| /* |
| * fs/f2fs/node.h |
| * |
| * Copyright (c) 2012 Samsung Electronics Co., Ltd. |
| * http://www.samsung.com/ |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License version 2 as |
| * published by the Free Software Foundation. |
| */ |
| /* start node id of a node block dedicated to the given node id */ |
| #define START_NID(nid) ((nid / NAT_ENTRY_PER_BLOCK) * NAT_ENTRY_PER_BLOCK) |
| |
| /* node block offset on the NAT area dedicated to the given start node id */ |
| #define NAT_BLOCK_OFFSET(start_nid) (start_nid / NAT_ENTRY_PER_BLOCK) |
| |
| /* # of pages to perform synchronous readahead before building free nids */ |
| #define FREE_NID_PAGES 8 |
| #define MAX_FREE_NIDS (NAT_ENTRY_PER_BLOCK * FREE_NID_PAGES) |
| |
| #define DEF_RA_NID_PAGES 0 /* # of nid pages to be readaheaded */ |
| |
| /* maximum readahead size for node during getting data blocks */ |
| #define MAX_RA_NODE 128 |
| |
| /* control the memory footprint threshold (10MB per 1GB ram) */ |
| #define DEF_RAM_THRESHOLD 1 |
| |
| /* control dirty nats ratio threshold (default: 10% over max nid count) */ |
| #define DEF_DIRTY_NAT_RATIO_THRESHOLD 10 |
| /* control total # of nats */ |
| #define DEF_NAT_CACHE_THRESHOLD 100000 |
| |
| /* vector size for gang look-up from nat cache that consists of radix tree */ |
| #define NATVEC_SIZE 64 |
| #define SETVEC_SIZE 32 |
| |
| /* return value for read_node_page */ |
| #define LOCKED_PAGE 1 |
| |
| /* For flag in struct node_info */ |
| enum { |
| IS_CHECKPOINTED, /* is it checkpointed before? */ |
| HAS_FSYNCED_INODE, /* is the inode fsynced before? */ |
| HAS_LAST_FSYNC, /* has the latest node fsync mark? */ |
| IS_DIRTY, /* this nat entry is dirty? */ |
| }; |
| |
| /* |
| * For node information |
| */ |
| struct node_info { |
| nid_t nid; /* node id */ |
| nid_t ino; /* inode number of the node's owner */ |
| block_t blk_addr; /* block address of the node */ |
| unsigned char version; /* version of the node */ |
| unsigned char flag; /* for node information bits */ |
| }; |
| |
| struct nat_entry { |
| struct list_head list; /* for clean or dirty nat list */ |
| struct node_info ni; /* in-memory node information */ |
| }; |
| |
| #define nat_get_nid(nat) (nat->ni.nid) |
| #define nat_set_nid(nat, n) (nat->ni.nid = n) |
| #define nat_get_blkaddr(nat) (nat->ni.blk_addr) |
| #define nat_set_blkaddr(nat, b) (nat->ni.blk_addr = b) |
| #define nat_get_ino(nat) (nat->ni.ino) |
| #define nat_set_ino(nat, i) (nat->ni.ino = i) |
| #define nat_get_version(nat) (nat->ni.version) |
| #define nat_set_version(nat, v) (nat->ni.version = v) |
| |
| #define inc_node_version(version) (++version) |
| |
| static inline void copy_node_info(struct node_info *dst, |
| struct node_info *src) |
| { |
| dst->nid = src->nid; |
| dst->ino = src->ino; |
| dst->blk_addr = src->blk_addr; |
| dst->version = src->version; |
| /* should not copy flag here */ |
| } |
| |
| static inline void set_nat_flag(struct nat_entry *ne, |
| unsigned int type, bool set) |
| { |
| unsigned char mask = 0x01 << type; |
| if (set) |
| ne->ni.flag |= mask; |
| else |
| ne->ni.flag &= ~mask; |
| } |
| |
| static inline bool get_nat_flag(struct nat_entry *ne, unsigned int type) |
| { |
| unsigned char mask = 0x01 << type; |
| return ne->ni.flag & mask; |
| } |
| |
| static inline void nat_reset_flag(struct nat_entry *ne) |
| { |
| /* these states can be set only after checkpoint was done */ |
| set_nat_flag(ne, IS_CHECKPOINTED, true); |
| set_nat_flag(ne, HAS_FSYNCED_INODE, false); |
| set_nat_flag(ne, HAS_LAST_FSYNC, true); |
| } |
| |
| static inline void node_info_from_raw_nat(struct node_info *ni, |
| struct f2fs_nat_entry *raw_ne) |
| { |
| ni->ino = le32_to_cpu(raw_ne->ino); |
| ni->blk_addr = le32_to_cpu(raw_ne->block_addr); |
| ni->version = raw_ne->version; |
| } |
| |
| static inline void raw_nat_from_node_info(struct f2fs_nat_entry *raw_ne, |
| struct node_info *ni) |
| { |
| raw_ne->ino = cpu_to_le32(ni->ino); |
| raw_ne->block_addr = cpu_to_le32(ni->blk_addr); |
| raw_ne->version = ni->version; |
| } |
| |
| static inline bool excess_dirty_nats(struct f2fs_sb_info *sbi) |
| { |
| return NM_I(sbi)->dirty_nat_cnt >= NM_I(sbi)->max_nid * |
| NM_I(sbi)->dirty_nats_ratio / 100; |
| } |
| |
| static inline bool excess_cached_nats(struct f2fs_sb_info *sbi) |
| { |
| return NM_I(sbi)->nat_cnt >= DEF_NAT_CACHE_THRESHOLD; |
| } |
| |
| enum mem_type { |
| FREE_NIDS, /* indicates the free nid list */ |
| NAT_ENTRIES, /* indicates the cached nat entry */ |
| DIRTY_DENTS, /* indicates dirty dentry pages */ |
| INO_ENTRIES, /* indicates inode entries */ |
| EXTENT_CACHE, /* indicates extent cache */ |
| BASE_CHECK, /* check kernel status */ |
| }; |
| |
| struct nat_entry_set { |
| struct list_head set_list; /* link with other nat sets */ |
| struct list_head entry_list; /* link with dirty nat entries */ |
| nid_t set; /* set number*/ |
| unsigned int entry_cnt; /* the # of nat entries in set */ |
| }; |
| |
| /* |
| * For free nid mangement |
| */ |
| enum nid_state { |
| NID_NEW, /* newly added to free nid list */ |
| NID_ALLOC /* it is allocated */ |
| }; |
| |
| struct free_nid { |
| struct list_head list; /* for free node id list */ |
| nid_t nid; /* node id */ |
| int state; /* in use or not: NID_NEW or NID_ALLOC */ |
| }; |
| |
| static inline void next_free_nid(struct f2fs_sb_info *sbi, nid_t *nid) |
| { |
| struct f2fs_nm_info *nm_i = NM_I(sbi); |
| struct free_nid *fnid; |
| |
| spin_lock(&nm_i->nid_list_lock); |
| if (nm_i->nid_cnt[FREE_NID_LIST] <= 0) { |
| spin_unlock(&nm_i->nid_list_lock); |
| return; |
| } |
| fnid = list_first_entry(&nm_i->nid_list[FREE_NID_LIST], |
| struct free_nid, list); |
| *nid = fnid->nid; |
| spin_unlock(&nm_i->nid_list_lock); |
| } |
| |
| /* |
| * inline functions |
| */ |
| static inline void get_nat_bitmap(struct f2fs_sb_info *sbi, void *addr) |
| { |
| struct f2fs_nm_info *nm_i = NM_I(sbi); |
| |
| #ifdef CONFIG_F2FS_CHECK_FS |
| if (memcmp(nm_i->nat_bitmap, nm_i->nat_bitmap_mir, |
| nm_i->bitmap_size)) |
| f2fs_bug_on(sbi, 1); |
| #endif |
| memcpy(addr, nm_i->nat_bitmap, nm_i->bitmap_size); |
| } |
| |
| static inline pgoff_t current_nat_addr(struct f2fs_sb_info *sbi, nid_t start) |
| { |
| struct f2fs_nm_info *nm_i = NM_I(sbi); |
| pgoff_t block_off; |
| pgoff_t block_addr; |
| int seg_off; |
| |
| block_off = NAT_BLOCK_OFFSET(start); |
| seg_off = block_off >> sbi->log_blocks_per_seg; |
| |
| block_addr = (pgoff_t)(nm_i->nat_blkaddr + |
| (seg_off << sbi->log_blocks_per_seg << 1) + |
| (block_off & (sbi->blocks_per_seg - 1))); |
| |
| #ifdef CONFIG_F2FS_CHECK_FS |
| if (f2fs_test_bit(block_off, nm_i->nat_bitmap) != |
| f2fs_test_bit(block_off, nm_i->nat_bitmap_mir)) |
| f2fs_bug_on(sbi, 1); |
| #endif |
| |
| if (f2fs_test_bit(block_off, nm_i->nat_bitmap)) |
| block_addr += sbi->blocks_per_seg; |
| |
| return block_addr; |
| } |
| |
| static inline pgoff_t next_nat_addr(struct f2fs_sb_info *sbi, |
| pgoff_t block_addr) |
| { |
| struct f2fs_nm_info *nm_i = NM_I(sbi); |
| |
| block_addr -= nm_i->nat_blkaddr; |
| if ((block_addr >> sbi->log_blocks_per_seg) % 2) |
| block_addr -= sbi->blocks_per_seg; |
| else |
| block_addr += sbi->blocks_per_seg; |
| |
| return block_addr + nm_i->nat_blkaddr; |
| } |
| |
| static inline void set_to_next_nat(struct f2fs_nm_info *nm_i, nid_t start_nid) |
| { |
| unsigned int block_off = NAT_BLOCK_OFFSET(start_nid); |
| |
| f2fs_change_bit(block_off, nm_i->nat_bitmap); |
| #ifdef CONFIG_F2FS_CHECK_FS |
| f2fs_change_bit(block_off, nm_i->nat_bitmap_mir); |
| #endif |
| } |
| |
| static inline nid_t ino_of_node(struct page *node_page) |
| { |
| struct f2fs_node *rn = F2FS_NODE(node_page); |
| return le32_to_cpu(rn->footer.ino); |
| } |
| |
| static inline nid_t nid_of_node(struct page *node_page) |
| { |
| struct f2fs_node *rn = F2FS_NODE(node_page); |
| return le32_to_cpu(rn->footer.nid); |
| } |
| |
| static inline unsigned int ofs_of_node(struct page *node_page) |
| { |
| struct f2fs_node *rn = F2FS_NODE(node_page); |
| unsigned flag = le32_to_cpu(rn->footer.flag); |
| return flag >> OFFSET_BIT_SHIFT; |
| } |
| |
| static inline __u64 cpver_of_node(struct page *node_page) |
| { |
| struct f2fs_node *rn = F2FS_NODE(node_page); |
| return le64_to_cpu(rn->footer.cp_ver); |
| } |
| |
| static inline block_t next_blkaddr_of_node(struct page *node_page) |
| { |
| struct f2fs_node *rn = F2FS_NODE(node_page); |
| return le32_to_cpu(rn->footer.next_blkaddr); |
| } |
| |
| static inline void fill_node_footer(struct page *page, nid_t nid, |
| nid_t ino, unsigned int ofs, bool reset) |
| { |
| struct f2fs_node *rn = F2FS_NODE(page); |
| unsigned int old_flag = 0; |
| |
| if (reset) |
| memset(rn, 0, sizeof(*rn)); |
| else |
| old_flag = le32_to_cpu(rn->footer.flag); |
| |
| rn->footer.nid = cpu_to_le32(nid); |
| rn->footer.ino = cpu_to_le32(ino); |
| |
| /* should remain old flag bits such as COLD_BIT_SHIFT */ |
| rn->footer.flag = cpu_to_le32((ofs << OFFSET_BIT_SHIFT) | |
| (old_flag & OFFSET_BIT_MASK)); |
| } |
| |
| static inline void copy_node_footer(struct page *dst, struct page *src) |
| { |
| struct f2fs_node *src_rn = F2FS_NODE(src); |
| struct f2fs_node *dst_rn = F2FS_NODE(dst); |
| memcpy(&dst_rn->footer, &src_rn->footer, sizeof(struct node_footer)); |
| } |
| |
| static inline void fill_node_footer_blkaddr(struct page *page, block_t blkaddr) |
| { |
| struct f2fs_checkpoint *ckpt = F2FS_CKPT(F2FS_P_SB(page)); |
| struct f2fs_node *rn = F2FS_NODE(page); |
| size_t crc_offset = le32_to_cpu(ckpt->checksum_offset); |
| __u64 cp_ver = le64_to_cpu(ckpt->checkpoint_ver); |
| |
| if (__is_set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG)) { |
| __u64 crc = le32_to_cpu(*((__le32 *) |
| ((unsigned char *)ckpt + crc_offset))); |
| cp_ver |= (crc << 32); |
| } |
| rn->footer.cp_ver = cpu_to_le64(cp_ver); |
| rn->footer.next_blkaddr = cpu_to_le32(blkaddr); |
| } |
| |
| static inline bool is_recoverable_dnode(struct page *page) |
| { |
| struct f2fs_checkpoint *ckpt = F2FS_CKPT(F2FS_P_SB(page)); |
| size_t crc_offset = le32_to_cpu(ckpt->checksum_offset); |
| __u64 cp_ver = cur_cp_version(ckpt); |
| |
| if (__is_set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG)) { |
| __u64 crc = le32_to_cpu(*((__le32 *) |
| ((unsigned char *)ckpt + crc_offset))); |
| cp_ver |= (crc << 32); |
| } |
| return cp_ver == cpver_of_node(page); |
| } |
| |
| /* |
| * f2fs assigns the following node offsets described as (num). |
| * N = NIDS_PER_BLOCK |
| * |
| * Inode block (0) |
| * |- direct node (1) |
| * |- direct node (2) |
| * |- indirect node (3) |
| * | `- direct node (4 => 4 + N - 1) |
| * |- indirect node (4 + N) |
| * | `- direct node (5 + N => 5 + 2N - 1) |
| * `- double indirect node (5 + 2N) |
| * `- indirect node (6 + 2N) |
| * `- direct node |
| * ...... |
| * `- indirect node ((6 + 2N) + x(N + 1)) |
| * `- direct node |
| * ...... |
| * `- indirect node ((6 + 2N) + (N - 1)(N + 1)) |
| * `- direct node |
| */ |
| static inline bool IS_DNODE(struct page *node_page) |
| { |
| unsigned int ofs = ofs_of_node(node_page); |
| |
| if (f2fs_has_xattr_block(ofs)) |
| return false; |
| |
| if (ofs == 3 || ofs == 4 + NIDS_PER_BLOCK || |
| ofs == 5 + 2 * NIDS_PER_BLOCK) |
| return false; |
| if (ofs >= 6 + 2 * NIDS_PER_BLOCK) { |
| ofs -= 6 + 2 * NIDS_PER_BLOCK; |
| if (!((long int)ofs % (NIDS_PER_BLOCK + 1))) |
| return false; |
| } |
| return true; |
| } |
| |
| static inline int set_nid(struct page *p, int off, nid_t nid, bool i) |
| { |
| struct f2fs_node *rn = F2FS_NODE(p); |
| |
| f2fs_wait_on_page_writeback(p, NODE, true); |
| |
| if (i) |
| rn->i.i_nid[off - NODE_DIR1_BLOCK] = cpu_to_le32(nid); |
| else |
| rn->in.nid[off] = cpu_to_le32(nid); |
| return set_page_dirty(p); |
| } |
| |
| static inline nid_t get_nid(struct page *p, int off, bool i) |
| { |
| struct f2fs_node *rn = F2FS_NODE(p); |
| |
| if (i) |
| return le32_to_cpu(rn->i.i_nid[off - NODE_DIR1_BLOCK]); |
| return le32_to_cpu(rn->in.nid[off]); |
| } |
| |
| /* |
| * Coldness identification: |
| * - Mark cold files in f2fs_inode_info |
| * - Mark cold node blocks in their node footer |
| * - Mark cold data pages in page cache |
| */ |
| static inline int is_cold_data(struct page *page) |
| { |
| return PageChecked(page); |
| } |
| |
| static inline void set_cold_data(struct page *page) |
| { |
| SetPageChecked(page); |
| } |
| |
| static inline void clear_cold_data(struct page *page) |
| { |
| ClearPageChecked(page); |
| } |
| |
| static inline int is_node(struct page *page, int type) |
| { |
| struct f2fs_node *rn = F2FS_NODE(page); |
| return le32_to_cpu(rn->footer.flag) & (1 << type); |
| } |
| |
| #define is_cold_node(page) is_node(page, COLD_BIT_SHIFT) |
| #define is_fsync_dnode(page) is_node(page, FSYNC_BIT_SHIFT) |
| #define is_dent_dnode(page) is_node(page, DENT_BIT_SHIFT) |
| |
| static inline int is_inline_node(struct page *page) |
| { |
| return PageChecked(page); |
| } |
| |
| static inline void set_inline_node(struct page *page) |
| { |
| SetPageChecked(page); |
| } |
| |
| static inline void clear_inline_node(struct page *page) |
| { |
| ClearPageChecked(page); |
| } |
| |
| static inline void set_cold_node(struct inode *inode, struct page *page) |
| { |
| struct f2fs_node *rn = F2FS_NODE(page); |
| unsigned int flag = le32_to_cpu(rn->footer.flag); |
| |
| if (S_ISDIR(inode->i_mode)) |
| flag &= ~(0x1 << COLD_BIT_SHIFT); |
| else |
| flag |= (0x1 << COLD_BIT_SHIFT); |
| rn->footer.flag = cpu_to_le32(flag); |
| } |
| |
| static inline void set_mark(struct page *page, int mark, int type) |
| { |
| struct f2fs_node *rn = F2FS_NODE(page); |
| unsigned int flag = le32_to_cpu(rn->footer.flag); |
| if (mark) |
| flag |= (0x1 << type); |
| else |
| flag &= ~(0x1 << type); |
| rn->footer.flag = cpu_to_le32(flag); |
| } |
| #define set_dentry_mark(page, mark) set_mark(page, mark, DENT_BIT_SHIFT) |
| #define set_fsync_mark(page, mark) set_mark(page, mark, FSYNC_BIT_SHIFT) |