| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * linux/fs/ext4/ialloc.c |
| * |
| * Copyright (C) 1992, 1993, 1994, 1995 |
| * Remy Card (card@masi.ibp.fr) |
| * Laboratoire MASI - Institut Blaise Pascal |
| * Universite Pierre et Marie Curie (Paris VI) |
| * |
| * BSD ufs-inspired inode and directory allocation by |
| * Stephen Tweedie (sct@redhat.com), 1993 |
| * Big-endian to little-endian byte-swapping/bitmaps by |
| * David S. Miller (davem@caip.rutgers.edu), 1995 |
| */ |
| |
| #include <linux/time.h> |
| #include <linux/fs.h> |
| #include <linux/stat.h> |
| #include <linux/string.h> |
| #include <linux/quotaops.h> |
| #include <linux/buffer_head.h> |
| #include <linux/random.h> |
| #include <linux/bitops.h> |
| #include <linux/blkdev.h> |
| #include <linux/cred.h> |
| |
| #include <asm/byteorder.h> |
| |
| #include "ext4.h" |
| #include "ext4_jbd2.h" |
| #include "xattr.h" |
| #include "acl.h" |
| |
| #include <trace/events/ext4.h> |
| |
| /* |
| * ialloc.c contains the inodes allocation and deallocation routines |
| */ |
| |
| /* |
| * The free inodes are managed by bitmaps. A file system contains several |
| * blocks groups. Each group contains 1 bitmap block for blocks, 1 bitmap |
| * block for inodes, N blocks for the inode table and data blocks. |
| * |
| * The file system contains group descriptors which are located after the |
| * super block. Each descriptor contains the number of the bitmap block and |
| * the free blocks count in the block. |
| */ |
| |
| /* |
| * To avoid calling the atomic setbit hundreds or thousands of times, we only |
| * need to use it within a single byte (to ensure we get endianness right). |
| * We can use memset for the rest of the bitmap as there are no other users. |
| */ |
| void ext4_mark_bitmap_end(int start_bit, int end_bit, char *bitmap) |
| { |
| int i; |
| |
| if (start_bit >= end_bit) |
| return; |
| |
| ext4_debug("mark end bits +%d through +%d used\n", start_bit, end_bit); |
| for (i = start_bit; i < ((start_bit + 7) & ~7UL); i++) |
| ext4_set_bit(i, bitmap); |
| if (i < end_bit) |
| memset(bitmap + (i >> 3), 0xff, (end_bit - i) >> 3); |
| } |
| |
| void ext4_end_bitmap_read(struct buffer_head *bh, int uptodate) |
| { |
| if (uptodate) { |
| set_buffer_uptodate(bh); |
| set_bitmap_uptodate(bh); |
| } |
| unlock_buffer(bh); |
| put_bh(bh); |
| } |
| |
| static int ext4_validate_inode_bitmap(struct super_block *sb, |
| struct ext4_group_desc *desc, |
| ext4_group_t block_group, |
| struct buffer_head *bh) |
| { |
| ext4_fsblk_t blk; |
| struct ext4_group_info *grp; |
| |
| if (EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY) |
| return 0; |
| |
| grp = ext4_get_group_info(sb, block_group); |
| |
| if (buffer_verified(bh)) |
| return 0; |
| if (EXT4_MB_GRP_IBITMAP_CORRUPT(grp)) |
| return -EFSCORRUPTED; |
| |
| ext4_lock_group(sb, block_group); |
| if (buffer_verified(bh)) |
| goto verified; |
| blk = ext4_inode_bitmap(sb, desc); |
| if (!ext4_inode_bitmap_csum_verify(sb, block_group, desc, bh, |
| EXT4_INODES_PER_GROUP(sb) / 8) || |
| ext4_simulate_fail(sb, EXT4_SIM_IBITMAP_CRC)) { |
| ext4_unlock_group(sb, block_group); |
| ext4_error(sb, "Corrupt inode bitmap - block_group = %u, " |
| "inode_bitmap = %llu", block_group, blk); |
| ext4_mark_group_bitmap_corrupted(sb, block_group, |
| EXT4_GROUP_INFO_IBITMAP_CORRUPT); |
| return -EFSBADCRC; |
| } |
| set_buffer_verified(bh); |
| verified: |
| ext4_unlock_group(sb, block_group); |
| return 0; |
| } |
| |
| /* |
| * Read the inode allocation bitmap for a given block_group, reading |
| * into the specified slot in the superblock's bitmap cache. |
| * |
| * Return buffer_head of bitmap on success, or an ERR_PTR on error. |
| */ |
| static struct buffer_head * |
| ext4_read_inode_bitmap(struct super_block *sb, ext4_group_t block_group) |
| { |
| struct ext4_group_desc *desc; |
| struct ext4_sb_info *sbi = EXT4_SB(sb); |
| struct buffer_head *bh = NULL; |
| ext4_fsblk_t bitmap_blk; |
| int err; |
| |
| desc = ext4_get_group_desc(sb, block_group, NULL); |
| if (!desc) |
| return ERR_PTR(-EFSCORRUPTED); |
| |
| bitmap_blk = ext4_inode_bitmap(sb, desc); |
| if ((bitmap_blk <= le32_to_cpu(sbi->s_es->s_first_data_block)) || |
| (bitmap_blk >= ext4_blocks_count(sbi->s_es))) { |
| ext4_error(sb, "Invalid inode bitmap blk %llu in " |
| "block_group %u", bitmap_blk, block_group); |
| ext4_mark_group_bitmap_corrupted(sb, block_group, |
| EXT4_GROUP_INFO_IBITMAP_CORRUPT); |
| return ERR_PTR(-EFSCORRUPTED); |
| } |
| bh = sb_getblk(sb, bitmap_blk); |
| if (unlikely(!bh)) { |
| ext4_warning(sb, "Cannot read inode bitmap - " |
| "block_group = %u, inode_bitmap = %llu", |
| block_group, bitmap_blk); |
| return ERR_PTR(-ENOMEM); |
| } |
| if (bitmap_uptodate(bh)) |
| goto verify; |
| |
| lock_buffer(bh); |
| if (bitmap_uptodate(bh)) { |
| unlock_buffer(bh); |
| goto verify; |
| } |
| |
| ext4_lock_group(sb, block_group); |
| if (ext4_has_group_desc_csum(sb) && |
| (desc->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT))) { |
| if (block_group == 0) { |
| ext4_unlock_group(sb, block_group); |
| unlock_buffer(bh); |
| ext4_error(sb, "Inode bitmap for bg 0 marked " |
| "uninitialized"); |
| err = -EFSCORRUPTED; |
| goto out; |
| } |
| memset(bh->b_data, 0, (EXT4_INODES_PER_GROUP(sb) + 7) / 8); |
| ext4_mark_bitmap_end(EXT4_INODES_PER_GROUP(sb), |
| sb->s_blocksize * 8, bh->b_data); |
| set_bitmap_uptodate(bh); |
| set_buffer_uptodate(bh); |
| set_buffer_verified(bh); |
| ext4_unlock_group(sb, block_group); |
| unlock_buffer(bh); |
| return bh; |
| } |
| ext4_unlock_group(sb, block_group); |
| |
| if (buffer_uptodate(bh)) { |
| /* |
| * if not uninit if bh is uptodate, |
| * bitmap is also uptodate |
| */ |
| set_bitmap_uptodate(bh); |
| unlock_buffer(bh); |
| goto verify; |
| } |
| /* |
| * submit the buffer_head for reading |
| */ |
| trace_ext4_load_inode_bitmap(sb, block_group); |
| ext4_read_bh(bh, REQ_META | REQ_PRIO, ext4_end_bitmap_read); |
| ext4_simulate_fail_bh(sb, bh, EXT4_SIM_IBITMAP_EIO); |
| if (!buffer_uptodate(bh)) { |
| put_bh(bh); |
| ext4_error_err(sb, EIO, "Cannot read inode bitmap - " |
| "block_group = %u, inode_bitmap = %llu", |
| block_group, bitmap_blk); |
| ext4_mark_group_bitmap_corrupted(sb, block_group, |
| EXT4_GROUP_INFO_IBITMAP_CORRUPT); |
| return ERR_PTR(-EIO); |
| } |
| |
| verify: |
| err = ext4_validate_inode_bitmap(sb, desc, block_group, bh); |
| if (err) |
| goto out; |
| return bh; |
| out: |
| put_bh(bh); |
| return ERR_PTR(err); |
| } |
| |
| /* |
| * NOTE! When we get the inode, we're the only people |
| * that have access to it, and as such there are no |
| * race conditions we have to worry about. The inode |
| * is not on the hash-lists, and it cannot be reached |
| * through the filesystem because the directory entry |
| * has been deleted earlier. |
| * |
| * HOWEVER: we must make sure that we get no aliases, |
| * which means that we have to call "clear_inode()" |
| * _before_ we mark the inode not in use in the inode |
| * bitmaps. Otherwise a newly created file might use |
| * the same inode number (not actually the same pointer |
| * though), and then we'd have two inodes sharing the |
| * same inode number and space on the harddisk. |
| */ |
| void ext4_free_inode(handle_t *handle, struct inode *inode) |
| { |
| struct super_block *sb = inode->i_sb; |
| int is_directory; |
| unsigned long ino; |
| struct buffer_head *bitmap_bh = NULL; |
| struct buffer_head *bh2; |
| ext4_group_t block_group; |
| unsigned long bit; |
| struct ext4_group_desc *gdp; |
| struct ext4_super_block *es; |
| struct ext4_sb_info *sbi; |
| int fatal = 0, err, count, cleared; |
| struct ext4_group_info *grp; |
| |
| if (!sb) { |
| printk(KERN_ERR "EXT4-fs: %s:%d: inode on " |
| "nonexistent device\n", __func__, __LINE__); |
| return; |
| } |
| if (atomic_read(&inode->i_count) > 1) { |
| ext4_msg(sb, KERN_ERR, "%s:%d: inode #%lu: count=%d", |
| __func__, __LINE__, inode->i_ino, |
| atomic_read(&inode->i_count)); |
| return; |
| } |
| if (inode->i_nlink) { |
| ext4_msg(sb, KERN_ERR, "%s:%d: inode #%lu: nlink=%d\n", |
| __func__, __LINE__, inode->i_ino, inode->i_nlink); |
| return; |
| } |
| sbi = EXT4_SB(sb); |
| |
| ino = inode->i_ino; |
| ext4_debug("freeing inode %lu\n", ino); |
| trace_ext4_free_inode(inode); |
| |
| dquot_initialize(inode); |
| dquot_free_inode(inode); |
| |
| is_directory = S_ISDIR(inode->i_mode); |
| |
| /* Do this BEFORE marking the inode not in use or returning an error */ |
| ext4_clear_inode(inode); |
| |
| es = sbi->s_es; |
| if (ino < EXT4_FIRST_INO(sb) || ino > le32_to_cpu(es->s_inodes_count)) { |
| ext4_error(sb, "reserved or nonexistent inode %lu", ino); |
| goto error_return; |
| } |
| block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb); |
| bit = (ino - 1) % EXT4_INODES_PER_GROUP(sb); |
| bitmap_bh = ext4_read_inode_bitmap(sb, block_group); |
| /* Don't bother if the inode bitmap is corrupt. */ |
| if (IS_ERR(bitmap_bh)) { |
| fatal = PTR_ERR(bitmap_bh); |
| bitmap_bh = NULL; |
| goto error_return; |
| } |
| if (!(sbi->s_mount_state & EXT4_FC_REPLAY)) { |
| grp = ext4_get_group_info(sb, block_group); |
| if (unlikely(EXT4_MB_GRP_IBITMAP_CORRUPT(grp))) { |
| fatal = -EFSCORRUPTED; |
| goto error_return; |
| } |
| } |
| |
| BUFFER_TRACE(bitmap_bh, "get_write_access"); |
| fatal = ext4_journal_get_write_access(handle, bitmap_bh); |
| if (fatal) |
| goto error_return; |
| |
| fatal = -ESRCH; |
| gdp = ext4_get_group_desc(sb, block_group, &bh2); |
| if (gdp) { |
| BUFFER_TRACE(bh2, "get_write_access"); |
| fatal = ext4_journal_get_write_access(handle, bh2); |
| } |
| ext4_lock_group(sb, block_group); |
| cleared = ext4_test_and_clear_bit(bit, bitmap_bh->b_data); |
| if (fatal || !cleared) { |
| ext4_unlock_group(sb, block_group); |
| goto out; |
| } |
| |
| count = ext4_free_inodes_count(sb, gdp) + 1; |
| ext4_free_inodes_set(sb, gdp, count); |
| if (is_directory) { |
| count = ext4_used_dirs_count(sb, gdp) - 1; |
| ext4_used_dirs_set(sb, gdp, count); |
| percpu_counter_dec(&sbi->s_dirs_counter); |
| } |
| ext4_inode_bitmap_csum_set(sb, block_group, gdp, bitmap_bh, |
| EXT4_INODES_PER_GROUP(sb) / 8); |
| ext4_group_desc_csum_set(sb, block_group, gdp); |
| ext4_unlock_group(sb, block_group); |
| |
| percpu_counter_inc(&sbi->s_freeinodes_counter); |
| if (sbi->s_log_groups_per_flex) { |
| struct flex_groups *fg; |
| |
| fg = sbi_array_rcu_deref(sbi, s_flex_groups, |
| ext4_flex_group(sbi, block_group)); |
| atomic_inc(&fg->free_inodes); |
| if (is_directory) |
| atomic_dec(&fg->used_dirs); |
| } |
| BUFFER_TRACE(bh2, "call ext4_handle_dirty_metadata"); |
| fatal = ext4_handle_dirty_metadata(handle, NULL, bh2); |
| out: |
| if (cleared) { |
| BUFFER_TRACE(bitmap_bh, "call ext4_handle_dirty_metadata"); |
| err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh); |
| if (!fatal) |
| fatal = err; |
| } else { |
| ext4_error(sb, "bit already cleared for inode %lu", ino); |
| ext4_mark_group_bitmap_corrupted(sb, block_group, |
| EXT4_GROUP_INFO_IBITMAP_CORRUPT); |
| } |
| |
| error_return: |
| brelse(bitmap_bh); |
| ext4_std_error(sb, fatal); |
| } |
| |
| struct orlov_stats { |
| __u64 free_clusters; |
| __u32 free_inodes; |
| __u32 used_dirs; |
| }; |
| |
| /* |
| * Helper function for Orlov's allocator; returns critical information |
| * for a particular block group or flex_bg. If flex_size is 1, then g |
| * is a block group number; otherwise it is flex_bg number. |
| */ |
| static void get_orlov_stats(struct super_block *sb, ext4_group_t g, |
| int flex_size, struct orlov_stats *stats) |
| { |
| struct ext4_group_desc *desc; |
| |
| if (flex_size > 1) { |
| struct flex_groups *fg = sbi_array_rcu_deref(EXT4_SB(sb), |
| s_flex_groups, g); |
| stats->free_inodes = atomic_read(&fg->free_inodes); |
| stats->free_clusters = atomic64_read(&fg->free_clusters); |
| stats->used_dirs = atomic_read(&fg->used_dirs); |
| return; |
| } |
| |
| desc = ext4_get_group_desc(sb, g, NULL); |
| if (desc) { |
| stats->free_inodes = ext4_free_inodes_count(sb, desc); |
| stats->free_clusters = ext4_free_group_clusters(sb, desc); |
| stats->used_dirs = ext4_used_dirs_count(sb, desc); |
| } else { |
| stats->free_inodes = 0; |
| stats->free_clusters = 0; |
| stats->used_dirs = 0; |
| } |
| } |
| |
| /* |
| * Orlov's allocator for directories. |
| * |
| * We always try to spread first-level directories. |
| * |
| * If there are blockgroups with both free inodes and free blocks counts |
| * not worse than average we return one with smallest directory count. |
| * Otherwise we simply return a random group. |
| * |
| * For the rest rules look so: |
| * |
| * It's OK to put directory into a group unless |
| * it has too many directories already (max_dirs) or |
| * it has too few free inodes left (min_inodes) or |
| * it has too few free blocks left (min_blocks) or |
| * Parent's group is preferred, if it doesn't satisfy these |
| * conditions we search cyclically through the rest. If none |
| * of the groups look good we just look for a group with more |
| * free inodes than average (starting at parent's group). |
| */ |
| |
| static int find_group_orlov(struct super_block *sb, struct inode *parent, |
| ext4_group_t *group, umode_t mode, |
| const struct qstr *qstr) |
| { |
| ext4_group_t parent_group = EXT4_I(parent)->i_block_group; |
| struct ext4_sb_info *sbi = EXT4_SB(sb); |
| ext4_group_t real_ngroups = ext4_get_groups_count(sb); |
| int inodes_per_group = EXT4_INODES_PER_GROUP(sb); |
| unsigned int freei, avefreei, grp_free; |
| ext4_fsblk_t freeb, avefreec; |
| unsigned int ndirs; |
| int max_dirs, min_inodes; |
| ext4_grpblk_t min_clusters; |
| ext4_group_t i, grp, g, ngroups; |
| struct ext4_group_desc *desc; |
| struct orlov_stats stats; |
| int flex_size = ext4_flex_bg_size(sbi); |
| struct dx_hash_info hinfo; |
| |
| ngroups = real_ngroups; |
| if (flex_size > 1) { |
| ngroups = (real_ngroups + flex_size - 1) >> |
| sbi->s_log_groups_per_flex; |
| parent_group >>= sbi->s_log_groups_per_flex; |
| } |
| |
| freei = percpu_counter_read_positive(&sbi->s_freeinodes_counter); |
| avefreei = freei / ngroups; |
| freeb = EXT4_C2B(sbi, |
| percpu_counter_read_positive(&sbi->s_freeclusters_counter)); |
| avefreec = freeb; |
| do_div(avefreec, ngroups); |
| ndirs = percpu_counter_read_positive(&sbi->s_dirs_counter); |
| |
| if (S_ISDIR(mode) && |
| ((parent == d_inode(sb->s_root)) || |
| (ext4_test_inode_flag(parent, EXT4_INODE_TOPDIR)))) { |
| int best_ndir = inodes_per_group; |
| int ret = -1; |
| |
| if (qstr) { |
| hinfo.hash_version = DX_HASH_HALF_MD4; |
| hinfo.seed = sbi->s_hash_seed; |
| ext4fs_dirhash(parent, qstr->name, qstr->len, &hinfo); |
| grp = hinfo.hash; |
| } else |
| grp = prandom_u32(); |
| parent_group = (unsigned)grp % ngroups; |
| for (i = 0; i < ngroups; i++) { |
| g = (parent_group + i) % ngroups; |
| get_orlov_stats(sb, g, flex_size, &stats); |
| if (!stats.free_inodes) |
| continue; |
| if (stats.used_dirs >= best_ndir) |
| continue; |
| if (stats.free_inodes < avefreei) |
| continue; |
| if (stats.free_clusters < avefreec) |
| continue; |
| grp = g; |
| ret = 0; |
| best_ndir = stats.used_dirs; |
| } |
| if (ret) |
| goto fallback; |
| found_flex_bg: |
| if (flex_size == 1) { |
| *group = grp; |
| return 0; |
| } |
| |
| /* |
| * We pack inodes at the beginning of the flexgroup's |
| * inode tables. Block allocation decisions will do |
| * something similar, although regular files will |
| * start at 2nd block group of the flexgroup. See |
| * ext4_ext_find_goal() and ext4_find_near(). |
| */ |
| grp *= flex_size; |
| for (i = 0; i < flex_size; i++) { |
| if (grp+i >= real_ngroups) |
| break; |
| desc = ext4_get_group_desc(sb, grp+i, NULL); |
| if (desc && ext4_free_inodes_count(sb, desc)) { |
| *group = grp+i; |
| return 0; |
| } |
| } |
| goto fallback; |
| } |
| |
| max_dirs = ndirs / ngroups + inodes_per_group / 16; |
| min_inodes = avefreei - inodes_per_group*flex_size / 4; |
| if (min_inodes < 1) |
| min_inodes = 1; |
| min_clusters = avefreec - EXT4_CLUSTERS_PER_GROUP(sb)*flex_size / 4; |
| |
| /* |
| * Start looking in the flex group where we last allocated an |
| * inode for this parent directory |
| */ |
| if (EXT4_I(parent)->i_last_alloc_group != ~0) { |
| parent_group = EXT4_I(parent)->i_last_alloc_group; |
| if (flex_size > 1) |
| parent_group >>= sbi->s_log_groups_per_flex; |
| } |
| |
| for (i = 0; i < ngroups; i++) { |
| grp = (parent_group + i) % ngroups; |
| get_orlov_stats(sb, grp, flex_size, &stats); |
| if (stats.used_dirs >= max_dirs) |
| continue; |
| if (stats.free_inodes < min_inodes) |
| continue; |
| if (stats.free_clusters < min_clusters) |
| continue; |
| goto found_flex_bg; |
| } |
| |
| fallback: |
| ngroups = real_ngroups; |
| avefreei = freei / ngroups; |
| fallback_retry: |
| parent_group = EXT4_I(parent)->i_block_group; |
| for (i = 0; i < ngroups; i++) { |
| grp = (parent_group + i) % ngroups; |
| desc = ext4_get_group_desc(sb, grp, NULL); |
| if (desc) { |
| grp_free = ext4_free_inodes_count(sb, desc); |
| if (grp_free && grp_free >= avefreei) { |
| *group = grp; |
| return 0; |
| } |
| } |
| } |
| |
| if (avefreei) { |
| /* |
| * The free-inodes counter is approximate, and for really small |
| * filesystems the above test can fail to find any blockgroups |
| */ |
| avefreei = 0; |
| goto fallback_retry; |
| } |
| |
| return -1; |
| } |
| |
| static int find_group_other(struct super_block *sb, struct inode *parent, |
| ext4_group_t *group, umode_t mode) |
| { |
| ext4_group_t parent_group = EXT4_I(parent)->i_block_group; |
| ext4_group_t i, last, ngroups = ext4_get_groups_count(sb); |
| struct ext4_group_desc *desc; |
| int flex_size = ext4_flex_bg_size(EXT4_SB(sb)); |
| |
| /* |
| * Try to place the inode is the same flex group as its |
| * parent. If we can't find space, use the Orlov algorithm to |
| * find another flex group, and store that information in the |
| * parent directory's inode information so that use that flex |
| * group for future allocations. |
| */ |
| if (flex_size > 1) { |
| int retry = 0; |
| |
| try_again: |
| parent_group &= ~(flex_size-1); |
| last = parent_group + flex_size; |
| if (last > ngroups) |
| last = ngroups; |
| for (i = parent_group; i < last; i++) { |
| desc = ext4_get_group_desc(sb, i, NULL); |
| if (desc && ext4_free_inodes_count(sb, desc)) { |
| *group = i; |
| return 0; |
| } |
| } |
| if (!retry && EXT4_I(parent)->i_last_alloc_group != ~0) { |
| retry = 1; |
| parent_group = EXT4_I(parent)->i_last_alloc_group; |
| goto try_again; |
| } |
| /* |
| * If this didn't work, use the Orlov search algorithm |
| * to find a new flex group; we pass in the mode to |
| * avoid the topdir algorithms. |
| */ |
| *group = parent_group + flex_size; |
| if (*group > ngroups) |
| *group = 0; |
| return find_group_orlov(sb, parent, group, mode, NULL); |
| } |
| |
| /* |
| * Try to place the inode in its parent directory |
| */ |
| *group = parent_group; |
| desc = ext4_get_group_desc(sb, *group, NULL); |
| if (desc && ext4_free_inodes_count(sb, desc) && |
| ext4_free_group_clusters(sb, desc)) |
| return 0; |
| |
| /* |
| * We're going to place this inode in a different blockgroup from its |
| * parent. We want to cause files in a common directory to all land in |
| * the same blockgroup. But we want files which are in a different |
| * directory which shares a blockgroup with our parent to land in a |
| * different blockgroup. |
| * |
| * So add our directory's i_ino into the starting point for the hash. |
| */ |
| *group = (*group + parent->i_ino) % ngroups; |
| |
| /* |
| * Use a quadratic hash to find a group with a free inode and some free |
| * blocks. |
| */ |
| for (i = 1; i < ngroups; i <<= 1) { |
| *group += i; |
| if (*group >= ngroups) |
| *group -= ngroups; |
| desc = ext4_get_group_desc(sb, *group, NULL); |
| if (desc && ext4_free_inodes_count(sb, desc) && |
| ext4_free_group_clusters(sb, desc)) |
| return 0; |
| } |
| |
| /* |
| * That failed: try linear search for a free inode, even if that group |
| * has no free blocks. |
| */ |
| *group = parent_group; |
| for (i = 0; i < ngroups; i++) { |
| if (++*group >= ngroups) |
| *group = 0; |
| desc = ext4_get_group_desc(sb, *group, NULL); |
| if (desc && ext4_free_inodes_count(sb, desc)) |
| return 0; |
| } |
| |
| return -1; |
| } |
| |
| /* |
| * In no journal mode, if an inode has recently been deleted, we want |
| * to avoid reusing it until we're reasonably sure the inode table |
| * block has been written back to disk. (Yes, these values are |
| * somewhat arbitrary...) |
| */ |
| #define RECENTCY_MIN 60 |
| #define RECENTCY_DIRTY 300 |
| |
| static int recently_deleted(struct super_block *sb, ext4_group_t group, int ino) |
| { |
| struct ext4_group_desc *gdp; |
| struct ext4_inode *raw_inode; |
| struct buffer_head *bh; |
| int inodes_per_block = EXT4_SB(sb)->s_inodes_per_block; |
| int offset, ret = 0; |
| int recentcy = RECENTCY_MIN; |
| u32 dtime, now; |
| |
| gdp = ext4_get_group_desc(sb, group, NULL); |
| if (unlikely(!gdp)) |
| return 0; |
| |
| bh = sb_find_get_block(sb, ext4_inode_table(sb, gdp) + |
| (ino / inodes_per_block)); |
| if (!bh || !buffer_uptodate(bh)) |
| /* |
| * If the block is not in the buffer cache, then it |
| * must have been written out. |
| */ |
| goto out; |
| |
| offset = (ino % inodes_per_block) * EXT4_INODE_SIZE(sb); |
| raw_inode = (struct ext4_inode *) (bh->b_data + offset); |
| |
| /* i_dtime is only 32 bits on disk, but we only care about relative |
| * times in the range of a few minutes (i.e. long enough to sync a |
| * recently-deleted inode to disk), so using the low 32 bits of the |
| * clock (a 68 year range) is enough, see time_before32() */ |
| dtime = le32_to_cpu(raw_inode->i_dtime); |
| now = ktime_get_real_seconds(); |
| if (buffer_dirty(bh)) |
| recentcy += RECENTCY_DIRTY; |
| |
| if (dtime && time_before32(dtime, now) && |
| time_before32(now, dtime + recentcy)) |
| ret = 1; |
| out: |
| brelse(bh); |
| return ret; |
| } |
| |
| static int find_inode_bit(struct super_block *sb, ext4_group_t group, |
| struct buffer_head *bitmap, unsigned long *ino) |
| { |
| bool check_recently_deleted = EXT4_SB(sb)->s_journal == NULL; |
| unsigned long recently_deleted_ino = EXT4_INODES_PER_GROUP(sb); |
| |
| next: |
| *ino = ext4_find_next_zero_bit((unsigned long *) |
| bitmap->b_data, |
| EXT4_INODES_PER_GROUP(sb), *ino); |
| if (*ino >= EXT4_INODES_PER_GROUP(sb)) |
| goto not_found; |
| |
| if (check_recently_deleted && recently_deleted(sb, group, *ino)) { |
| recently_deleted_ino = *ino; |
| *ino = *ino + 1; |
| if (*ino < EXT4_INODES_PER_GROUP(sb)) |
| goto next; |
| goto not_found; |
| } |
| return 1; |
| not_found: |
| if (recently_deleted_ino >= EXT4_INODES_PER_GROUP(sb)) |
| return 0; |
| /* |
| * Not reusing recently deleted inodes is mostly a preference. We don't |
| * want to report ENOSPC or skew allocation patterns because of that. |
| * So return even recently deleted inode if we could find better in the |
| * given range. |
| */ |
| *ino = recently_deleted_ino; |
| return 1; |
| } |
| |
| int ext4_mark_inode_used(struct super_block *sb, int ino) |
| { |
| unsigned long max_ino = le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count); |
| struct buffer_head *inode_bitmap_bh = NULL, *group_desc_bh = NULL; |
| struct ext4_group_desc *gdp; |
| ext4_group_t group; |
| int bit; |
| int err = -EFSCORRUPTED; |
| |
| if (ino < EXT4_FIRST_INO(sb) || ino > max_ino) |
| goto out; |
| |
| group = (ino - 1) / EXT4_INODES_PER_GROUP(sb); |
| bit = (ino - 1) % EXT4_INODES_PER_GROUP(sb); |
| inode_bitmap_bh = ext4_read_inode_bitmap(sb, group); |
| if (IS_ERR(inode_bitmap_bh)) |
| return PTR_ERR(inode_bitmap_bh); |
| |
| if (ext4_test_bit(bit, inode_bitmap_bh->b_data)) { |
| err = 0; |
| goto out; |
| } |
| |
| gdp = ext4_get_group_desc(sb, group, &group_desc_bh); |
| if (!gdp || !group_desc_bh) { |
| err = -EINVAL; |
| goto out; |
| } |
| |
| ext4_set_bit(bit, inode_bitmap_bh->b_data); |
| |
| BUFFER_TRACE(inode_bitmap_bh, "call ext4_handle_dirty_metadata"); |
| err = ext4_handle_dirty_metadata(NULL, NULL, inode_bitmap_bh); |
| if (err) { |
| ext4_std_error(sb, err); |
| goto out; |
| } |
| err = sync_dirty_buffer(inode_bitmap_bh); |
| if (err) { |
| ext4_std_error(sb, err); |
| goto out; |
| } |
| |
| /* We may have to initialize the block bitmap if it isn't already */ |
| if (ext4_has_group_desc_csum(sb) && |
| gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) { |
| struct buffer_head *block_bitmap_bh; |
| |
| block_bitmap_bh = ext4_read_block_bitmap(sb, group); |
| if (IS_ERR(block_bitmap_bh)) { |
| err = PTR_ERR(block_bitmap_bh); |
| goto out; |
| } |
| |
| BUFFER_TRACE(block_bitmap_bh, "dirty block bitmap"); |
| err = ext4_handle_dirty_metadata(NULL, NULL, block_bitmap_bh); |
| sync_dirty_buffer(block_bitmap_bh); |
| |
| /* recheck and clear flag under lock if we still need to */ |
| ext4_lock_group(sb, group); |
| if (ext4_has_group_desc_csum(sb) && |
| (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) { |
| gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT); |
| ext4_free_group_clusters_set(sb, gdp, |
| ext4_free_clusters_after_init(sb, group, gdp)); |
| ext4_block_bitmap_csum_set(sb, group, gdp, |
| block_bitmap_bh); |
| ext4_group_desc_csum_set(sb, group, gdp); |
| } |
| ext4_unlock_group(sb, group); |
| brelse(block_bitmap_bh); |
| |
| if (err) { |
| ext4_std_error(sb, err); |
| goto out; |
| } |
| } |
| |
| /* Update the relevant bg descriptor fields */ |
| if (ext4_has_group_desc_csum(sb)) { |
| int free; |
| |
| ext4_lock_group(sb, group); /* while we modify the bg desc */ |
| free = EXT4_INODES_PER_GROUP(sb) - |
| ext4_itable_unused_count(sb, gdp); |
| if (gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)) { |
| gdp->bg_flags &= cpu_to_le16(~EXT4_BG_INODE_UNINIT); |
| free = 0; |
| } |
| |
| /* |
| * Check the relative inode number against the last used |
| * relative inode number in this group. if it is greater |
| * we need to update the bg_itable_unused count |
| */ |
| if (bit >= free) |
| ext4_itable_unused_set(sb, gdp, |
| (EXT4_INODES_PER_GROUP(sb) - bit - 1)); |
| } else { |
| ext4_lock_group(sb, group); |
| } |
| |
| ext4_free_inodes_set(sb, gdp, ext4_free_inodes_count(sb, gdp) - 1); |
| if (ext4_has_group_desc_csum(sb)) { |
| ext4_inode_bitmap_csum_set(sb, group, gdp, inode_bitmap_bh, |
| EXT4_INODES_PER_GROUP(sb) / 8); |
| ext4_group_desc_csum_set(sb, group, gdp); |
| } |
| |
| ext4_unlock_group(sb, group); |
| err = ext4_handle_dirty_metadata(NULL, NULL, group_desc_bh); |
| sync_dirty_buffer(group_desc_bh); |
| out: |
| return err; |
| } |
| |
| static int ext4_xattr_credits_for_new_inode(struct inode *dir, mode_t mode, |
| bool encrypt) |
| { |
| struct super_block *sb = dir->i_sb; |
| int nblocks = 0; |
| #ifdef CONFIG_EXT4_FS_POSIX_ACL |
| struct posix_acl *p = get_acl(dir, ACL_TYPE_DEFAULT); |
| |
| if (IS_ERR(p)) |
| return PTR_ERR(p); |
| if (p) { |
| int acl_size = p->a_count * sizeof(ext4_acl_entry); |
| |
| nblocks += (S_ISDIR(mode) ? 2 : 1) * |
| __ext4_xattr_set_credits(sb, NULL /* inode */, |
| NULL /* block_bh */, acl_size, |
| true /* is_create */); |
| posix_acl_release(p); |
| } |
| #endif |
| |
| #ifdef CONFIG_SECURITY |
| { |
| int num_security_xattrs = 1; |
| |
| #ifdef CONFIG_INTEGRITY |
| num_security_xattrs++; |
| #endif |
| /* |
| * We assume that security xattrs are never more than 1k. |
| * In practice they are under 128 bytes. |
| */ |
| nblocks += num_security_xattrs * |
| __ext4_xattr_set_credits(sb, NULL /* inode */, |
| NULL /* block_bh */, 1024, |
| true /* is_create */); |
| } |
| #endif |
| if (encrypt) |
| nblocks += __ext4_xattr_set_credits(sb, |
| NULL /* inode */, |
| NULL /* block_bh */, |
| FSCRYPT_SET_CONTEXT_MAX_SIZE, |
| true /* is_create */); |
| return nblocks; |
| } |
| |
| /* |
| * There are two policies for allocating an inode. If the new inode is |
| * a directory, then a forward search is made for a block group with both |
| * free space and a low directory-to-inode ratio; if that fails, then of |
| * the groups with above-average free space, that group with the fewest |
| * directories already is chosen. |
| * |
| * For other inodes, search forward from the parent directory's block |
| * group to find a free inode. |
| */ |
| struct inode *__ext4_new_inode(handle_t *handle, struct inode *dir, |
| umode_t mode, const struct qstr *qstr, |
| __u32 goal, uid_t *owner, __u32 i_flags, |
| int handle_type, unsigned int line_no, |
| int nblocks) |
| { |
| struct super_block *sb; |
| struct buffer_head *inode_bitmap_bh = NULL; |
| struct buffer_head *group_desc_bh; |
| ext4_group_t ngroups, group = 0; |
| unsigned long ino = 0; |
| struct inode *inode; |
| struct ext4_group_desc *gdp = NULL; |
| struct ext4_inode_info *ei; |
| struct ext4_sb_info *sbi; |
| int ret2, err; |
| struct inode *ret; |
| ext4_group_t i; |
| ext4_group_t flex_group; |
| struct ext4_group_info *grp = NULL; |
| bool encrypt = false; |
| |
| /* Cannot create files in a deleted directory */ |
| if (!dir || !dir->i_nlink) |
| return ERR_PTR(-EPERM); |
| |
| sb = dir->i_sb; |
| sbi = EXT4_SB(sb); |
| |
| if (unlikely(ext4_forced_shutdown(sbi))) |
| return ERR_PTR(-EIO); |
| |
| ngroups = ext4_get_groups_count(sb); |
| trace_ext4_request_inode(dir, mode); |
| inode = new_inode(sb); |
| if (!inode) |
| return ERR_PTR(-ENOMEM); |
| ei = EXT4_I(inode); |
| |
| /* |
| * Initialize owners and quota early so that we don't have to account |
| * for quota initialization worst case in standard inode creating |
| * transaction |
| */ |
| if (owner) { |
| inode->i_mode = mode; |
| i_uid_write(inode, owner[0]); |
| i_gid_write(inode, owner[1]); |
| } else if (test_opt(sb, GRPID)) { |
| inode->i_mode = mode; |
| inode->i_uid = current_fsuid(); |
| inode->i_gid = dir->i_gid; |
| } else |
| inode_init_owner(inode, dir, mode); |
| |
| if (ext4_has_feature_project(sb) && |
| ext4_test_inode_flag(dir, EXT4_INODE_PROJINHERIT)) |
| ei->i_projid = EXT4_I(dir)->i_projid; |
| else |
| ei->i_projid = make_kprojid(&init_user_ns, EXT4_DEF_PROJID); |
| |
| if (!(i_flags & EXT4_EA_INODE_FL)) { |
| err = fscrypt_prepare_new_inode(dir, inode, &encrypt); |
| if (err) |
| goto out; |
| } |
| |
| err = dquot_initialize(inode); |
| if (err) |
| goto out; |
| |
| if (!handle && sbi->s_journal && !(i_flags & EXT4_EA_INODE_FL)) { |
| ret2 = ext4_xattr_credits_for_new_inode(dir, mode, encrypt); |
| if (ret2 < 0) { |
| err = ret2; |
| goto out; |
| } |
| nblocks += ret2; |
| } |
| |
| if (!goal) |
| goal = sbi->s_inode_goal; |
| |
| if (goal && goal <= le32_to_cpu(sbi->s_es->s_inodes_count)) { |
| group = (goal - 1) / EXT4_INODES_PER_GROUP(sb); |
| ino = (goal - 1) % EXT4_INODES_PER_GROUP(sb); |
| ret2 = 0; |
| goto got_group; |
| } |
| |
| if (S_ISDIR(mode)) |
| ret2 = find_group_orlov(sb, dir, &group, mode, qstr); |
| else |
| ret2 = find_group_other(sb, dir, &group, mode); |
| |
| got_group: |
| EXT4_I(dir)->i_last_alloc_group = group; |
| err = -ENOSPC; |
| if (ret2 == -1) |
| goto out; |
| |
| /* |
| * Normally we will only go through one pass of this loop, |
| * unless we get unlucky and it turns out the group we selected |
| * had its last inode grabbed by someone else. |
| */ |
| for (i = 0; i < ngroups; i++, ino = 0) { |
| err = -EIO; |
| |
| gdp = ext4_get_group_desc(sb, group, &group_desc_bh); |
| if (!gdp) |
| goto out; |
| |
| /* |
| * Check free inodes count before loading bitmap. |
| */ |
| if (ext4_free_inodes_count(sb, gdp) == 0) |
| goto next_group; |
| |
| if (!(sbi->s_mount_state & EXT4_FC_REPLAY)) { |
| grp = ext4_get_group_info(sb, group); |
| /* |
| * Skip groups with already-known suspicious inode |
| * tables |
| */ |
| if (EXT4_MB_GRP_IBITMAP_CORRUPT(grp)) |
| goto next_group; |
| } |
| |
| brelse(inode_bitmap_bh); |
| inode_bitmap_bh = ext4_read_inode_bitmap(sb, group); |
| /* Skip groups with suspicious inode tables */ |
| if (((!(sbi->s_mount_state & EXT4_FC_REPLAY)) |
| && EXT4_MB_GRP_IBITMAP_CORRUPT(grp)) || |
| IS_ERR(inode_bitmap_bh)) { |
| inode_bitmap_bh = NULL; |
| goto next_group; |
| } |
| |
| repeat_in_this_group: |
| ret2 = find_inode_bit(sb, group, inode_bitmap_bh, &ino); |
| if (!ret2) |
| goto next_group; |
| |
| if (group == 0 && (ino + 1) < EXT4_FIRST_INO(sb)) { |
| ext4_error(sb, "reserved inode found cleared - " |
| "inode=%lu", ino + 1); |
| ext4_mark_group_bitmap_corrupted(sb, group, |
| EXT4_GROUP_INFO_IBITMAP_CORRUPT); |
| goto next_group; |
| } |
| |
| if ((!(sbi->s_mount_state & EXT4_FC_REPLAY)) && !handle) { |
| BUG_ON(nblocks <= 0); |
| handle = __ext4_journal_start_sb(dir->i_sb, line_no, |
| handle_type, nblocks, 0, |
| ext4_trans_default_revoke_credits(sb)); |
| if (IS_ERR(handle)) { |
| err = PTR_ERR(handle); |
| ext4_std_error(sb, err); |
| goto out; |
| } |
| } |
| BUFFER_TRACE(inode_bitmap_bh, "get_write_access"); |
| err = ext4_journal_get_write_access(handle, inode_bitmap_bh); |
| if (err) { |
| ext4_std_error(sb, err); |
| goto out; |
| } |
| ext4_lock_group(sb, group); |
| ret2 = ext4_test_and_set_bit(ino, inode_bitmap_bh->b_data); |
| if (ret2) { |
| /* Someone already took the bit. Repeat the search |
| * with lock held. |
| */ |
| ret2 = find_inode_bit(sb, group, inode_bitmap_bh, &ino); |
| if (ret2) { |
| ext4_set_bit(ino, inode_bitmap_bh->b_data); |
| ret2 = 0; |
| } else { |
| ret2 = 1; /* we didn't grab the inode */ |
| } |
| } |
| ext4_unlock_group(sb, group); |
| ino++; /* the inode bitmap is zero-based */ |
| if (!ret2) |
| goto got; /* we grabbed the inode! */ |
| |
| if (ino < EXT4_INODES_PER_GROUP(sb)) |
| goto repeat_in_this_group; |
| next_group: |
| if (++group == ngroups) |
| group = 0; |
| } |
| err = -ENOSPC; |
| goto out; |
| |
| got: |
| BUFFER_TRACE(inode_bitmap_bh, "call ext4_handle_dirty_metadata"); |
| err = ext4_handle_dirty_metadata(handle, NULL, inode_bitmap_bh); |
| if (err) { |
| ext4_std_error(sb, err); |
| goto out; |
| } |
| |
| BUFFER_TRACE(group_desc_bh, "get_write_access"); |
| err = ext4_journal_get_write_access(handle, group_desc_bh); |
| if (err) { |
| ext4_std_error(sb, err); |
| goto out; |
| } |
| |
| /* We may have to initialize the block bitmap if it isn't already */ |
| if (ext4_has_group_desc_csum(sb) && |
| gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) { |
| struct buffer_head *block_bitmap_bh; |
| |
| block_bitmap_bh = ext4_read_block_bitmap(sb, group); |
| if (IS_ERR(block_bitmap_bh)) { |
| err = PTR_ERR(block_bitmap_bh); |
| goto out; |
| } |
| BUFFER_TRACE(block_bitmap_bh, "get block bitmap access"); |
| err = ext4_journal_get_write_access(handle, block_bitmap_bh); |
| if (err) { |
| brelse(block_bitmap_bh); |
| ext4_std_error(sb, err); |
| goto out; |
| } |
| |
| BUFFER_TRACE(block_bitmap_bh, "dirty block bitmap"); |
| err = ext4_handle_dirty_metadata(handle, NULL, block_bitmap_bh); |
| |
| /* recheck and clear flag under lock if we still need to */ |
| ext4_lock_group(sb, group); |
| if (ext4_has_group_desc_csum(sb) && |
| (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) { |
| gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT); |
| ext4_free_group_clusters_set(sb, gdp, |
| ext4_free_clusters_after_init(sb, group, gdp)); |
| ext4_block_bitmap_csum_set(sb, group, gdp, |
| block_bitmap_bh); |
| ext4_group_desc_csum_set(sb, group, gdp); |
| } |
| ext4_unlock_group(sb, group); |
| brelse(block_bitmap_bh); |
| |
| if (err) { |
| ext4_std_error(sb, err); |
| goto out; |
| } |
| } |
| |
| /* Update the relevant bg descriptor fields */ |
| if (ext4_has_group_desc_csum(sb)) { |
| int free; |
| struct ext4_group_info *grp = NULL; |
| |
| if (!(sbi->s_mount_state & EXT4_FC_REPLAY)) { |
| grp = ext4_get_group_info(sb, group); |
| down_read(&grp->alloc_sem); /* |
| * protect vs itable |
| * lazyinit |
| */ |
| } |
| ext4_lock_group(sb, group); /* while we modify the bg desc */ |
| free = EXT4_INODES_PER_GROUP(sb) - |
| ext4_itable_unused_count(sb, gdp); |
| if (gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)) { |
| gdp->bg_flags &= cpu_to_le16(~EXT4_BG_INODE_UNINIT); |
| free = 0; |
| } |
| /* |
| * Check the relative inode number against the last used |
| * relative inode number in this group. if it is greater |
| * we need to update the bg_itable_unused count |
| */ |
| if (ino > free) |
| ext4_itable_unused_set(sb, gdp, |
| (EXT4_INODES_PER_GROUP(sb) - ino)); |
| if (!(sbi->s_mount_state & EXT4_FC_REPLAY)) |
| up_read(&grp->alloc_sem); |
| } else { |
| ext4_lock_group(sb, group); |
| } |
| |
| ext4_free_inodes_set(sb, gdp, ext4_free_inodes_count(sb, gdp) - 1); |
| if (S_ISDIR(mode)) { |
| ext4_used_dirs_set(sb, gdp, ext4_used_dirs_count(sb, gdp) + 1); |
| if (sbi->s_log_groups_per_flex) { |
| ext4_group_t f = ext4_flex_group(sbi, group); |
| |
| atomic_inc(&sbi_array_rcu_deref(sbi, s_flex_groups, |
| f)->used_dirs); |
| } |
| } |
| if (ext4_has_group_desc_csum(sb)) { |
| ext4_inode_bitmap_csum_set(sb, group, gdp, inode_bitmap_bh, |
| EXT4_INODES_PER_GROUP(sb) / 8); |
| ext4_group_desc_csum_set(sb, group, gdp); |
| } |
| ext4_unlock_group(sb, group); |
| |
| BUFFER_TRACE(group_desc_bh, "call ext4_handle_dirty_metadata"); |
| err = ext4_handle_dirty_metadata(handle, NULL, group_desc_bh); |
| if (err) { |
| ext4_std_error(sb, err); |
| goto out; |
| } |
| |
| percpu_counter_dec(&sbi->s_freeinodes_counter); |
| if (S_ISDIR(mode)) |
| percpu_counter_inc(&sbi->s_dirs_counter); |
| |
| if (sbi->s_log_groups_per_flex) { |
| flex_group = ext4_flex_group(sbi, group); |
| atomic_dec(&sbi_array_rcu_deref(sbi, s_flex_groups, |
| flex_group)->free_inodes); |
| } |
| |
| inode->i_ino = ino + group * EXT4_INODES_PER_GROUP(sb); |
| /* This is the optimal IO size (for stat), not the fs block size */ |
| inode->i_blocks = 0; |
| inode->i_mtime = inode->i_atime = inode->i_ctime = current_time(inode); |
| ei->i_crtime = inode->i_mtime; |
| |
| memset(ei->i_data, 0, sizeof(ei->i_data)); |
| ei->i_dir_start_lookup = 0; |
| ei->i_disksize = 0; |
| |
| /* Don't inherit extent flag from directory, amongst others. */ |
| ei->i_flags = |
| ext4_mask_flags(mode, EXT4_I(dir)->i_flags & EXT4_FL_INHERITED); |
| ei->i_flags |= i_flags; |
| ei->i_file_acl = 0; |
| ei->i_dtime = 0; |
| ei->i_block_group = group; |
| ei->i_last_alloc_group = ~0; |
| |
| ext4_set_inode_flags(inode, true); |
| if (IS_DIRSYNC(inode)) |
| ext4_handle_sync(handle); |
| if (insert_inode_locked(inode) < 0) { |
| /* |
| * Likely a bitmap corruption causing inode to be allocated |
| * twice. |
| */ |
| err = -EIO; |
| ext4_error(sb, "failed to insert inode %lu: doubly allocated?", |
| inode->i_ino); |
| ext4_mark_group_bitmap_corrupted(sb, group, |
| EXT4_GROUP_INFO_IBITMAP_CORRUPT); |
| goto out; |
| } |
| inode->i_generation = prandom_u32(); |
| |
| /* Precompute checksum seed for inode metadata */ |
| if (ext4_has_metadata_csum(sb)) { |
| __u32 csum; |
| __le32 inum = cpu_to_le32(inode->i_ino); |
| __le32 gen = cpu_to_le32(inode->i_generation); |
| csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum, |
| sizeof(inum)); |
| ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen, |
| sizeof(gen)); |
| } |
| |
| ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */ |
| ext4_set_inode_state(inode, EXT4_STATE_NEW); |
| |
| ei->i_extra_isize = sbi->s_want_extra_isize; |
| ei->i_inline_off = 0; |
| if (ext4_has_feature_inline_data(sb)) |
| ext4_set_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA); |
| ret = inode; |
| err = dquot_alloc_inode(inode); |
| if (err) |
| goto fail_drop; |
| |
| /* |
| * Since the encryption xattr will always be unique, create it first so |
| * that it's less likely to end up in an external xattr block and |
| * prevent its deduplication. |
| */ |
| if (encrypt) { |
| err = fscrypt_set_context(inode, handle); |
| if (err) |
| goto fail_free_drop; |
| } |
| |
| if (!(ei->i_flags & EXT4_EA_INODE_FL)) { |
| err = ext4_init_acl(handle, inode, dir); |
| if (err) |
| goto fail_free_drop; |
| |
| err = ext4_init_security(handle, inode, dir, qstr); |
| if (err) |
| goto fail_free_drop; |
| } |
| |
| if (ext4_has_feature_extents(sb)) { |
| /* set extent flag only for directory, file and normal symlink*/ |
| if (S_ISDIR(mode) || S_ISREG(mode) || S_ISLNK(mode)) { |
| ext4_set_inode_flag(inode, EXT4_INODE_EXTENTS); |
| ext4_ext_tree_init(handle, inode); |
| } |
| } |
| |
| if (ext4_handle_valid(handle)) { |
| ei->i_sync_tid = handle->h_transaction->t_tid; |
| ei->i_datasync_tid = handle->h_transaction->t_tid; |
| } |
| |
| err = ext4_mark_inode_dirty(handle, inode); |
| if (err) { |
| ext4_std_error(sb, err); |
| goto fail_free_drop; |
| } |
| |
| ext4_debug("allocating inode %lu\n", inode->i_ino); |
| trace_ext4_allocate_inode(inode, dir, mode); |
| brelse(inode_bitmap_bh); |
| return ret; |
| |
| fail_free_drop: |
| dquot_free_inode(inode); |
| fail_drop: |
| clear_nlink(inode); |
| unlock_new_inode(inode); |
| out: |
| dquot_drop(inode); |
| inode->i_flags |= S_NOQUOTA; |
| iput(inode); |
| brelse(inode_bitmap_bh); |
| return ERR_PTR(err); |
| } |
| |
| /* Verify that we are loading a valid orphan from disk */ |
| struct inode *ext4_orphan_get(struct super_block *sb, unsigned long ino) |
| { |
| unsigned long max_ino = le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count); |
| ext4_group_t block_group; |
| int bit; |
| struct buffer_head *bitmap_bh = NULL; |
| struct inode *inode = NULL; |
| int err = -EFSCORRUPTED; |
| |
| if (ino < EXT4_FIRST_INO(sb) || ino > max_ino) |
| goto bad_orphan; |
| |
| block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb); |
| bit = (ino - 1) % EXT4_INODES_PER_GROUP(sb); |
| bitmap_bh = ext4_read_inode_bitmap(sb, block_group); |
| if (IS_ERR(bitmap_bh)) |
| return ERR_CAST(bitmap_bh); |
| |
| /* Having the inode bit set should be a 100% indicator that this |
| * is a valid orphan (no e2fsck run on fs). Orphans also include |
| * inodes that were being truncated, so we can't check i_nlink==0. |
| */ |
| if (!ext4_test_bit(bit, bitmap_bh->b_data)) |
| goto bad_orphan; |
| |
| inode = ext4_iget(sb, ino, EXT4_IGET_NORMAL); |
| if (IS_ERR(inode)) { |
| err = PTR_ERR(inode); |
| ext4_error_err(sb, -err, |
| "couldn't read orphan inode %lu (err %d)", |
| ino, err); |
| brelse(bitmap_bh); |
| return inode; |
| } |
| |
| /* |
| * If the orphans has i_nlinks > 0 then it should be able to |
| * be truncated, otherwise it won't be removed from the orphan |
| * list during processing and an infinite loop will result. |
| * Similarly, it must not be a bad inode. |
| */ |
| if ((inode->i_nlink && !ext4_can_truncate(inode)) || |
| is_bad_inode(inode)) |
| goto bad_orphan; |
| |
| if (NEXT_ORPHAN(inode) > max_ino) |
| goto bad_orphan; |
| brelse(bitmap_bh); |
| return inode; |
| |
| bad_orphan: |
| ext4_error(sb, "bad orphan inode %lu", ino); |
| if (bitmap_bh) |
| printk(KERN_ERR "ext4_test_bit(bit=%d, block=%llu) = %d\n", |
| bit, (unsigned long long)bitmap_bh->b_blocknr, |
| ext4_test_bit(bit, bitmap_bh->b_data)); |
| if (inode) { |
| printk(KERN_ERR "is_bad_inode(inode)=%d\n", |
| is_bad_inode(inode)); |
| printk(KERN_ERR "NEXT_ORPHAN(inode)=%u\n", |
| NEXT_ORPHAN(inode)); |
| printk(KERN_ERR "max_ino=%lu\n", max_ino); |
| printk(KERN_ERR "i_nlink=%u\n", inode->i_nlink); |
| /* Avoid freeing blocks if we got a bad deleted inode */ |
| if (inode->i_nlink == 0) |
| inode->i_blocks = 0; |
| iput(inode); |
| } |
| brelse(bitmap_bh); |
| return ERR_PTR(err); |
| } |
| |
| unsigned long ext4_count_free_inodes(struct super_block *sb) |
| { |
| unsigned long desc_count; |
| struct ext4_group_desc *gdp; |
| ext4_group_t i, ngroups = ext4_get_groups_count(sb); |
| #ifdef EXT4FS_DEBUG |
| struct ext4_super_block *es; |
| unsigned long bitmap_count, x; |
| struct buffer_head *bitmap_bh = NULL; |
| |
| es = EXT4_SB(sb)->s_es; |
| desc_count = 0; |
| bitmap_count = 0; |
| gdp = NULL; |
| for (i = 0; i < ngroups; i++) { |
| gdp = ext4_get_group_desc(sb, i, NULL); |
| if (!gdp) |
| continue; |
| desc_count += ext4_free_inodes_count(sb, gdp); |
| brelse(bitmap_bh); |
| bitmap_bh = ext4_read_inode_bitmap(sb, i); |
| if (IS_ERR(bitmap_bh)) { |
| bitmap_bh = NULL; |
| continue; |
| } |
| |
| x = ext4_count_free(bitmap_bh->b_data, |
| EXT4_INODES_PER_GROUP(sb) / 8); |
| printk(KERN_DEBUG "group %lu: stored = %d, counted = %lu\n", |
| (unsigned long) i, ext4_free_inodes_count(sb, gdp), x); |
| bitmap_count += x; |
| } |
| brelse(bitmap_bh); |
| printk(KERN_DEBUG "ext4_count_free_inodes: " |
| "stored = %u, computed = %lu, %lu\n", |
| le32_to_cpu(es->s_free_inodes_count), desc_count, bitmap_count); |
| return desc_count; |
| #else |
| desc_count = 0; |
| for (i = 0; i < ngroups; i++) { |
| gdp = ext4_get_group_desc(sb, i, NULL); |
| if (!gdp) |
| continue; |
| desc_count += ext4_free_inodes_count(sb, gdp); |
| cond_resched(); |
| } |
| return desc_count; |
| #endif |
| } |
| |
| /* Called at mount-time, super-block is locked */ |
| unsigned long ext4_count_dirs(struct super_block * sb) |
| { |
| unsigned long count = 0; |
| ext4_group_t i, ngroups = ext4_get_groups_count(sb); |
| |
| for (i = 0; i < ngroups; i++) { |
| struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL); |
| if (!gdp) |
| continue; |
| count += ext4_used_dirs_count(sb, gdp); |
| } |
| return count; |
| } |
| |
| /* |
| * Zeroes not yet zeroed inode table - just write zeroes through the whole |
| * inode table. Must be called without any spinlock held. The only place |
| * where it is called from on active part of filesystem is ext4lazyinit |
| * thread, so we do not need any special locks, however we have to prevent |
| * inode allocation from the current group, so we take alloc_sem lock, to |
| * block ext4_new_inode() until we are finished. |
| */ |
| int ext4_init_inode_table(struct super_block *sb, ext4_group_t group, |
| int barrier) |
| { |
| struct ext4_group_info *grp = ext4_get_group_info(sb, group); |
| struct ext4_sb_info *sbi = EXT4_SB(sb); |
| struct ext4_group_desc *gdp = NULL; |
| struct buffer_head *group_desc_bh; |
| handle_t *handle; |
| ext4_fsblk_t blk; |
| int num, ret = 0, used_blks = 0; |
| |
| /* This should not happen, but just to be sure check this */ |
| if (sb_rdonly(sb)) { |
| ret = 1; |
| goto out; |
| } |
| |
| gdp = ext4_get_group_desc(sb, group, &group_desc_bh); |
| if (!gdp) |
| goto out; |
| |
| /* |
| * We do not need to lock this, because we are the only one |
| * handling this flag. |
| */ |
| if (gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)) |
| goto out; |
| |
| handle = ext4_journal_start_sb(sb, EXT4_HT_MISC, 1); |
| if (IS_ERR(handle)) { |
| ret = PTR_ERR(handle); |
| goto out; |
| } |
| |
| down_write(&grp->alloc_sem); |
| /* |
| * If inode bitmap was already initialized there may be some |
| * used inodes so we need to skip blocks with used inodes in |
| * inode table. |
| */ |
| if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT))) |
| used_blks = DIV_ROUND_UP((EXT4_INODES_PER_GROUP(sb) - |
| ext4_itable_unused_count(sb, gdp)), |
| sbi->s_inodes_per_block); |
| |
| if ((used_blks < 0) || (used_blks > sbi->s_itb_per_group) || |
| ((group == 0) && ((EXT4_INODES_PER_GROUP(sb) - |
| ext4_itable_unused_count(sb, gdp)) < |
| EXT4_FIRST_INO(sb)))) { |
| ext4_error(sb, "Something is wrong with group %u: " |
| "used itable blocks: %d; " |
| "itable unused count: %u", |
| group, used_blks, |
| ext4_itable_unused_count(sb, gdp)); |
| ret = 1; |
| goto err_out; |
| } |
| |
| blk = ext4_inode_table(sb, gdp) + used_blks; |
| num = sbi->s_itb_per_group - used_blks; |
| |
| BUFFER_TRACE(group_desc_bh, "get_write_access"); |
| ret = ext4_journal_get_write_access(handle, |
| group_desc_bh); |
| if (ret) |
| goto err_out; |
| |
| /* |
| * Skip zeroout if the inode table is full. But we set the ZEROED |
| * flag anyway, because obviously, when it is full it does not need |
| * further zeroing. |
| */ |
| if (unlikely(num == 0)) |
| goto skip_zeroout; |
| |
| ext4_debug("going to zero out inode table in group %d\n", |
| group); |
| ret = sb_issue_zeroout(sb, blk, num, GFP_NOFS); |
| if (ret < 0) |
| goto err_out; |
| if (barrier) |
| blkdev_issue_flush(sb->s_bdev); |
| |
| skip_zeroout: |
| ext4_lock_group(sb, group); |
| gdp->bg_flags |= cpu_to_le16(EXT4_BG_INODE_ZEROED); |
| ext4_group_desc_csum_set(sb, group, gdp); |
| ext4_unlock_group(sb, group); |
| |
| BUFFER_TRACE(group_desc_bh, |
| "call ext4_handle_dirty_metadata"); |
| ret = ext4_handle_dirty_metadata(handle, NULL, |
| group_desc_bh); |
| |
| err_out: |
| up_write(&grp->alloc_sem); |
| ext4_journal_stop(handle); |
| out: |
| return ret; |
| } |