; |
| s16 table_max[AR5K_EEPROM_N_PD_GAINS]; |
| u8 *tmpL; |
| u8 *tmpR; |
| u32 target = channel->center_freq; |
| int pdg, i; |
| |
| /* Get surrounding freq piers for this channel */ |
| ath5k_get_chan_pcal_surrounding_piers(ah, channel, |
| &pcinfo_L, |
| &pcinfo_R); |
| |
| /* Loop over pd gain curves on |
| * surrounding freq piers by index */ |
| for (pdg = 0; pdg < ee->ee_pd_gains[ee_mode]; pdg++) { |
| |
| /* Fill curves in reverse order |
| * from lower power (max gain) |
| * to higher power. Use curve -> idx |
| * backmapping we did on eeprom init */ |
| u8 idx = pdg_curve_to_idx[pdg]; |
| |
| /* Grab the needed curves by index */ |
| pdg_L = &pcinfo_L->pd_curves[idx]; |
| pdg_R = &pcinfo_R->pd_curves[idx]; |
| |
| /* Initialize the temp tables */ |
| tmpL = ah->ah_txpower.tmpL[pdg]; |
| tmpR = ah->ah_txpower.tmpR[pdg]; |
| |
| /* Set curve's x boundaries and create |
| * curves so that they cover the same |
| * range (if we don't do that one table |
| * will have values on some range and the |
| * other one won't have any so interpolation |
| * will fail) */ |
| table_min[pdg] = min(pdg_L->pd_pwr[0], |
| pdg_R->pd_pwr[0]) / 2; |
| |
| table_max[pdg] = max(pdg_L->pd_pwr[pdg_L->pd_points - 1], |
| pdg_R->pd_pwr[pdg_R->pd_points - 1]) / 2; |
| |
| /* Now create the curves on surrounding channels |
| * and interpolate if needed to get the final |
| * curve for this gain on this channel */ |
| switch (type) { |
| case AR5K_PWRTABLE_LINEAR_PCDAC: |
| /* Override min/max so that we don't loose |
| * accuracy (don't divide by 2) */ |
| table_min[pdg] = min(pdg_L->pd_pwr[0], |
| pdg_R->pd_pwr[0]); |
| |
| table_max[pdg] = |
| max(pdg_L->pd_pwr[pdg_L->pd_points - 1], |
| pdg_R->pd_pwr[pdg_R->pd_points - 1]); |
| |
| /* Override minimum so that we don't get |
| * out of bounds while extrapolating |
| * below. Don't do this when we have 2 |
| * curves and we are on the high power curve |
| * because table_min is ok in this case */ |
| if (!(ee->ee_pd_gains[ee_mode] > 1 && pdg == 0)) { |
| |
| table_min[pdg] = |
| ath5k_get_linear_pcdac_min(pdg_L->pd_step, |
| pdg_R->pd_step, |
| pdg_L->pd_pwr, |
| pdg_R->pd_pwr); |
| |
| /* Don't go too low because we will |
| * miss the upper part of the curve. |
| * Note: 126 = 31.5dB (max power supported) |
| * in 0.25dB units */ |
| if (table_max[pdg] - table_min[pdg] > 126) |
| table_min[pdg] = table_max[pdg] - 126; |
| } |
| |
| /* Fall through */ |
| case AR5K_PWRTABLE_PWR_TO_PCDAC: |
| case AR5K_PWRTABLE_PWR_TO_PDADC: |
| |
| ath5k_create_power_curve(table_min[pdg], |
| table_max[pdg], |
| pdg_L->pd_pwr, |
| pdg_L->pd_step, |
| pdg_L->pd_points, tmpL, type); |
| |
| /* We are in a calibration |
| * pier, no need to interpolate |
| * between freq piers */ |
| if (pcinfo_L == pcinfo_R) |
| continue; |
| |
| ath5k_create_power_curve(table_min[pdg], |
| table_max[pdg], |
| pdg_R->pd_pwr, |
| pdg_R->pd_step, |
| pdg_R->pd_points, tmpR, type); |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| /* Interpolate between curves |
| * of surrounding freq piers to |
| * get the final curve for this |
| * pd gain. Re-use tmpL for interpolation |
| * output */ |
| for (i = 0; (i < (u16) (table_max[pdg] - table_min[pdg])) && |
| (i < AR5K_EEPROM_POWER_TABLE_SIZE); i++) { |
| tmpL[i] = (u8) ath5k_get_interpolated_value(target, |
| (s16) pcinfo_L->freq, |
| (s16) pcinfo_R->freq, |
| (s16) tmpL[i], |
| (s16) tmpR[i]); |
| } |
| } |
| |
| /* Now we have a set of curves for this |
| * channel on tmpL (x range is table_max - table_min |
| * and y values are tmpL[pdg][]) sorted in the same |
| * order as EEPROM (because we've used the backmapping). |
| * So for RF5112 it's from higher power to lower power |
| * and for RF2413 it's from lower power to higher power. |
| * For RF5111 we only have one curve. */ |
| |
| /* Fill min and max power levels for this |
| * channel by interpolating the values on |
| * surrounding channels to complete the dataset */ |
| ah->ah_txpower.txp_min_pwr = ath5k_get_interpolated_value(target, |
| (s16) pcinfo_L->freq, |
| (s16) pcinfo_R->freq, |
| pcinfo_L->min_pwr, pcinfo_R->min_pwr); |
| |
| ah->ah_txpower.txp_max_pwr = ath5k_get_interpolated_value(target, |
| (s16) pcinfo_L->freq, |
| (s16) pcinfo_R->freq, |
| pcinfo_L->max_pwr, pcinfo_R->max_pwr); |
| |
| /* Fill PCDAC/PDADC table */ |
| switch (type) { |
| case AR5K_PWRTABLE_LINEAR_PCDAC: |
| /* For RF5112 we can have one or two curves |
| * and each curve covers a certain power lvl |
| * range so we need to do some more processing */ |
| ath5k_combine_linear_pcdac_curves(ah, table_min, table_max, |
| ee->ee_pd_gains[ee_mode]); |
| |
| /* Set txp.offset so that we can |
| * match max power value with max |
| * table index */ |
| ah->ah_txpower.txp_offset = 64 - (table_max[0] / 2); |
| break; |
| case AR5K_PWRTABLE_PWR_TO_PCDAC: |
| /* We are done for RF5111 since it has only |
| * one curve, just fit the curve on the table */ |
| ath5k_fill_pwr_to_pcdac_table(ah, table_min, table_max); |
| |
| /* No rate powertable adjustment for RF5111 */ |
| ah->ah_txpower.txp_min_idx = 0; |
| ah->ah_txpower.txp_offset = 0; |
| break; |
| case AR5K_PWRTABLE_PWR_TO_PDADC: |
| /* Set PDADC boundaries and fill |
| * final PDADC table */ |
| ath5k_combine_pwr_to_pdadc_curves(ah, table_min, table_max, |
| ee->ee_pd_gains[ee_mode]); |
| |
| /* Set txp.offset, note that table_min |
| * can be negative */ |
| ah->ah_txpower.txp_offset = table_min[0]; |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| ah->ah_txpower.txp_setup = true; |
| |
| return 0; |
| } |
| |
| /* Write power table for current channel to hw */ |
| static void |
| ath5k_write_channel_powertable(struct ath5k_hw *ah, u8 ee_mode, u8 type) |
| { |
| if (type == AR5K_PWRTABLE_PWR_TO_PDADC) |
| ath5k_write_pwr_to_pdadc_table(ah, ee_mode); |
| else |
| ath5k_write_pcdac_table(ah); |
| } |
| |
| /* |
| * Per-rate tx power setting |
| * |
| * This is the code that sets the desired tx power (below |
| * maximum) on hw for each rate (we also have TPC that sets |
| * power per packet). We do that by providing an index on the |
| * PCDAC/PDADC table we set up. |
| */ |
| |
| /* |
| * Set rate power table |
| * |
| * For now we only limit txpower based on maximum tx power |
| * supported by hw (what's inside rate_info). We need to limit |
| * this even more, based on regulatory domain etc. |
| * |
| * Rate power table contains indices to PCDAC/PDADC table (0.5dB steps) |
| * and is indexed as follows: |
| * rates[0] - rates[7] -> OFDM rates |
| * rates[8] - rates[14] -> CCK rates |
| * rates[15] -> XR rates (they all have the same power) |
| */ |
| static void |
| ath5k_setup_rate_powertable(struct ath5k_hw *ah, u16 max_pwr, |
| struct ath5k_rate_pcal_info *rate_info, |
| u8 ee_mode) |
| { |
| unsigned int i; |
| u16 *rates; |
| |
| /* max_pwr is power level we got from driver/user in 0.5dB |
| * units, switch to 0.25dB units so we can compare */ |
| max_pwr *= 2; |
| max_pwr = min(max_pwr, (u16) ah->ah_txpower.txp_max_pwr) / 2; |
| |
| /* apply rate limits */ |
| rates = ah->ah_txpower.txp_rates_power_table; |
| |
| /* OFDM rates 6 to 24Mb/s */ |
| for (i = 0; i < 5; i++) |
| rates[i] = min(max_pwr, rate_info->target_power_6to24); |
| |
| /* Rest OFDM rates */ |
| rates[5] = min(rates[0], rate_info->target_power_36); |
| rates[6] = min(rates[0], rate_info->target_power_48); |
| rates[7] = min(rates[0], rate_info->target_power_54); |
| |
| /* CCK rates */ |
| /* 1L */ |
| rates[8] = min(rates[0], rate_info->target_power_6to24); |
| /* 2L */ |
| rates[9] = min(rates[0], rate_info->target_power_36); |
| /* 2S */ |
| rates[10] = min(rates[0], rate_info->target_power_36); |
| /* 5L */ |
| rates[11] = min(rates[0], rate_info->target_power_48); |
| /* 5S */ |
| rates[12] = min(rates[0], rate_info->target_power_48); |
| /* 11L */ |
| rates[13] = min(rates[0], rate_info->target_power_54); |
| /* 11S */ |
| rates[14] = min(rates[0], rate_info->target_power_54); |
| |
| /* XR rates */ |
| rates[15] = min(rates[0], rate_info->target_power_6to24); |
| |
| /* CCK rates have different peak to average ratio |
| * so we have to tweak their power so that gainf |
| * correction works ok. For this we use OFDM to |
| * CCK delta from eeprom */ |
| if ((ee_mode == AR5K_EEPROM_MODE_11G) && |
| (ah->ah_phy_revision < AR5K_SREV_PHY_5212A)) |
| for (i = 8; i <= 15; i++) |
| rates[i] -= ah->ah_txpower.txp_cck_ofdm_gainf_delta; |
| |
| /* Now that we have all rates setup use table offset to |
| * match the power range set by user with the power indices |
| * on PCDAC/PDADC table */ |
| for (i = 0; i < 16; i++) { |
| rates[i] += ah->ah_txpower.txp_offset; |
| /* Don't get out of bounds */ |
| if (rates[i] > 63) |
| rates[i] = 63; |
| } |
| |
| /* Min/max in 0.25dB units */ |
| ah->ah_txpower.txp_min_pwr = 2 * rates[7]; |
| ah->ah_txpower.txp_cur_pwr = 2 * rates[0]; |
| ah->ah_txpower.txp_ofdm = rates[7]; |
| } |
| |
| |
| /* |
| * Set transmission power |
| */ |
| static int |
| ath5k_hw_txpower(struct ath5k_hw *ah, struct ieee80211_channel *channel, |
| u8 txpower) |
| { |
| struct ath5k_rate_pcal_info rate_info; |
| struct ieee80211_channel *curr_channel = ah->ah_current_channel; |
| int ee_mode; |
| u8 type; |
| int ret; |
| |
| if (txpower > AR5K_TUNE_MAX_TXPOWER) { |
| ATH5K_ERR(ah, "invalid tx power: %u\n", txpower); |
| return -EINVAL; |
| } |
| |
| ee_mode = ath5k_eeprom_mode_from_channel(channel); |
| if (ee_mode < 0) { |
| ATH5K_ERR(ah, |
| "invalid channel: %d\n", channel->center_freq); |
| return -EINVAL; |
| } |
| |
| /* Initialize TX power table */ |
| switch (ah->ah_radio) { |
| case AR5K_RF5110: |
| /* TODO */ |
| return 0; |
| case AR5K_RF5111: |
| type = AR5K_PWRTABLE_PWR_TO_PCDAC; |
| break; |
| case AR5K_RF5112: |
| type = AR5K_PWRTABLE_LINEAR_PCDAC; |
| break; |
| case AR5K_RF2413: |
| case AR5K_RF5413: |
| case AR5K_RF2316: |
| case AR5K_RF2317: |
| case AR5K_RF2425: |
| type = AR5K_PWRTABLE_PWR_TO_PDADC; |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| /* |
| * If we don't change channel/mode skip tx powertable calculation |
| * and use the cached one. |
| */ |
| if (!ah->ah_txpower.txp_setup || |
| (channel->hw_value != curr_channel->hw_value) || |
| (channel->center_freq != curr_channel->center_freq)) { |
| /* Reset TX power values */ |
| memset(&ah->ah_txpower, 0, sizeof(ah->ah_txpower)); |
| ah->ah_txpower.txp_tpc = AR5K_TUNE_TPC_TXPOWER; |
| |
| /* Calculate the powertable */ |
| ret = ath5k_setup_channel_powertable(ah, channel, |
| ee_mode, type); |
| if (ret) |
| return ret; |
| } |
| |
| /* Write table on hw */ |
| ath5k_write_channel_powertable(ah, ee_mode, type); |
| |
| /* Limit max power if we have a CTL available */ |
| ath5k_get_max_ctl_power(ah, channel); |
| |
| /* FIXME: Antenna reduction stuff */ |
| |
| /* FIXME: Limit power on turbo modes */ |
| |
| /* FIXME: TPC scale reduction */ |
| |
| /* Get surrounding channels for per-rate power table |
| * calibration */ |
| ath5k_get_rate_pcal_data(ah, channel, &rate_info); |
| |
| /* Setup rate power table */ |
| ath5k_setup_rate_powertable(ah, txpower, &rate_info, ee_mode); |
| |
| /* Write rate power table on hw */ |
| ath5k_hw_reg_write(ah, AR5K_TXPOWER_OFDM(3, 24) | |
| AR5K_TXPOWER_OFDM(2, 16) | AR5K_TXPOWER_OFDM(1, 8) | |
| AR5K_TXPOWER_OFDM(0, 0), AR5K_PHY_TXPOWER_RATE1); |
| |
| ath5k_hw_reg_write(ah, AR5K_TXPOWER_OFDM(7, 24) | |
| AR5K_TXPOWER_OFDM(6, 16) | AR5K_TXPOWER_OFDM(5, 8) | |
| AR5K_TXPOWER_OFDM(4, 0), AR5K_PHY_TXPOWER_RATE2); |
| |
| ath5k_hw_reg_write(ah, AR5K_TXPOWER_CCK(10, 24) | |
| AR5K_TXPOWER_CCK(9, 16) | AR5K_TXPOWER_CCK(15, 8) | |
| AR5K_TXPOWER_CCK(8, 0), AR5K_PHY_TXPOWER_RATE3); |
| |
| ath5k_hw_reg_write(ah, AR5K_TXPOWER_CCK(14, 24) | |
| AR5K_TXPOWER_CCK(13, 16) | AR5K_TXPOWER_CCK(12, 8) | |
| AR5K_TXPOWER_CCK(11, 0), AR5K_PHY_TXPOWER_RATE4); |
| |
| /* FIXME: TPC support */ |
| if (ah->ah_txpower.txp_tpc) { |
| ath5k_hw_reg_write(ah, AR5K_PHY_TXPOWER_RATE_MAX_TPC_ENABLE | |
| AR5K_TUNE_MAX_TXPOWER, AR5K_PHY_TXPOWER_RATE_MAX); |
| |
| ath5k_hw_reg_write(ah, |
| AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_ACK) | |
| AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_CTS) | |
| AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_CHIRP), |
| AR5K_TPC); |
| } else { |
| ath5k_hw_reg_write(ah, AR5K_PHY_TXPOWER_RATE_MAX | |
| AR5K_TUNE_MAX_TXPOWER, AR5K_PHY_TXPOWER_RATE_MAX); |
| } |
| |
| return 0; |
| } |
| |
| int ath5k_hw_set_txpower_limit(struct ath5k_hw *ah, u8 txpower) |
| { |
| ATH5K_DBG(ah, ATH5K_DEBUG_TXPOWER, |
| "changing txpower to %d\n", txpower); |
| |
| return ath5k_hw_txpower(ah, ah->ah_current_channel, txpower); |
| } |
| |
| /*************\ |
| Init function |
| \*************/ |
| |
| int ath5k_hw_phy_init(struct ath5k_hw *ah, struct ieee80211_channel *channel, |
| u8 mode, bool fast) |
| { |
| struct ieee80211_channel *curr_channel; |
| int ret, i; |
| u32 phy_tst1; |
| ret = 0; |
| |
| /* |
| * Sanity check for fast flag |
| * Don't try fast channel change when changing modulation |
| * mode/band. We check for chip compatibility on |
| * ath5k_hw_reset. |
| */ |
| curr_channel = ah->ah_current_channel; |
| if (fast && (channel->hw_value != curr_channel->hw_value)) |
| return -EINVAL; |
| |
| /* |
| * On fast channel change we only set the synth parameters |
| * while PHY is running, enable calibration and skip the rest. |
| */ |
| if (fast) { |
| AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_RFBUS_REQ, |
| AR5K_PHY_RFBUS_REQ_REQUEST); |
| for (i = 0; i < 100; i++) { |
| if (ath5k_hw_reg_read(ah, AR5K_PHY_RFBUS_GRANT)) |
| break; |
| udelay(5); |
| } |
| /* Failed */ |
| if (i >= 100) |
| return -EIO; |
| |
| /* Set channel and wait for synth */ |
| ret = ath5k_hw_channel(ah, channel); |
| if (ret) |
| return ret; |
| |
| ath5k_hw_wait_for_synth(ah, channel); |
| } |
| |
| /* |
| * Set TX power |
| * |
| * Note: We need to do that before we set |
| * RF buffer settings on 5211/5212+ so that we |
| * properly set curve indices. |
| */ |
| ret = ath5k_hw_txpower(ah, channel, ah->ah_txpower.txp_cur_pwr ? |
| ah->ah_txpower.txp_cur_pwr / 2 : AR5K_TUNE_MAX_TXPOWER); |
| if (ret) |
| return ret; |
| |
| /* Write OFDM timings on 5212*/ |
| if (ah->ah_version == AR5K_AR5212 && |
| channel->hw_value != AR5K_MODE_11B) { |
| |
| ret = ath5k_hw_write_ofdm_timings(ah, channel); |
| if (ret) |
| return ret; |
| |
| /* Spur info is available only from EEPROM versions |
| * greater than 5.3, but the EEPROM routines will use |
| * static values for older versions */ |
| if (ah->ah_mac_srev >= AR5K_SREV_AR5424) |
| ath5k_hw_set_spur_mitigation_filter(ah, |
| channel); |
| } |
| |
| /* If we used fast channel switching |
| * we are done, release RF bus and |
| * fire up NF calibration. |
| * |
| * Note: Only NF calibration due to |
| * channel change, not AGC calibration |
| * since AGC is still running ! |
| */ |
| if (fast) { |
| /* |
| * Release RF Bus grant |
| */ |
| AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_RFBUS_REQ, |
| AR5K_PHY_RFBUS_REQ_REQUEST); |
| |
| /* |
| * Start NF calibration |
| */ |
| AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL, |
| AR5K_PHY_AGCCTL_NF); |
| |
| return ret; |
| } |
| |
| /* |
| * For 5210 we do all initialization using |
| * initvals, so we don't have to modify |
| * any settings (5210 also only supports |
| * a/aturbo modes) |
| */ |
| if (ah->ah_version != AR5K_AR5210) { |
| |
| /* |
| * Write initial RF gain settings |
| * This should work for both 5111/5112 |
| */ |
| ret = ath5k_hw_rfgain_init(ah, channel->band); |
| if (ret) |
| return ret; |
| |
| mdelay(1); |
| |
| /* |
| * Write RF buffer |
| */ |
| ret = ath5k_hw_rfregs_init(ah, channel, mode); |
| if (ret) |
| return ret; |
| |
| /*Enable/disable 802.11b mode on 5111 |
| (enable 2111 frequency converter + CCK)*/ |
| if (ah->ah_radio == AR5K_RF5111) { |
| if (mode == AR5K_MODE_11B) |
| AR5K_REG_ENABLE_BITS(ah, AR5K_TXCFG, |
| AR5K_TXCFG_B_MODE); |
| else |
| AR5K_REG_DISABLE_BITS(ah, AR5K_TXCFG, |
| AR5K_TXCFG_B_MODE); |
| } |
| |
| } else if (ah->ah_version == AR5K_AR5210) { |
| mdelay(1); |
| /* Disable phy and wait */ |
| ath5k_hw_reg_write(ah, AR5K_PHY_ACT_DISABLE, AR5K_PHY_ACT); |
| mdelay(1); |
| } |
| |
| /* Set channel on PHY */ |
| ret = ath5k_hw_channel(ah, channel); |
| if (ret) |
| return ret; |
| |
| /* |
| * Enable the PHY and wait until completion |
| * This includes BaseBand and Synthesizer |
| * activation. |
| */ |
| ath5k_hw_reg_write(ah, AR5K_PHY_ACT_ENABLE, AR5K_PHY_ACT); |
| |
| ath5k_hw_wait_for_synth(ah, channel); |
| |
| /* |
| * Perform ADC test to see if baseband is ready |
| * Set tx hold and check adc test register |
| */ |
| phy_tst1 = ath5k_hw_reg_read(ah, AR5K_PHY_TST1); |
| ath5k_hw_reg_write(ah, AR5K_PHY_TST1_TXHOLD, AR5K_PHY_TST1); |
| for (i = 0; i <= 20; i++) { |
| if (!(ath5k_hw_reg_read(ah, AR5K_PHY_ADC_TEST) & 0x10)) |
| break; |
| udelay(200); |
| } |
| ath5k_hw_reg_write(ah, phy_tst1, AR5K_PHY_TST1); |
| |
| /* |
| * Start automatic gain control calibration |
| * |
| * During AGC calibration RX path is re-routed to |
| * a power detector so we don't receive anything. |
| * |
| * This method is used to calibrate some static offsets |
| * used together with on-the fly I/Q calibration (the |
| * one performed via ath5k_hw_phy_calibrate), which doesn't |
| * interrupt rx path. |
| * |
| * While rx path is re-routed to the power detector we also |
| * start a noise floor calibration to measure the |
| * card's noise floor (the noise we measure when we are not |
| * transmitting or receiving anything). |
| * |
| * If we are in a noisy environment, AGC calibration may time |
| * out and/or noise floor calibration might timeout. |
| */ |
| AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL, |
| AR5K_PHY_AGCCTL_CAL | AR5K_PHY_AGCCTL_NF); |
| |
| /* At the same time start I/Q calibration for QAM constellation |
| * -no need for CCK- */ |
| ah->ah_calibration = false; |
| if (!(mode == AR5K_MODE_11B)) { |
| ah->ah_calibration = true; |
| AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ, |
| AR5K_PHY_IQ_CAL_NUM_LOG_MAX, 15); |
| AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, |
| AR5K_PHY_IQ_RUN); |
| } |
| |
| /* Wait for gain calibration to finish (we check for I/Q calibration |
| * during ath5k_phy_calibrate) */ |
| if (ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL, |
| AR5K_PHY_AGCCTL_CAL, 0, false)) { |
| ATH5K_ERR(ah, "gain calibration timeout (%uMHz)\n", |
| channel->center_freq); |
| } |
| |
| /* Restore antenna mode */ |
| ath5k_hw_set_antenna_mode(ah, ah->ah_ant_mode); |
| |
| return ret; |
| } |