blob: 4d01f09ecf80819e1275264bd0b06ea8fce1977d [file] [log] [blame]
/* SPDX-License-Identifier: GPL-2.0 */
/*
* This file contains the 64-bit "server" PowerPC variant
* of the low level exception handling including exception
* vectors, exception return, part of the slb and stab
* handling and other fixed offset specific things.
*
* This file is meant to be #included from head_64.S due to
* position dependent assembly.
*
* Most of this originates from head_64.S and thus has the same
* copyright history.
*
*/
#include <asm/hw_irq.h>
#include <asm/exception-64s.h>
#include <asm/ptrace.h>
#include <asm/cpuidle.h>
#include <asm/head-64.h>
#include <asm/feature-fixups.h>
#include <asm/kup.h>
/* PACA save area offsets (exgen, exmc, etc) */
#define EX_R9 0
#define EX_R10 8
#define EX_R11 16
#define EX_R12 24
#define EX_R13 32
#define EX_DAR 40
#define EX_DSISR 48
#define EX_CCR 52
#define EX_CFAR 56
#define EX_PPR 64
#define EX_CTR 72
.if EX_SIZE != 10
.error "EX_SIZE is wrong"
.endif
/*
* Following are fixed section helper macros.
*
* EXC_REAL_BEGIN/END - real, unrelocated exception vectors
* EXC_VIRT_BEGIN/END - virt (AIL), unrelocated exception vectors
* TRAMP_REAL_BEGIN - real, unrelocated helpers (virt may call these)
* TRAMP_VIRT_BEGIN - virt, unreloc helpers (in practice, real can use)
* EXC_COMMON - After switching to virtual, relocated mode.
*/
#define EXC_REAL_BEGIN(name, start, size) \
FIXED_SECTION_ENTRY_BEGIN_LOCATION(real_vectors, exc_real_##start##_##name, start, size)
#define EXC_REAL_END(name, start, size) \
FIXED_SECTION_ENTRY_END_LOCATION(real_vectors, exc_real_##start##_##name, start, size)
#define EXC_VIRT_BEGIN(name, start, size) \
FIXED_SECTION_ENTRY_BEGIN_LOCATION(virt_vectors, exc_virt_##start##_##name, start, size)
#define EXC_VIRT_END(name, start, size) \
FIXED_SECTION_ENTRY_END_LOCATION(virt_vectors, exc_virt_##start##_##name, start, size)
#define EXC_COMMON_BEGIN(name) \
USE_TEXT_SECTION(); \
.balign IFETCH_ALIGN_BYTES; \
.global name; \
_ASM_NOKPROBE_SYMBOL(name); \
DEFINE_FIXED_SYMBOL(name); \
name:
#define TRAMP_REAL_BEGIN(name) \
FIXED_SECTION_ENTRY_BEGIN(real_trampolines, name)
#define TRAMP_VIRT_BEGIN(name) \
FIXED_SECTION_ENTRY_BEGIN(virt_trampolines, name)
#define EXC_REAL_NONE(start, size) \
FIXED_SECTION_ENTRY_BEGIN_LOCATION(real_vectors, exc_real_##start##_##unused, start, size); \
FIXED_SECTION_ENTRY_END_LOCATION(real_vectors, exc_real_##start##_##unused, start, size)
#define EXC_VIRT_NONE(start, size) \
FIXED_SECTION_ENTRY_BEGIN_LOCATION(virt_vectors, exc_virt_##start##_##unused, start, size); \
FIXED_SECTION_ENTRY_END_LOCATION(virt_vectors, exc_virt_##start##_##unused, start, size)
/*
* We're short on space and time in the exception prolog, so we can't
* use the normal LOAD_REG_IMMEDIATE macro to load the address of label.
* Instead we get the base of the kernel from paca->kernelbase and or in the low
* part of label. This requires that the label be within 64KB of kernelbase, and
* that kernelbase be 64K aligned.
*/
#define LOAD_HANDLER(reg, label) \
ld reg,PACAKBASE(r13); /* get high part of &label */ \
ori reg,reg,FIXED_SYMBOL_ABS_ADDR(label)
#define __LOAD_HANDLER(reg, label) \
ld reg,PACAKBASE(r13); \
ori reg,reg,(ABS_ADDR(label))@l
/*
* Branches from unrelocated code (e.g., interrupts) to labels outside
* head-y require >64K offsets.
*/
#define __LOAD_FAR_HANDLER(reg, label) \
ld reg,PACAKBASE(r13); \
ori reg,reg,(ABS_ADDR(label))@l; \
addis reg,reg,(ABS_ADDR(label))@h
/*
* Branch to label using its 0xC000 address. This results in instruction
* address suitable for MSR[IR]=0 or 1, which allows relocation to be turned
* on using mtmsr rather than rfid.
*
* This could set the 0xc bits for !RELOCATABLE as an immediate, rather than
* load KBASE for a slight optimisation.
*/
#define BRANCH_TO_C000(reg, label) \
__LOAD_FAR_HANDLER(reg, label); \
mtctr reg; \
bctr
/*
* Interrupt code generation macros
*/
#define IVEC .L_IVEC_\name\() /* Interrupt vector address */
#define IHSRR .L_IHSRR_\name\() /* Sets SRR or HSRR registers */
#define IHSRR_IF_HVMODE .L_IHSRR_IF_HVMODE_\name\() /* HSRR if HV else SRR */
#define IAREA .L_IAREA_\name\() /* PACA save area */
#define IVIRT .L_IVIRT_\name\() /* Has virt mode entry point */
#define IISIDE .L_IISIDE_\name\() /* Uses SRR0/1 not DAR/DSISR */
#define IDAR .L_IDAR_\name\() /* Uses DAR (or SRR0) */
#define IDSISR .L_IDSISR_\name\() /* Uses DSISR (or SRR1) */
#define ISET_RI .L_ISET_RI_\name\() /* Run common code w/ MSR[RI]=1 */
#define IBRANCH_TO_COMMON .L_IBRANCH_TO_COMMON_\name\() /* ENTRY branch to common */
#define IREALMODE_COMMON .L_IREALMODE_COMMON_\name\() /* Common runs in realmode */
#define IMASK .L_IMASK_\name\() /* IRQ soft-mask bit */
#define IKVM_SKIP .L_IKVM_SKIP_\name\() /* Generate KVM skip handler */
#define IKVM_REAL .L_IKVM_REAL_\name\() /* Real entry tests KVM */
#define __IKVM_REAL(name) .L_IKVM_REAL_ ## name
#define IKVM_VIRT .L_IKVM_VIRT_\name\() /* Virt entry tests KVM */
#define ISTACK .L_ISTACK_\name\() /* Set regular kernel stack */
#define __ISTACK(name) .L_ISTACK_ ## name
#define IRECONCILE .L_IRECONCILE_\name\() /* Do RECONCILE_IRQ_STATE */
#define IKUAP .L_IKUAP_\name\() /* Do KUAP lock */
#define INT_DEFINE_BEGIN(n) \
.macro int_define_ ## n name
#define INT_DEFINE_END(n) \
.endm ; \
int_define_ ## n n ; \
do_define_int n
.macro do_define_int name
.ifndef IVEC
.error "IVEC not defined"
.endif
.ifndef IHSRR
IHSRR=0
.endif
.ifndef IHSRR_IF_HVMODE
IHSRR_IF_HVMODE=0
.endif
.ifndef IAREA
IAREA=PACA_EXGEN
.endif
.ifndef IVIRT
IVIRT=1
.endif
.ifndef IISIDE
IISIDE=0
.endif
.ifndef IDAR
IDAR=0
.endif
.ifndef IDSISR
IDSISR=0
.endif
.ifndef ISET_RI
ISET_RI=1
.endif
.ifndef IBRANCH_TO_COMMON
IBRANCH_TO_COMMON=1
.endif
.ifndef IREALMODE_COMMON
IREALMODE_COMMON=0
.else
.if ! IBRANCH_TO_COMMON
.error "IREALMODE_COMMON=1 but IBRANCH_TO_COMMON=0"
.endif
.endif
.ifndef IMASK
IMASK=0
.endif
.ifndef IKVM_SKIP
IKVM_SKIP=0
.endif
.ifndef IKVM_REAL
IKVM_REAL=0
.endif
.ifndef IKVM_VIRT
IKVM_VIRT=0
.endif
.ifndef ISTACK
ISTACK=1
.endif
.ifndef IRECONCILE
IRECONCILE=1
.endif
.ifndef IKUAP
IKUAP=1
.endif
.endm
#ifdef CONFIG_KVM_BOOK3S_64_HANDLER
#ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
/*
* All interrupts which set HSRR registers, as well as SRESET and MCE and
* syscall when invoked with "sc 1" switch to MSR[HV]=1 (HVMODE) to be taken,
* so they all generally need to test whether they were taken in guest context.
*
* Note: SRESET and MCE may also be sent to the guest by the hypervisor, and be
* taken with MSR[HV]=0.
*
* Interrupts which set SRR registers (with the above exceptions) do not
* elevate to MSR[HV]=1 mode, though most can be taken when running with
* MSR[HV]=1 (e.g., bare metal kernel and userspace). So these interrupts do
* not need to test whether a guest is running because they get delivered to
* the guest directly, including nested HV KVM guests.
*
* The exception is PR KVM, where the guest runs with MSR[PR]=1 and the host
* runs with MSR[HV]=0, so the host takes all interrupts on behalf of the
* guest. PR KVM runs with LPCR[AIL]=0 which causes interrupts to always be
* delivered to the real-mode entry point, therefore such interrupts only test
* KVM in their real mode handlers, and only when PR KVM is possible.
*
* Interrupts that are taken in MSR[HV]=0 and escalate to MSR[HV]=1 are always
* delivered in real-mode when the MMU is in hash mode because the MMU
* registers are not set appropriately to translate host addresses. In nested
* radix mode these can be delivered in virt-mode as the host translations are
* used implicitly (see: effective LPID, effective PID).
*/
/*
* If an interrupt is taken while a guest is running, it is immediately routed
* to KVM to handle. If both HV and PR KVM arepossible, KVM interrupts go first
* to kvmppc_interrupt_hv, which handles the PR guest case.
*/
#define kvmppc_interrupt kvmppc_interrupt_hv
#else
#define kvmppc_interrupt kvmppc_interrupt_pr
#endif
.macro KVMTEST name
lbz r10,HSTATE_IN_GUEST(r13)
cmpwi r10,0
bne \name\()_kvm
.endm
.macro GEN_KVM name
.balign IFETCH_ALIGN_BYTES
\name\()_kvm:
.if IKVM_SKIP
cmpwi r10,KVM_GUEST_MODE_SKIP
beq 89f
.else
BEGIN_FTR_SECTION
ld r10,IAREA+EX_CFAR(r13)
std r10,HSTATE_CFAR(r13)
END_FTR_SECTION_IFSET(CPU_FTR_CFAR)
.endif
ld r10,IAREA+EX_CTR(r13)
mtctr r10
BEGIN_FTR_SECTION
ld r10,IAREA+EX_PPR(r13)
std r10,HSTATE_PPR(r13)
END_FTR_SECTION_IFSET(CPU_FTR_HAS_PPR)
ld r11,IAREA+EX_R11(r13)
ld r12,IAREA+EX_R12(r13)
std r12,HSTATE_SCRATCH0(r13)
sldi r12,r9,32
ld r9,IAREA+EX_R9(r13)
ld r10,IAREA+EX_R10(r13)
/* HSRR variants have the 0x2 bit added to their trap number */
.if IHSRR_IF_HVMODE
BEGIN_FTR_SECTION
ori r12,r12,(IVEC + 0x2)
FTR_SECTION_ELSE
ori r12,r12,(IVEC)
ALT_FTR_SECTION_END_IFSET(CPU_FTR_HVMODE | CPU_FTR_ARCH_206)
.elseif IHSRR
ori r12,r12,(IVEC+ 0x2)
.else
ori r12,r12,(IVEC)
.endif
b kvmppc_interrupt
.if IKVM_SKIP
89: mtocrf 0x80,r9
ld r10,IAREA+EX_CTR(r13)
mtctr r10
ld r9,IAREA+EX_R9(r13)
ld r10,IAREA+EX_R10(r13)
ld r11,IAREA+EX_R11(r13)
ld r12,IAREA+EX_R12(r13)
.if IHSRR_IF_HVMODE
BEGIN_FTR_SECTION
b kvmppc_skip_Hinterrupt
FTR_SECTION_ELSE
b kvmppc_skip_interrupt
ALT_FTR_SECTION_END_IFSET(CPU_FTR_HVMODE | CPU_FTR_ARCH_206)
.elseif IHSRR
b kvmppc_skip_Hinterrupt
.else
b kvmppc_skip_interrupt
.endif
.endif
.endm
#else
.macro KVMTEST name
.endm
.macro GEN_KVM name
.endm
#endif
/*
* This is the BOOK3S interrupt entry code macro.
*
* This can result in one of several things happening:
* - Branch to the _common handler, relocated, in virtual mode.
* These are normal interrupts (synchronous and asynchronous) handled by
* the kernel.
* - Branch to KVM, relocated but real mode interrupts remain in real mode.
* These occur when HSTATE_IN_GUEST is set. The interrupt may be caused by
* / intended for host or guest kernel, but KVM must always be involved
* because the machine state is set for guest execution.
* - Branch to the masked handler, unrelocated.
* These occur when maskable asynchronous interrupts are taken with the
* irq_soft_mask set.
* - Branch to an "early" handler in real mode but relocated.
* This is done if early=1. MCE and HMI use these to handle errors in real
* mode.
* - Fall through and continue executing in real, unrelocated mode.
* This is done if early=2.
*/
.macro GEN_BRANCH_TO_COMMON name, virt
.if IREALMODE_COMMON
LOAD_HANDLER(r10, \name\()_common)
mtctr r10
bctr
.else
.if \virt
#ifndef CONFIG_RELOCATABLE
b \name\()_common_virt
#else
LOAD_HANDLER(r10, \name\()_common_virt)
mtctr r10
bctr
#endif
.else
LOAD_HANDLER(r10, \name\()_common_real)
mtctr r10
bctr
.endif
.endif
.endm
.macro GEN_INT_ENTRY name, virt, ool=0
SET_SCRATCH0(r13) /* save r13 */
GET_PACA(r13)
std r9,IAREA+EX_R9(r13) /* save r9 */
BEGIN_FTR_SECTION
mfspr r9,SPRN_PPR
END_FTR_SECTION_IFSET(CPU_FTR_HAS_PPR)
HMT_MEDIUM
std r10,IAREA+EX_R10(r13) /* save r10 - r12 */
BEGIN_FTR_SECTION
mfspr r10,SPRN_CFAR
END_FTR_SECTION_IFSET(CPU_FTR_CFAR)
.if \ool
.if !\virt
b tramp_real_\name
.pushsection .text
TRAMP_REAL_BEGIN(tramp_real_\name)
.else
b tramp_virt_\name
.pushsection .text
TRAMP_VIRT_BEGIN(tramp_virt_\name)
.endif
.endif
BEGIN_FTR_SECTION
std r9,IAREA+EX_PPR(r13)
END_FTR_SECTION_IFSET(CPU_FTR_HAS_PPR)
BEGIN_FTR_SECTION
std r10,IAREA+EX_CFAR(r13)
END_FTR_SECTION_IFSET(CPU_FTR_CFAR)
INTERRUPT_TO_KERNEL
mfctr r10
std r10,IAREA+EX_CTR(r13)
mfcr r9
std r11,IAREA+EX_R11(r13)
std r12,IAREA+EX_R12(r13)
/*
* DAR/DSISR, SCRATCH0 must be read before setting MSR[RI],
* because a d-side MCE will clobber those registers so is
* not recoverable if they are live.
*/
GET_SCRATCH0(r10)
std r10,IAREA+EX_R13(r13)
.if IDAR && !IISIDE
.if IHSRR
mfspr r10,SPRN_HDAR
.else
mfspr r10,SPRN_DAR
.endif
std r10,IAREA+EX_DAR(r13)
.endif
.if IDSISR && !IISIDE
.if IHSRR
mfspr r10,SPRN_HDSISR
.else
mfspr r10,SPRN_DSISR
.endif
stw r10,IAREA+EX_DSISR(r13)
.endif
.if IHSRR_IF_HVMODE
BEGIN_FTR_SECTION
mfspr r11,SPRN_HSRR0 /* save HSRR0 */
mfspr r12,SPRN_HSRR1 /* and HSRR1 */
FTR_SECTION_ELSE
mfspr r11,SPRN_SRR0 /* save SRR0 */
mfspr r12,SPRN_SRR1 /* and SRR1 */
ALT_FTR_SECTION_END_IFSET(CPU_FTR_HVMODE | CPU_FTR_ARCH_206)
.elseif IHSRR
mfspr r11,SPRN_HSRR0 /* save HSRR0 */
mfspr r12,SPRN_HSRR1 /* and HSRR1 */
.else
mfspr r11,SPRN_SRR0 /* save SRR0 */
mfspr r12,SPRN_SRR1 /* and SRR1 */
.endif
.if IBRANCH_TO_COMMON
GEN_BRANCH_TO_COMMON \name \virt
.endif
.if \ool
.popsection
.endif
.endm
/*
* __GEN_COMMON_ENTRY is required to receive the branch from interrupt
* entry, except in the case of the real-mode handlers which require
* __GEN_REALMODE_COMMON_ENTRY.
*
* This switches to virtual mode and sets MSR[RI].
*/
.macro __GEN_COMMON_ENTRY name
DEFINE_FIXED_SYMBOL(\name\()_common_real)
\name\()_common_real:
.if IKVM_REAL
KVMTEST \name
.endif
ld r10,PACAKMSR(r13) /* get MSR value for kernel */
/* MSR[RI] is clear iff using SRR regs */
.if IHSRR == EXC_HV_OR_STD
BEGIN_FTR_SECTION
xori r10,r10,MSR_RI
END_FTR_SECTION_IFCLR(CPU_FTR_HVMODE)
.elseif ! IHSRR
xori r10,r10,MSR_RI
.endif
mtmsrd r10
.if IVIRT
.if IKVM_VIRT
b 1f /* skip the virt test coming from real */
.endif
.balign IFETCH_ALIGN_BYTES
DEFINE_FIXED_SYMBOL(\name\()_common_virt)
\name\()_common_virt:
.if IKVM_VIRT
KVMTEST \name
1:
.endif
.endif /* IVIRT */
.endm
/*
* Don't switch to virt mode. Used for early MCE and HMI handlers that
* want to run in real mode.
*/
.macro __GEN_REALMODE_COMMON_ENTRY name
DEFINE_FIXED_SYMBOL(\name\()_common_real)
\name\()_common_real:
.if IKVM_REAL
KVMTEST \name
.endif
.endm
.macro __GEN_COMMON_BODY name
.if IMASK
.if ! ISTACK
.error "No support for masked interrupt to use custom stack"
.endif
/* If coming from user, skip soft-mask tests. */
andi. r10,r12,MSR_PR
bne 2f
/* Kernel code running below __end_interrupts is implicitly
* soft-masked */
LOAD_HANDLER(r10, __end_interrupts)
cmpld r11,r10
li r10,IMASK
blt- 1f
/* Test the soft mask state against our interrupt's bit */
lbz r10,PACAIRQSOFTMASK(r13)
1: andi. r10,r10,IMASK
/* Associate vector numbers with bits in paca->irq_happened */
.if IVEC == 0x500 || IVEC == 0xea0
li r10,PACA_IRQ_EE
.elseif IVEC == 0x900
li r10,PACA_IRQ_DEC
.elseif IVEC == 0xa00 || IVEC == 0xe80
li r10,PACA_IRQ_DBELL
.elseif IVEC == 0xe60
li r10,PACA_IRQ_HMI
.elseif IVEC == 0xf00
li r10,PACA_IRQ_PMI
.else
.abort "Bad maskable vector"
.endif
.if IHSRR_IF_HVMODE
BEGIN_FTR_SECTION
bne masked_Hinterrupt
FTR_SECTION_ELSE
bne masked_interrupt
ALT_FTR_SECTION_END_IFSET(CPU_FTR_HVMODE | CPU_FTR_ARCH_206)
.elseif IHSRR
bne masked_Hinterrupt
.else
bne masked_interrupt
.endif
.endif
.if ISTACK
andi. r10,r12,MSR_PR /* See if coming from user */
2: mr r10,r1 /* Save r1 */
subi r1,r1,INT_FRAME_SIZE /* alloc frame on kernel stack */
beq- 100f
ld r1,PACAKSAVE(r13) /* kernel stack to use */
100: tdgei r1,-INT_FRAME_SIZE /* trap if r1 is in userspace */
EMIT_BUG_ENTRY 100b,__FILE__,__LINE__,0
.endif
std r9,_CCR(r1) /* save CR in stackframe */
std r11,_NIP(r1) /* save SRR0 in stackframe */
std r12,_MSR(r1) /* save SRR1 in stackframe */
std r10,0(r1) /* make stack chain pointer */
std r0,GPR0(r1) /* save r0 in stackframe */
std r10,GPR1(r1) /* save r1 in stackframe */
.if ISET_RI
li r10,MSR_RI
mtmsrd r10,1 /* Set MSR_RI */
.endif
.if ISTACK
.if IKUAP
kuap_save_amr_and_lock r9, r10, cr1, cr0
.endif
beq 101f /* if from kernel mode */
ACCOUNT_CPU_USER_ENTRY(r13, r9, r10)
BEGIN_FTR_SECTION
ld r9,IAREA+EX_PPR(r13) /* Read PPR from paca */
std r9,_PPR(r1)
END_FTR_SECTION_IFSET(CPU_FTR_HAS_PPR)
101:
.else
.if IKUAP
kuap_save_amr_and_lock r9, r10, cr1
.endif
.endif
/* Save original regs values from save area to stack frame. */
ld r9,IAREA+EX_R9(r13) /* move r9, r10 to stackframe */
ld r10,IAREA+EX_R10(r13)
std r9,GPR9(r1)
std r10,GPR10(r1)
ld r9,IAREA+EX_R11(r13) /* move r11 - r13 to stackframe */
ld r10,IAREA+EX_R12(r13)
ld r11,IAREA+EX_R13(r13)
std r9,GPR11(r1)
std r10,GPR12(r1)
std r11,GPR13(r1)
SAVE_NVGPRS(r1)
.if IDAR
.if IISIDE
ld r10,_NIP(r1)
.else
ld r10,IAREA+EX_DAR(r13)
.endif
std r10,_DAR(r1)
.endif
.if IDSISR
.if IISIDE
ld r10,_MSR(r1)
lis r11,DSISR_SRR1_MATCH_64S@h
and r10,r10,r11
.else
lwz r10,IAREA+EX_DSISR(r13)
.endif
std r10,_DSISR(r1)
.endif
BEGIN_FTR_SECTION
ld r10,IAREA+EX_CFAR(r13)
std r10,ORIG_GPR3(r1)
END_FTR_SECTION_IFSET(CPU_FTR_CFAR)
ld r10,IAREA+EX_CTR(r13)
std r10,_CTR(r1)
std r2,GPR2(r1) /* save r2 in stackframe */
SAVE_4GPRS(3, r1) /* save r3 - r6 in stackframe */
SAVE_2GPRS(7, r1) /* save r7, r8 in stackframe */
mflr r9 /* Get LR, later save to stack */
ld r2,PACATOC(r13) /* get kernel TOC into r2 */
std r9,_LINK(r1)
lbz r10,PACAIRQSOFTMASK(r13)
mfspr r11,SPRN_XER /* save XER in stackframe */
std r10,SOFTE(r1)
std r11,_XER(r1)
li r9,IVEC
std r9,_TRAP(r1) /* set trap number */
li r10,0
ld r11,exception_marker@toc(r2)
std r10,RESULT(r1) /* clear regs->result */
std r11,STACK_FRAME_OVERHEAD-16(r1) /* mark the frame */
.if ISTACK
ACCOUNT_STOLEN_TIME
.endif
.if IRECONCILE
RECONCILE_IRQ_STATE(r10, r11)
.endif
.endm
/*
* On entry r13 points to the paca, r9-r13 are saved in the paca,
* r9 contains the saved CR, r11 and r12 contain the saved SRR0 and
* SRR1, and relocation is on.
*
* If stack=0, then the stack is already set in r1, and r1 is saved in r10.
* PPR save and CPU accounting is not done for the !stack case (XXX why not?)
*/
.macro GEN_COMMON name
__GEN_COMMON_ENTRY \name
__GEN_COMMON_BODY \name
.endm
/*
* Restore all registers including H/SRR0/1 saved in a stack frame of a
* standard exception.
*/
.macro EXCEPTION_RESTORE_REGS hsrr=0
/* Move original SRR0 and SRR1 into the respective regs */
ld r9,_MSR(r1)
.if \hsrr
mtspr SPRN_HSRR1,r9
.else
mtspr SPRN_SRR1,r9
.endif
ld r9,_NIP(r1)
.if \hsrr
mtspr SPRN_HSRR0,r9
.else
mtspr SPRN_SRR0,r9
.endif
ld r9,_CTR(r1)
mtctr r9
ld r9,_XER(r1)
mtxer r9
ld r9,_LINK(r1)
mtlr r9
ld r9,_CCR(r1)
mtcr r9
REST_8GPRS(2, r1)
REST_4GPRS(10, r1)
REST_GPR(0, r1)
/* restore original r1. */
ld r1,GPR1(r1)
.endm
#define RUNLATCH_ON \
BEGIN_FTR_SECTION \
ld r3, PACA_THREAD_INFO(r13); \
ld r4,TI_LOCAL_FLAGS(r3); \
andi. r0,r4,_TLF_RUNLATCH; \
beql ppc64_runlatch_on_trampoline; \
END_FTR_SECTION_IFSET(CPU_FTR_CTRL)
/*
* When the idle code in power4_idle puts the CPU into NAP mode,
* it has to do so in a loop, and relies on the external interrupt
* and decrementer interrupt entry code to get it out of the loop.
* It sets the _TLF_NAPPING bit in current_thread_info()->local_flags
* to signal that it is in the loop and needs help to get out.
*/
#ifdef CONFIG_PPC_970_NAP
#define FINISH_NAP \
BEGIN_FTR_SECTION \
ld r11, PACA_THREAD_INFO(r13); \
ld r9,TI_LOCAL_FLAGS(r11); \
andi. r10,r9,_TLF_NAPPING; \
bnel power4_fixup_nap; \
END_FTR_SECTION_IFSET(CPU_FTR_CAN_NAP)
#else
#define FINISH_NAP
#endif
/*
* There are a few constraints to be concerned with.
* - Real mode exceptions code/data must be located at their physical location.
* - Virtual mode exceptions must be mapped at their 0xc000... location.
* - Fixed location code must not call directly beyond the __end_interrupts
* area when built with CONFIG_RELOCATABLE. LOAD_HANDLER / bctr sequence
* must be used.
* - LOAD_HANDLER targets must be within first 64K of physical 0 /
* virtual 0xc00...
* - Conditional branch targets must be within +/-32K of caller.
*
* "Virtual exceptions" run with relocation on (MSR_IR=1, MSR_DR=1), and
* therefore don't have to run in physically located code or rfid to
* virtual mode kernel code. However on relocatable kernels they do have
* to branch to KERNELBASE offset because the rest of the kernel (outside
* the exception vectors) may be located elsewhere.
*
* Virtual exceptions correspond with physical, except their entry points
* are offset by 0xc000000000000000 and also tend to get an added 0x4000
* offset applied. Virtual exceptions are enabled with the Alternate
* Interrupt Location (AIL) bit set in the LPCR. However this does not
* guarantee they will be delivered virtually. Some conditions (see the ISA)
* cause exceptions to be delivered in real mode.
*
* The scv instructions are a special case. They get a 0x3000 offset applied.
* scv exceptions have unique reentrancy properties, see below.
*
* It's impossible to receive interrupts below 0x300 via AIL.
*
* KVM: None of the virtual exceptions are from the guest. Anything that
* escalated to HV=1 from HV=0 is delivered via real mode handlers.
*
*
* We layout physical memory as follows:
* 0x0000 - 0x00ff : Secondary processor spin code
* 0x0100 - 0x18ff : Real mode pSeries interrupt vectors
* 0x1900 - 0x2fff : Real mode trampolines
* 0x3000 - 0x58ff : Relon (IR=1,DR=1) mode pSeries interrupt vectors
* 0x5900 - 0x6fff : Relon mode trampolines
* 0x7000 - 0x7fff : FWNMI data area
* 0x8000 - .... : Common interrupt handlers, remaining early
* setup code, rest of kernel.
*
* We could reclaim 0x4000-0x42ff for real mode trampolines if the space
* is necessary. Until then it's more consistent to explicitly put VIRT_NONE
* vectors there.
*/
OPEN_FIXED_SECTION(real_vectors, 0x0100, 0x1900)
OPEN_FIXED_SECTION(real_trampolines, 0x1900, 0x3000)
OPEN_FIXED_SECTION(virt_vectors, 0x3000, 0x5900)
OPEN_FIXED_SECTION(virt_trampolines, 0x5900, 0x7000)
#ifdef CONFIG_PPC_POWERNV
.globl start_real_trampolines
.globl end_real_trampolines
.globl start_virt_trampolines
.globl end_virt_trampolines
#endif
#if defined(CONFIG_PPC_PSERIES) || defined(CONFIG_PPC_POWERNV)
/*
* Data area reserved for FWNMI option.
* This address (0x7000) is fixed by the RPA.
* pseries and powernv need to keep the whole page from
* 0x7000 to 0x8000 free for use by the firmware
*/
ZERO_FIXED_SECTION(fwnmi_page, 0x7000, 0x8000)
OPEN_TEXT_SECTION(0x8000)
#else
OPEN_TEXT_SECTION(0x7000)
#endif
USE_FIXED_SECTION(real_vectors)
/*
* This is the start of the interrupt handlers for pSeries
* This code runs with relocation off.
* Code from here to __end_interrupts gets copied down to real
* address 0x100 when we are running a relocatable kernel.
* Therefore any relative branches in this section must only
* branch to labels in this section.
*/
.globl __start_interrupts
__start_interrupts:
/**
* Interrupt 0x3000 - System Call Vectored Interrupt (syscall).
* This is a synchronous interrupt invoked with the "scv" instruction. The
* system call does not alter the HV bit, so it is directed to the OS.
*
* Handling:
* scv instructions enter the kernel without changing EE, RI, ME, or HV.
* In particular, this means we can take a maskable interrupt at any point
* in the scv handler, which is unlike any other interrupt. This is solved
* by treating the instruction addresses below __end_interrupts as being
* soft-masked.
*
* AIL-0 mode scv exceptions go to 0x17000-0x17fff, but we set AIL-3 and
* ensure scv is never executed with relocation off, which means AIL-0
* should never happen.
*
* Before leaving the below __end_interrupts text, at least of the following
* must be true:
* - MSR[PR]=1 (i.e., return to userspace)
* - MSR_EE|MSR_RI is set (no reentrant exceptions)
* - Standard kernel environment is set up (stack, paca, etc)
*
* Call convention:
*
* syscall register convention is in Documentation/powerpc/syscall64-abi.rst
*/
EXC_VIRT_BEGIN(system_call_vectored, 0x3000, 0x1000)
/* SCV 0 */
mr r9,r13
GET_PACA(r13)
mflr r11
mfctr r12
li r10,IRQS_ALL_DISABLED
stb r10,PACAIRQSOFTMASK(r13)
#ifdef CONFIG_RELOCATABLE
b system_call_vectored_tramp
#else
b system_call_vectored_common
#endif
nop
/* SCV 1 - 127 */
.rept 127
mr r9,r13
GET_PACA(r13)
mflr r11
mfctr r12
li r10,IRQS_ALL_DISABLED
stb r10,PACAIRQSOFTMASK(r13)
li r0,-1 /* cause failure */
#ifdef CONFIG_RELOCATABLE
b system_call_vectored_sigill_tramp
#else
b system_call_vectored_sigill
#endif
.endr
EXC_VIRT_END(system_call_vectored, 0x3000, 0x1000)
#ifdef CONFIG_RELOCATABLE
TRAMP_VIRT_BEGIN(system_call_vectored_tramp)
__LOAD_HANDLER(r10, system_call_vectored_common)
mtctr r10
bctr
TRAMP_VIRT_BEGIN(system_call_vectored_sigill_tramp)
__LOAD_HANDLER(r10, system_call_vectored_sigill)
mtctr r10
bctr
#endif
/* No virt vectors corresponding with 0x0..0x100 */
EXC_VIRT_NONE(0x4000, 0x100)
/**
* Interrupt 0x100 - System Reset Interrupt (SRESET aka NMI).
* This is a non-maskable, asynchronous interrupt always taken in real-mode.
* It is caused by:
* - Wake from power-saving state, on powernv.
* - An NMI from another CPU, triggered by firmware or hypercall.
* - As crash/debug signal injected from BMC, firmware or hypervisor.
*
* Handling:
* Power-save wakeup is the only performance critical path, so this is
* determined quickly as possible first. In this case volatile registers
* can be discarded and SPRs like CFAR don't need to be read.
*
* If not a powersave wakeup, then it's run as a regular interrupt, however
* it uses its own stack and PACA save area to preserve the regular kernel
* environment for debugging.
*
* This interrupt is not maskable, so triggering it when MSR[RI] is clear,
* or SCRATCH0 is in use, etc. may cause a crash. It's also not entirely
* correct to switch to virtual mode to run the regular interrupt handler
* because it might be interrupted when the MMU is in a bad state (e.g., SLB
* is clear).
*
* FWNMI:
* PAPR specifies a "fwnmi" facility which sends the sreset to a different
* entry point with a different register set up. Some hypervisors will
* send the sreset to 0x100 in the guest if it is not fwnmi capable.
*
* KVM:
* Unlike most SRR interrupts, this may be taken by the host while executing
* in a guest, so a KVM test is required. KVM will pull the CPU out of guest
* mode and then raise the sreset.
*/
INT_DEFINE_BEGIN(system_reset)
IVEC=0x100
IAREA=PACA_EXNMI
IVIRT=0 /* no virt entry point */
/*
* MSR_RI is not enabled, because PACA_EXNMI and nmi stack is
* being used, so a nested NMI exception would corrupt it.
*/
ISET_RI=0
ISTACK=0
IRECONCILE=0
IKVM_REAL=1
INT_DEFINE_END(system_reset)
EXC_REAL_BEGIN(system_reset, 0x100, 0x100)
#ifdef CONFIG_PPC_P7_NAP
/*
* If running native on arch 2.06 or later, check if we are waking up
* from nap/sleep/winkle, and branch to idle handler. This tests SRR1
* bits 46:47. A non-0 value indicates that we are coming from a power
* saving state. The idle wakeup handler initially runs in real mode,
* but we branch to the 0xc000... address so we can turn on relocation
* with mtmsrd later, after SPRs are restored.
*
* Careful to minimise cost for the fast path (idle wakeup) while
* also avoiding clobbering CFAR for the debug path (non-idle).
*
* For the idle wake case volatile registers can be clobbered, which
* is why we use those initially. If it turns out to not be an idle
* wake, carefully put everything back the way it was, so we can use
* common exception macros to handle it.
*/
BEGIN_FTR_SECTION
SET_SCRATCH0(r13)
GET_PACA(r13)
std r3,PACA_EXNMI+0*8(r13)
std r4,PACA_EXNMI+1*8(r13)
std r5,PACA_EXNMI+2*8(r13)
mfspr r3,SPRN_SRR1
mfocrf r4,0x80
rlwinm. r5,r3,47-31,30,31
bne+ system_reset_idle_wake
/* Not powersave wakeup. Restore regs for regular interrupt handler. */
mtocrf 0x80,r4
ld r3,PACA_EXNMI+0*8(r13)
ld r4,PACA_EXNMI+1*8(r13)
ld r5,PACA_EXNMI+2*8(r13)
GET_SCRATCH0(r13)
END_FTR_SECTION_IFSET(CPU_FTR_HVMODE | CPU_FTR_ARCH_206)
#endif
GEN_INT_ENTRY system_reset, virt=0
/*
* In theory, we should not enable relocation here if it was disabled
* in SRR1, because the MMU may not be configured to support it (e.g.,
* SLB may have been cleared). In practice, there should only be a few
* small windows where that's the case, and sreset is considered to
* be dangerous anyway.
*/
EXC_REAL_END(system_reset, 0x100, 0x100)
EXC_VIRT_NONE(0x4100, 0x100)
#ifdef CONFIG_PPC_P7_NAP
TRAMP_REAL_BEGIN(system_reset_idle_wake)
/* We are waking up from idle, so may clobber any volatile register */
cmpwi cr1,r5,2
bltlr cr1 /* no state loss, return to idle caller with r3=SRR1 */
BRANCH_TO_C000(r12, DOTSYM(idle_return_gpr_loss))
#endif
#ifdef CONFIG_PPC_PSERIES
/*
* Vectors for the FWNMI option. Share common code.
*/
TRAMP_REAL_BEGIN(system_reset_fwnmi)
GEN_INT_ENTRY system_reset, virt=0
#endif /* CONFIG_PPC_PSERIES */
EXC_COMMON_BEGIN(system_reset_common)
__GEN_COMMON_ENTRY system_reset
/*
* Increment paca->in_nmi then enable MSR_RI. SLB or MCE will be able
* to recover, but nested NMI will notice in_nmi and not recover
* because of the use of the NMI stack. in_nmi reentrancy is tested in
* system_reset_exception.
*/
lhz r10,PACA_IN_NMI(r13)
addi r10,r10,1
sth r10,PACA_IN_NMI(r13)
li r10,MSR_RI
mtmsrd r10,1
mr r10,r1
ld r1,PACA_NMI_EMERG_SP(r13)
subi r1,r1,INT_FRAME_SIZE
__GEN_COMMON_BODY system_reset
/*
* Set IRQS_ALL_DISABLED unconditionally so irqs_disabled() does
* the right thing. We do not want to reconcile because that goes
* through irq tracing which we don't want in NMI.
*
* Save PACAIRQHAPPENED to RESULT (otherwise unused), and set HARD_DIS
* as we are running with MSR[EE]=0.
*/
li r10,IRQS_ALL_DISABLED
stb r10,PACAIRQSOFTMASK(r13)
lbz r10,PACAIRQHAPPENED(r13)
std r10,RESULT(r1)
ori r10,r10,PACA_IRQ_HARD_DIS
stb r10,PACAIRQHAPPENED(r13)
addi r3,r1,STACK_FRAME_OVERHEAD
bl system_reset_exception
/* Clear MSR_RI before setting SRR0 and SRR1. */
li r9,0
mtmsrd r9,1
/*
* MSR_RI is clear, now we can decrement paca->in_nmi.
*/
lhz r10,PACA_IN_NMI(r13)
subi r10,r10,1
sth r10,PACA_IN_NMI(r13)
/*
* Restore soft mask settings.
*/
ld r10,RESULT(r1)
stb r10,PACAIRQHAPPENED(r13)
ld r10,SOFTE(r1)
stb r10,PACAIRQSOFTMASK(r13)
kuap_restore_amr r9, r10
EXCEPTION_RESTORE_REGS
RFI_TO_USER_OR_KERNEL
GEN_KVM system_reset
/**
* Interrupt 0x200 - Machine Check Interrupt (MCE).
* This is a non-maskable interrupt always taken in real-mode. It can be
* synchronous or asynchronous, caused by hardware or software, and it may be
* taken in a power-saving state.
*
* Handling:
* Similarly to system reset, this uses its own stack and PACA save area,
* the difference is re-entrancy is allowed on the machine check stack.
*
* machine_check_early is run in real mode, and carefully decodes the
* machine check and tries to handle it (e.g., flush the SLB if there was an
* error detected there), determines if it was recoverable and logs the
* event.
*
* This early code does not "reconcile" irq soft-mask state like SRESET or
* regular interrupts do, so irqs_disabled() among other things may not work
* properly (irq disable/enable already doesn't work because irq tracing can
* not work in real mode).
*
* Then, depending on the execution context when the interrupt is taken, there
* are 3 main actions:
* - Executing in kernel mode. The event is queued with irq_work, which means
* it is handled when it is next safe to do so (i.e., the kernel has enabled
* interrupts), which could be immediately when the interrupt returns. This
* avoids nasty issues like switching to virtual mode when the MMU is in a
* bad state, or when executing OPAL code. (SRESET is exposed to such issues,
* but it has different priorities). Check to see if the CPU was in power
* save, and return via the wake up code if it was.
*
* - Executing in user mode. machine_check_exception is run like a normal
* interrupt handler, which processes the data generated by the early handler.
*
* - Executing in guest mode. The interrupt is run with its KVM test, and
* branches to KVM to deal with. KVM may queue the event for the host
* to report later.
*
* This interrupt is not maskable, so if it triggers when MSR[RI] is clear,
* or SCRATCH0 is in use, it may cause a crash.
*
* KVM:
* See SRESET.
*/
INT_DEFINE_BEGIN(machine_check_early)
IVEC=0x200
IAREA=PACA_EXMC
IVIRT=0 /* no virt entry point */
IREALMODE_COMMON=1
/*
* MSR_RI is not enabled, because PACA_EXMC is being used, so a
* nested machine check corrupts it. machine_check_common enables
* MSR_RI.
*/
ISET_RI=0
ISTACK=0
IDAR=1
IDSISR=1
IRECONCILE=0
IKUAP=0 /* We don't touch AMR here, we never go to virtual mode */
INT_DEFINE_END(machine_check_early)
INT_DEFINE_BEGIN(machine_check)
IVEC=0x200
IAREA=PACA_EXMC
IVIRT=0 /* no virt entry point */
ISET_RI=0
IDAR=1
IDSISR=1
IKVM_SKIP=1
IKVM_REAL=1
INT_DEFINE_END(machine_check)
EXC_REAL_BEGIN(machine_check, 0x200, 0x100)
GEN_INT_ENTRY machine_check_early, virt=0
EXC_REAL_END(machine_check, 0x200, 0x100)
EXC_VIRT_NONE(0x4200, 0x100)
#ifdef CONFIG_PPC_PSERIES
TRAMP_REAL_BEGIN(machine_check_fwnmi)
/* See comment at machine_check exception, don't turn on RI */
GEN_INT_ENTRY machine_check_early, virt=0
#endif
#define MACHINE_CHECK_HANDLER_WINDUP \
/* Clear MSR_RI before setting SRR0 and SRR1. */\
li r9,0; \
mtmsrd r9,1; /* Clear MSR_RI */ \
/* Decrement paca->in_mce now RI is clear. */ \
lhz r12,PACA_IN_MCE(r13); \
subi r12,r12,1; \
sth r12,PACA_IN_MCE(r13); \
EXCEPTION_RESTORE_REGS
EXC_COMMON_BEGIN(machine_check_early_common)
__GEN_REALMODE_COMMON_ENTRY machine_check_early
/*
* Switch to mc_emergency stack and handle re-entrancy (we limit
* the nested MCE upto level 4 to avoid stack overflow).
* Save MCE registers srr1, srr0, dar and dsisr and then set ME=1
*
* We use paca->in_mce to check whether this is the first entry or
* nested machine check. We increment paca->in_mce to track nested
* machine checks.
*
* If this is the first entry then set stack pointer to
* paca->mc_emergency_sp, otherwise r1 is already pointing to
* stack frame on mc_emergency stack.
*
* NOTE: We are here with MSR_ME=0 (off), which means we risk a
* checkstop if we get another machine check exception before we do
* rfid with MSR_ME=1.
*
* This interrupt can wake directly from idle. If that is the case,
* the machine check is handled then the idle wakeup code is called
* to restore state.
*/
lhz r10,PACA_IN_MCE(r13)
cmpwi r10,0 /* Are we in nested machine check */
cmpwi cr1,r10,MAX_MCE_DEPTH /* Are we at maximum nesting */
addi r10,r10,1 /* increment paca->in_mce */
sth r10,PACA_IN_MCE(r13)
mr r10,r1 /* Save r1 */
bne 1f
/* First machine check entry */
ld r1,PACAMCEMERGSP(r13) /* Use MC emergency stack */
1: /* Limit nested MCE to level 4 to avoid stack overflow */
bgt cr1,unrecoverable_mce /* Check if we hit limit of 4 */
subi r1,r1,INT_FRAME_SIZE /* alloc stack frame */
__GEN_COMMON_BODY machine_check_early
BEGIN_FTR_SECTION
bl enable_machine_check
END_FTR_SECTION_IFSET(CPU_FTR_HVMODE)
li r10,MSR_RI
mtmsrd r10,1
/*
* Set IRQS_ALL_DISABLED and save PACAIRQHAPPENED (see
* system_reset_common)
*/
li r10,IRQS_ALL_DISABLED
stb r10,PACAIRQSOFTMASK(r13)
lbz r10,PACAIRQHAPPENED(r13)
std r10,RESULT(r1)
ori r10,r10,PACA_IRQ_HARD_DIS
stb r10,PACAIRQHAPPENED(r13)
addi r3,r1,STACK_FRAME_OVERHEAD
bl machine_check_early
std r3,RESULT(r1) /* Save result */
ld r12,_MSR(r1)
/*
* Restore soft mask settings.
*/
ld r10,RESULT(r1)
stb r10,PACAIRQHAPPENED(r13)
ld r10,SOFTE(r1)
stb r10,PACAIRQSOFTMASK(r13)
#ifdef CONFIG_PPC_P7_NAP
/*
* Check if thread was in power saving mode. We come here when any
* of the following is true:
* a. thread wasn't in power saving mode
* b. thread was in power saving mode with no state loss,
* supervisor state loss or hypervisor state loss.
*
* Go back to nap/sleep/winkle mode again if (b) is true.
*/
BEGIN_FTR_SECTION
rlwinm. r11,r12,47-31,30,31
bne machine_check_idle_common
END_FTR_SECTION_IFSET(CPU_FTR_HVMODE | CPU_FTR_ARCH_206)
#endif
#ifdef CONFIG_KVM_BOOK3S_64_HANDLER
/*
* Check if we are coming from guest. If yes, then run the normal
* exception handler which will take the
* machine_check_kvm->kvmppc_interrupt branch to deliver the MC event
* to guest.
*/
lbz r11,HSTATE_IN_GUEST(r13)
cmpwi r11,0 /* Check if coming from guest */
bne mce_deliver /* continue if we are. */
#endif
/*
* Check if we are coming from userspace. If yes, then run the normal
* exception handler which will deliver the MC event to this kernel.
*/
andi. r11,r12,MSR_PR /* See if coming from user. */
bne mce_deliver /* continue in V mode if we are. */
/*
* At this point we are coming from kernel context.
* Queue up the MCE event and return from the interrupt.
* But before that, check if this is an un-recoverable exception.
* If yes, then stay on emergency stack and panic.
*/
andi. r11,r12,MSR_RI
beq unrecoverable_mce
/*
* Check if we have successfully handled/recovered from error, if not
* then stay on emergency stack and panic.
*/
ld r3,RESULT(r1) /* Load result */
cmpdi r3,0 /* see if we handled MCE successfully */
beq unrecoverable_mce /* if !handled then panic */
/*
* Return from MC interrupt.
* Queue up the MCE event so that we can log it later, while
* returning from kernel or opal call.
*/
bl machine_check_queue_event
MACHINE_CHECK_HANDLER_WINDUP
RFI_TO_KERNEL
mce_deliver:
/*
* This is a host user or guest MCE. Restore all registers, then
* run the "late" handler. For host user, this will run the
* machine_check_exception handler in virtual mode like a normal
* interrupt handler. For guest, this will trigger the KVM test
* and branch to the KVM interrupt similarly to other interrupts.
*/
BEGIN_FTR_SECTION
ld r10,ORIG_GPR3(r1)
mtspr SPRN_CFAR,r10
END_FTR_SECTION_IFSET(CPU_FTR_CFAR)
MACHINE_CHECK_HANDLER_WINDUP
GEN_INT_ENTRY machine_check, virt=0
EXC_COMMON_BEGIN(machine_check_common)
/*
* Machine check is different because we use a different
* save area: PACA_EXMC instead of PACA_EXGEN.
*/
GEN_COMMON machine_check
FINISH_NAP
/* Enable MSR_RI when finished with PACA_EXMC */
li r10,MSR_RI
mtmsrd r10,1
addi r3,r1,STACK_FRAME_OVERHEAD
bl machine_check_exception
b interrupt_return
GEN_KVM machine_check
#ifdef CONFIG_PPC_P7_NAP
/*
* This is an idle wakeup. Low level machine check has already been
* done. Queue the event then call the idle code to do the wake up.
*/
EXC_COMMON_BEGIN(machine_check_idle_common)
bl machine_check_queue_event
/*
* GPR-loss wakeups are relatively straightforward, because the
* idle sleep code has saved all non-volatile registers on its
* own stack, and r1 in PACAR1.
*
* For no-loss wakeups the r1 and lr registers used by the
* early machine check handler have to be restored first. r2 is
* the kernel TOC, so no need to restore it.
*
* Then decrement MCE nesting after finishing with the stack.
*/
ld r3,_MSR(r1)
ld r4,_LINK(r1)
ld r1,GPR1(r1)
lhz r11,PACA_IN_MCE(r13)
subi r11,r11,1
sth r11,PACA_IN_MCE(r13)
mtlr r4
rlwinm r10,r3,47-31,30,31
cmpwi cr1,r10,2
bltlr cr1 /* no state loss, return to idle caller with r3=SRR1 */
b idle_return_gpr_loss
#endif
EXC_COMMON_BEGIN(unrecoverable_mce)
/*
* We are going down. But there are chances that we might get hit by
* another MCE during panic path and we may run into unstable state
* with no way out. Hence, turn ME bit off while going down, so that
* when another MCE is hit during panic path, system will checkstop
* and hypervisor will get restarted cleanly by SP.
*/
BEGIN_FTR_SECTION
li r10,0 /* clear MSR_RI */
mtmsrd r10,1
bl disable_machine_check
END_FTR_SECTION_IFSET(CPU_FTR_HVMODE)
ld r10,PACAKMSR(r13)
li r3,MSR_ME
andc r10,r10,r3
mtmsrd r10
lhz r12,PACA_IN_MCE(r13)
subi r12,r12,1
sth r12,PACA_IN_MCE(r13)
/* Invoke machine_check_exception to print MCE event and panic. */
addi r3,r1,STACK_FRAME_OVERHEAD
bl machine_check_exception
/*
* We will not reach here. Even if we did, there is no way out.
* Call unrecoverable_exception and die.
*/
addi r3,r1,STACK_FRAME_OVERHEAD
bl unrecoverable_exception
b .
/**
* Interrupt 0x300 - Data Storage Interrupt (DSI).
* This is a synchronous interrupt generated due to a data access exception,
* e.g., a load orstore which does not have a valid page table entry with
* permissions. DAWR matches also fault here, as do RC updates, and minor misc
* errors e.g., copy/paste, AMO, certain invalid CI accesses, etc.
*
* Handling:
* - Hash MMU
* Go to do_hash_page first to see if the HPT can be filled from an entry in
* the Linux page table. Hash faults can hit in kernel mode in a fairly
* arbitrary state (e.g., interrupts disabled, locks held) when accessing
* "non-bolted" regions, e.g., vmalloc space. However these should always be
* backed by Linux page tables.
*
* If none is found, do a Linux page fault. Linux page faults can happen in
* kernel mode due to user copy operations of course.
*
* KVM: The KVM HDSI handler may perform a load with MSR[DR]=1 in guest
* MMU context, which may cause a DSI in the host, which must go to the
* KVM handler. MSR[IR] is not enabled, so the real-mode handler will
* always be used regardless of AIL setting.
*
* - Radix MMU
* The hardware loads from the Linux page table directly, so a fault goes
* immediately to Linux page fault.
*
* Conditions like DAWR match are handled on the way in to Linux page fault.
*/
INT_DEFINE_BEGIN(data_access)
IVEC=0x300
IDAR=1
IDSISR=1
IKVM_SKIP=1
IKVM_REAL=1
INT_DEFINE_END(data_access)
EXC_REAL_BEGIN(data_access, 0x300, 0x80)
GEN_INT_ENTRY data_access, virt=0
EXC_REAL_END(data_access, 0x300, 0x80)
EXC_VIRT_BEGIN(data_access, 0x4300, 0x80)
GEN_INT_ENTRY data_access, virt=1
EXC_VIRT_END(data_access, 0x4300, 0x80)
EXC_COMMON_BEGIN(data_access_common)
GEN_COMMON data_access
ld r4,_DAR(r1)
ld r5,_DSISR(r1)
BEGIN_MMU_FTR_SECTION
ld r6,_MSR(r1)
li r3,0x300
b do_hash_page /* Try to handle as hpte fault */
MMU_FTR_SECTION_ELSE
b handle_page_fault
ALT_MMU_FTR_SECTION_END_IFCLR(MMU_FTR_TYPE_RADIX)
GEN_KVM data_access
/**
* Interrupt 0x380 - Data Segment Interrupt (DSLB).
* This is a synchronous interrupt in response to an MMU fault missing SLB
* entry for HPT, or an address outside RPT translation range.
*
* Handling:
* - HPT:
* This refills the SLB, or reports an access fault similarly to a bad page
* fault. When coming from user-mode, the SLB handler may access any kernel
* data, though it may itself take a DSLB. When coming from kernel mode,
* recursive faults must be avoided so access is restricted to the kernel
* image text/data, kernel stack, and any data allocated below
* ppc64_bolted_size (first segment). The kernel handler must avoid stomping
* on user-handler data structures.
*
* KVM: Same as 0x300, DSLB must test for KVM guest.
*
* A dedicated save area EXSLB is used (XXX: but it actually need not be
* these days, we could use EXGEN).
*/
INT_DEFINE_BEGIN(data_access_slb)
IVEC=0x380
IAREA=PACA_EXSLB
IRECONCILE=0
IDAR=1
IKVM_SKIP=1
IKVM_REAL=1
INT_DEFINE_END(data_access_slb)
EXC_REAL_BEGIN(data_access_slb, 0x380, 0x80)
GEN_INT_ENTRY data_access_slb, virt=0
EXC_REAL_END(data_access_slb, 0x380, 0x80)
EXC_VIRT_BEGIN(data_access_slb, 0x4380, 0x80)
GEN_INT_ENTRY data_access_slb, virt=1
EXC_VIRT_END(data_access_slb, 0x4380, 0x80)
EXC_COMMON_BEGIN(data_access_slb_common)
GEN_COMMON data_access_slb
ld r4,_DAR(r1)
addi r3,r1,STACK_FRAME_OVERHEAD
BEGIN_MMU_FTR_SECTION
/* HPT case, do SLB fault */
bl do_slb_fault
cmpdi r3,0
bne- 1f
b fast_interrupt_return
1: /* Error case */
MMU_FTR_SECTION_ELSE
/* Radix case, access is outside page table range */
li r3,-EFAULT
ALT_MMU_FTR_SECTION_END_IFCLR(MMU_FTR_TYPE_RADIX)
std r3,RESULT(r1)
RECONCILE_IRQ_STATE(r10, r11)
ld r4,_DAR(r1)
ld r5,RESULT(r1)
addi r3,r1,STACK_FRAME_OVERHEAD
bl do_bad_slb_fault
b interrupt_return
GEN_KVM data_access_slb
/**
* Interrupt 0x400 - Instruction Storage Interrupt (ISI).
* This is a synchronous interrupt in response to an MMU fault due to an
* instruction fetch.
*
* Handling:
* Similar to DSI, though in response to fetch. The faulting address is found
* in SRR0 (rather than DAR), and status in SRR1 (rather than DSISR).
*/
INT_DEFINE_BEGIN(instruction_access)
IVEC=0x400
IISIDE=1
IDAR=1
IDSISR=1
#ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
IKVM_REAL=1
#endif
INT_DEFINE_END(instruction_access)
EXC_REAL_BEGIN(instruction_access, 0x400, 0x80)
GEN_INT_ENTRY instruction_access, virt=0
EXC_REAL_END(instruction_access, 0x400, 0x80)
EXC_VIRT_BEGIN(instruction_access, 0x4400, 0x80)
GEN_INT_ENTRY instruction_access, virt=1
EXC_VIRT_END(instruction_access, 0x4400, 0x80)
EXC_COMMON_BEGIN(instruction_access_common)
GEN_COMMON instruction_access
ld r4,_DAR(r1)
ld r5,_DSISR(r1)
BEGIN_MMU_FTR_SECTION
ld r6,_MSR(r1)
li r3,0x400
b do_hash_page /* Try to handle as hpte fault */
MMU_FTR_SECTION_ELSE
b handle_page_fault
ALT_MMU_FTR_SECTION_END_IFCLR(MMU_FTR_TYPE_RADIX)
GEN_KVM instruction_access
/**
* Interrupt 0x480 - Instruction Segment Interrupt (ISLB).
* This is a synchronous interrupt in response to an MMU fault due to an
* instruction fetch.
*
* Handling:
* Similar to DSLB, though in response to fetch. The faulting address is found
* in SRR0 (rather than DAR).
*/
INT_DEFINE_BEGIN(instruction_access_slb)
IVEC=0x480
IAREA=PACA_EXSLB
IRECONCILE=0
IISIDE=1
IDAR=1
#ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
IKVM_REAL=1
#endif
INT_DEFINE_END(instruction_access_slb)
EXC_REAL_BEGIN(instruction_access_slb, 0x480, 0x80)
GEN_INT_ENTRY instruction_access_slb, virt=0
EXC_REAL_END(instruction_access_slb, 0x480, 0x80)
EXC_VIRT_BEGIN(instruction_access_slb, 0x4480, 0x80)
GEN_INT_ENTRY instruction_access_slb, virt=1
EXC_VIRT_END(instruction_access_slb, 0x4480, 0x80)
EXC_COMMON_BEGIN(instruction_access_slb_common)
GEN_COMMON instruction_access_slb
ld r4,_DAR(r1)
addi r3,r1,STACK_FRAME_OVERHEAD
BEGIN_MMU_FTR_SECTION
/* HPT case, do SLB fault */
bl do_slb_fault
cmpdi r3,0
bne- 1f
b fast_interrupt_return
1: /* Error case */
MMU_FTR_SECTION_ELSE
/* Radix case, access is outside page table range */
li r3,-EFAULT
ALT_MMU_FTR_SECTION_END_IFCLR(MMU_FTR_TYPE_RADIX)
std r3,RESULT(r1)
RECONCILE_IRQ_STATE(r10, r11)
ld r4,_DAR(r1)
ld r5,RESULT(r1)
addi r3,r1,STACK_FRAME_OVERHEAD
bl do_bad_slb_fault
b interrupt_return
GEN_KVM instruction_access_slb
/**
* Interrupt 0x500 - External Interrupt.
* This is an asynchronous maskable interrupt in response to an "external
* exception" from the interrupt controller or hypervisor (e.g., device
* interrupt). It is maskable in hardware by clearing MSR[EE], and
* soft-maskable with IRQS_DISABLED mask (i.e., local_irq_disable()).
*
* When running in HV mode, Linux sets up the LPCR[LPES] bit such that
* interrupts are delivered with HSRR registers, guests use SRRs, which
* reqiures IHSRR_IF_HVMODE.
*
* On bare metal POWER9 and later, Linux sets the LPCR[HVICE] bit such that
* external interrupts are delivered as Hypervisor Virtualization Interrupts
* rather than External Interrupts.
*
* Handling:
* This calls into Linux IRQ handler. NVGPRs are not saved to reduce overhead,
* because registers at the time of the interrupt are not so important as it is
* asynchronous.
*
* If soft masked, the masked handler will note the pending interrupt for
* replay, and clear MSR[EE] in the interrupted context.
*/
INT_DEFINE_BEGIN(hardware_interrupt)
IVEC=0x500
IHSRR_IF_HVMODE=1
IMASK=IRQS_DISABLED
IKVM_REAL=1
IKVM_VIRT=1
INT_DEFINE_END(hardware_interrupt)
EXC_REAL_BEGIN(hardware_interrupt, 0x500, 0x100)
GEN_INT_ENTRY hardware_interrupt, virt=0
EXC_REAL_END(hardware_interrupt, 0x500, 0x100)
EXC_VIRT_BEGIN(hardware_interrupt, 0x4500, 0x100)
GEN_INT_ENTRY hardware_interrupt, virt=1
EXC_VIRT_END(hardware_interrupt, 0x4500, 0x100)
EXC_COMMON_BEGIN(hardware_interrupt_common)
GEN_COMMON hardware_interrupt
FINISH_NAP
RUNLATCH_ON
addi r3,r1,STACK_FRAME_OVERHEAD
bl do_IRQ
b interrupt_return
GEN_KVM hardware_interrupt
/**
* Interrupt 0x600 - Alignment Interrupt
* This is a synchronous interrupt in response to data alignment fault.
*/
INT_DEFINE_BEGIN(alignment)
IVEC=0x600
IDAR=1
IDSISR=1
#ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
IKVM_REAL=1
#endif
INT_DEFINE_END(alignment)
EXC_REAL_BEGIN(alignment, 0x600, 0x100)
GEN_INT_ENTRY alignment, virt=0
EXC_REAL_END(alignment, 0x600, 0x100)
EXC_VIRT_BEGIN(alignment, 0x4600, 0x100)
GEN_INT_ENTRY alignment, virt=1
EXC_VIRT_END(alignment, 0x4600, 0x100)
EXC_COMMON_BEGIN(alignment_common)
GEN_COMMON alignment
addi r3,r1,STACK_FRAME_OVERHEAD
bl alignment_exception
REST_NVGPRS(r1) /* instruction emulation may change GPRs */
b interrupt_return
GEN_KVM alignment
/**
* Interrupt 0x700 - Program Interrupt (program check).
* This is a synchronous interrupt in response to various instruction faults:
* traps, privilege errors, TM errors, floating point exceptions.
*
* Handling:
* This interrupt may use the "emergency stack" in some cases when being taken
* from kernel context, which complicates handling.
*/
INT_DEFINE_BEGIN(program_check)
IVEC=0x700
#ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
IKVM_REAL=1
#endif
INT_DEFINE_END(program_check)
EXC_REAL_BEGIN(program_check, 0x700, 0x100)
GEN_INT_ENTRY program_check, virt=0
EXC_REAL_END(program_check, 0x700, 0x100)
EXC_VIRT_BEGIN(program_check, 0x4700, 0x100)
GEN_INT_ENTRY program_check, virt=1
EXC_VIRT_END(program_check, 0x4700, 0x100)
EXC_COMMON_BEGIN(program_check_common)
__GEN_COMMON_ENTRY program_check
/*
* It's possible to receive a TM Bad Thing type program check with
* userspace register values (in particular r1), but with SRR1 reporting
* that we came from the kernel. Normally that would confuse the bad
* stack logic, and we would report a bad kernel stack pointer. Instead
* we switch to the emergency stack if we're taking a TM Bad Thing from
* the kernel.
*/
andi. r10,r12,MSR_PR
bne 2f /* If userspace, go normal path */
andis. r10,r12,(SRR1_PROGTM)@h
bne 1f /* If TM, emergency */
cmpdi r1,-INT_FRAME_SIZE /* check if r1 is in userspace */
blt 2f /* normal path if not */
/* Use the emergency stack */
1: andi. r10,r12,MSR_PR /* Set CR0 correctly for label */
/* 3 in EXCEPTION_PROLOG_COMMON */
mr r10,r1 /* Save r1 */
ld r1,PACAEMERGSP(r13) /* Use emergency stack */
subi r1,r1,INT_FRAME_SIZE /* alloc stack frame */
__ISTACK(program_check)=0
__GEN_COMMON_BODY program_check
b 3f
2:
__ISTACK(program_check)=1
__GEN_COMMON_BODY program_check
3:
addi r3,r1,STACK_FRAME_OVERHEAD
bl program_check_exception
REST_NVGPRS(r1) /* instruction emulation may change GPRs */
b interrupt_return
GEN_KVM program_check
/*
* Interrupt 0x800 - Floating-Point Unavailable Interrupt.
* This is a synchronous interrupt in response to executing an fp instruction
* with MSR[FP]=0.
*
* Handling:
* This will load FP registers and enable the FP bit if coming from userspace,
* otherwise report a bad kernel use of FP.
*/
INT_DEFINE_BEGIN(fp_unavailable)
IVEC=0x800
IRECONCILE=0
#ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
IKVM_REAL=1
#endif
INT_DEFINE_END(fp_unavailable)
EXC_REAL_BEGIN(fp_unavailable, 0x800, 0x100)
GEN_INT_ENTRY fp_unavailable, virt=0
EXC_REAL_END(fp_unavailable, 0x800, 0x100)
EXC_VIRT_BEGIN(fp_unavailable, 0x4800, 0x100)
GEN_INT_ENTRY fp_unavailable, virt=1
EXC_VIRT_END(fp_unavailable, 0x4800, 0x100)
EXC_COMMON_BEGIN(fp_unavailable_common)
GEN_COMMON fp_unavailable
bne 1f /* if from user, just load it up */
RECONCILE_IRQ_STATE(r10, r11)
addi r3,r1,STACK_FRAME_OVERHEAD
bl kernel_fp_unavailable_exception
0: trap
EMIT_BUG_ENTRY 0b, __FILE__, __LINE__, 0
1:
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
BEGIN_FTR_SECTION
/* Test if 2 TM state bits are zero. If non-zero (ie. userspace was in
* transaction), go do TM stuff
*/
rldicl. r0, r12, (64-MSR_TS_LG), (64-2)
bne- 2f
END_FTR_SECTION_IFSET(CPU_FTR_TM)
#endif
bl load_up_fpu
b fast_interrupt_return
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
2: /* User process was in a transaction */
RECONCILE_IRQ_STATE(r10, r11)
addi r3,r1,STACK_FRAME_OVERHEAD
bl fp_unavailable_tm
b interrupt_return
#endif
GEN_KVM fp_unavailable
/**
* Interrupt 0x900 - Decrementer Interrupt.
* This is an asynchronous interrupt in response to a decrementer exception
* (e.g., DEC has wrapped below zero). It is maskable in hardware by clearing
* MSR[EE], and soft-maskable with IRQS_DISABLED mask (i.e.,
* local_irq_disable()).
*
* Handling:
* This calls into Linux timer handler. NVGPRs are not saved (see 0x500).
*
* If soft masked, the masked handler will note the pending interrupt for
* replay, and bump the decrementer to a high value, leaving MSR[EE] enabled
* in the interrupted context.
* If PPC_WATCHDOG is configured, the soft masked handler will actually set
* things back up to run soft_nmi_interrupt as a regular interrupt handler
* on the emergency stack.
*/
INT_DEFINE_BEGIN(decrementer)
IVEC=0x900
IMASK=IRQS_DISABLED
#ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
IKVM_REAL=1
#endif
INT_DEFINE_END(decrementer)
EXC_REAL_BEGIN(decrementer, 0x900, 0x80)
GEN_INT_ENTRY decrementer, virt=0
EXC_REAL_END(decrementer, 0x900, 0x80)
EXC_VIRT_BEGIN(decrementer, 0x4900, 0x80)
GEN_INT_ENTRY decrementer, virt=1
EXC_VIRT_END(decrementer, 0x4900, 0x80)
EXC_COMMON_BEGIN(decrementer_common)
GEN_COMMON decrementer
FINISH_NAP
RUNLATCH_ON
addi r3,r1,STACK_FRAME_OVERHEAD
bl timer_interrupt
b interrupt_return
GEN_KVM decrementer
/**
* Interrupt 0x980 - Hypervisor Decrementer Interrupt.
* This is an asynchronous interrupt, similar to 0x900 but for the HDEC
* register.
*
* Handling:
* Linux does not use this outside KVM where it's used to keep a host timer
* while the guest is given control of DEC. It should normally be caught by
* the KVM test and routed there.
*/
INT_DEFINE_BEGIN(hdecrementer)
IVEC=0x980
IHSRR=1
ISTACK=0
IRECONCILE=0
IKVM_REAL=1
IKVM_VIRT=1
INT_DEFINE_END(hdecrementer)
EXC_REAL_BEGIN(hdecrementer, 0x980, 0x80)
GEN_INT_ENTRY hdecrementer, virt=0
EXC_REAL_END(hdecrementer, 0x980, 0x80)
EXC_VIRT_BEGIN(hdecrementer, 0x4980, 0x80)
GEN_INT_ENTRY hdecrementer, virt=1
EXC_VIRT_END(hdecrementer, 0x4980, 0x80)
EXC_COMMON_BEGIN(hdecrementer_common)
__GEN_COMMON_ENTRY hdecrementer
/*
* Hypervisor decrementer interrupts not caught by the KVM test
* shouldn't occur but are sometimes left pending on exit from a KVM
* guest. We don't need to do anything to clear them, as they are
* edge-triggered.
*
* Be careful to avoid touching the kernel stack.
*/
ld r10,PACA_EXGEN+EX_CTR(r13)
mtctr r10
mtcrf 0x80,r9
ld r9,PACA_EXGEN+EX_R9(r13)
ld r10,PACA_EXGEN+EX_R10(r13)
ld r11,PACA_EXGEN+EX_R11(r13)
ld r12,PACA_EXGEN+EX_R12(r13)
ld r13,PACA_EXGEN+EX_R13(r13)
HRFI_TO_KERNEL
GEN_KVM hdecrementer
/**
* Interrupt 0xa00 - Directed Privileged Doorbell Interrupt.
* This is an asynchronous interrupt in response to a msgsndp doorbell.
* It is maskable in hardware by clearing MSR[EE], and soft-maskable with
* IRQS_DISABLED mask (i.e., local_irq_disable()).
*
* Handling:
* Guests may use this for IPIs between threads in a core if the
* hypervisor supports it. NVGPRS are not saved (see 0x500).
*
* If soft masked, the masked handler will note the pending interrupt for
* replay, leaving MSR[EE] enabled in the interrupted context because the
* doorbells are edge triggered.
*/
INT_DEFINE_BEGIN(doorbell_super)
IVEC=0xa00
IMASK=IRQS_DISABLED
#ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
IKVM_REAL=1
#endif
INT_DEFINE_END(doorbell_super)
EXC_REAL_BEGIN(doorbell_super, 0xa00, 0x100)
GEN_INT_ENTRY doorbell_super, virt=0
EXC_REAL_END(doorbell_super, 0xa00, 0x100)
EXC_VIRT_BEGIN(doorbell_super, 0x4a00, 0x100)
GEN_INT_ENTRY doorbell_super, virt=1
EXC_VIRT_END(doorbell_super, 0x4a00, 0x100)
EXC_COMMON_BEGIN(doorbell_super_common)
GEN_COMMON doorbell_super
FINISH_NAP
RUNLATCH_ON
addi r3,r1,STACK_FRAME_OVERHEAD
#ifdef CONFIG_PPC_DOORBELL
bl doorbell_exception
#else
bl unknown_exception
#endif
b interrupt_return
GEN_KVM doorbell_super
EXC_REAL_NONE(0xb00, 0x100)
EXC_VIRT_NONE(0x4b00, 0x100)
/**
* Interrupt 0xc00 - System Call Interrupt (syscall, hcall).
* This is a synchronous interrupt invoked with the "sc" instruction. The
* system call is invoked with "sc 0" and does not alter the HV bit, so it
* is directed to the currently running OS. The hypercall is invoked with
* "sc 1" and it sets HV=1, so it elevates to hypervisor.
*
* In HPT, sc 1 always goes to 0xc00 real mode. In RADIX, sc 1 can go to
* 0x4c00 virtual mode.
*
* Handling:
* If the KVM test fires then it was due to a hypercall and is accordingly
* routed to KVM. Otherwise this executes a normal Linux system call.
*
* Call convention:
*
* syscall and hypercalls register conventions are documented in
* Documentation/powerpc/syscall64-abi.rst and
* Documentation/powerpc/papr_hcalls.rst respectively.
*
* The intersection of volatile registers that don't contain possible
* inputs is: cr0, xer, ctr. We may use these as scratch regs upon entry
* without saving, though xer is not a good idea to use, as hardware may
* interpret some bits so it may be costly to change them.
*/
INT_DEFINE_BEGIN(system_call)
IVEC=0xc00
IKVM_REAL=1
IKVM_VIRT=1
INT_DEFINE_END(system_call)
.macro SYSTEM_CALL virt
#ifdef CONFIG_KVM_BOOK3S_64_HANDLER
/*
* There is a little bit of juggling to get syscall and hcall
* working well. Save r13 in ctr to avoid using SPRG scratch
* register.
*
* Userspace syscalls have already saved the PPR, hcalls must save
* it before setting HMT_MEDIUM.
*/
mtctr r13
GET_PACA(r13)
std r10,PACA_EXGEN+EX_R10(r13)
INTERRUPT_TO_KERNEL
KVMTEST system_call /* uses r10, branch to system_call_kvm */
mfctr r9
#else
mr r9,r13
GET_PACA(r13)
INTERRUPT_TO_KERNEL
#endif
#ifdef CONFIG_PPC_FAST_ENDIAN_SWITCH
BEGIN_FTR_SECTION
cmpdi r0,0x1ebe
beq- 1f
END_FTR_SECTION_IFSET(CPU_FTR_REAL_LE)
#endif
/* We reach here with PACA in r13, r13 in r9. */
mfspr r11,SPRN_SRR0
mfspr r12,SPRN_SRR1
HMT_MEDIUM
.if ! \virt
__LOAD_HANDLER(r10, system_call_common)
mtspr SPRN_SRR0,r10
ld r10,PACAKMSR(r13)
mtspr SPRN_SRR1,r10
RFI_TO_KERNEL
b . /* prevent speculative execution */
.else
li r10,MSR_RI
mtmsrd r10,1 /* Set RI (EE=0) */
#ifdef CONFIG_RELOCATABLE
__LOAD_HANDLER(r10, system_call_common)
mtctr r10
bctr
#else
b system_call_common
#endif
.endif
#ifdef CONFIG_PPC_FAST_ENDIAN_SWITCH
/* Fast LE/BE switch system call */
1: mfspr r12,SPRN_SRR1
xori r12,r12,MSR_LE
mtspr SPRN_SRR1,r12
mr r13,r9
RFI_TO_USER /* return to userspace */
b . /* prevent speculative execution */
#endif
.endm
EXC_REAL_BEGIN(system_call, 0xc00, 0x100)
SYSTEM_CALL 0
EXC_REAL_END(system_call, 0xc00, 0x100)
EXC_VIRT_BEGIN(system_call, 0x4c00, 0x100)
SYSTEM_CALL 1
EXC_VIRT_END(system_call, 0x4c00, 0x100)
#ifdef CONFIG_KVM_BOOK3S_64_HANDLER
TRAMP_REAL_BEGIN(system_call_kvm)
/*
* This is a hcall, so register convention is as above, with these
* differences:
* r13 = PACA
* ctr = orig r13
* orig r10 saved in PACA
*/
/*
* Save the PPR (on systems that support it) before changing to
* HMT_MEDIUM. That allows the KVM code to save that value into the
* guest state (it is the guest's PPR value).
*/
BEGIN_FTR_SECTION
mfspr r10,SPRN_PPR
std r10,HSTATE_PPR(r13)
END_FTR_SECTION_IFSET(CPU_FTR_HAS_PPR)
HMT_MEDIUM
mfctr r10
SET_SCRATCH0(r10)
mfcr r10
std r12,HSTATE_SCRATCH0(r13)
sldi r12,r10,32
ori r12,r12,0xc00
#ifdef CONFIG_RELOCATABLE
/*
* Requires __LOAD_FAR_HANDLER beause kvmppc_interrupt lives
* outside the head section.
*/
__LOAD_FAR_HANDLER(r10, kvmppc_interrupt)
mtctr r10
ld r10,PACA_EXGEN+EX_R10(r13)
bctr
#else
ld r10,PACA_EXGEN+EX_R10(r13)
b kvmppc_interrupt
#endif
#endif
/**
* Interrupt 0xd00 - Trace Interrupt.
* This is a synchronous interrupt in response to instruction step or
* breakpoint faults.
*/
INT_DEFINE_BEGIN(single_step)
IVEC=0xd00
#ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
IKVM_REAL=1
#endif
INT_DEFINE_END(single_step)
EXC_REAL_BEGIN(single_step, 0xd00, 0x100)
GEN_INT_ENTRY single_step, virt=0
EXC_REAL_END(single_step, 0xd00, 0x100)
EXC_VIRT_BEGIN(single_step, 0x4d00, 0x100)
GEN_INT_ENTRY single_step, virt=1
EXC_VIRT_END(single_step, 0x4d00, 0x100)
EXC_COMMON_BEGIN(single_step_common)
GEN_COMMON single_step
addi r3,r1,STACK_FRAME_OVERHEAD
bl single_step_exception
b interrupt_return
GEN_KVM single_step
/**
* Interrupt 0xe00 - Hypervisor Data Storage Interrupt (HDSI).
* This is a synchronous interrupt in response to an MMU fault caused by a
* guest data access.
*
* Handling:
* This should always get routed to KVM. In radix MMU mode, this is caused
* by a guest nested radix access that can't be performed due to the
* partition scope page table. In hash mode, this can be caused by guests
* running with translation disabled (virtual real mode) or with VPM enabled.
* KVM will update the page table structures or disallow the access.
*/
INT_DEFINE_BEGIN(h_data_storage)
IVEC=0xe00
IHSRR=1
IDAR=1
IDSISR=1
IKVM_SKIP=1
IKVM_REAL=1
IKVM_VIRT=1
INT_DEFINE_END(h_data_storage)
EXC_REAL_BEGIN(h_data_storage, 0xe00, 0x20)
GEN_INT_ENTRY h_data_storage, virt=0, ool=1
EXC_REAL_END(h_data_storage, 0xe00, 0x20)
EXC_VIRT_BEGIN(h_data_storage, 0x4e00, 0x20)
GEN_INT_ENTRY h_data_storage, virt=1, ool=1
EXC_VIRT_END(h_data_storage, 0x4e00, 0x20)
EXC_COMMON_BEGIN(h_data_storage_common)
GEN_COMMON h_data_storage
addi r3,r1,STACK_FRAME_OVERHEAD
BEGIN_MMU_FTR_SECTION
ld r4,_DAR(r1)
li r5,SIGSEGV
bl bad_page_fault
MMU_FTR_SECTION_ELSE
bl unknown_exception
ALT_MMU_FTR_SECTION_END_IFSET(MMU_FTR_TYPE_RADIX)
b interrupt_return
GEN_KVM h_data_storage
/**
* Interrupt 0xe20 - Hypervisor Instruction Storage Interrupt (HISI).
* This is a synchronous interrupt in response to an MMU fault caused by a
* guest instruction fetch, similar to HDSI.
*/
INT_DEFINE_BEGIN(h_instr_storage)
IVEC=0xe20
IHSRR=1
IKVM_REAL=1
IKVM_VIRT=1
INT_DEFINE_END(h_instr_storage)
EXC_REAL_BEGIN(h_instr_storage, 0xe20, 0x20)
GEN_INT_ENTRY h_instr_storage, virt=0, ool=1
EXC_REAL_END(h_instr_storage, 0xe20, 0x20)
EXC_VIRT_BEGIN(h_instr_storage, 0x4e20, 0x20)
GEN_INT_ENTRY h_instr_storage, virt=1, ool=1
EXC_VIRT_END(h_instr_storage, 0x4e20, 0x20)
EXC_COMMON_BEGIN(h_instr_storage_common)
GEN_COMMON h_instr_storage
addi r3,r1,STACK_FRAME_OVERHEAD
bl unknown_exception
b interrupt_return
GEN_KVM h_instr_storage
/**
* Interrupt 0xe40 - Hypervisor Emulation Assistance Interrupt.
*/
INT_DEFINE_BEGIN(emulation_assist)
IVEC=0xe40
IHSRR=1
IKVM_REAL=1
IKVM_VIRT=1
INT_DEFINE_END(emulation_assist)
EXC_REAL_BEGIN(emulation_assist, 0xe40, 0x20)
GEN_INT_ENTRY emulation_assist, virt=0, ool=1
EXC_REAL_END(emulation_assist, 0xe40, 0x20)
EXC_VIRT_BEGIN(emulation_assist, 0x4e40, 0x20)
GEN_INT_ENTRY emulation_assist, virt=1, ool=1
EXC_VIRT_END(emulation_assist, 0x4e40, 0x20)
EXC_COMMON_BEGIN(emulation_assist_common)
GEN_COMMON emulation_assist
addi r3,r1,STACK_FRAME_OVERHEAD
bl emulation_assist_interrupt
REST_NVGPRS(r1) /* instruction emulation may change GPRs */
b interrupt_return
GEN_KVM emulation_assist
/**
* Interrupt 0xe60 - Hypervisor Maintenance Interrupt (HMI).
* This is an asynchronous interrupt caused by a Hypervisor Maintenance
* Exception. It is always taken in real mode but uses HSRR registers
* unlike SRESET and MCE.
*
* It is maskable in hardware by clearing MSR[EE], and partially soft-maskable
* with IRQS_DISABLED mask (i.e., local_irq_disable()).
*
* Handling:
* This is a special case, this is handled similarly to machine checks, with an
* initial real mode handler that is not soft-masked, which attempts to fix the
* problem. Then a regular handler which is soft-maskable and reports the
* problem.
*
* The emergency stack is used for the early real mode handler.
*
* XXX: unclear why MCE and HMI schemes could not be made common, e.g.,
* either use soft-masking for the MCE, or use irq_work for the HMI.
*
* KVM:
* Unlike MCE, this calls into KVM without calling the real mode handler
* first.
*/
INT_DEFINE_BEGIN(hmi_exception_early)
IVEC=0xe60
IHSRR=1
IREALMODE_COMMON=1
ISTACK=0
IRECONCILE=0
IKUAP=0 /* We don't touch AMR here, we never go to virtual mode */
IKVM_REAL=1
INT_DEFINE_END(hmi_exception_early)
INT_DEFINE_BEGIN(hmi_exception)
IVEC=0xe60
IHSRR=1
IMASK=IRQS_DISABLED
IKVM_REAL=1
INT_DEFINE_END(hmi_exception)
EXC_REAL_BEGIN(hmi_exception, 0xe60, 0x20)
GEN_INT_ENTRY hmi_exception_early, virt=0, ool=1
EXC_REAL_END(hmi_exception, 0xe60, 0x20)
EXC_VIRT_NONE(0x4e60, 0x20)
EXC_COMMON_BEGIN(hmi_exception_early_common)
__GEN_REALMODE_COMMON_ENTRY hmi_exception_early
mr r10,r1 /* Save r1 */
ld r1,PACAEMERGSP(r13) /* Use emergency stack for realmode */
subi r1,r1,INT_FRAME_SIZE /* alloc stack frame */
__GEN_COMMON_BODY hmi_exception_early
addi r3,r1,STACK_FRAME_OVERHEAD
bl hmi_exception_realmode
cmpdi cr0,r3,0
bne 1f
EXCEPTION_RESTORE_REGS hsrr=1
HRFI_TO_USER_OR_KERNEL
1:
/*
* Go to virtual mode and pull the HMI event information from
* firmware.
*/
EXCEPTION_RESTORE_REGS hsrr=1
GEN_INT_ENTRY hmi_exception, virt=0
GEN_KVM hmi_exception_early
EXC_COMMON_BEGIN(hmi_exception_common)
GEN_COMMON hmi_exception
FINISH_NAP
RUNLATCH_ON
addi r3,r1,STACK_FRAME_OVERHEAD
bl handle_hmi_exception
b interrupt_return
GEN_KVM hmi_exception
/**
* Interrupt 0xe80 - Directed Hypervisor Doorbell Interrupt.
* This is an asynchronous interrupt in response to a msgsnd doorbell.
* Similar to the 0xa00 doorbell but for host rather than guest.
*/
INT_DEFINE_BEGIN(h_doorbell)
IVEC=0xe80
IHSRR=1
IMASK=IRQS_DISABLED
IKVM_REAL=1
IKVM_VIRT=1
INT_DEFINE_END(h_doorbell)
EXC_REAL_BEGIN(h_doorbell, 0xe80, 0x20)
GEN_INT_ENTRY h_doorbell, virt=0, ool=1
EXC_REAL_END(h_doorbell, 0xe80, 0x20)
EXC_VIRT_BEGIN(h_doorbell, 0x4e80, 0x20)
GEN_INT_ENTRY h_doorbell, virt=1, ool=1
EXC_VIRT_END(h_doorbell, 0x4e80, 0x20)
EXC_COMMON_BEGIN(h_doorbell_common)
GEN_COMMON h_doorbell
FINISH_NAP
RUNLATCH_ON
addi r3,r1,STACK_FRAME_OVERHEAD
#ifdef CONFIG_PPC_DOORBELL
bl doorbell_exception
#else
bl unknown_exception
#endif
b interrupt_return
GEN_KVM h_doorbell
/**
* Interrupt 0xea0 - Hypervisor Virtualization Interrupt.
* This is an asynchronous interrupt in response to an "external exception".
* Similar to 0x500 but for host only.
*/
INT_DEFINE_BEGIN(h_virt_irq)
IVEC=0xea0
IHSRR=1
IMASK=IRQS_DISABLED
IKVM_REAL=1
IKVM_VIRT=1
INT_DEFINE_END(h_virt_irq)
EXC_REAL_BEGIN(h_virt_irq, 0xea0, 0x20)
GEN_INT_ENTRY h_virt_irq, virt=0, ool=1
EXC_REAL_END(h_virt_irq, 0xea0, 0x20)
EXC_VIRT_BEGIN(h_virt_irq, 0x4ea0, 0x20)
GEN_INT_ENTRY h_virt_irq, virt=1, ool=1
EXC_VIRT_END(h_virt_irq, 0x4ea0, 0x20)
EXC_COMMON_BEGIN(h_virt_irq_common)
GEN_COMMON h_virt_irq
FINISH_NAP
RUNLATCH_ON
addi r3,r1,STACK_FRAME_OVERHEAD
bl do_IRQ
b interrupt_return
GEN_KVM h_virt_irq
EXC_REAL_NONE(0xec0, 0x20)
EXC_VIRT_NONE(0x4ec0, 0x20)
EXC_REAL_NONE(0xee0, 0x20)
EXC_VIRT_NONE(0x4ee0, 0x20)
/*
* Interrupt 0xf00 - Performance Monitor Interrupt (PMI, PMU).
* This is an asynchronous interrupt in response to a PMU exception.
* It is maskable in hardware by clearing MSR[EE], and soft-maskable with
* IRQS_PMI_DISABLED mask (NOTE: NOT local_irq_disable()).
*
* Handling:
* This calls into the perf subsystem.
*
* Like the watchdog soft-nmi, it appears an NMI interrupt to Linux, in that it
* runs under local_irq_disable. However it may be soft-masked in
* powerpc-specific code.
*
* If soft masked, the masked handler will note the pending interrupt for
* replay, and clear MSR[EE] in the interrupted context.
*/
INT_DEFINE_BEGIN(performance_monitor)
IVEC=0xf00
IMASK=IRQS_PMI_DISABLED
#ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
IKVM_REAL=1
#endif
INT_DEFINE_END(performance_monitor)
EXC_REAL_BEGIN(performance_monitor, 0xf00, 0x20)
GEN_INT_ENTRY performance_monitor, virt=0, ool=1
EXC_REAL_END(performance_monitor, 0xf00, 0x20)
EXC_VIRT_BEGIN(performance_monitor, 0x4f00, 0x20)
GEN_INT_ENTRY performance_monitor, virt=1, ool=1
EXC_VIRT_END(performance_monitor, 0x4f00, 0x20)
EXC_COMMON_BEGIN(performance_monitor_common)
GEN_COMMON performance_monitor
FINISH_NAP
RUNLATCH_ON
addi r3,r1,STACK_FRAME_OVERHEAD
bl performance_monitor_exception
b interrupt_return
GEN_KVM performance_monitor
/**
* Interrupt 0xf20 - Vector Unavailable Interrupt.
* This is a synchronous interrupt in response to
* executing a vector (or altivec) instruction with MSR[VEC]=0.
* Similar to FP unavailable.
*/
INT_DEFINE_BEGIN(altivec_unavailable)
IVEC=0xf20
IRECONCILE=0
#ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
IKVM_REAL=1
#endif
INT_DEFINE_END(altivec_unavailable)
EXC_REAL_BEGIN(altivec_unavailable, 0xf20, 0x20)
GEN_INT_ENTRY altivec_unavailable, virt=0, ool=1
EXC_REAL_END(altivec_unavailable, 0xf20, 0x20)
EXC_VIRT_BEGIN(altivec_unavailable, 0x4f20, 0x20)
GEN_INT_ENTRY altivec_unavailable, virt=1, ool=1
EXC_VIRT_END(altivec_unavailable, 0x4f20, 0x20)
EXC_COMMON_BEGIN(altivec_unavailable_common)
GEN_COMMON altivec_unavailable
#ifdef CONFIG_ALTIVEC
BEGIN_FTR_SECTION
beq 1f
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
BEGIN_FTR_SECTION_NESTED(69)
/* Test if 2 TM state bits are zero. If non-zero (ie. userspace was in
* transaction), go do TM stuff
*/
rldicl. r0, r12, (64-MSR_TS_LG), (64-2)
bne- 2f
END_FTR_SECTION_NESTED(CPU_FTR_TM, CPU_FTR_TM, 69)
#endif
bl load_up_altivec
b fast_interrupt_return
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
2: /* User process was in a transaction */
RECONCILE_IRQ_STATE(r10, r11)
addi r3,r1,STACK_FRAME_OVERHEAD
bl altivec_unavailable_tm
b interrupt_return
#endif
1:
END_FTR_SECTION_IFSET(CPU_FTR_ALTIVEC)
#endif
RECONCILE_IRQ_STATE(r10, r11)
addi r3,r1,STACK_FRAME_OVERHEAD
bl altivec_unavailable_exception
b interrupt_return
GEN_KVM altivec_unavailable
/**
* Interrupt 0xf40 - VSX Unavailable Interrupt.
* This is a synchronous interrupt in response to
* executing a VSX instruction with MSR[VSX]=0.
* Similar to FP unavailable.
*/
INT_DEFINE_BEGIN(vsx_unavailable)
IVEC=0xf40
IRECONCILE=0
#ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
IKVM_REAL=1
#endif
INT_DEFINE_END(vsx_unavailable)
EXC_REAL_BEGIN(vsx_unavailable, 0xf40, 0x20)
GEN_INT_ENTRY vsx_unavailable, virt=0, ool=1
EXC_REAL_END(vsx_unavailable, 0xf40, 0x20)
EXC_VIRT_BEGIN(vsx_unavailable, 0x4f40, 0x20)
GEN_INT_ENTRY vsx_unavailable, virt=1, ool=1
EXC_VIRT_END(vsx_unavailable, 0x4f40, 0x20)
EXC_COMMON_BEGIN(vsx_unavailable_common)
GEN_COMMON vsx_unavailable
#ifdef CONFIG_VSX
BEGIN_FTR_SECTION
beq 1f
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
BEGIN_FTR_SECTION_NESTED(69)
/* Test if 2 TM state bits are zero. If non-zero (ie. userspace was in
* transaction), go do TM stuff
*/
rldicl. r0, r12, (64-MSR_TS_LG), (64-2)
bne- 2f
END_FTR_SECTION_NESTED(CPU_FTR_TM, CPU_FTR_TM, 69)
#endif
b load_up_vsx
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
2: /* User process was in a transaction */
RECONCILE_IRQ_STATE(r10, r11)
addi r3,r1,STACK_FRAME_OVERHEAD
bl vsx_unavailable_tm
b interrupt_return
#endif
1:
END_FTR_SECTION_IFSET(CPU_FTR_VSX)
#endif
RECONCILE_IRQ_STATE(r10, r11)
addi r3,r1,STACK_FRAME_OVERHEAD
bl vsx_unavailable_exception
b interrupt_return
GEN_KVM vsx_unavailable
/**
* Interrupt 0xf60 - Facility Unavailable Interrupt.
* This is a synchronous interrupt in response to
* executing an instruction without access to the facility that can be
* resolved by the OS (e.g., FSCR, MSR).
* Similar to FP unavailable.
*/
INT_DEFINE_BEGIN(facility_unavailable)
IVEC=0xf60
#ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
IKVM_REAL=1
#endif
INT_DEFINE_END(facility_unavailable)
EXC_REAL_BEGIN(facility_unavailable, 0xf60, 0x20)
GEN_INT_ENTRY facility_unavailable, virt=0, ool=1
EXC_REAL_END(facility_unavailable, 0xf60, 0x20)
EXC_VIRT_BEGIN(facility_unavailable, 0x4f60, 0x20)
GEN_INT_ENTRY facility_unavailable, virt=1, ool=1
EXC_VIRT_END(facility_unavailable, 0x4f60, 0x20)
EXC_COMMON_BEGIN(facility_unavailable_common)
GEN_COMMON facility_unavailable
addi r3,r1,STACK_FRAME_OVERHEAD
bl facility_unavailable_exception
REST_NVGPRS(r1) /* instruction emulation may change GPRs */
b interrupt_return
GEN_KVM facility_unavailable
/**
* Interrupt 0xf60 - Hypervisor Facility Unavailable Interrupt.
* This is a synchronous interrupt in response to
* executing an instruction without access to the facility that can only
* be resolved in HV mode (e.g., HFSCR).
* Similar to FP unavailable.
*/
INT_DEFINE_BEGIN(h_facility_unavailable)
IVEC=0xf80
IHSRR=1
IKVM_REAL=1
IKVM_VIRT=1
INT_DEFINE_END(h_facility_unavailable)
EXC_REAL_BEGIN(h_facility_unavailable, 0xf80, 0x20)
GEN_INT_ENTRY h_facility_unavailable, virt=0, ool=1
EXC_REAL_END(h_facility_unavailable, 0xf80, 0x20)
EXC_VIRT_BEGIN(h_facility_unavailable, 0x4f80, 0x20)
GEN_INT_ENTRY h_facility_unavailable, virt=1, ool=1
EXC_VIRT_END(h_facility_unavailable, 0x4f80, 0x20)
EXC_COMMON_BEGIN(h_facility_unavailable_common)
GEN_COMMON h_facility_unavailable
addi r3,r1,STACK_FRAME_OVERHEAD
bl facility_unavailable_exception
REST_NVGPRS(r1) /* XXX Shouldn't be necessary in practice */
b interrupt_return
GEN_KVM h_facility_unavailable
EXC_REAL_NONE(0xfa0, 0x20)
EXC_VIRT_NONE(0x4fa0, 0x20)
EXC_REAL_NONE(0xfc0, 0x20)
EXC_VIRT_NONE(0x4fc0, 0x20)
EXC_REAL_NONE(0xfe0, 0x20)
EXC_VIRT_NONE(0x4fe0, 0x20)
EXC_REAL_NONE(0x1000, 0x100)
EXC_VIRT_NONE(0x5000, 0x100)
EXC_REAL_NONE(0x1100, 0x100)
EXC_VIRT_NONE(0x5100, 0x100)
#ifdef CONFIG_CBE_RAS
INT_DEFINE_BEGIN(cbe_system_error)
IVEC=0x1200
IHSRR=1
IKVM_SKIP=1
IKVM_REAL=1
INT_DEFINE_END(cbe_system_error)
EXC_REAL_BEGIN(cbe_system_error, 0x1200, 0x100)
GEN_INT_ENTRY cbe_system_error, virt=0
EXC_REAL_END(cbe_system_error, 0x1200, 0x100)
EXC_VIRT_NONE(0x5200, 0x100)
EXC_COMMON_BEGIN(cbe_system_error_common)
GEN_COMMON cbe_system_error
addi r3,r1,STACK_FRAME_OVERHEAD
bl cbe_system_error_exception
b interrupt_return
GEN_KVM cbe_system_error
#else /* CONFIG_CBE_RAS */
EXC_REAL_NONE(0x1200, 0x100)
EXC_VIRT_NONE(0x5200, 0x100)
#endif
INT_DEFINE_BEGIN(instruction_breakpoint)
IVEC=0x1300
#ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
IKVM_SKIP=1
IKVM_REAL=1
#endif
INT_DEFINE_END(instruction_breakpoint)
EXC_REAL_BEGIN(instruction_breakpoint, 0x1300, 0x100)
GEN_INT_ENTRY instruction_breakpoint, virt=0
EXC_REAL_END(instruction_breakpoint, 0x1300, 0x100)
EXC_VIRT_BEGIN(instruction_breakpoint, 0x5300, 0x100)
GEN_INT_ENTRY instruction_breakpoint, virt=1
EXC_VIRT_END(instruction_breakpoint, 0x5300, 0x100)
EXC_COMMON_BEGIN(instruction_breakpoint_common)
GEN_COMMON instruction_breakpoint
addi r3,r1,STACK_FRAME_OVERHEAD
bl instruction_breakpoint_exception
b interrupt_return
GEN_KVM instruction_breakpoint
EXC_REAL_NONE(0x1400, 0x100)
EXC_VIRT_NONE(0x5400, 0x100)
/**
* Interrupt 0x1500 - Soft Patch Interrupt
*
* Handling:
* This is an implementation specific interrupt which can be used for a
* range of exceptions.
*
* This interrupt handler is unique in that it runs the denormal assist
* code even for guests (and even in guest context) without going to KVM,
* for speed. POWER9 does not raise denorm exceptions, so this special case
* could be phased out in future to reduce special cases.
*/
INT_DEFINE_BEGIN(denorm_exception)
IVEC=0x1500
IHSRR=1
IBRANCH_TO_COMMON=0
IKVM_REAL=1
INT_DEFINE_END(denorm_exception)
EXC_REAL_BEGIN(denorm_exception, 0x1500, 0x100)
GEN_INT_ENTRY denorm_exception, virt=0
#ifdef CONFIG_PPC_DENORMALISATION
andis. r10,r12,(HSRR1_DENORM)@h /* denorm? */
bne+ denorm_assist
#endif
GEN_BRANCH_TO_COMMON denorm_exception, virt=0
EXC_REAL_END(denorm_exception, 0x1500, 0x100)
#ifdef CONFIG_PPC_DENORMALISATION
EXC_VIRT_BEGIN(denorm_exception, 0x5500, 0x100)
GEN_INT_ENTRY denorm_exception, virt=1
andis. r10,r12,(HSRR1_DENORM)@h /* denorm? */
bne+ denorm_assist
GEN_BRANCH_TO_COMMON denorm_exception, virt=1
EXC_VIRT_END(denorm_exception, 0x5500, 0x100)
#else
EXC_VIRT_NONE(0x5500, 0x100)
#endif
#ifdef CONFIG_PPC_DENORMALISATION
TRAMP_REAL_BEGIN(denorm_assist)
BEGIN_FTR_SECTION
/*
* To denormalise we need to move a copy of the register to itself.
* For POWER6 do that here for all FP regs.
*/
mfmsr r10
ori r10,r10,(MSR_FP|MSR_FE0|MSR_FE1)
xori r10,r10,(MSR_FE0|MSR_FE1)
mtmsrd r10
sync
.Lreg=0
.rept 32
fmr .Lreg,.Lreg
.Lreg=.Lreg+1
.endr
FTR_SECTION_ELSE
/*
* To denormalise we need to move a copy of the register to itself.
* For POWER7 do that here for the first 32 VSX registers only.
*/
mfmsr r10
oris r10,r10,MSR_VSX@h
mtmsrd r10
sync
.Lreg=0
.rept 32
XVCPSGNDP(.Lreg,.Lreg,.Lreg)
.Lreg=.Lreg+1
.endr
ALT_FTR_SECTION_END_IFCLR(CPU_FTR_ARCH_206)
BEGIN_FTR_SECTION
b denorm_done
END_FTR_SECTION_IFCLR(CPU_FTR_ARCH_207S)
/*
* To denormalise we need to move a copy of the register to itself.
* For POWER8 we need to do that for all 64 VSX registers
*/
.Lreg=32
.rept 32
XVCPSGNDP(.Lreg,.Lreg,.Lreg)
.Lreg=.Lreg+1
.endr
denorm_done:
mfspr r11,SPRN_HSRR0
subi r11,r11,4
mtspr SPRN_HSRR0,r11
mtcrf 0x80,r9
ld r9,PACA_EXGEN+EX_R9(r13)
BEGIN_FTR_SECTION
ld r10,PACA_EXGEN+EX_PPR(r13)
mtspr SPRN_PPR,r10
END_FTR_SECTION_IFSET(CPU_FTR_HAS_PPR)
BEGIN_FTR_SECTION
ld r10,PACA_EXGEN+EX_CFAR(r13)
mtspr SPRN_CFAR,r10
END_FTR_SECTION_IFSET(CPU_FTR_CFAR)
ld r10,PACA_EXGEN+EX_R10(r13)
ld r11,PACA_EXGEN+EX_R11(r13)
ld r12,PACA_EXGEN+EX_R12(r13)
ld r13,PACA_EXGEN+EX_R13(r13)
HRFI_TO_UNKNOWN
b .
#endif
EXC_COMMON_BEGIN(denorm_exception_common)
GEN_COMMON denorm_exception
addi r3,r1,STACK_FRAME_OVERHEAD
bl unknown_exception
b interrupt_return
GEN_KVM denorm_exception
#ifdef CONFIG_CBE_RAS
INT_DEFINE_BEGIN(cbe_maintenance)
IVEC=0x1600
IHSRR=1
IKVM_SKIP=1
IKVM_REAL=1
INT_DEFINE_END(cbe_maintenance)
EXC_REAL_BEGIN(cbe_maintenance, 0x1600, 0x100)
GEN_INT_ENTRY cbe_maintenance, virt=0
EXC_REAL_END(cbe_maintenance, 0x1600, 0x100)
EXC_VIRT_NONE(0x5600, 0x100)
EXC_COMMON_BEGIN(cbe_maintenance_common)
GEN_COMMON cbe_maintenance
addi r3,r1,STACK_FRAME_OVERHEAD
bl cbe_maintenance_exception
b interrupt_return
GEN_KVM cbe_maintenance
#else /* CONFIG_CBE_RAS */
EXC_REAL_NONE(0x1600, 0x100)
EXC_VIRT_NONE(0x5600, 0x100)
#endif
INT_DEFINE_BEGIN(altivec_assist)
IVEC=0x1700
#ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
IKVM_REAL=1
#endif
INT_DEFINE_END(altivec_assist)
EXC_REAL_BEGIN(altivec_assist, 0x1700, 0x100)
GEN_INT_ENTRY altivec_assist, virt=0
EXC_REAL_END(altivec_assist, 0x1700, 0x100)
EXC_VIRT_BEGIN(altivec_assist, 0x5700, 0x100)
GEN_INT_ENTRY altivec_assist, virt=1
EXC_VIRT_END(altivec_assist, 0x5700, 0x100)
EXC_COMMON_BEGIN(altivec_assist_common)
GEN_COMMON altivec_assist
addi r3,r1,STACK_FRAME_OVERHEAD
#ifdef CONFIG_ALTIVEC
bl altivec_assist_exception
REST_NVGPRS(r1) /* instruction emulation may change GPRs */
#else
bl unknown_exception
#endif
b interrupt_return
GEN_KVM altivec_assist
#ifdef CONFIG_CBE_RAS
INT_DEFINE_BEGIN(cbe_thermal)
IVEC=0x1800
IHSRR=1
IKVM_SKIP=1
IKVM_REAL=1
INT_DEFINE_END(cbe_thermal)
EXC_REAL_BEGIN(cbe_thermal, 0x1800, 0x100)
GEN_INT_ENTRY cbe_thermal, virt=0
EXC_REAL_END(cbe_thermal, 0x1800, 0x100)
EXC_VIRT_NONE(0x5800, 0x100)
EXC_COMMON_BEGIN(cbe_thermal_common)
GEN_COMMON cbe_thermal
addi r3,r1,STACK_FRAME_OVERHEAD
bl cbe_thermal_exception
b interrupt_return
GEN_KVM cbe_thermal
#else /* CONFIG_CBE_RAS */
EXC_REAL_NONE(0x1800, 0x100)
EXC_VIRT_NONE(0x5800, 0x100)
#endif
#ifdef CONFIG_PPC_WATCHDOG
INT_DEFINE_BEGIN(soft_nmi)
IVEC=0x900
ISTACK=0
IRECONCILE=0 /* Soft-NMI may fire under local_irq_disable */
INT_DEFINE_END(soft_nmi)
/*
* Branch to soft_nmi_interrupt using the emergency stack. The emergency
* stack is one that is usable by maskable interrupts so long as MSR_EE
* remains off. It is used for recovery when something has corrupted the
* normal kernel stack, for example. The "soft NMI" must not use the process
* stack because we want irq disabled sections to avoid touching the stack
* at all (other than PMU interrupts), so use the emergency stack for this,
* and run it entirely with interrupts hard disabled.
*/
EXC_COMMON_BEGIN(soft_nmi_common)
mfspr r11,SPRN_SRR0
mr r10,r1
ld r1,PACAEMERGSP(r13)
subi r1,r1,INT_FRAME_SIZE
__GEN_COMMON_BODY soft_nmi
/*
* Set IRQS_ALL_DISABLED and save PACAIRQHAPPENED (see
* system_reset_common)
*/
li r10,IRQS_ALL_DISABLED
stb r10,PACAIRQSOFTMASK(r13)
lbz r10,PACAIRQHAPPENED(r13)
std r10,RESULT(r1)
ori r10,r10,PACA_IRQ_HARD_DIS
stb r10,PACAIRQHAPPENED(r13)
addi r3,r1,STACK_FRAME_OVERHEAD
bl soft_nmi_interrupt
/* Clear MSR_RI before setting SRR0 and SRR1. */
li r9,0
mtmsrd r9,1
/*
* Restore soft mask settings.
*/
ld r10,RESULT(r1)
stb r10,PACAIRQHAPPENED(r13)
ld r10,SOFTE(r1)
stb r10,PACAIRQSOFTMASK(r13)
kuap_restore_amr r9, r10
EXCEPTION_RESTORE_REGS hsrr=0
RFI_TO_KERNEL
#endif /* CONFIG_PPC_WATCHDOG */
/*
* An interrupt came in while soft-disabled. We set paca->irq_happened, then:
* - If it was a decrementer interrupt, we bump the dec to max and and return.
* - If it was a doorbell we return immediately since doorbells are edge
* triggered and won't automatically refire.
* - If it was a HMI we return immediately since we handled it in realmode
* and it won't refire.
* - Else it is one of PACA_IRQ_MUST_HARD_MASK, so hard disable and return.
* This is called with r10 containing the value to OR to the paca field.
*/
.macro MASKED_INTERRUPT hsrr=0
.if \hsrr
masked_Hinterrupt:
.else
masked_interrupt:
.endif
lbz r11,PACAIRQHAPPENED(r13)
or r11,r11,r10
stb r11,PACAIRQHAPPENED(r13)
cmpwi r10,PACA_IRQ_DEC
bne 1f
lis r10,0x7fff
ori r10,r10,0xffff
mtspr SPRN_DEC,r10
#ifdef CONFIG_PPC_WATCHDOG
b soft_nmi_common
#else
b 2f
#endif
1: andi. r10,r10,PACA_IRQ_MUST_HARD_MASK
beq 2f
xori r12,r12,MSR_EE /* clear MSR_EE */
.if \hsrr
mtspr SPRN_HSRR1,r12
.else
mtspr SPRN_SRR1,r12
.endif
ori r11,r11,PACA_IRQ_HARD_DIS
stb r11,PACAIRQHAPPENED(r13)
2: /* done */
ld r10,PACA_EXGEN+EX_CTR(r13)
mtctr r10
mtcrf 0x80,r9
std r1,PACAR1(r13)
ld r9,PACA_EXGEN+EX_R9(r13)
ld r10,PACA_EXGEN+EX_R10(r13)
ld r11,PACA_EXGEN+EX_R11(r13)
ld r12,PACA_EXGEN+EX_R12(r13)
ld r13,PACA_EXGEN+EX_R13(r13)
/* May return to masked low address where r13 is not set up */
.if \hsrr
HRFI_TO_KERNEL
.else
RFI_TO_KERNEL
.endif
b .
.endm
TRAMP_REAL_BEGIN(stf_barrier_fallback)
std r9,PACA_EXRFI+EX_R9(r13)
std r10,PACA_EXRFI+EX_R10(r13)
sync
ld r9,PACA_EXRFI+EX_R9(r13)
ld r10,PACA_EXRFI+EX_R10(r13)
ori 31,31,0
.rept 14
b 1f
1:
.endr
blr
/* Clobbers r10, r11, ctr */
.macro L1D_DISPLACEMENT_FLUSH
ld r10,PACA_RFI_FLUSH_FALLBACK_AREA(r13)
ld r11,PACA_L1D_FLUSH_SIZE(r13)
srdi r11,r11,(7 + 3) /* 128 byte lines, unrolled 8x */
mtctr r11
DCBT_BOOK3S_STOP_ALL_STREAM_IDS(r11) /* Stop prefetch streams */
/* order ld/st prior to dcbt stop all streams with flushing */
sync
/*
* The load addresses are at staggered offsets within cachelines,
* which suits some pipelines better (on others it should not
* hurt).
*/
1:
ld r11,(0x80 + 8)*0(r10)
ld r11,(0x80 + 8)*1(r10)
ld r11,(0x80 + 8)*2(r10)
ld r11,(0x80 + 8)*3(r10)
ld r11,(0x80 + 8)*4(r10)
ld r11,(0x80 + 8)*5(r10)
ld r11,(0x80 + 8)*6(r10)
ld r11,(0x80 + 8)*7(r10)
addi r10,r10,0x80*8
bdnz 1b
.endm
TRAMP_REAL_BEGIN(entry_flush_fallback)
std r9,PACA_EXRFI+EX_R9(r13)
std r10,PACA_EXRFI+EX_R10(r13)
std r11,PACA_EXRFI+EX_R11(r13)
mfctr r9
L1D_DISPLACEMENT_FLUSH
mtctr r9
ld r9,PACA_EXRFI+EX_R9(r13)
ld r10,PACA_EXRFI+EX_R10(r13)
ld r11,PACA_EXRFI+EX_R11(r13)
blr
TRAMP_REAL_BEGIN(rfi_flush_fallback)
SET_SCRATCH0(r13);
GET_PACA(r13);
std r1,PACA_EXRFI+EX_R12(r13)
ld r1,PACAKSAVE(r13)
std r9,PACA_EXRFI+EX_R9(r13)
std r10,PACA_EXRFI+EX_R10(r13)
std r11,PACA_EXRFI+EX_R11(r13)
mfctr r9
L1D_DISPLACEMENT_FLUSH
mtctr r9
ld r9,PACA_EXRFI+EX_R9(r13)
ld r10,PACA_EXRFI+EX_R10(r13)
ld r11,PACA_EXRFI+EX_R11(r13)
ld r1,PACA_EXRFI+EX_R12(r13)
GET_SCRATCH0(r13);
rfid
TRAMP_REAL_BEGIN(hrfi_flush_fallback)
SET_SCRATCH0(r13);
GET_PACA(r13);
std r1,PACA_EXRFI+EX_R12(r13)
ld r1,PACAKSAVE(r13)
std r9,PACA_EXRFI+EX_R9(r13)
std r10,PACA_EXRFI+EX_R10(r13)
std r11,PACA_EXRFI+EX_R11(r13)
mfctr r9
L1D_DISPLACEMENT_FLUSH
mtctr r9
ld r9,PACA_EXRFI+EX_R9(r13)
ld r10,PACA_EXRFI+EX_R10(r13)
ld r11,PACA_EXRFI+EX_R11(r13)
ld r1,PACA_EXRFI+EX_R12(r13)
GET_SCRATCH0(r13);
hrfid
TRAMP_REAL_BEGIN(rfscv_flush_fallback)
/* system call volatile */
mr r7,r13
GET_PACA(r13);
mr r8,r1
ld r1,PACAKSAVE(r13)
mfctr r9
ld r10,PACA_RFI_FLUSH_FALLBACK_AREA(r13)
ld r11,PACA_L1D_FLUSH_SIZE(r13)
srdi r11,r11,(7 + 3) /* 128 byte lines, unrolled 8x */
mtctr r11
DCBT_BOOK3S_STOP_ALL_STREAM_IDS(r11) /* Stop prefetch streams */
/* order ld/st prior to dcbt stop all streams with flushing */
sync
/*
* The load adresses are at staggered offsets within cachelines,
* which suits some pipelines better (on others it should not
* hurt).
*/
1:
ld r11,(0x80 + 8)*0(r10)
ld r11,(0x80 + 8)*1(r10)
ld r11,(0x80 + 8)*2(r10)
ld r11,(0x80 + 8)*3(r10)
ld r11,(0x80 + 8)*4(r10)
ld r11,(0x80 + 8)*5(r10)
ld r11,(0x80 + 8)*6(r10)
ld r11,(0x80 + 8)*7(r10)
addi r10,r10,0x80*8
bdnz 1b
mtctr r9
li r9,0
li r10,0
li r11,0
mr r1,r8
mr r13,r7
RFSCV
USE_TEXT_SECTION()
_GLOBAL(do_uaccess_flush)
UACCESS_FLUSH_FIXUP_SECTION
nop
nop
nop
blr
L1D_DISPLACEMENT_FLUSH
blr
_ASM_NOKPROBE_SYMBOL(do_uaccess_flush)
EXPORT_SYMBOL(do_uaccess_flush)
MASKED_INTERRUPT
MASKED_INTERRUPT hsrr=1
#ifdef CONFIG_KVM_BOOK3S_64_HANDLER
kvmppc_skip_interrupt:
/*
* Here all GPRs are unchanged from when the interrupt happened
* except for r13, which is saved in SPRG_SCRATCH0.
*/
mfspr r13, SPRN_SRR0
addi r13, r13, 4
mtspr SPRN_SRR0, r13
GET_SCRATCH0(r13)
RFI_TO_KERNEL
b .
kvmppc_skip_Hinterrupt:
/*
* Here all GPRs are unchanged from when the interrupt happened
* except for r13, which is saved in SPRG_SCRATCH0.
*/
mfspr r13, SPRN_HSRR0
addi r13, r13, 4
mtspr SPRN_HSRR0, r13
GET_SCRATCH0(r13)
HRFI_TO_KERNEL
b .
#endif
/*
* Relocation-on interrupts: A subset of the interrupts can be delivered
* with IR=1/DR=1, if AIL==2 and MSR.HV won't be changed by delivering
* it. Addresses are the same as the original interrupt addresses, but
* offset by 0xc000000000004000.
* It's impossible to receive interrupts below 0x300 via this mechanism.
* KVM: None of these traps are from the guest ; anything that escalated
* to HV=1 from HV=0 is delivered via real mode handlers.
*/
/*
* This uses the standard macro, since the original 0x300 vector
* only has extra guff for STAB-based processors -- which never
* come here.
*/
EXC_COMMON_BEGIN(ppc64_runlatch_on_trampoline)
b __ppc64_runlatch_on
USE_FIXED_SECTION(virt_trampolines)
/*
* All code below __end_interrupts is treated as soft-masked. If
* any code runs here with MSR[EE]=1, it must then cope with pending
* soft interrupt being raised (i.e., by ensuring it is replayed).
*
* The __end_interrupts marker must be past the out-of-line (OOL)
* handlers, so that they are copied to real address 0x100 when running
* a relocatable kernel. This ensures they can be reached from the short
* trampoline handlers (like 0x4f00, 0x4f20, etc.) which branch
* directly, without using LOAD_HANDLER().
*/
.align 7
.globl __end_interrupts
__end_interrupts:
DEFINE_FIXED_SYMBOL(__end_interrupts)
#ifdef CONFIG_PPC_970_NAP
/*
* Called by exception entry code if _TLF_NAPPING was set, this clears
* the NAPPING flag, and redirects the exception exit to
* power4_fixup_nap_return.
*/
.globl power4_fixup_nap
EXC_COMMON_BEGIN(power4_fixup_nap)
andc r9,r9,r10
std r9,TI_LOCAL_FLAGS(r11)
LOAD_REG_ADDR(r10, power4_idle_nap_return)
std r10,_NIP(r1)
blr
power4_idle_nap_return:
blr
#endif
CLOSE_FIXED_SECTION(real_vectors);
CLOSE_FIXED_SECTION(real_trampolines);
CLOSE_FIXED_SECTION(virt_vectors);
CLOSE_FIXED_SECTION(virt_trampolines);
USE_TEXT_SECTION()
/* MSR[RI] should be clear because this uses SRR[01] */
enable_machine_check:
mflr r0
bcl 20,31,$+4
0: mflr r3
addi r3,r3,(1f - 0b)
mtspr SPRN_SRR0,r3
mfmsr r3
ori r3,r3,MSR_ME
mtspr SPRN_SRR1,r3
RFI_TO_KERNEL
1: mtlr r0
blr
/* MSR[RI] should be clear because this uses SRR[01] */
disable_machine_check:
mflr r0
bcl 20,31,$+4
0: mflr r3
addi r3,r3,(1f - 0b)
mtspr SPRN_SRR0,r3
mfmsr r3
li r4,MSR_ME
andc r3,r3,r4
mtspr SPRN_SRR1,r3
RFI_TO_KERNEL
1: mtlr r0
blr
/*
* Hash table stuff
*/
.balign IFETCH_ALIGN_BYTES
do_hash_page:
#ifdef CONFIG_PPC_BOOK3S_64
lis r0,(DSISR_BAD_FAULT_64S | DSISR_DABRMATCH | DSISR_KEYFAULT)@h
ori r0,r0,DSISR_BAD_FAULT_64S@l
and. r0,r5,r0 /* weird error? */
bne- handle_page_fault /* if not, try to insert a HPTE */
/*
* If we are in an "NMI" (e.g., an interrupt when soft-disabled), then
* don't call hash_page, just fail the fault. This is required to
* prevent re-entrancy problems in the hash code, namely perf
* interrupts hitting while something holds H_PAGE_BUSY, and taking a
* hash fault. See the comment in hash_preload().
*/
ld r11, PACA_THREAD_INFO(r13)
lwz r0,TI_PREEMPT(r11)
andis. r0,r0,NMI_MASK@h
bne 77f
/*
* r3 contains the trap number
* r4 contains the faulting address
* r5 contains dsisr
* r6 msr
*
* at return r3 = 0 for success, 1 for page fault, negative for error
*/
bl __hash_page /* build HPTE if possible */
cmpdi r3,0 /* see if __hash_page succeeded */
/* Success */
beq interrupt_return /* Return from exception on success */
/* Error */
blt- 13f
/* Reload DAR/DSISR into r4/r5 for the DABR check below */
ld r4,_DAR(r1)
ld r5,_DSISR(r1)
#endif /* CONFIG_PPC_BOOK3S_64 */
/* Here we have a page fault that hash_page can't handle. */
handle_page_fault:
11: andis. r0,r5,DSISR_DABRMATCH@h
bne- handle_dabr_fault
addi r3,r1,STACK_FRAME_OVERHEAD
bl do_page_fault
cmpdi r3,0
beq+ interrupt_return
mr r5,r3
addi r3,r1,STACK_FRAME_OVERHEAD
ld r4,_DAR(r1)
bl bad_page_fault
b interrupt_return
/* We have a data breakpoint exception - handle it */
handle_dabr_fault:
ld r4,_DAR(r1)
ld r5,_DSISR(r1)
addi r3,r1,STACK_FRAME_OVERHEAD
bl do_break
/*
* do_break() may have changed the NV GPRS while handling a breakpoint.
* If so, we need to restore them with their updated values.
*/
REST_NVGPRS(r1)
b interrupt_return
#ifdef CONFIG_PPC_BOOK3S_64
/* We have a page fault that hash_page could handle but HV refused
* the PTE insertion
*/
13: mr r5,r3
addi r3,r1,STACK_FRAME_OVERHEAD
ld r4,_DAR(r1)
bl low_hash_fault
b interrupt_return
#endif
/*
* We come here as a result of a DSI at a point where we don't want
* to call hash_page, such as when we are accessing memory (possibly
* user memory) inside a PMU interrupt that occurred while interrupts
* were soft-disabled. We want to invoke the exception handler for
* the access, or panic if there isn't a handler.
*/
77: addi r3,r1,STACK_FRAME_OVERHEAD
li r5,SIGSEGV
bl bad_page_fault
b interrupt_return