blob: a2efb70f4cc8309247bb72488256c8baf37e76cc [file] [log] [blame]
/*
* Kernel-based Virtual Machine driver for Linux
*
* derived from drivers/kvm/kvm_main.c
*
* Copyright (C) 2006 Qumranet, Inc.
* Copyright (C) 2008 Qumranet, Inc.
* Copyright IBM Corporation, 2008
* Copyright 2010 Red Hat, Inc. and/or its affilates.
*
* Authors:
* Avi Kivity <avi@qumranet.com>
* Yaniv Kamay <yaniv@qumranet.com>
* Amit Shah <amit.shah@qumranet.com>
* Ben-Ami Yassour <benami@il.ibm.com>
*
* This work is licensed under the terms of the GNU GPL, version 2. See
* the COPYING file in the top-level directory.
*
*/
#include <linux/kvm_host.h>
#include "irq.h"
#include "mmu.h"
#include "i8254.h"
#include "tss.h"
#include "kvm_cache_regs.h"
#include "x86.h"
#include <linux/clocksource.h>
#include <linux/interrupt.h>
#include <linux/kvm.h>
#include <linux/fs.h>
#include <linux/vmalloc.h>
#include <linux/module.h>
#include <linux/mman.h>
#include <linux/highmem.h>
#include <linux/iommu.h>
#include <linux/intel-iommu.h>
#include <linux/cpufreq.h>
#include <linux/user-return-notifier.h>
#include <linux/srcu.h>
#include <linux/slab.h>
#include <linux/perf_event.h>
#include <linux/uaccess.h>
#include <trace/events/kvm.h>
#define CREATE_TRACE_POINTS
#include "trace.h"
#include <asm/debugreg.h>
#include <asm/msr.h>
#include <asm/desc.h>
#include <asm/mtrr.h>
#include <asm/mce.h>
#include <asm/i387.h>
#include <asm/xcr.h>
#include <asm/pvclock.h>
#include <asm/div64.h>
#define MAX_IO_MSRS 256
#define CR0_RESERVED_BITS \
(~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
| X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
| X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
#define CR4_RESERVED_BITS \
(~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
| X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
| X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR \
| X86_CR4_OSXSAVE \
| X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
#define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
#define KVM_MAX_MCE_BANKS 32
#define KVM_MCE_CAP_SUPPORTED MCG_CTL_P
/* EFER defaults:
* - enable syscall per default because its emulated by KVM
* - enable LME and LMA per default on 64 bit KVM
*/
#ifdef CONFIG_X86_64
static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffafeULL;
#else
static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffffeULL;
#endif
#define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
#define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
static void update_cr8_intercept(struct kvm_vcpu *vcpu);
static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
struct kvm_cpuid_entry2 __user *entries);
struct kvm_x86_ops *kvm_x86_ops;
EXPORT_SYMBOL_GPL(kvm_x86_ops);
int ignore_msrs = 0;
module_param_named(ignore_msrs, ignore_msrs, bool, S_IRUGO | S_IWUSR);
#define KVM_NR_SHARED_MSRS 16
struct kvm_shared_msrs_global {
int nr;
u32 msrs[KVM_NR_SHARED_MSRS];
};
struct kvm_shared_msrs {
struct user_return_notifier urn;
bool registered;
struct kvm_shared_msr_values {
u64 host;
u64 curr;
} values[KVM_NR_SHARED_MSRS];
};
static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
static DEFINE_PER_CPU(struct kvm_shared_msrs, shared_msrs);
struct kvm_stats_debugfs_item debugfs_entries[] = {
{ "pf_fixed", VCPU_STAT(pf_fixed) },
{ "pf_guest", VCPU_STAT(pf_guest) },
{ "tlb_flush", VCPU_STAT(tlb_flush) },
{ "invlpg", VCPU_STAT(invlpg) },
{ "exits", VCPU_STAT(exits) },
{ "io_exits", VCPU_STAT(io_exits) },
{ "mmio_exits", VCPU_STAT(mmio_exits) },
{ "signal_exits", VCPU_STAT(signal_exits) },
{ "irq_window", VCPU_STAT(irq_window_exits) },
{ "nmi_window", VCPU_STAT(nmi_window_exits) },
{ "halt_exits", VCPU_STAT(halt_exits) },
{ "halt_wakeup", VCPU_STAT(halt_wakeup) },
{ "hypercalls", VCPU_STAT(hypercalls) },
{ "request_irq", VCPU_STAT(request_irq_exits) },
{ "irq_exits", VCPU_STAT(irq_exits) },
{ "host_state_reload", VCPU_STAT(host_state_reload) },
{ "efer_reload", VCPU_STAT(efer_reload) },
{ "fpu_reload", VCPU_STAT(fpu_reload) },
{ "insn_emulation", VCPU_STAT(insn_emulation) },
{ "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
{ "irq_injections", VCPU_STAT(irq_injections) },
{ "nmi_injections", VCPU_STAT(nmi_injections) },
{ "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
{ "mmu_pte_write", VM_STAT(mmu_pte_write) },
{ "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
{ "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
{ "mmu_flooded", VM_STAT(mmu_flooded) },
{ "mmu_recycled", VM_STAT(mmu_recycled) },
{ "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
{ "mmu_unsync", VM_STAT(mmu_unsync) },
{ "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
{ "largepages", VM_STAT(lpages) },
{ NULL }
};
u64 __read_mostly host_xcr0;
static inline u32 bit(int bitno)
{
return 1 << (bitno & 31);
}
static void kvm_on_user_return(struct user_return_notifier *urn)
{
unsigned slot;
struct kvm_shared_msrs *locals
= container_of(urn, struct kvm_shared_msrs, urn);
struct kvm_shared_msr_values *values;
for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
values = &locals->values[slot];
if (values->host != values->curr) {
wrmsrl(shared_msrs_global.msrs[slot], values->host);
values->curr = values->host;
}
}
locals->registered = false;
user_return_notifier_unregister(urn);
}
static void shared_msr_update(unsigned slot, u32 msr)
{
struct kvm_shared_msrs *smsr;
u64 value;
smsr = &__get_cpu_var(shared_msrs);
/* only read, and nobody should modify it at this time,
* so don't need lock */
if (slot >= shared_msrs_global.nr) {
printk(KERN_ERR "kvm: invalid MSR slot!");
return;
}
rdmsrl_safe(msr, &value);
smsr->values[slot].host = value;
smsr->values[slot].curr = value;
}
void kvm_define_shared_msr(unsigned slot, u32 msr)
{
if (slot >= shared_msrs_global.nr)
shared_msrs_global.nr = slot + 1;
shared_msrs_global.msrs[slot] = msr;
/* we need ensured the shared_msr_global have been updated */
smp_wmb();
}
EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
static void kvm_shared_msr_cpu_online(void)
{
unsigned i;
for (i = 0; i < shared_msrs_global.nr; ++i)
shared_msr_update(i, shared_msrs_global.msrs[i]);
}
void kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
{
struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
if (((value ^ smsr->values[slot].curr) & mask) == 0)
return;
smsr->values[slot].curr = value;
wrmsrl(shared_msrs_global.msrs[slot], value);
if (!smsr->registered) {
smsr->urn.on_user_return = kvm_on_user_return;
user_return_notifier_register(&smsr->urn);
smsr->registered = true;
}
}
EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
static void drop_user_return_notifiers(void *ignore)
{
struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
if (smsr->registered)
kvm_on_user_return(&smsr->urn);
}
u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
{
if (irqchip_in_kernel(vcpu->kvm))
return vcpu->arch.apic_base;
else
return vcpu->arch.apic_base;
}
EXPORT_SYMBOL_GPL(kvm_get_apic_base);
void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
{
/* TODO: reserve bits check */
if (irqchip_in_kernel(vcpu->kvm))
kvm_lapic_set_base(vcpu, data);
else
vcpu->arch.apic_base = data;
}
EXPORT_SYMBOL_GPL(kvm_set_apic_base);
#define EXCPT_BENIGN 0
#define EXCPT_CONTRIBUTORY 1
#define EXCPT_PF 2
static int exception_class(int vector)
{
switch (vector) {
case PF_VECTOR:
return EXCPT_PF;
case DE_VECTOR:
case TS_VECTOR:
case NP_VECTOR:
case SS_VECTOR:
case GP_VECTOR:
return EXCPT_CONTRIBUTORY;
default:
break;
}
return EXCPT_BENIGN;
}
static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
unsigned nr, bool has_error, u32 error_code,
bool reinject)
{
u32 prev_nr;
int class1, class2;
if (!vcpu->arch.exception.pending) {
queue:
vcpu->arch.exception.pending = true;
vcpu->arch.exception.has_error_code = has_error;
vcpu->arch.exception.nr = nr;
vcpu->arch.exception.error_code = error_code;
vcpu->arch.exception.reinject = reinject;
return;
}
/* to check exception */
prev_nr = vcpu->arch.exception.nr;
if (prev_nr == DF_VECTOR) {
/* triple fault -> shutdown */
kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
return;
}
class1 = exception_class(prev_nr);
class2 = exception_class(nr);
if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
|| (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
/* generate double fault per SDM Table 5-5 */
vcpu->arch.exception.pending = true;
vcpu->arch.exception.has_error_code = true;
vcpu->arch.exception.nr = DF_VECTOR;
vcpu->arch.exception.error_code = 0;
} else
/* replace previous exception with a new one in a hope
that instruction re-execution will regenerate lost
exception */
goto queue;
}
void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
{
kvm_multiple_exception(vcpu, nr, false, 0, false);
}
EXPORT_SYMBOL_GPL(kvm_queue_exception);
void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
{
kvm_multiple_exception(vcpu, nr, false, 0, true);
}
EXPORT_SYMBOL_GPL(kvm_requeue_exception);
void kvm_inject_page_fault(struct kvm_vcpu *vcpu)
{
unsigned error_code = vcpu->arch.fault.error_code;
++vcpu->stat.pf_guest;
vcpu->arch.cr2 = vcpu->arch.fault.address;
kvm_queue_exception_e(vcpu, PF_VECTOR, error_code);
}
void kvm_inject_nmi(struct kvm_vcpu *vcpu)
{
vcpu->arch.nmi_pending = 1;
}
EXPORT_SYMBOL_GPL(kvm_inject_nmi);
void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
{
kvm_multiple_exception(vcpu, nr, true, error_code, false);
}
EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
{
kvm_multiple_exception(vcpu, nr, true, error_code, true);
}
EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
/*
* Checks if cpl <= required_cpl; if true, return true. Otherwise queue
* a #GP and return false.
*/
bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
{
if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
return true;
kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
return false;
}
EXPORT_SYMBOL_GPL(kvm_require_cpl);
/*
* This function will be used to read from the physical memory of the currently
* running guest. The difference to kvm_read_guest_page is that this function
* can read from guest physical or from the guest's guest physical memory.
*/
int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
gfn_t ngfn, void *data, int offset, int len,
u32 access)
{
gfn_t real_gfn;
gpa_t ngpa;
ngpa = gfn_to_gpa(ngfn);
real_gfn = mmu->translate_gpa(vcpu, ngpa, access);
if (real_gfn == UNMAPPED_GVA)
return -EFAULT;
real_gfn = gpa_to_gfn(real_gfn);
return kvm_read_guest_page(vcpu->kvm, real_gfn, data, offset, len);
}
EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
/*
* Load the pae pdptrs. Return true is they are all valid.
*/
int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
{
gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
int i;
int ret;
u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
ret = kvm_read_guest_page(vcpu->kvm, pdpt_gfn, pdpte,
offset * sizeof(u64), sizeof(pdpte));
if (ret < 0) {
ret = 0;
goto out;
}
for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
if (is_present_gpte(pdpte[i]) &&
(pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
ret = 0;
goto out;
}
}
ret = 1;
memcpy(vcpu->arch.pdptrs, pdpte, sizeof(vcpu->arch.pdptrs));
__set_bit(VCPU_EXREG_PDPTR,
(unsigned long *)&vcpu->arch.regs_avail);
__set_bit(VCPU_EXREG_PDPTR,
(unsigned long *)&vcpu->arch.regs_dirty);
out:
return ret;
}
EXPORT_SYMBOL_GPL(load_pdptrs);
static bool pdptrs_changed(struct kvm_vcpu *vcpu)
{
u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
bool changed = true;
int r;
if (is_long_mode(vcpu) || !is_pae(vcpu))
return false;
if (!test_bit(VCPU_EXREG_PDPTR,
(unsigned long *)&vcpu->arch.regs_avail))
return true;
r = kvm_read_guest(vcpu->kvm, vcpu->arch.cr3 & ~31u, pdpte, sizeof(pdpte));
if (r < 0)
goto out;
changed = memcmp(pdpte, vcpu->arch.pdptrs, sizeof(pdpte)) != 0;
out:
return changed;
}
int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
{
unsigned long old_cr0 = kvm_read_cr0(vcpu);
unsigned long update_bits = X86_CR0_PG | X86_CR0_WP |
X86_CR0_CD | X86_CR0_NW;
cr0 |= X86_CR0_ET;
#ifdef CONFIG_X86_64
if (cr0 & 0xffffffff00000000UL)
return 1;
#endif
cr0 &= ~CR0_RESERVED_BITS;
if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
return 1;
if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
return 1;
if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
#ifdef CONFIG_X86_64
if ((vcpu->arch.efer & EFER_LME)) {
int cs_db, cs_l;
if (!is_pae(vcpu))
return 1;
kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
if (cs_l)
return 1;
} else
#endif
if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.cr3))
return 1;
}
kvm_x86_ops->set_cr0(vcpu, cr0);
if ((cr0 ^ old_cr0) & update_bits)
kvm_mmu_reset_context(vcpu);
return 0;
}
EXPORT_SYMBOL_GPL(kvm_set_cr0);
void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
{
(void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
}
EXPORT_SYMBOL_GPL(kvm_lmsw);
int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
{
u64 xcr0;
/* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */
if (index != XCR_XFEATURE_ENABLED_MASK)
return 1;
xcr0 = xcr;
if (kvm_x86_ops->get_cpl(vcpu) != 0)
return 1;
if (!(xcr0 & XSTATE_FP))
return 1;
if ((xcr0 & XSTATE_YMM) && !(xcr0 & XSTATE_SSE))
return 1;
if (xcr0 & ~host_xcr0)
return 1;
vcpu->arch.xcr0 = xcr0;
vcpu->guest_xcr0_loaded = 0;
return 0;
}
int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
{
if (__kvm_set_xcr(vcpu, index, xcr)) {
kvm_inject_gp(vcpu, 0);
return 1;
}
return 0;
}
EXPORT_SYMBOL_GPL(kvm_set_xcr);
static bool guest_cpuid_has_xsave(struct kvm_vcpu *vcpu)
{
struct kvm_cpuid_entry2 *best;
best = kvm_find_cpuid_entry(vcpu, 1, 0);
return best && (best->ecx & bit(X86_FEATURE_XSAVE));
}
static void update_cpuid(struct kvm_vcpu *vcpu)
{
struct kvm_cpuid_entry2 *best;
best = kvm_find_cpuid_entry(vcpu, 1, 0);
if (!best)
return;
/* Update OSXSAVE bit */
if (cpu_has_xsave && best->function == 0x1) {
best->ecx &= ~(bit(X86_FEATURE_OSXSAVE));
if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE))
best->ecx |= bit(X86_FEATURE_OSXSAVE);
}
}
int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
{
unsigned long old_cr4 = kvm_read_cr4(vcpu);
unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE;
if (cr4 & CR4_RESERVED_BITS)
return 1;
if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
return 1;
if (is_long_mode(vcpu)) {
if (!(cr4 & X86_CR4_PAE))
return 1;
} else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
&& ((cr4 ^ old_cr4) & pdptr_bits)
&& !load_pdptrs(vcpu, vcpu->arch.cr3))
return 1;
if (cr4 & X86_CR4_VMXE)
return 1;
kvm_x86_ops->set_cr4(vcpu, cr4);
if ((cr4 ^ old_cr4) & pdptr_bits)
kvm_mmu_reset_context(vcpu);
if ((cr4 ^ old_cr4) & X86_CR4_OSXSAVE)
update_cpuid(vcpu);
return 0;
}
EXPORT_SYMBOL_GPL(kvm_set_cr4);
int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
{
if (cr3 == vcpu->arch.cr3 && !pdptrs_changed(vcpu)) {
kvm_mmu_sync_roots(vcpu);
kvm_mmu_flush_tlb(vcpu);
return 0;
}
if (is_long_mode(vcpu)) {
if (cr3 & CR3_L_MODE_RESERVED_BITS)
return 1;
} else {
if (is_pae(vcpu)) {
if (cr3 & CR3_PAE_RESERVED_BITS)
return 1;
if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3))
return 1;
}
/*
* We don't check reserved bits in nonpae mode, because
* this isn't enforced, and VMware depends on this.
*/
}
/*
* Does the new cr3 value map to physical memory? (Note, we
* catch an invalid cr3 even in real-mode, because it would
* cause trouble later on when we turn on paging anyway.)
*
* A real CPU would silently accept an invalid cr3 and would
* attempt to use it - with largely undefined (and often hard
* to debug) behavior on the guest side.
*/
if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
return 1;
vcpu->arch.cr3 = cr3;
vcpu->arch.mmu.new_cr3(vcpu);
return 0;
}
EXPORT_SYMBOL_GPL(kvm_set_cr3);
int __kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
{
if (cr8 & CR8_RESERVED_BITS)
return 1;
if (irqchip_in_kernel(vcpu->kvm))
kvm_lapic_set_tpr(vcpu, cr8);
else
vcpu->arch.cr8 = cr8;
return 0;
}
void kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
{
if (__kvm_set_cr8(vcpu, cr8))
kvm_inject_gp(vcpu, 0);
}
EXPORT_SYMBOL_GPL(kvm_set_cr8);
unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
{
if (irqchip_in_kernel(vcpu->kvm))
return kvm_lapic_get_cr8(vcpu);
else
return vcpu->arch.cr8;
}
EXPORT_SYMBOL_GPL(kvm_get_cr8);
static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
{
switch (dr) {
case 0 ... 3:
vcpu->arch.db[dr] = val;
if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
vcpu->arch.eff_db[dr] = val;
break;
case 4:
if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
return 1; /* #UD */
/* fall through */
case 6:
if (val & 0xffffffff00000000ULL)
return -1; /* #GP */
vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1;
break;
case 5:
if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
return 1; /* #UD */
/* fall through */
default: /* 7 */
if (val & 0xffffffff00000000ULL)
return -1; /* #GP */
vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
kvm_x86_ops->set_dr7(vcpu, vcpu->arch.dr7);
vcpu->arch.switch_db_regs = (val & DR7_BP_EN_MASK);
}
break;
}
return 0;
}
int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
{
int res;
res = __kvm_set_dr(vcpu, dr, val);
if (res > 0)
kvm_queue_exception(vcpu, UD_VECTOR);
else if (res < 0)
kvm_inject_gp(vcpu, 0);
return res;
}
EXPORT_SYMBOL_GPL(kvm_set_dr);
static int _kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
{
switch (dr) {
case 0 ... 3:
*val = vcpu->arch.db[dr];
break;
case 4:
if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
return 1;
/* fall through */
case 6:
*val = vcpu->arch.dr6;
break;
case 5:
if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
return 1;
/* fall through */
default: /* 7 */
*val = vcpu->arch.dr7;
break;
}
return 0;
}
int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
{
if (_kvm_get_dr(vcpu, dr, val)) {
kvm_queue_exception(vcpu, UD_VECTOR);
return 1;
}
return 0;
}
EXPORT_SYMBOL_GPL(kvm_get_dr);
/*
* List of msr numbers which we expose to userspace through KVM_GET_MSRS
* and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
*
* This list is modified at module load time to reflect the
* capabilities of the host cpu. This capabilities test skips MSRs that are
* kvm-specific. Those are put in the beginning of the list.
*/
#define KVM_SAVE_MSRS_BEGIN 7
static u32 msrs_to_save[] = {
MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
HV_X64_MSR_APIC_ASSIST_PAGE,
MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
MSR_STAR,
#ifdef CONFIG_X86_64
MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
#endif
MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA
};
static unsigned num_msrs_to_save;
static u32 emulated_msrs[] = {
MSR_IA32_MISC_ENABLE,
MSR_IA32_MCG_STATUS,
MSR_IA32_MCG_CTL,
};
static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
{
u64 old_efer = vcpu->arch.efer;
if (efer & efer_reserved_bits)
return 1;
if (is_paging(vcpu)
&& (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
return 1;
if (efer & EFER_FFXSR) {
struct kvm_cpuid_entry2 *feat;
feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
return 1;
}
if (efer & EFER_SVME) {
struct kvm_cpuid_entry2 *feat;
feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
return 1;
}
efer &= ~EFER_LMA;
efer |= vcpu->arch.efer & EFER_LMA;
kvm_x86_ops->set_efer(vcpu, efer);
vcpu->arch.mmu.base_role.nxe = (efer & EFER_NX) && !tdp_enabled;
kvm_mmu_reset_context(vcpu);
/* Update reserved bits */
if ((efer ^ old_efer) & EFER_NX)
kvm_mmu_reset_context(vcpu);
return 0;
}
void kvm_enable_efer_bits(u64 mask)
{
efer_reserved_bits &= ~mask;
}
EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
/*
* Writes msr value into into the appropriate "register".
* Returns 0 on success, non-0 otherwise.
* Assumes vcpu_load() was already called.
*/
int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
{
return kvm_x86_ops->set_msr(vcpu, msr_index, data);
}
/*
* Adapt set_msr() to msr_io()'s calling convention
*/
static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
{
return kvm_set_msr(vcpu, index, *data);
}
static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
{
int version;
int r;
struct pvclock_wall_clock wc;
struct timespec boot;
if (!wall_clock)
return;
r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
if (r)
return;
if (version & 1)
++version; /* first time write, random junk */
++version;
kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
/*
* The guest calculates current wall clock time by adding
* system time (updated by kvm_write_guest_time below) to the
* wall clock specified here. guest system time equals host
* system time for us, thus we must fill in host boot time here.
*/
getboottime(&boot);
wc.sec = boot.tv_sec;
wc.nsec = boot.tv_nsec;
wc.version = version;
kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
version++;
kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
}
static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
{
uint32_t quotient, remainder;
/* Don't try to replace with do_div(), this one calculates
* "(dividend << 32) / divisor" */
__asm__ ( "divl %4"
: "=a" (quotient), "=d" (remainder)
: "0" (0), "1" (dividend), "r" (divisor) );
return quotient;
}
static void kvm_set_time_scale(uint32_t tsc_khz, struct pvclock_vcpu_time_info *hv_clock)
{
uint64_t nsecs = 1000000000LL;
int32_t shift = 0;
uint64_t tps64;
uint32_t tps32;
tps64 = tsc_khz * 1000LL;
while (tps64 > nsecs*2) {
tps64 >>= 1;
shift--;
}
tps32 = (uint32_t)tps64;
while (tps32 <= (uint32_t)nsecs) {
tps32 <<= 1;
shift++;
}
hv_clock->tsc_shift = shift;
hv_clock->tsc_to_system_mul = div_frac(nsecs, tps32);
pr_debug("%s: tsc_khz %u, tsc_shift %d, tsc_mul %u\n",
__func__, tsc_khz, hv_clock->tsc_shift,
hv_clock->tsc_to_system_mul);
}
static inline u64 get_kernel_ns(void)
{
struct timespec ts;
WARN_ON(preemptible());
ktime_get_ts(&ts);
monotonic_to_bootbased(&ts);
return timespec_to_ns(&ts);
}
static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
static inline int kvm_tsc_changes_freq(void)
{
int cpu = get_cpu();
int ret = !boot_cpu_has(X86_FEATURE_CONSTANT_TSC) &&
cpufreq_quick_get(cpu) != 0;
put_cpu();
return ret;
}
static inline u64 nsec_to_cycles(u64 nsec)
{
u64 ret;
WARN_ON(preemptible());
if (kvm_tsc_changes_freq())
printk_once(KERN_WARNING
"kvm: unreliable cycle conversion on adjustable rate TSC\n");
ret = nsec * __get_cpu_var(cpu_tsc_khz);
do_div(ret, USEC_PER_SEC);
return ret;
}
void kvm_write_tsc(struct kvm_vcpu *vcpu, u64 data)
{
struct kvm *kvm = vcpu->kvm;
u64 offset, ns, elapsed;
unsigned long flags;
s64 sdiff;
spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
offset = data - native_read_tsc();
ns = get_kernel_ns();
elapsed = ns - kvm->arch.last_tsc_nsec;
sdiff = data - kvm->arch.last_tsc_write;
if (sdiff < 0)
sdiff = -sdiff;
/*
* Special case: close write to TSC within 5 seconds of
* another CPU is interpreted as an attempt to synchronize
* The 5 seconds is to accomodate host load / swapping as
* well as any reset of TSC during the boot process.
*
* In that case, for a reliable TSC, we can match TSC offsets,
* or make a best guest using elapsed value.
*/
if (sdiff < nsec_to_cycles(5ULL * NSEC_PER_SEC) &&
elapsed < 5ULL * NSEC_PER_SEC) {
if (!check_tsc_unstable()) {
offset = kvm->arch.last_tsc_offset;
pr_debug("kvm: matched tsc offset for %llu\n", data);
} else {
u64 delta = nsec_to_cycles(elapsed);
offset += delta;
pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
}
ns = kvm->arch.last_tsc_nsec;
}
kvm->arch.last_tsc_nsec = ns;
kvm->arch.last_tsc_write = data;
kvm->arch.last_tsc_offset = offset;
kvm_x86_ops->write_tsc_offset(vcpu, offset);
spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
/* Reset of TSC must disable overshoot protection below */
vcpu->arch.hv_clock.tsc_timestamp = 0;
}
EXPORT_SYMBOL_GPL(kvm_write_tsc);
static int kvm_write_guest_time(struct kvm_vcpu *v)
{
unsigned long flags;
struct kvm_vcpu_arch *vcpu = &v->arch;
void *shared_kaddr;
unsigned long this_tsc_khz;
s64 kernel_ns, max_kernel_ns;
u64 tsc_timestamp;
if ((!vcpu->time_page))
return 0;
/* Keep irq disabled to prevent changes to the clock */
local_irq_save(flags);
kvm_get_msr(v, MSR_IA32_TSC, &tsc_timestamp);
kernel_ns = get_kernel_ns();
this_tsc_khz = __get_cpu_var(cpu_tsc_khz);
local_irq_restore(flags);
if (unlikely(this_tsc_khz == 0)) {
kvm_make_request(KVM_REQ_KVMCLOCK_UPDATE, v);
return 1;
}
/*
* Time as measured by the TSC may go backwards when resetting the base
* tsc_timestamp. The reason for this is that the TSC resolution is
* higher than the resolution of the other clock scales. Thus, many
* possible measurments of the TSC correspond to one measurement of any
* other clock, and so a spread of values is possible. This is not a
* problem for the computation of the nanosecond clock; with TSC rates
* around 1GHZ, there can only be a few cycles which correspond to one
* nanosecond value, and any path through this code will inevitably
* take longer than that. However, with the kernel_ns value itself,
* the precision may be much lower, down to HZ granularity. If the
* first sampling of TSC against kernel_ns ends in the low part of the
* range, and the second in the high end of the range, we can get:
*
* (TSC - offset_low) * S + kns_old > (TSC - offset_high) * S + kns_new
*
* As the sampling errors potentially range in the thousands of cycles,
* it is possible such a time value has already been observed by the
* guest. To protect against this, we must compute the system time as
* observed by the guest and ensure the new system time is greater.
*/
max_kernel_ns = 0;
if (vcpu->hv_clock.tsc_timestamp && vcpu->last_guest_tsc) {
max_kernel_ns = vcpu->last_guest_tsc -
vcpu->hv_clock.tsc_timestamp;
max_kernel_ns = pvclock_scale_delta(max_kernel_ns,
vcpu->hv_clock.tsc_to_system_mul,
vcpu->hv_clock.tsc_shift);
max_kernel_ns += vcpu->last_kernel_ns;
}
if (unlikely(vcpu->hw_tsc_khz != this_tsc_khz)) {
kvm_set_time_scale(this_tsc_khz, &vcpu->hv_clock);
vcpu->hw_tsc_khz = this_tsc_khz;
}
if (max_kernel_ns > kernel_ns)
kernel_ns = max_kernel_ns;
/* With all the info we got, fill in the values */
vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
vcpu->last_kernel_ns = kernel_ns;
vcpu->hv_clock.flags = 0;
/*
* The interface expects us to write an even number signaling that the
* update is finished. Since the guest won't see the intermediate
* state, we just increase by 2 at the end.
*/
vcpu->hv_clock.version += 2;
shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0);
memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
sizeof(vcpu->hv_clock));
kunmap_atomic(shared_kaddr, KM_USER0);
mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
return 0;
}
static int kvm_request_guest_time_update(struct kvm_vcpu *v)
{
struct kvm_vcpu_arch *vcpu = &v->arch;
if (!vcpu->time_page)
return 0;
kvm_make_request(KVM_REQ_KVMCLOCK_UPDATE, v);
return 1;
}
static bool msr_mtrr_valid(unsigned msr)
{
switch (msr) {
case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
case MSR_MTRRfix64K_00000:
case MSR_MTRRfix16K_80000:
case MSR_MTRRfix16K_A0000:
case MSR_MTRRfix4K_C0000:
case MSR_MTRRfix4K_C8000:
case MSR_MTRRfix4K_D0000:
case MSR_MTRRfix4K_D8000:
case MSR_MTRRfix4K_E0000:
case MSR_MTRRfix4K_E8000:
case MSR_MTRRfix4K_F0000:
case MSR_MTRRfix4K_F8000:
case MSR_MTRRdefType:
case MSR_IA32_CR_PAT:
return true;
case 0x2f8:
return true;
}
return false;
}
static bool valid_pat_type(unsigned t)
{
return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
}
static bool valid_mtrr_type(unsigned t)
{
return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
}
static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
{
int i;
if (!msr_mtrr_valid(msr))
return false;
if (msr == MSR_IA32_CR_PAT) {
for (i = 0; i < 8; i++)
if (!valid_pat_type((data >> (i * 8)) & 0xff))
return false;
return true;
} else if (msr == MSR_MTRRdefType) {
if (data & ~0xcff)
return false;
return valid_mtrr_type(data & 0xff);
} else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
for (i = 0; i < 8 ; i++)
if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
return false;
return true;
}
/* variable MTRRs */
return valid_mtrr_type(data & 0xff);
}
static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
{
u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
if (!mtrr_valid(vcpu, msr, data))
return 1;
if (msr == MSR_MTRRdefType) {
vcpu->arch.mtrr_state.def_type = data;
vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
} else if (msr == MSR_MTRRfix64K_00000)
p[0] = data;
else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
p[1 + msr - MSR_MTRRfix16K_80000] = data;
else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
p[3 + msr - MSR_MTRRfix4K_C0000] = data;
else if (msr == MSR_IA32_CR_PAT)
vcpu->arch.pat = data;
else { /* Variable MTRRs */
int idx, is_mtrr_mask;
u64 *pt;
idx = (msr - 0x200) / 2;
is_mtrr_mask = msr - 0x200 - 2 * idx;
if (!is_mtrr_mask)
pt =
(u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
else
pt =
(u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
*pt = data;
}
kvm_mmu_reset_context(vcpu);
return 0;
}
static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
{
u64 mcg_cap = vcpu->arch.mcg_cap;
unsigned bank_num = mcg_cap & 0xff;
switch (msr) {
case MSR_IA32_MCG_STATUS:
vcpu->arch.mcg_status = data;
break;
case MSR_IA32_MCG_CTL:
if (!(mcg_cap & MCG_CTL_P))
return 1;
if (data != 0 && data != ~(u64)0)
return -1;
vcpu->arch.mcg_ctl = data;
break;
default:
if (msr >= MSR_IA32_MC0_CTL &&
msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
u32 offset = msr - MSR_IA32_MC0_CTL;
/* only 0 or all 1s can be written to IA32_MCi_CTL
* some Linux kernels though clear bit 10 in bank 4 to
* workaround a BIOS/GART TBL issue on AMD K8s, ignore
* this to avoid an uncatched #GP in the guest
*/
if ((offset & 0x3) == 0 &&
data != 0 && (data | (1 << 10)) != ~(u64)0)
return -1;
vcpu->arch.mce_banks[offset] = data;
break;
}
return 1;
}
return 0;
}
static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
{
struct kvm *kvm = vcpu->kvm;
int lm = is_long_mode(vcpu);
u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
: (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
: kvm->arch.xen_hvm_config.blob_size_32;
u32 page_num = data & ~PAGE_MASK;
u64 page_addr = data & PAGE_MASK;
u8 *page;
int r;
r = -E2BIG;
if (page_num >= blob_size)
goto out;
r = -ENOMEM;
page = kzalloc(PAGE_SIZE, GFP_KERNEL);
if (!page)
goto out;
r = -EFAULT;
if (copy_from_user(page, blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE))
goto out_free;
if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE))
goto out_free;
r = 0;
out_free:
kfree(page);
out:
return r;
}
static bool kvm_hv_hypercall_enabled(struct kvm *kvm)
{
return kvm->arch.hv_hypercall & HV_X64_MSR_HYPERCALL_ENABLE;
}
static bool kvm_hv_msr_partition_wide(u32 msr)
{
bool r = false;
switch (msr) {
case HV_X64_MSR_GUEST_OS_ID:
case HV_X64_MSR_HYPERCALL:
r = true;
break;
}
return r;
}
static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data)
{
struct kvm *kvm = vcpu->kvm;
switch (msr) {
case HV_X64_MSR_GUEST_OS_ID:
kvm->arch.hv_guest_os_id = data;
/* setting guest os id to zero disables hypercall page */
if (!kvm->arch.hv_guest_os_id)
kvm->arch.hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
break;
case HV_X64_MSR_HYPERCALL: {
u64 gfn;
unsigned long addr;
u8 instructions[4];
/* if guest os id is not set hypercall should remain disabled */
if (!kvm->arch.hv_guest_os_id)
break;
if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
kvm->arch.hv_hypercall = data;
break;
}
gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT;
addr = gfn_to_hva(kvm, gfn);
if (kvm_is_error_hva(addr))
return 1;
kvm_x86_ops->patch_hypercall(vcpu, instructions);
((unsigned char *)instructions)[3] = 0xc3; /* ret */
if (copy_to_user((void __user *)addr, instructions, 4))
return 1;
kvm->arch.hv_hypercall = data;
break;
}
default:
pr_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
"data 0x%llx\n", msr, data);
return 1;
}
return 0;
}
static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data)
{
switch (msr) {
case HV_X64_MSR_APIC_ASSIST_PAGE: {
unsigned long addr;
if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) {
vcpu->arch.hv_vapic = data;
break;
}
addr = gfn_to_hva(vcpu->kvm, data >>
HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT);
if (kvm_is_error_hva(addr))
return 1;
if (clear_user((void __user *)addr, PAGE_SIZE))
return 1;
vcpu->arch.hv_vapic = data;
break;
}
case HV_X64_MSR_EOI:
return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
case HV_X64_MSR_ICR:
return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
case HV_X64_MSR_TPR:
return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
default:
pr_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
"data 0x%llx\n", msr, data);
return 1;
}
return 0;
}
int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
{
switch (msr) {
case MSR_EFER:
return set_efer(vcpu, data);
case MSR_K7_HWCR:
data &= ~(u64)0x40; /* ignore flush filter disable */
data &= ~(u64)0x100; /* ignore ignne emulation enable */
if (data != 0) {
pr_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
data);
return 1;
}
break;
case MSR_FAM10H_MMIO_CONF_BASE:
if (data != 0) {
pr_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
"0x%llx\n", data);
return 1;
}
break;
case MSR_AMD64_NB_CFG:
break;
case MSR_IA32_DEBUGCTLMSR:
if (!data) {
/* We support the non-activated case already */
break;
} else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
/* Values other than LBR and BTF are vendor-specific,
thus reserved and should throw a #GP */
return 1;
}
pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
__func__, data);
break;
case MSR_IA32_UCODE_REV:
case MSR_IA32_UCODE_WRITE:
case MSR_VM_HSAVE_PA:
case MSR_AMD64_PATCH_LOADER:
break;
case 0x200 ... 0x2ff:
return set_msr_mtrr(vcpu, msr, data);
case MSR_IA32_APICBASE:
kvm_set_apic_base(vcpu, data);
break;
case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
return kvm_x2apic_msr_write(vcpu, msr, data);
case MSR_IA32_MISC_ENABLE:
vcpu->arch.ia32_misc_enable_msr = data;
break;
case MSR_KVM_WALL_CLOCK_NEW:
case MSR_KVM_WALL_CLOCK:
vcpu->kvm->arch.wall_clock = data;
kvm_write_wall_clock(vcpu->kvm, data);
break;
case MSR_KVM_SYSTEM_TIME_NEW:
case MSR_KVM_SYSTEM_TIME: {
if (vcpu->arch.time_page) {
kvm_release_page_dirty(vcpu->arch.time_page);
vcpu->arch.time_page = NULL;
}
vcpu->arch.time = data;
/* we verify if the enable bit is set... */
if (!(data & 1))
break;
/* ...but clean it before doing the actual write */
vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
vcpu->arch.time_page =
gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
if (is_error_page(vcpu->arch.time_page)) {
kvm_release_page_clean(vcpu->arch.time_page);
vcpu->arch.time_page = NULL;
}
kvm_request_guest_time_update(vcpu);
break;
}
case MSR_IA32_MCG_CTL:
case MSR_IA32_MCG_STATUS:
case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
return set_msr_mce(vcpu, msr, data);
/* Performance counters are not protected by a CPUID bit,
* so we should check all of them in the generic path for the sake of
* cross vendor migration.
* Writing a zero into the event select MSRs disables them,
* which we perfectly emulate ;-). Any other value should be at least
* reported, some guests depend on them.
*/
case MSR_P6_EVNTSEL0:
case MSR_P6_EVNTSEL1:
case MSR_K7_EVNTSEL0:
case MSR_K7_EVNTSEL1:
case MSR_K7_EVNTSEL2:
case MSR_K7_EVNTSEL3:
if (data != 0)
pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
"0x%x data 0x%llx\n", msr, data);
break;
/* at least RHEL 4 unconditionally writes to the perfctr registers,
* so we ignore writes to make it happy.
*/
case MSR_P6_PERFCTR0:
case MSR_P6_PERFCTR1:
case MSR_K7_PERFCTR0:
case MSR_K7_PERFCTR1:
case MSR_K7_PERFCTR2:
case MSR_K7_PERFCTR3:
pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
"0x%x data 0x%llx\n", msr, data);
break;
case MSR_K7_CLK_CTL:
/*
* Ignore all writes to this no longer documented MSR.
* Writes are only relevant for old K7 processors,
* all pre-dating SVM, but a recommended workaround from
* AMD for these chips. It is possible to speicify the
* affected processor models on the command line, hence
* the need to ignore the workaround.
*/
break;
case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
if (kvm_hv_msr_partition_wide(msr)) {
int r;
mutex_lock(&vcpu->kvm->lock);
r = set_msr_hyperv_pw(vcpu, msr, data);
mutex_unlock(&vcpu->kvm->lock);
return r;
} else
return set_msr_hyperv(vcpu, msr, data);
break;
default:
if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
return xen_hvm_config(vcpu, data);
if (!ignore_msrs) {
pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
msr, data);
return 1;
} else {
pr_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
msr, data);
break;
}
}
return 0;
}
EXPORT_SYMBOL_GPL(kvm_set_msr_common);
/*
* Reads an msr value (of 'msr_index') into 'pdata'.
* Returns 0 on success, non-0 otherwise.
* Assumes vcpu_load() was already called.
*/
int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
{
return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
}
static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
{
u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
if (!msr_mtrr_valid(msr))
return 1;
if (msr == MSR_MTRRdefType)
*pdata = vcpu->arch.mtrr_state.def_type +
(vcpu->arch.mtrr_state.enabled << 10);
else if (msr == MSR_MTRRfix64K_00000)
*pdata = p[0];
else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
*pdata = p[1 + msr - MSR_MTRRfix16K_80000];
else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
*pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
else if (msr == MSR_IA32_CR_PAT)
*pdata = vcpu->arch.pat;
else { /* Variable MTRRs */
int idx, is_mtrr_mask;
u64 *pt;
idx = (msr - 0x200) / 2;
is_mtrr_mask = msr - 0x200 - 2 * idx;
if (!is_mtrr_mask)
pt =
(u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
else
pt =
(u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
*pdata = *pt;
}
return 0;
}
static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
{
u64 data;
u64 mcg_cap = vcpu->arch.mcg_cap;
unsigned bank_num = mcg_cap & 0xff;
switch (msr) {
case MSR_IA32_P5_MC_ADDR:
case MSR_IA32_P5_MC_TYPE:
data = 0;
break;
case MSR_IA32_MCG_CAP:
data = vcpu->arch.mcg_cap;
break;
case MSR_IA32_MCG_CTL:
if (!(mcg_cap & MCG_CTL_P))
return 1;
data = vcpu->arch.mcg_ctl;
break;
case MSR_IA32_MCG_STATUS:
data = vcpu->arch.mcg_status;
break;
default:
if (msr >= MSR_IA32_MC0_CTL &&
msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
u32 offset = msr - MSR_IA32_MC0_CTL;
data = vcpu->arch.mce_banks[offset];
break;
}
return 1;
}
*pdata = data;
return 0;
}
static int get_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
{
u64 data = 0;
struct kvm *kvm = vcpu->kvm;
switch (msr) {
case HV_X64_MSR_GUEST_OS_ID:
data = kvm->arch.hv_guest_os_id;
break;
case HV_X64_MSR_HYPERCALL:
data = kvm->arch.hv_hypercall;
break;
default:
pr_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
return 1;
}
*pdata = data;
return 0;
}
static int get_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
{
u64 data = 0;
switch (msr) {
case HV_X64_MSR_VP_INDEX: {
int r;
struct kvm_vcpu *v;
kvm_for_each_vcpu(r, v, vcpu->kvm)
if (v == vcpu)
data = r;
break;
}
case HV_X64_MSR_EOI:
return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
case HV_X64_MSR_ICR:
return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
case HV_X64_MSR_TPR:
return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
default:
pr_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
return 1;
}
*pdata = data;
return 0;
}
int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
{
u64 data;
switch (msr) {
case MSR_IA32_PLATFORM_ID:
case MSR_IA32_UCODE_REV:
case MSR_IA32_EBL_CR_POWERON:
case MSR_IA32_DEBUGCTLMSR:
case MSR_IA32_LASTBRANCHFROMIP:
case MSR_IA32_LASTBRANCHTOIP:
case MSR_IA32_LASTINTFROMIP:
case MSR_IA32_LASTINTTOIP:
case MSR_K8_SYSCFG:
case MSR_K7_HWCR:
case MSR_VM_HSAVE_PA:
case MSR_P6_PERFCTR0:
case MSR_P6_PERFCTR1:
case MSR_P6_EVNTSEL0:
case MSR_P6_EVNTSEL1:
case MSR_K7_EVNTSEL0:
case MSR_K7_PERFCTR0:
case MSR_K8_INT_PENDING_MSG:
case MSR_AMD64_NB_CFG:
case MSR_FAM10H_MMIO_CONF_BASE:
data = 0;
break;
case MSR_MTRRcap:
data = 0x500 | KVM_NR_VAR_MTRR;
break;
case 0x200 ... 0x2ff:
return get_msr_mtrr(vcpu, msr, pdata);
case 0xcd: /* fsb frequency */
data = 3;
break;
/*
* MSR_EBC_FREQUENCY_ID
* Conservative value valid for even the basic CPU models.
* Models 0,1: 000 in bits 23:21 indicating a bus speed of
* 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
* and 266MHz for model 3, or 4. Set Core Clock
* Frequency to System Bus Frequency Ratio to 1 (bits
* 31:24) even though these are only valid for CPU
* models > 2, however guests may end up dividing or
* multiplying by zero otherwise.
*/
case MSR_EBC_FREQUENCY_ID:
data = 1 << 24;
break;
case MSR_IA32_APICBASE:
data = kvm_get_apic_base(vcpu);
break;
case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
return kvm_x2apic_msr_read(vcpu, msr, pdata);
break;
case MSR_IA32_MISC_ENABLE:
data = vcpu->arch.ia32_misc_enable_msr;
break;
case MSR_IA32_PERF_STATUS:
/* TSC increment by tick */
data = 1000ULL;
/* CPU multiplier */
data |= (((uint64_t)4ULL) << 40);
break;
case MSR_EFER:
data = vcpu->arch.efer;
break;
case MSR_KVM_WALL_CLOCK:
case MSR_KVM_WALL_CLOCK_NEW:
data = vcpu->kvm->arch.wall_clock;
break;
case MSR_KVM_SYSTEM_TIME:
case MSR_KVM_SYSTEM_TIME_NEW:
data = vcpu->arch.time;
break;
case MSR_IA32_P5_MC_ADDR:
case MSR_IA32_P5_MC_TYPE:
case MSR_IA32_MCG_CAP:
case MSR_IA32_MCG_CTL:
case MSR_IA32_MCG_STATUS:
case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
return get_msr_mce(vcpu, msr, pdata);
case MSR_K7_CLK_CTL:
/*
* Provide expected ramp-up count for K7. All other
* are set to zero, indicating minimum divisors for
* every field.
*
* This prevents guest kernels on AMD host with CPU
* type 6, model 8 and higher from exploding due to
* the rdmsr failing.
*/
data = 0x20000000;
break;
case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
if (kvm_hv_msr_partition_wide(msr)) {
int r;
mutex_lock(&vcpu->kvm->lock);
r = get_msr_hyperv_pw(vcpu, msr, pdata);
mutex_unlock(&vcpu->kvm->lock);
return r;
} else
return get_msr_hyperv(vcpu, msr, pdata);
break;
default:
if (!ignore_msrs) {
pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
return 1;
} else {
pr_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
data = 0;
}
break;
}
*pdata = data;
return 0;
}
EXPORT_SYMBOL_GPL(kvm_get_msr_common);
/*
* Read or write a bunch of msrs. All parameters are kernel addresses.
*
* @return number of msrs set successfully.
*/
static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
struct kvm_msr_entry *entries,
int (*do_msr)(struct kvm_vcpu *vcpu,
unsigned index, u64 *data))
{
int i, idx;
idx = srcu_read_lock(&vcpu->kvm->srcu);
for (i = 0; i < msrs->nmsrs; ++i)
if (do_msr(vcpu, entries[i].index, &entries[i].data))
break;
srcu_read_unlock(&vcpu->kvm->srcu, idx);
return i;
}
/*
* Read or write a bunch of msrs. Parameters are user addresses.
*
* @return number of msrs set successfully.
*/
static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
int (*do_msr)(struct kvm_vcpu *vcpu,
unsigned index, u64 *data),
int writeback)
{
struct kvm_msrs msrs;
struct kvm_msr_entry *entries;
int r, n;
unsigned size;
r = -EFAULT;
if (copy_from_user(&msrs, user_msrs, sizeof msrs))
goto out;
r = -E2BIG;
if (msrs.nmsrs >= MAX_IO_MSRS)
goto out;
r = -ENOMEM;
size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
entries = kmalloc(size, GFP_KERNEL);
if (!entries)
goto out;
r = -EFAULT;
if (copy_from_user(entries, user_msrs->entries, size))
goto out_free;
r = n = __msr_io(vcpu, &msrs, entries, do_msr);
if (r < 0)
goto out_free;
r = -EFAULT;
if (writeback && copy_to_user(user_msrs->entries, entries, size))
goto out_free;
r = n;
out_free:
kfree(entries);
out:
return r;
}
int kvm_dev_ioctl_check_extension(long ext)
{
int r;
switch (ext) {
case KVM_CAP_IRQCHIP:
case KVM_CAP_HLT:
case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
case KVM_CAP_SET_TSS_ADDR:
case KVM_CAP_EXT_CPUID:
case KVM_CAP_CLOCKSOURCE:
case KVM_CAP_PIT:
case KVM_CAP_NOP_IO_DELAY:
case KVM_CAP_MP_STATE:
case KVM_CAP_SYNC_MMU:
case KVM_CAP_REINJECT_CONTROL:
case KVM_CAP_IRQ_INJECT_STATUS:
case KVM_CAP_ASSIGN_DEV_IRQ:
case KVM_CAP_IRQFD:
case KVM_CAP_IOEVENTFD:
case KVM_CAP_PIT2:
case KVM_CAP_PIT_STATE2:
case KVM_CAP_SET_IDENTITY_MAP_ADDR:
case KVM_CAP_XEN_HVM:
case KVM_CAP_ADJUST_CLOCK:
case KVM_CAP_VCPU_EVENTS:
case KVM_CAP_HYPERV:
case KVM_CAP_HYPERV_VAPIC:
case KVM_CAP_HYPERV_SPIN:
case KVM_CAP_PCI_SEGMENT:
case KVM_CAP_DEBUGREGS:
case KVM_CAP_X86_ROBUST_SINGLESTEP:
case KVM_CAP_XSAVE:
r = 1;
break;
case KVM_CAP_COALESCED_MMIO:
r = KVM_COALESCED_MMIO_PAGE_OFFSET;
break;
case KVM_CAP_VAPIC:
r = !kvm_x86_ops->cpu_has_accelerated_tpr();
break;
case KVM_CAP_NR_VCPUS:
r = KVM_MAX_VCPUS;
break;
case KVM_CAP_NR_MEMSLOTS:
r = KVM_MEMORY_SLOTS;
break;
case KVM_CAP_PV_MMU: /* obsolete */
r = 0;
break;
case KVM_CAP_IOMMU:
r = iommu_found();
break;
case KVM_CAP_MCE:
r = KVM_MAX_MCE_BANKS;
break;
case KVM_CAP_XCRS:
r = cpu_has_xsave;
break;
default:
r = 0;
break;
}
return r;
}
long kvm_arch_dev_ioctl(struct file *filp,
unsigned int ioctl, unsigned long arg)
{
void __user *argp = (void __user *)arg;
long r;
switch (ioctl) {
case KVM_GET_MSR_INDEX_LIST: {
struct kvm_msr_list __user *user_msr_list = argp;
struct kvm_msr_list msr_list;
unsigned n;
r = -EFAULT;
if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
goto out;
n = msr_list.nmsrs;
msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
goto out;
r = -E2BIG;
if (n < msr_list.nmsrs)
goto out;
r = -EFAULT;
if (copy_to_user(user_msr_list->indices, &msrs_to_save,
num_msrs_to_save * sizeof(u32)))
goto out;
if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
&emulated_msrs,
ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
goto out;
r = 0;
break;
}
case KVM_GET_SUPPORTED_CPUID: {
struct kvm_cpuid2 __user *cpuid_arg = argp;
struct kvm_cpuid2 cpuid;
r = -EFAULT;
if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
goto out;
r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
cpuid_arg->entries);
if (r)
goto out;
r = -EFAULT;
if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
goto out;
r = 0;
break;
}
case KVM_X86_GET_MCE_CAP_SUPPORTED: {
u64 mce_cap;
mce_cap = KVM_MCE_CAP_SUPPORTED;
r = -EFAULT;
if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
goto out;
r = 0;
break;
}
default:
r = -EINVAL;
}
out:
return r;
}
static void wbinvd_ipi(void *garbage)
{
wbinvd();
}
static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
{
return vcpu->kvm->arch.iommu_domain &&
!(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY);
}
void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
{
/* Address WBINVD may be executed by guest */
if (need_emulate_wbinvd(vcpu)) {
if (kvm_x86_ops->has_wbinvd_exit())
cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
smp_call_function_single(vcpu->cpu,
wbinvd_ipi, NULL, 1);
}
kvm_x86_ops->vcpu_load(vcpu, cpu);
if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
/* Make sure TSC doesn't go backwards */
s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
native_read_tsc() - vcpu->arch.last_host_tsc;
if (tsc_delta < 0)
mark_tsc_unstable("KVM discovered backwards TSC");
if (check_tsc_unstable())
kvm_x86_ops->adjust_tsc_offset(vcpu, -tsc_delta);
kvm_migrate_timers(vcpu);
vcpu->cpu = cpu;
}
}
void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
{
kvm_x86_ops->vcpu_put(vcpu);
kvm_put_guest_fpu(vcpu);
vcpu->arch.last_host_tsc = native_read_tsc();
}
static int is_efer_nx(void)
{
unsigned long long efer = 0;
rdmsrl_safe(MSR_EFER, &efer);
return efer & EFER_NX;
}
static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
{
int i;
struct kvm_cpuid_entry2 *e, *entry;
entry = NULL;
for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
e = &vcpu->arch.cpuid_entries[i];
if (e->function == 0x80000001) {
entry = e;
break;
}
}
if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
entry->edx &= ~(1 << 20);
printk(KERN_INFO "kvm: guest NX capability removed\n");
}
}
/* when an old userspace process fills a new kernel module */
static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
struct kvm_cpuid *cpuid,
struct kvm_cpuid_entry __user *entries)
{
int r, i;
struct kvm_cpuid_entry *cpuid_entries;
r = -E2BIG;
if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
goto out;
r = -ENOMEM;
cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
if (!cpuid_entries)
goto out;
r = -EFAULT;
if (copy_from_user(cpuid_entries, entries,
cpuid->nent * sizeof(struct kvm_cpuid_entry)))
goto out_free;
for (i = 0; i < cpuid->nent; i++) {
vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
vcpu->arch.cpuid_entries[i].index = 0;
vcpu->arch.cpuid_entries[i].flags = 0;
vcpu->arch.cpuid_entries[i].padding[0] = 0;
vcpu->arch.cpuid_entries[i].padding[1] = 0;
vcpu->arch.cpuid_entries[i].padding[2] = 0;
}
vcpu->arch.cpuid_nent = cpuid->nent;
cpuid_fix_nx_cap(vcpu);
r = 0;
kvm_apic_set_version(vcpu);
kvm_x86_ops->cpuid_update(vcpu);
update_cpuid(vcpu);
out_free:
vfree(cpuid_entries);
out:
return r;
}
static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
struct kvm_cpuid2 *cpuid,
struct kvm_cpuid_entry2 __user *entries)
{
int r;
r = -E2BIG;
if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
goto out;
r = -EFAULT;
if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
goto out;
vcpu->arch.cpuid_nent = cpuid->nent;
kvm_apic_set_version(vcpu);
kvm_x86_ops->cpuid_update(vcpu);
update_cpuid(vcpu);
return 0;
out:
return r;
}
static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
struct kvm_cpuid2 *cpuid,
struct kvm_cpuid_entry2 __user *entries)
{
int r;
r = -E2BIG;
if (cpuid->nent < vcpu->arch.cpuid_nent)
goto out;
r = -EFAULT;
if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
goto out;
return 0;
out:
cpuid->nent = vcpu->arch.cpuid_nent;
return r;
}
static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
u32 index)
{
entry->function = function;
entry->index = index;
cpuid_count(entry->function, entry->index,
&entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
entry->flags = 0;
}
#define F(x) bit(X86_FEATURE_##x)
static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
u32 index, int *nent, int maxnent)
{
unsigned f_nx = is_efer_nx() ? F(NX) : 0;
#ifdef CONFIG_X86_64
unsigned f_gbpages = (kvm_x86_ops->get_lpage_level() == PT_PDPE_LEVEL)
? F(GBPAGES) : 0;
unsigned f_lm = F(LM);
#else
unsigned f_gbpages = 0;
unsigned f_lm = 0;
#endif
unsigned f_rdtscp = kvm_x86_ops->rdtscp_supported() ? F(RDTSCP) : 0;
/* cpuid 1.edx */
const u32 kvm_supported_word0_x86_features =
F(FPU) | F(VME) | F(DE) | F(PSE) |
F(TSC) | F(MSR) | F(PAE) | F(MCE) |
F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLSH) |
0 /* Reserved, DS, ACPI */ | F(MMX) |
F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
0 /* HTT, TM, Reserved, PBE */;
/* cpuid 0x80000001.edx */
const u32 kvm_supported_word1_x86_features =
F(FPU) | F(VME) | F(DE) | F(PSE) |
F(TSC) | F(MSR) | F(PAE) | F(MCE) |
F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
F(PAT) | F(PSE36) | 0 /* Reserved */ |
f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
F(FXSR) | F(FXSR_OPT) | f_gbpages | f_rdtscp |
0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW);
/* cpuid 1.ecx */
const u32 kvm_supported_word4_x86_features =
F(XMM3) | F(PCLMULQDQ) | 0 /* DTES64, MONITOR */ |
0 /* DS-CPL, VMX, SMX, EST */ |
0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
0 /* Reserved */ | F(CX16) | 0 /* xTPR Update, PDCM */ |
0 /* Reserved, DCA */ | F(XMM4_1) |
F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
0 /* Reserved, AES */ | F(XSAVE) | 0 /* OSXSAVE */ | F(AVX);
/* cpuid 0x80000001.ecx */
const u32 kvm_supported_word6_x86_features =
F(LAHF_LM) | F(CMP_LEGACY) | F(SVM) | 0 /* ExtApicSpace */ |
F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
F(3DNOWPREFETCH) | 0 /* OSVW */ | 0 /* IBS */ | F(SSE5) |
0 /* SKINIT */ | 0 /* WDT */;
/* all calls to cpuid_count() should be made on the same cpu */
get_cpu();
do_cpuid_1_ent(entry, function, index);
++*nent;
switch (function) {
case 0:
entry->eax = min(entry->eax, (u32)0xd);
break;
case 1:
entry->edx &= kvm_supported_word0_x86_features;
entry->ecx &= kvm_supported_word4_x86_features;
/* we support x2apic emulation even if host does not support
* it since we emulate x2apic in software */
entry->ecx |= F(X2APIC);
break;
/* function 2 entries are STATEFUL. That is, repeated cpuid commands
* may return different values. This forces us to get_cpu() before
* issuing the first command, and also to emulate this annoying behavior
* in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
case 2: {
int t, times = entry->eax & 0xff;
entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
for (t = 1; t < times && *nent < maxnent; ++t) {
do_cpuid_1_ent(&entry[t], function, 0);
entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
++*nent;
}
break;
}
/* function 4 and 0xb have additional index. */
case 4: {
int i, cache_type;
entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
/* read more entries until cache_type is zero */
for (i = 1; *nent < maxnent; ++i) {
cache_type = entry[i - 1].eax & 0x1f;
if (!cache_type)
break;
do_cpuid_1_ent(&entry[i], function, i);
entry[i].flags |=
KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
++*nent;
}
break;
}
case 0xb: {
int i, level_type;
entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
/* read more entries until level_type is zero */
for (i = 1; *nent < maxnent; ++i) {
level_type = entry[i - 1].ecx & 0xff00;
if (!level_type)
break;
do_cpuid_1_ent(&entry[i], function, i);
entry[i].flags |=
KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
++*nent;
}
break;
}
case 0xd: {
int i;
entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
for (i = 1; *nent < maxnent; ++i) {
if (entry[i - 1].eax == 0 && i != 2)
break;
do_cpuid_1_ent(&entry[i], function, i);
entry[i].flags |=
KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
++*nent;
}
break;
}
case KVM_CPUID_SIGNATURE: {
char signature[12] = "KVMKVMKVM\0\0";
u32 *sigptr = (u32 *)signature;
entry->eax = 0;
entry->ebx = sigptr[0];
entry->ecx = sigptr[1];
entry->edx = sigptr[2];
break;
}
case KVM_CPUID_FEATURES:
entry->eax = (1 << KVM_FEATURE_CLOCKSOURCE) |
(1 << KVM_FEATURE_NOP_IO_DELAY) |
(1 << KVM_FEATURE_CLOCKSOURCE2) |
(1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT);
entry->ebx = 0;
entry->ecx = 0;
entry->edx = 0;
break;
case 0x80000000:
entry->eax = min(entry->eax, 0x8000001a);
break;
case 0x80000001:
entry->edx &= kvm_supported_word1_x86_features;
entry->ecx &= kvm_supported_word6_x86_features;
break;
}
kvm_x86_ops->set_supported_cpuid(function, entry);
put_cpu();
}
#undef F
static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
struct kvm_cpuid_entry2 __user *entries)
{
struct kvm_cpuid_entry2 *cpuid_entries;
int limit, nent = 0, r = -E2BIG;
u32 func;
if (cpuid->nent < 1)
goto out;
if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
cpuid->nent = KVM_MAX_CPUID_ENTRIES;
r = -ENOMEM;
cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
if (!cpuid_entries)
goto out;
do_cpuid_ent(&cpuid_entries[0], 0, 0, &nent, cpuid->nent);
limit = cpuid_entries[0].eax;
for (func = 1; func <= limit && nent < cpuid->nent; ++func)
do_cpuid_ent(&cpuid_entries[nent], func, 0,
&nent, cpuid->nent);
r = -E2BIG;
if (nent >= cpuid->nent)
goto out_free;
do_cpuid_ent(&cpuid_entries[nent], 0x80000000, 0, &nent, cpuid->nent);
limit = cpuid_entries[nent - 1].eax;
for (func = 0x80000001; func <= limit && nent < cpuid->nent; ++func)
do_cpuid_ent(&cpuid_entries[nent], func, 0,
&nent, cpuid->nent);
r = -E2BIG;
if (nent >= cpuid->nent)
goto out_free;
do_cpuid_ent(&cpuid_entries[nent], KVM_CPUID_SIGNATURE, 0, &nent,
cpuid->nent);
r = -E2BIG;
if (nent >= cpuid->nent)
goto out_free;
do_cpuid_ent(&cpuid_entries[nent], KVM_CPUID_FEATURES, 0, &nent,
cpuid->nent);
r = -E2BIG;
if (nent >= cpuid->nent)
goto out_free;
r = -EFAULT;
if (copy_to_user(entries, cpuid_entries,
nent * sizeof(struct kvm_cpuid_entry2)))
goto out_free;
cpuid->nent = nent;
r = 0;
out_free:
vfree(cpuid_entries);
out:
return r;
}
static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
struct kvm_lapic_state *s)
{
memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
return 0;
}
static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
struct kvm_lapic_state *s)
{
memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
kvm_apic_post_state_restore(vcpu);
update_cr8_intercept(vcpu);
return 0;
}
static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
struct kvm_interrupt *irq)
{
if (irq->irq < 0 || irq->irq >= 256)
return -EINVAL;
if (irqchip_in_kernel(vcpu->kvm))
return -ENXIO;
kvm_queue_interrupt(vcpu, irq->irq, false);
return 0;
}
static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
{
kvm_inject_nmi(vcpu);
return 0;
}
static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
struct kvm_tpr_access_ctl *tac)
{
if (tac->flags)
return -EINVAL;
vcpu->arch.tpr_access_reporting = !!tac->enabled;
return 0;
}
static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
u64 mcg_cap)
{
int r;
unsigned bank_num = mcg_cap & 0xff, bank;
r = -EINVAL;
if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
goto out;
if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
goto out;
r = 0;
vcpu->arch.mcg_cap = mcg_cap;
/* Init IA32_MCG_CTL to all 1s */
if (mcg_cap & MCG_CTL_P)
vcpu->arch.mcg_ctl = ~(u64)0;
/* Init IA32_MCi_CTL to all 1s */
for (bank = 0; bank < bank_num; bank++)
vcpu->arch.mce_banks[bank*4] = ~(u64)0;
out:
return r;
}
static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
struct kvm_x86_mce *mce)
{
u64 mcg_cap = vcpu->arch.mcg_cap;
unsigned bank_num = mcg_cap & 0xff;
u64 *banks = vcpu->arch.mce_banks;
if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
return -EINVAL;
/*
* if IA32_MCG_CTL is not all 1s, the uncorrected error
* reporting is disabled
*/
if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
vcpu->arch.mcg_ctl != ~(u64)0)
return 0;
banks += 4 * mce->bank;
/*
* if IA32_MCi_CTL is not all 1s, the uncorrected error
* reporting is disabled for the bank
*/
if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
return 0;
if (mce->status & MCI_STATUS_UC) {
if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
!kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
printk(KERN_DEBUG "kvm: set_mce: "
"injects mce exception while "
"previous one is in progress!\n");
kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
return 0;
}
if (banks[1] & MCI_STATUS_VAL)
mce->status |= MCI_STATUS_OVER;
banks[2] = mce->addr;
banks[3] = mce->misc;
vcpu->arch.mcg_status = mce->mcg_status;
banks[1] = mce->status;
kvm_queue_exception(vcpu, MC_VECTOR);
} else if (!(banks[1] & MCI_STATUS_VAL)
|| !(banks[1] & MCI_STATUS_UC)) {
if (banks[1] & MCI_STATUS_VAL)
mce->status |= MCI_STATUS_OVER;
banks[2] = mce->addr;
banks[3] = mce->misc;
banks[1] = mce->status;
} else
banks[1] |= MCI_STATUS_OVER;
return 0;
}
static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
struct kvm_vcpu_events *events)
{
events->exception.injected =
vcpu->arch.exception.pending &&
!kvm_exception_is_soft(vcpu->arch.exception.nr);
events->exception.nr = vcpu->arch.exception.nr;
events->exception.has_error_code = vcpu->arch.exception.has_error_code;
events->exception.error_code = vcpu->arch.exception.error_code;
events->interrupt.injected =
vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
events->interrupt.nr = vcpu->arch.interrupt.nr;
events->interrupt.soft = 0;
events->interrupt.shadow =
kvm_x86_ops->get_interrupt_shadow(vcpu,
KVM_X86_SHADOW_INT_MOV_SS | KVM_X86_SHADOW_INT_STI);
events->nmi.injected = vcpu->arch.nmi_injected;
events->nmi.pending = vcpu->arch.nmi_pending;
events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
events->sipi_vector = vcpu->arch.sipi_vector;
events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
| KVM_VCPUEVENT_VALID_SIPI_VECTOR
| KVM_VCPUEVENT_VALID_SHADOW);
}
static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
struct kvm_vcpu_events *events)
{
if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
| KVM_VCPUEVENT_VALID_SIPI_VECTOR
| KVM_VCPUEVENT_VALID_SHADOW))
return -EINVAL;
vcpu->arch.exception.pending = events->exception.injected;
vcpu->arch.exception.nr = events->exception.nr;
vcpu->arch.exception.has_error_code = events->exception.has_error_code;
vcpu->arch.exception.error_code = events->exception.error_code;
vcpu->arch.interrupt.pending = events->interrupt.injected;
vcpu->arch.interrupt.nr = events->interrupt.nr;
vcpu->arch.interrupt.soft = events->interrupt.soft;
if (vcpu->arch.interrupt.pending && irqchip_in_kernel(vcpu->kvm))
kvm_pic_clear_isr_ack(vcpu->kvm);
if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
kvm_x86_ops->set_interrupt_shadow(vcpu,
events->interrupt.shadow);
vcpu->arch.nmi_injected = events->nmi.injected;
if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
vcpu->arch.nmi_pending = events->nmi.pending;
kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR)
vcpu->arch.sipi_vector = events->sipi_vector;
return 0;
}
static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
struct kvm_debugregs *dbgregs)
{
memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
dbgregs->dr6 = vcpu->arch.dr6;
dbgregs->dr7 = vcpu->arch.dr7;
dbgregs->flags = 0;
}
static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
struct kvm_debugregs *dbgregs)
{
if (dbgregs->flags)
return -EINVAL;
memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
vcpu->arch.dr6 = dbgregs->dr6;
vcpu->arch.dr7 = dbgregs->dr7;
return 0;
}
static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
struct kvm_xsave *guest_xsave)
{
if (cpu_has_xsave)
memcpy(guest_xsave->region,
&vcpu->arch.guest_fpu.state->xsave,
xstate_size);
else {
memcpy(guest_xsave->region,
&vcpu->arch.guest_fpu.state->fxsave,
sizeof(struct i387_fxsave_struct));
*(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
XSTATE_FPSSE;
}
}
static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
struct kvm_xsave *guest_xsave)
{
u64 xstate_bv =
*(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
if (cpu_has_xsave)
memcpy(&vcpu->arch.guest_fpu.state->xsave,
guest_xsave->region, xstate_size);
else {
if (xstate_bv & ~XSTATE_FPSSE)
return -EINVAL;
memcpy(&vcpu->arch.guest_fpu.state->fxsave,
guest_xsave->region, sizeof(struct i387_fxsave_struct));
}
return 0;
}
static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
struct kvm_xcrs *guest_xcrs)
{
if (!cpu_has_xsave) {
guest_xcrs->nr_xcrs = 0;
return;
}
guest_xcrs->nr_xcrs = 1;
guest_xcrs->flags = 0;
guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
}
static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
struct kvm_xcrs *guest_xcrs)
{
int i, r = 0;
if (!cpu_has_xsave)
return -EINVAL;
if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
return -EINVAL;
for (i = 0; i < guest_xcrs->nr_xcrs; i++)
/* Only support XCR0 currently */
if (guest_xcrs->xcrs[0].xcr == XCR_XFEATURE_ENABLED_MASK) {
r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
guest_xcrs->xcrs[0].value);
break;
}
if (r)
r = -EINVAL;
return r;
}
long kvm_arch_vcpu_ioctl(struct file *filp,
unsigned int ioctl, unsigned long arg)
{
struct kvm_vcpu *vcpu = filp->private_data;
void __user *argp = (void __user *)arg;
int r;
union {
struct kvm_lapic_state *lapic;
struct kvm_xsave *xsave;
struct kvm_xcrs *xcrs;
void *buffer;
} u;
u.buffer = NULL;
switch (ioctl) {
case KVM_GET_LAPIC: {
r = -EINVAL;
if (!vcpu->arch.apic)
goto out;
u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
r = -ENOMEM;
if (!u.lapic)
goto out;
r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
if (r)
goto out;
r = -EFAULT;
if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
goto out;
r = 0;
break;
}
case KVM_SET_LAPIC: {
r = -EINVAL;
if (!vcpu->arch.apic)
goto out;
u.lapic = kmalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
r = -ENOMEM;
if (!u.lapic)
goto out;
r = -EFAULT;
if (copy_from_user(u.lapic, argp, sizeof(struct kvm_lapic_state)))
goto out;
r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
if (r)
goto out;
r = 0;
break;
}
case KVM_INTERRUPT: {
struct kvm_interrupt irq;
r = -EFAULT;
if (copy_from_user(&irq, argp, sizeof irq))
goto out;
r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
if (r)
goto out;
r = 0;
break;
}
case KVM_NMI: {
r = kvm_vcpu_ioctl_nmi(vcpu);
if (r)
goto out;
r = 0;
break;
}
case KVM_SET_CPUID: {
struct kvm_cpuid __user *cpuid_arg = argp;
struct kvm_cpuid cpuid;
r = -EFAULT;
if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
goto out;
r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
if (r)
goto out;
break;
}
case KVM_SET_CPUID2: {
struct kvm_cpuid2 __user *cpuid_arg = argp;
struct kvm_cpuid2 cpuid;
r = -EFAULT;
if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
goto out;
r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
cpuid_arg->entries);
if (r)
goto out;
break;
}
case KVM_GET_CPUID2: {
struct kvm_cpuid2 __user *cpuid_arg = argp;
struct kvm_cpuid2 cpuid;
r = -EFAULT;
if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
goto out;
r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
cpuid_arg->entries);
if (r)
goto out;
r = -EFAULT;
if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
goto out;
r = 0;
break;
}
case KVM_GET_MSRS:
r = msr_io(vcpu, argp, kvm_get_msr, 1);
break;
case KVM_SET_MSRS:
r = msr_io(vcpu, argp, do_set_msr, 0);
break;
case KVM_TPR_ACCESS_REPORTING: {
struct kvm_tpr_access_ctl tac;
r = -EFAULT;
if (copy_from_user(&tac, argp, sizeof tac))
goto out;
r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
if (r)
goto out;
r = -EFAULT;
if (copy_to_user(argp, &tac, sizeof tac))
goto out;
r = 0;
break;
};
case KVM_SET_VAPIC_ADDR: {
struct kvm_vapic_addr va;
r = -EINVAL;
if (!irqchip_in_kernel(vcpu->kvm))
goto out;
r = -EFAULT;
if (copy_from_user(&va, argp, sizeof va))
goto out;
r = 0;
kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
break;
}
case KVM_X86_SETUP_MCE: {
u64 mcg_cap;
r = -EFAULT;
if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
goto out;
r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
break;
}
case KVM_X86_SET_MCE: {
struct kvm_x86_mce mce;
r = -EFAULT;
if (copy_from_user(&mce, argp, sizeof mce))
goto out;
r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
break;
}
case KVM_GET_VCPU_EVENTS: {
struct kvm_vcpu_events events;
kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
r = -EFAULT;
if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
break;
r = 0;
break;
}
case KVM_SET_VCPU_EVENTS: {
struct kvm_vcpu_events events;
r = -EFAULT;
if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
break;
r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
break;
}
case KVM_GET_DEBUGREGS: {
struct kvm_debugregs dbgregs;
kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
r = -EFAULT;
if (copy_to_user(argp, &dbgregs,
sizeof(struct kvm_debugregs)))
break;
r = 0;
break;
}
case KVM_SET_DEBUGREGS: {
struct kvm_debugregs dbgregs;
r = -EFAULT;
if (copy_from_user(&dbgregs, argp,
sizeof(struct kvm_debugregs)))
break;
r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
break;
}
case KVM_GET_XSAVE: {
u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
r = -ENOMEM;
if (!u.xsave)
break;
kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
r = -EFAULT;
if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
break;
r = 0;
break;
}
case KVM_SET_XSAVE: {
u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
r = -ENOMEM;
if (!u.xsave)
break;
r = -EFAULT;
if (copy_from_user(u.xsave, argp, sizeof(struct kvm_xsave)))
break;
r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
break;
}
case KVM_GET_XCRS: {
u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
r = -ENOMEM;
if (!u.xcrs)
break;
kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
r = -EFAULT;
if (copy_to_user(argp, u.xcrs,
sizeof(struct kvm_xcrs)))
break;
r = 0;
break;
}
case KVM_SET_XCRS: {
u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
r = -ENOMEM;
if (!u.xcrs)
break;
r = -EFAULT;
if (copy_from_user(u.xcrs, argp,
sizeof(struct kvm_xcrs)))
break;
r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
break;
}
default:
r = -EINVAL;
}
out:
kfree(u.buffer);
return r;
}
static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
{
int ret;
if (addr > (unsigned int)(-3 * PAGE_SIZE))
return -1;
ret = kvm_x86_ops->set_tss_addr(kvm, addr);
return ret;
}
static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
u64 ident_addr)
{
kvm->arch.ept_identity_map_addr = ident_addr;
return 0;
}
static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
u32 kvm_nr_mmu_pages)
{
if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
return -EINVAL;
mutex_lock(&kvm->slots_lock);
spin_lock(&kvm->mmu_lock);
kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
spin_unlock(&kvm->mmu_lock);
mutex_unlock(&kvm->slots_lock);
return 0;
}
static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
{
return kvm->arch.n_max_mmu_pages;
}
static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
{
int r;
r = 0;
switch (chip->chip_id) {
case KVM_IRQCHIP_PIC_MASTER:
memcpy(&chip->chip.pic,
&pic_irqchip(kvm)->pics[0],
sizeof(struct kvm_pic_state));
break;
case KVM_IRQCHIP_PIC_SLAVE:
memcpy(&chip->chip.pic,
&pic_irqchip(kvm)->pics[1],
sizeof(struct kvm_pic_state));
break;
case KVM_IRQCHIP_IOAPIC:
r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
break;
default:
r = -EINVAL;
break;
}
return r;
}
static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
{
int r;
r = 0;
switch (chip->chip_id) {
case KVM_IRQCHIP_PIC_MASTER:
raw_spin_lock(&pic_irqchip(kvm)->lock);
memcpy(&pic_irqchip(kvm)->pics[0],
&chip->chip.pic,
sizeof(struct kvm_pic_state));
raw_spin_unlock(&pic_irqchip(kvm)->lock);
break;
case KVM_IRQCHIP_PIC_SLAVE:
raw_spin_lock(&pic_irqchip(kvm)->lock);
memcpy(&pic_irqchip(kvm)->pics[1],
&chip->chip.pic,
sizeof(struct kvm_pic_state));
raw_spin_unlock(&pic_irqchip(kvm)->lock);
break;
case KVM_IRQCHIP_IOAPIC:
r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
break;
default:
r = -EINVAL;
break;
}
kvm_pic_update_irq(pic_irqchip(kvm));
return r;
}
static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
{
int r = 0;
mutex_lock(&kvm->arch.vpit->pit_state.lock);
memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
mutex_unlock(&kvm->arch.vpit->pit_state.lock);
return r;
}
static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
{
int r = 0;
mutex_lock(&kvm->arch.vpit->pit_state.lock);
memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
mutex_unlock(&kvm->arch.vpit->pit_state.lock);
return r;
}
static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
{
int r = 0;
mutex_lock(&kvm->arch.vpit->pit_state.lock);
memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
sizeof(ps->channels));
ps->flags = kvm->arch.vpit->pit_state.flags;
mutex_unlock(&kvm->arch.vpit->pit_state.lock);
return r;
}
static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
{
int r = 0, start = 0;
u32 prev_legacy, cur_legacy;
mutex_lock(&kvm->arch.vpit->pit_state.lock);
prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
if (!prev_legacy && cur_legacy)
start = 1;
memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
sizeof(kvm->arch.vpit->pit_state.channels));
kvm->arch.vpit->pit_state.flags = ps->flags;
kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
mutex_unlock(&kvm->arch.vpit->pit_state.lock);
return r;
}
static int kvm_vm_ioctl_reinject(struct kvm *kvm,
struct kvm_reinject_control *control)
{
if (!kvm->arch.vpit)
return -ENXIO;
mutex_lock(&kvm->arch.vpit->pit_state.lock);
kvm->arch.vpit->pit_state.pit_timer.reinject = control->pit_reinject;
mutex_unlock(&kvm->arch.vpit->pit_state.lock);
return 0;
}
/*
* Get (and clear) the dirty memory log for a memory slot.
*/
int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
struct kvm_dirty_log *log)
{
int r, i;
struct kvm_memory_slot *memslot;
unsigned long n;
unsigned long is_dirty = 0;
mutex_lock(&kvm->slots_lock);
r = -EINVAL;
if (log->slot >= KVM_MEMORY_SLOTS)
goto out;
memslot = &kvm->memslots->memslots[log->slot];
r = -ENOENT;
if (!memslot->dirty_bitmap)
goto out;
n = kvm_dirty_bitmap_bytes(memslot);
for (i = 0; !is_dirty && i < n/sizeof(long); i++)
is_dirty = memslot->dirty_bitmap[i];
/* If nothing is dirty, don't bother messing with page tables. */
if (is_dirty) {
struct kvm_memslots *slots, *old_slots;
unsigned long *dirty_bitmap;
spin_lock(&kvm->mmu_lock);
kvm_mmu_slot_remove_write_access(kvm, log->slot);
spin_unlock(&kvm->mmu_lock);
r = -ENOMEM;
dirty_bitmap = vmalloc(n);
if (!dirty_bitmap)
goto out;
memset(dirty_bitmap, 0, n);
r = -ENOMEM;
slots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
if (!slots) {
vfree(dirty_bitmap);
goto out;
}
memcpy(slots, kvm->memslots, sizeof(struct kvm_memslots));
slots->memslots[log->slot].dirty_bitmap = dirty_bitmap;
old_slots = kvm->memslots;
rcu_assign_pointer(kvm->memslots, slots);
synchronize_srcu_expedited(&kvm->srcu);
dirty_bitmap = old_slots->memslots[log->slot].dirty_bitmap;
kfree(old_slots);
r = -EFAULT;
if (copy_to_user(log->dirty_bitmap, dirty_bitmap, n)) {
vfree(dirty_bitmap);
goto out;
}
vfree(dirty_bitmap);
} else {
r = -EFAULT;
if (clear_user(log->dirty_bitmap, n))
goto out;
}
r = 0;
out:
mutex_unlock(&kvm->slots_lock);
return r;
}
long kvm_arch_vm_ioctl(struct file *filp,
unsigned int ioctl, unsigned long arg)
{
struct kvm *kvm = filp->private_data;
void __user *argp = (void __user *)arg;
int r = -ENOTTY;
/*
* This union makes it completely explicit to gcc-3.x
* that these two variables' stack usage should be
* combined, not added together.
*/
union {
struct kvm_pit_state ps;
struct kvm_pit_state2 ps2;
struct kvm_pit_config pit_config;
} u;
switch (ioctl) {
case KVM_SET_TSS_ADDR:
r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
if (r < 0)
goto out;
break;
case KVM_SET_IDENTITY_MAP_ADDR: {
u64 ident_addr;
r = -EFAULT;
if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
goto out;
r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
if (r < 0)
goto out;
break;
}
case KVM_SET_NR_MMU_PAGES:
r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
if (r)
goto out;
break;
case KVM_GET_NR_MMU_PAGES:
r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
break;
case KVM_CREATE_IRQCHIP: {
struct kvm_pic *vpic;
mutex_lock(&kvm->lock);
r = -EEXIST;
if (kvm->arch.vpic)
goto create_irqchip_unlock;
r = -ENOMEM;
vpic = kvm_create_pic(kvm);
if (vpic) {
r = kvm_ioapic_init(kvm);
if (r) {
kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
&vpic->dev);
kfree(vpic);
goto create_irqchip_unlock;
}
} else
goto create_irqchip_unlock;
smp_wmb();
kvm->arch.vpic = vpic;
smp_wmb();
r = kvm_setup_default_irq_routing(kvm);
if (r) {
mutex_lock(&kvm->irq_lock);
kvm_ioapic_destroy(kvm);
kvm_destroy_pic(kvm);
mutex_unlock(&kvm->irq_lock);
}
create_irqchip_unlock:
mutex_unlock(&kvm->lock);
break;
}
case KVM_CREATE_PIT:
u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
goto create_pit;
case KVM_CREATE_PIT2:
r = -EFAULT;
if (copy_from_user(&u.pit_config, argp,
sizeof(struct kvm_pit_config)))
goto out;
create_pit:
mutex_lock(&kvm->slots_lock);
r = -EEXIST;
if (kvm->arch.vpit)
goto create_pit_unlock;
r = -ENOMEM;
kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
if (kvm->arch.vpit)
r = 0;
create_pit_unlock:
mutex_unlock(&kvm->slots_lock);
break;
case KVM_IRQ_LINE_STATUS:
case KVM_IRQ_LINE: {
struct kvm_irq_level irq_event;
r = -EFAULT;
if (copy_from_user(&irq_event, argp, sizeof irq_event))
goto out;
r = -ENXIO;
if (irqchip_in_kernel(kvm)) {
__s32 status;
status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
irq_event.irq, irq_event.level);
if (ioctl == KVM_IRQ_LINE_STATUS) {
r = -EFAULT;
irq_event.status = status;
if (copy_to_user(argp, &irq_event,
sizeof irq_event))
goto out;
}
r = 0;
}
break;
}
case KVM_GET_IRQCHIP: {
/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
r = -ENOMEM;
if (!chip)
goto out;
r = -EFAULT;
if (copy_from_user(chip, argp, sizeof *chip))
goto get_irqchip_out;
r = -ENXIO;
if (!irqchip_in_kernel(kvm))
goto get_irqchip_out;
r = kvm_vm_ioctl_get_irqchip(kvm, chip);
if (r)
goto get_irqchip_out;
r = -EFAULT;
if (copy_to_user(argp, chip, sizeof *chip))
goto get_irqchip_out;
r = 0;
get_irqchip_out:
kfree(chip);
if (r)
goto out;
break;
}
case KVM_SET_IRQCHIP: {
/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
r = -ENOMEM;
if (!chip)
goto out;
r = -EFAULT;
if (copy_from_user(chip, argp, sizeof *chip))
goto set_irqchip_out;
r = -ENXIO;
if (!irqchip_in_kernel(kvm))
goto set_irqchip_out;
r = kvm_vm_ioctl_set_irqchip(kvm, chip);
if (r)
goto set_irqchip_out;
r = 0;
set_irqchip_out:
kfree(chip);
if (r)
goto out;
break;
}
case KVM_GET_PIT: {
r = -EFAULT;
if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
goto out;
r = -ENXIO;
if (!kvm->arch.vpit)
goto out;
r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
if (r)
goto out;
r = -EFAULT;
if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
goto out;
r = 0;
break;
}
case KVM_SET_PIT: {
r = -EFAULT;
if (copy_from_user(&u.ps, argp, sizeof u.ps))
goto out;
r = -ENXIO;
if (!kvm->arch.vpit)
goto out;
r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
if (r)
goto out;
r = 0;
break;
}
case KVM_GET_PIT2: {
r = -ENXIO;
if (!kvm->arch.vpit)
goto out;
r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
if (r)
goto out;
r = -EFAULT;
if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
goto out;
r = 0;
break;
}
case KVM_SET_PIT2: {
r = -EFAULT;
if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
goto out;
r = -ENXIO;
if (!kvm->arch.vpit)
goto out;
r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
if (r)
goto out;
r = 0;
break;
}
case KVM_REINJECT_CONTROL: {
struct kvm_reinject_control control;
r = -EFAULT;
if (copy_from_user(&control, argp, sizeof(control)))
goto out;
r = kvm_vm_ioctl_reinject(kvm, &control);
if (r)
goto out;
r = 0;
break;
}
case KVM_XEN_HVM_CONFIG: {
r = -EFAULT;
if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
sizeof(struct kvm_xen_hvm_config)))
goto out;
r = -EINVAL;
if (kvm->arch.xen_hvm_config.flags)
goto out;
r = 0;
break;
}
case KVM_SET_CLOCK: {
struct kvm_clock_data user_ns;
u64 now_ns;
s64 delta;
r = -EFAULT;
if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
goto out;
r = -EINVAL;
if (user_ns.flags)
goto out;
r = 0;
now_ns = get_kernel_ns();
delta = user_ns.clock - now_ns;
kvm->arch.kvmclock_offset = delta;
break;
}
case KVM_GET_CLOCK: {
struct kvm_clock_data user_ns;
u64 now_ns;
now_ns = get_kernel_ns();
user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
user_ns.flags = 0;
r = -EFAULT;
if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
goto out;
r = 0;
break;
}
default:
;
}
out:
return r;
}
static void kvm_init_msr_list(void)
{
u32 dummy[2];
unsigned i, j;
/* skip the first msrs in the list. KVM-specific */
for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) {
if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
continue;
if (j < i)
msrs_to_save[j] = msrs_to_save[i];
j++;
}
num_msrs_to_save = j;
}
static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
const void *v)
{
if (vcpu->arch.apic &&
!kvm_iodevice_write(&vcpu->arch.apic->dev, addr, len, v))
return 0;
return kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, addr, len, v);
}
static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
{
if (vcpu->arch.apic &&
!kvm_iodevice_read(&vcpu->arch.apic->dev, addr, len, v))
return 0;
return kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, addr, len, v);
}
static void kvm_set_segment(struct kvm_vcpu *vcpu,
struct kvm_segment *var, int seg)
{
kvm_x86_ops->set_segment(vcpu, var, seg);
}
void kvm_get_segment(struct kvm_vcpu *vcpu,
struct kvm_segment *var, int seg)
{
kvm_x86_ops->get_segment(vcpu, var, seg);
}
static gpa_t translate_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access)
{
return gpa;
}
gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva, u32 *error)
{
u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, error);
}
gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva, u32 *error)
{
u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
access |= PFERR_FETCH_MASK;
return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, error);
}
gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva, u32 *error)
{
u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
access |= PFERR_WRITE_MASK;
return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, error);
}
/* uses this to access any guest's mapped memory without checking CPL */
gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva, u32 *error)
{
return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, error);
}
static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
struct kvm_vcpu *vcpu, u32 access,
u32 *error)
{
void *data = val;
int r = X86EMUL_CONTINUE;
while (bytes) {
gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
error);
unsigned offset = addr & (PAGE_SIZE-1);
unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
int ret;
if (gpa == UNMAPPED_GVA) {
r = X86EMUL_PROPAGATE_FAULT;
goto out;
}
ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
if (ret < 0) {
r = X86EMUL_IO_NEEDED;
goto out;
}
bytes -= toread;
data += toread;
addr += toread;
}
out:
return r;
}
/* used for instruction fetching */
static int kvm_fetch_guest_virt(gva_t addr, void *val, unsigned int bytes,
struct kvm_vcpu *vcpu, u32 *error)
{
u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
return kvm_read_guest_virt_helper(addr, val, bytes, vcpu,
access | PFERR_FETCH_MASK, error);
}
static int kvm_read_guest_virt(gva_t addr, void *val, unsigned int bytes,
struct kvm_vcpu *vcpu, u32 *error)
{
u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
error);
}
static int kvm_read_guest_virt_system(gva_t addr, void *val, unsigned int bytes,
struct kvm_vcpu *vcpu, u32 *error)
{
return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, error);
}
static int kvm_write_guest_virt_system(gva_t addr, void *val,
unsigned int bytes,
struct kvm_vcpu *vcpu,
u32 *error)
{
void *data = val;
int r = X86EMUL_CONTINUE;
while (bytes) {
gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
PFERR_WRITE_MASK,
error);
unsigned offset = addr & (PAGE_SIZE-1);
unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
int ret;
if (gpa == UNMAPPED_GVA) {
r = X86EMUL_PROPAGATE_FAULT;
goto out;
}
ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
if (ret < 0) {
r = X86EMUL_IO_NEEDED;
goto out;
}
bytes -= towrite;
data += towrite;
addr += towrite;
}
out:
return r;
}
static int emulator_read_emulated(unsigned long addr,
void *val,
unsigned int bytes,
unsigned int *error_code,
struct kvm_vcpu *vcpu)
{
gpa_t gpa;
if (vcpu->mmio_read_completed) {
memcpy(val, vcpu->mmio_data, bytes);
trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
vcpu->mmio_phys_addr, *(u64 *)val);
vcpu->mmio_read_completed = 0;
return X86EMUL_CONTINUE;
}
gpa = kvm_mmu_gva_to_gpa_read(vcpu, addr, error_code);
if (gpa == UNMAPPED_GVA)
return X86EMUL_PROPAGATE_FAULT;
/* For APIC access vmexit */
if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
goto mmio;
if (kvm_read_guest_virt(addr, val, bytes, vcpu, NULL)
== X86EMUL_CONTINUE)
return X86EMUL_CONTINUE;
mmio:
/*
* Is this MMIO handled locally?
*/
if (!vcpu_mmio_read(vcpu, gpa, bytes, val)) {
trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, gpa, *(u64 *)val);
return X86EMUL_CONTINUE;
}
trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
vcpu->mmio_needed = 1;
vcpu->run->exit_reason = KVM_EXIT_MMIO;
vcpu->run->mmio.phys_addr = vcpu->mmio_phys_addr = gpa;
vcpu->run->mmio.len = vcpu->mmio_size = bytes;
vcpu->run->mmio.is_write = vcpu->mmio_is_write = 0;
return X86EMUL_IO_NEEDED;
}
int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
const void *val, int bytes)
{
int ret;
ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
if (ret < 0)
return 0;
kvm_mmu_pte_write(vcpu, gpa, val, bytes, 1);
return 1;
}
static int emulator_write_emulated_onepage(unsigned long addr,
const void *val,
unsigned int bytes,
unsigned int *error_code,
struct kvm_vcpu *vcpu)
{
gpa_t gpa;
gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, error_code);
if (gpa == UNMAPPED_GVA)
return X86EMUL_PROPAGATE_FAULT;
/* For APIC access vmexit */
if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
goto mmio;
if (emulator_write_phys(vcpu, gpa, val, bytes))
return X86EMUL_CONTINUE;
mmio:
trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
/*
* Is this MMIO handled locally?
*/
if (!vcpu_mmio_write(vcpu, gpa, bytes, val))
return X86EMUL_CONTINUE;
vcpu->mmio_needed = 1;
vcpu->run->exit_reason = KVM_EXIT_MMIO;
vcpu->run->mmio.phys_addr = vcpu->mmio_phys_addr = gpa;
vcpu->run->mmio.len = vcpu->mmio_size = bytes;
vcpu->run->mmio.is_write = vcpu->mmio_is_write = 1;
memcpy(vcpu->run->mmio.data, val, bytes);
return X86EMUL_CONTINUE;
}
int emulator_write_emulated(unsigned long addr,
const void *val,
unsigned int bytes,
unsigned int *error_code,
struct kvm_vcpu *vcpu)
{
/* Crossing a page boundary? */
if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
int rc, now;
now = -addr & ~PAGE_MASK;
rc = emulator_write_emulated_onepage(addr, val, now, error_code,
vcpu);
if (rc != X86EMUL_CONTINUE)
return rc;
addr += now;
val += now;
bytes -= now;
}
return emulator_write_emulated_onepage(addr, val, bytes, error_code,
vcpu);
}
#define CMPXCHG_TYPE(t, ptr, old, new) \
(cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
#ifdef CONFIG_X86_64
# define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
#else
# define CMPXCHG64(ptr, old, new) \
(cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
#endif
static int emulator_cmpxchg_emulated(unsigned long addr,
const void *old,
const void *new,
unsigned int bytes,
unsigned int *error_code,
struct kvm_vcpu *vcpu)
{
gpa_t gpa;
struct page *page;
char *kaddr;
bool exchanged;
/* guests cmpxchg8b have to be emulated atomically */
if (bytes > 8 || (bytes & (bytes - 1)))
goto emul_write;
gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
if (gpa == UNMAPPED_GVA ||
(gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
goto emul_write;
if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
goto emul_write;
page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
if (is_error_page(page)) {
kvm_release_page_clean(page);
goto emul_write;
}
kaddr = kmap_atomic(page, KM_USER0);
kaddr += offset_in_page(gpa);
switch (bytes) {
case 1:
exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
break;
case 2:
exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
break;
case 4:
exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
break;
case 8:
exchanged = CMPXCHG64(kaddr, old, new);
break;
default:
BUG();
}
kunmap_atomic(kaddr, KM_USER0);
kvm_release_page_dirty(page);
if (!exchanged)
return X86EMUL_CMPXCHG_FAILED;
kvm_mmu_pte_write(vcpu, gpa, new, bytes, 1);
return X86EMUL_CONTINUE;
emul_write:
printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
return emulator_write_emulated(addr, new, bytes, error_code, vcpu);
}
static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
{
/* TODO: String I/O for in kernel device */
int r;
if (vcpu->arch.pio.in)
r = kvm_io_bus_read(vcpu->kvm, KVM_PIO_BUS, vcpu->arch.pio.port,
vcpu->arch.pio.size, pd);
else
r = kvm_io_bus_write(vcpu->kvm, KVM_PIO_BUS,
vcpu->arch.pio.port, vcpu->arch.pio.size,
pd);
return r;
}
static int emulator_pio_in_emulated(int size, unsigned short port, void *val,
unsigned int count, struct kvm_vcpu *vcpu)
{
if (vcpu->arch.pio.count)
goto data_avail;
trace_kvm_pio(0, port, size, 1);
vcpu->arch.pio.port = port;
vcpu->arch.pio.in = 1;
vcpu->arch.pio.count = count;
vcpu->arch.pio.size = size;
if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
data_avail:
memcpy(val, vcpu->arch.pio_data, size * count);
vcpu->arch.pio.count = 0;
return 1;
}
vcpu->run->exit_reason = KVM_EXIT_IO;
vcpu->run->io.direction = KVM_EXIT_IO_IN;
vcpu->run->io.size = size;
vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
vcpu->run->io.count = count;
vcpu->run->io.port = port;
return 0;
}
static int emulator_pio_out_emulated(int size, unsigned short port,
const void *val, unsigned int count,
struct kvm_vcpu *vcpu)
{
trace_kvm_pio(1, port, size, 1);
vcpu->arch.pio.port = port;
vcpu->arch.pio.in = 0;
vcpu->arch.pio.count = count;
vcpu->arch.pio.size = size;
memcpy(vcpu->arch.pio_data, val, size * count);
if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
vcpu->arch.pio.count = 0;
return 1;
}
vcpu->run->exit_reason = KVM_EXIT_IO;
vcpu->run->io.direction = KVM_EXIT_IO_OUT;
vcpu->run->io.size = size;
vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
vcpu->run->io.count = count;
vcpu->run->io.port = port;
return 0;
}
static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
{
return kvm_x86_ops->get_segment_base(vcpu, seg);
}
int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
{
kvm_mmu_invlpg(vcpu, address);
return X86EMUL_CONTINUE;
}
int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
{
if (!need_emulate_wbinvd(vcpu))
return X86EMUL_CONTINUE;
if (kvm_x86_ops->has_wbinvd_exit()) {
smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
wbinvd_ipi, NULL, 1);
cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
}
wbinvd();
return X86EMUL_CONTINUE;
}
EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
int emulate_clts(struct kvm_vcpu *vcpu)
{
kvm_x86_ops->set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
kvm_x86_ops->fpu_activate(vcpu);
return X86EMUL_CONTINUE;
}
int emulator_get_dr(int dr, unsigned long *dest, struct kvm_vcpu *vcpu)
{
return _kvm_get_dr(vcpu, dr, dest);
}
int emulator_set_dr(int dr, unsigned long value, struct kvm_vcpu *vcpu)
{
return __kvm_set_dr(vcpu, dr, value);
}
static u64 mk_cr_64(u64 curr_cr, u32 new_val)
{
return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
}
static unsigned long emulator_get_cr(int cr, struct kvm_vcpu *vcpu)
{
unsigned long value;
switch (cr) {
case 0:
value = kvm_read_cr0(vcpu);
break;
case 2:
value = vcpu->arch.cr2;
break;
case 3:
value = vcpu->arch.cr3;
break;
case 4:
value = kvm_read_cr4(vcpu);
break;
case 8:
value = kvm_get_cr8(vcpu);
break;
default:
vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
return 0;
}
return value;
}
static int emulator_set_cr(int cr, unsigned long val, struct kvm_vcpu *vcpu)
{
int res = 0;
switch (cr) {
case 0:
res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
break;
case 2:
vcpu->arch.cr2 = val;
break;
case 3:
res = kvm_set_cr3(vcpu, val);
break;
case 4:
res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
break;
case 8:
res = __kvm_set_cr8(vcpu, val & 0xfUL);
break;
default:
vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
res = -1;
}
return res;
}
static int emulator_get_cpl(struct kvm_vcpu *vcpu)
{
return kvm_x86_ops->get_cpl(vcpu);
}
static void emulator_get_gdt(struct desc_ptr *dt, struct kvm_vcpu *vcpu)
{
kvm_x86_ops->get_gdt(vcpu, dt);
}
static void emulator_get_idt(struct desc_ptr *dt, struct kvm_vcpu *vcpu)
{
kvm_x86_ops->get_idt(vcpu, dt);
}
static unsigned long emulator_get_cached_segment_base(int seg,
struct kvm_vcpu *vcpu)
{
return get_segment_base(vcpu, seg);
}
static bool emulator_get_cached_descriptor(struct desc_struct *desc, int seg,
struct kvm_vcpu *vcpu)
{
struct kvm_segment var;
kvm_get_segment(vcpu, &var, seg);
if (var.unusable)
return false;
if (var.g)
var.limit >>= 12;
set_desc_limit(desc, var.limit);
set_desc_base(desc, (unsigned long)var.base);
desc->type = var.type;
desc->s = var.s;
desc->dpl = var.dpl;
desc->p = var.present;
desc->avl = var.avl;
desc->l = var.l;
desc->d = var.db;
desc->g = var.g;
return true;
}
static void emulator_set_cached_descriptor(struct desc_struct *desc, int seg,
struct kvm_vcpu *vcpu)
{
struct kvm_segment var;
/* needed to preserve selector */
kvm_get_segment(vcpu, &var, seg);
var.base = get_desc_base(desc);
var.limit = get_desc_limit(desc);
if (desc->g)
var.limit = (var.limit << 12) | 0xfff;
var.type = desc->type;
var.present = desc->p;
var.dpl = desc->dpl;
var.db = desc->d;
var.s = desc->s;
var.l = desc->l;
var.g = desc->g;
var.avl = desc->avl;
var.present = desc->p;
var.unusable = !var.present;
var.padding = 0;
kvm_set_segment(vcpu, &var, seg);
return;
}
static u16 emulator_get_segment_selector(int seg, struct kvm_vcpu *vcpu)
{
struct kvm_segment kvm_seg;
kvm_get_segment(vcpu, &kvm_seg, seg);
return kvm_seg.selector;
}
static void emulator_set_segment_selector(u16 sel, int seg,
struct kvm_vcpu *vcpu)
{
struct kvm_segment kvm_seg;
kvm_get_segment(vcpu, &kvm_seg, seg);
kvm_seg.selector = sel;
kvm_set_segment(vcpu, &kvm_seg, seg);
}
static struct x86_emulate_ops emulate_ops = {
.read_std = kvm_read_guest_virt_system,
.write_std = kvm_write_guest_virt_system,
.fetch = kvm_fetch_guest_virt,
.read_emulated = emulator_read_emulated,
.write_emulated = emulator_write_emulated,
.cmpxchg_emulated = emulator_cmpxchg_emulated,
.pio_in_emulated = emulator_pio_in_emulated,
.pio_out_emulated = emulator_pio_out_emulated,
.get_cached_descriptor = emulator_get_cached_descriptor,
.set_cached_descriptor = emulator_set_cached_descriptor,
.get_segment_selector = emulator_get_segment_selector,
.set_segment_selector = emulator_set_segment_selector,
.get_cached_segment_base = emulator_get_cached_segment_base,
.get_gdt = emulator_get_gdt,
.get_idt = emulator_get_idt,
.get_cr = emulator_get_cr,
.set_cr = emulator_set_cr,
.cpl = emulator_get_cpl,
.get_dr = emulator_get_dr,
.set_dr = emulator_set_dr,
.set_msr = kvm_set_msr,
.get_msr = kvm_get_msr,
};
static void cache_all_regs(struct kvm_vcpu *vcpu)
{
kvm_register_read(vcpu, VCPU_REGS_RAX);
kvm_register_read(vcpu, VCPU_REGS_RSP);
kvm_register_read(vcpu, VCPU_REGS_RIP);
vcpu->arch.regs_dirty = ~0;
}
static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
{
u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu, mask);
/*
* an sti; sti; sequence only disable interrupts for the first
* instruction. So, if the last instruction, be it emulated or
* not, left the system with the INT_STI flag enabled, it
* means that the last instruction is an sti. We should not
* leave the flag on in this case. The same goes for mov ss
*/
if (!(int_shadow & mask))
kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
}
static void inject_emulated_exception(struct kvm_vcpu *vcpu)
{
struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
if (ctxt->exception == PF_VECTOR)
kvm_inject_page_fault(vcpu);
else if (ctxt->error_code_valid)
kvm_queue_exception_e(vcpu, ctxt->exception, ctxt->error_code);
else
kvm_queue_exception(vcpu, ctxt->exception);
}
static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
{
struct decode_cache *c = &vcpu->arch.emulate_ctxt.decode;
int cs_db, cs_l;
cache_all_regs(vcpu);
kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
vcpu->arch.emulate_ctxt.vcpu = vcpu;
vcpu->arch.emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu);
vcpu->arch.emulate_ctxt.eip = kvm_rip_read(vcpu);
vcpu->arch.emulate_ctxt.mode =
(!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
(vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM)
? X86EMUL_MODE_VM86 : cs_l
? X86EMUL_MODE_PROT64 : cs_db
? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
memset(c, 0, sizeof(struct decode_cache));
memcpy(c->regs, vcpu->arch.regs, sizeof c->regs);
}
static int handle_emulation_failure(struct kvm_vcpu *vcpu)
{
++vcpu->stat.insn_emulation_fail;
trace_kvm_emulate_insn_failed(vcpu);
vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
vcpu->run->internal.ndata = 0;
kvm_queue_exception(vcpu, UD_VECTOR);
return EMULATE_FAIL;
}
static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t gva)
{
gpa_t gpa;
if (tdp_enabled)
return false;
/*
* if emulation was due to access to shadowed page table
* and it failed try to unshadow page and re-entetr the
* guest to let CPU execute the instruction.
*/
if (kvm_mmu_unprotect_page_virt(vcpu, gva))
return true;
gpa = kvm_mmu_gva_to_gpa_system(vcpu, gva, NULL);
if (gpa == UNMAPPED_GVA)
return true; /* let cpu generate fault */
if (!kvm_is_error_hva(gfn_to_hva(vcpu->kvm, gpa >> PAGE_SHIFT)))
return true;
return false;
}
int emulate_instruction(struct kvm_vcpu *vcpu,
unsigned long cr2,
u16 error_code,
int emulation_type)
{
int r;
struct decode_cache *c = &vcpu->arch.emulate_ctxt.decode;
kvm_clear_exception_queue(vcpu);
vcpu->arch.mmio_fault_cr2 = cr2;
/*
* TODO: fix emulate.c to use guest_read/write_register
* instead of direct ->regs accesses, can save hundred cycles
* on Intel for instructions that don't read/change RSP, for
* for example.
*/
cache_all_regs(vcpu);
if (!(emulation_type & EMULTYPE_NO_DECODE)) {
init_emulate_ctxt(vcpu);
vcpu->arch.emulate_ctxt.interruptibility = 0;
vcpu->arch.emulate_ctxt.exception = -1;
vcpu->arch.emulate_ctxt.perm_ok = false;
r = x86_decode_insn(&vcpu->arch.emulate_ctxt);
trace_kvm_emulate_insn_start(vcpu);
/* Only allow emulation of specific instructions on #UD
* (namely VMMCALL, sysenter, sysexit, syscall)*/
if (emulation_type & EMULTYPE_TRAP_UD) {
if (!c->twobyte)
return EMULATE_FAIL;
switch (c->b) {
case 0x01: /* VMMCALL */
if (c->modrm_mod != 3 || c->modrm_rm != 1)
return EMULATE_FAIL;
break;
case 0x34: /* sysenter */
case 0x35: /* sysexit */
if (c->modrm_mod != 0 || c->modrm_rm != 0)
return EMULATE_FAIL;
break;
case 0x05: /* syscall */
if (c->modrm_mod != 0 || c->modrm_rm != 0)
return EMULATE_FAIL;
break;
default:
return EMULATE_FAIL;
}
if (!(c->modrm_reg == 0 || c->modrm_reg == 3))
return EMULATE_FAIL;
}
++vcpu->stat.insn_emulation;
if (r) {
if (reexecute_instruction(vcpu, cr2))
return EMULATE_DONE;
if (emulation_type & EMULTYPE_SKIP)
return EMULATE_FAIL;
return handle_emulation_failure(vcpu);
}
}
if (emulation_type & EMULTYPE_SKIP) {
kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.decode.eip);
return EMULATE_DONE;
}
/* this is needed for vmware backdor interface to work since it
changes registers values during IO operation */
memcpy(c->regs, vcpu->arch.regs, sizeof c->regs);
restart:
r = x86_emulate_insn(&vcpu->arch.emulate_ctxt);
if (r == EMULATION_FAILED) {
if (reexecute_instruction(vcpu, cr2))
return EMULATE_DONE;
return handle_emulation_failure(vcpu);
}
if (vcpu->arch.emulate_ctxt.exception >= 0) {
inject_emulated_exception(vcpu);
r = EMULATE_DONE;
} else if (vcpu->arch.pio.count) {
if (!vcpu->arch.pio.in)
vcpu->arch.pio.count = 0;
r = EMULATE_DO_MMIO;
} else if (vcpu->mmio_needed) {
if (vcpu->mmio_is_write)
vcpu->mmio_needed = 0;
r = EMULATE_DO_MMIO;
} else if (r == EMULATION_RESTART)
goto restart;
else
r = EMULATE_DONE;
toggle_interruptibility(vcpu, vcpu->arch.emulate_ctxt.interruptibility);
kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
memcpy(vcpu->arch.regs, c->regs, sizeof c->regs);
kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.eip);
return r;
}
EXPORT_SYMBOL_GPL(emulate_instruction);
int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
{
unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
int ret = emulator_pio_out_emulated(size, port, &val, 1, vcpu);
/* do not return to emulator after return from userspace */
vcpu->arch.pio.count = 0;
return ret;
}
EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
static void tsc_bad(void *info)
{
__get_cpu_var(cpu_tsc_khz) = 0;
}
static void tsc_khz_changed(void *data)
{
struct cpufreq_freqs *freq = data;
unsigned long khz = 0;
if (data)
khz = freq->new;
else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
khz = cpufreq_quick_get(raw_smp_processor_id());
if (!khz)
khz = tsc_khz;
__get_cpu_var(cpu_tsc_khz) = khz;
}
static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
void *data)
{
struct cpufreq_freqs *freq = data;
struct kvm *kvm;
struct kvm_vcpu *vcpu;
int i, send_ipi = 0;
/*
* We allow guests to temporarily run on slowing clocks,
* provided we notify them after, or to run on accelerating
* clocks, provided we notify them before. Thus time never
* goes backwards.
*
* However, we have a problem. We can't atomically update
* the frequency of a given CPU from this function; it is
* merely a notifier, which can be called from any CPU.
* Changing the TSC frequency at arbitrary points in time
* requires a recomputation of local variables related to
* the TSC for each VCPU. We must flag these local variables
* to be updated and be sure the update takes place with the
* new frequency before any guests proceed.
*
* Unfortunately, the combination of hotplug CPU and frequency
* change creates an intractable locking scenario; the order
* of when these callouts happen is undefined with respect to
* CPU hotplug, and they can race with each other. As such,
* merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
* undefined; you can actually have a CPU frequency change take
* place in between the computation of X and the setting of the
* variable. To protect against this problem, all updates of
* the per_cpu tsc_khz variable are done in an interrupt
* protected IPI, and all callers wishing to update the value
* must wait for a synchronous IPI to complete (which is trivial
* if the caller is on the CPU already). This establishes the
* necessary total order on variable updates.
*
* Note that because a guest time update may take place
* anytime after the setting of the VCPU's request bit, the
* correct TSC value must be set before the request. However,
* to ensure the update actually makes it to any guest which
* starts running in hardware virtualization between the set
* and the acquisition of the spinlock, we must also ping the
* CPU after setting the request bit.
*
*/
if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
return 0;
if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
return 0;
smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
spin_lock(&kvm_lock);
list_for_each_entry(kvm, &vm_list, vm_list) {
kvm_for_each_vcpu(i, vcpu, kvm) {
if (vcpu->cpu != freq->cpu)
continue;
if (!kvm_request_guest_time_update(vcpu))
continue;
if (vcpu->cpu != smp_processor_id())
send_ipi = 1;
}
}
spin_unlock(&kvm_lock);
if (freq->old < freq->new && send_ipi) {
/*
* We upscale the frequency. Must make the guest
* doesn't see old kvmclock values while running with
* the new frequency, otherwise we risk the guest sees
* time go backwards.
*
* In case we update the frequency for another cpu
* (which might be in guest context) send an interrupt
* to kick the cpu out of guest context. Next time
* guest context is entered kvmclock will be updated,
* so the guest will not see stale values.
*/
smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
}
return 0;
}
static struct notifier_block kvmclock_cpufreq_notifier_block = {
.notifier_call = kvmclock_cpufreq_notifier
};
static int kvmclock_cpu_notifier(struct notifier_block *nfb,
unsigned long action, void *hcpu)
{
unsigned int cpu = (unsigned long)hcpu;
switch (action) {
case CPU_ONLINE:
case CPU_DOWN_FAILED:
smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
break;
case CPU_DOWN_PREPARE:
smp_call_function_single(cpu, tsc_bad, NULL, 1);
break;
}
return NOTIFY_OK;
}
static struct notifier_block kvmclock_cpu_notifier_block = {
.notifier_call = kvmclock_cpu_notifier,
.priority = -INT_MAX
};
static void kvm_timer_init(void)
{
int cpu;
register_hotcpu_notifier(&kvmclock_cpu_notifier_block);
if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
CPUFREQ_TRANSITION_NOTIFIER);
}
for_each_online_cpu(cpu)
smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
}
static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
static int kvm_is_in_guest(void)
{
return percpu_read(current_vcpu) != NULL;
}
static int kvm_is_user_mode(void)
{
int user_mode = 3;
if (percpu_read(current_vcpu))
user_mode = kvm_x86_ops->get_cpl(percpu_read(current_vcpu));
return user_mode != 0;
}
static unsigned long kvm_get_guest_ip(void)
{
unsigned long ip = 0;
if (percpu_read(current_vcpu))
ip = kvm_rip_read(percpu_read(current_vcpu));
return ip;
}
static struct perf_guest_info_callbacks kvm_guest_cbs = {
.is_in_guest = kvm_is_in_guest,
.is_user_mode = kvm_is_user_mode,
.get_guest_ip = kvm_get_guest_ip,
};
void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
{
percpu_write(current_vcpu, vcpu);
}
EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
{
percpu_write(current_vcpu, NULL);
}
EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
int kvm_arch_init(void *opaque)
{
int r;
struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
if (kvm_x86_ops) {
printk(KERN_ERR "kvm: already loaded the other module\n");
r = -EEXIST;
goto out;
}
if (!ops->cpu_has_kvm_support()) {
printk(KERN_ERR "kvm: no hardware support\n");
r = -EOPNOTSUPP;
goto out;
}
if (ops->disabled_by_bios()) {
printk(KERN_ERR "kvm: disabled by bios\n");
r = -EOPNOTSUPP;
goto out;
}
r = kvm_mmu_module_init();
if (r)
goto out;
kvm_init_msr_list();
kvm_x86_ops = ops;
kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
kvm_mmu_set_base_ptes(PT_PRESENT_MASK);
kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
PT_DIRTY_MASK, PT64_NX_MASK, 0);
kvm_timer_init();
perf_register_guest_info_callbacks(&kvm_guest_cbs);
if (cpu_has_xsave)
host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
return 0;
out:
return r;
}
void kvm_arch_exit(void)
{
perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
CPUFREQ_TRANSITION_NOTIFIER);
unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block);
kvm_x86_ops = NULL;
kvm_mmu_module_exit();
}
int kvm_emulate_halt(struct kvm_vcpu *vcpu)
{
++vcpu->stat.halt_exits;
if (irqchip_in_kernel(vcpu->kvm)) {
vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
return 1;
} else {
vcpu->run->exit_reason = KVM_EXIT_HLT;
return 0;
}
}
EXPORT_SYMBOL_GPL(kvm_emulate_halt);
static inline gpa_t hc_gpa(struct kvm_vcpu *vcpu, unsigned long a0,
unsigned long a1)
{
if (is_long_mode(vcpu))
return a0;
else
return a0 | ((gpa_t)a1 << 32);
}
int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
{
u64 param, ingpa, outgpa, ret;
uint16_t code, rep_idx, rep_cnt, res = HV_STATUS_SUCCESS, rep_done = 0;
bool fast, longmode;
int cs_db, cs_l;
/*
* hypercall generates UD from non zero cpl and real mode
* per HYPER-V spec
*/
if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) {
kvm_queue_exception(vcpu, UD_VECTOR);
return 0;
}
kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
longmode = is_long_mode(vcpu) && cs_l == 1;
if (!longmode) {
param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) |
(kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff);
ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) |
(kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff);
outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) |
(kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff);
}
#ifdef CONFIG_X86_64
else {
param = kvm_register_read(vcpu, VCPU_REGS_RCX);
ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX);
outgpa = kvm_register_read(vcpu, VCPU_REGS_R8);
}
#endif
code = param & 0xffff;
fast = (param >> 16) & 0x1;
rep_cnt = (param >> 32) & 0xfff;
rep_idx = (param >> 48) & 0xfff;
trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa);
switch (code) {
case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT:
kvm_vcpu_on_spin(vcpu);
break;
default:
res = HV_STATUS_INVALID_HYPERCALL_CODE;
break;
}
ret = res | (((u64)rep_done & 0xfff) << 32);
if (longmode) {
kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
} else {
kvm_register_write(vcpu, VCPU_REGS_RDX, ret >> 32);
kvm_register_write(vcpu, VCPU_REGS_RAX, ret & 0xffffffff);
}
return 1;
}
int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
{
unsigned long nr, a0, a1, a2, a3, ret;
int r = 1;
if (kvm_hv_hypercall_enabled(vcpu->kvm))
return kvm_hv_hypercall(vcpu);
nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
trace_kvm_hypercall(nr, a0, a1, a2, a3);
if (!is_long_mode(vcpu)) {
nr &= 0xFFFFFFFF;
a0 &= 0xFFFFFFFF;
a1 &= 0xFFFFFFFF;
a2 &= 0xFFFFFFFF;
a3 &= 0xFFFFFFFF;
}
if (kvm_x86_ops->get_cpl(vcpu) != 0) {
ret = -KVM_EPERM;
goto out;
}
switch (nr) {
case KVM_HC_VAPIC_POLL_IRQ:
ret = 0;
break;
case KVM_HC_MMU_OP:
r = kvm_pv_mmu_op(vcpu, a0, hc_gpa(vcpu, a1, a2), &ret);
break;
default:
ret = -KVM_ENOSYS;
break;
}
out:
kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
++vcpu->stat.hypercalls;
return r;
}
EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
{
char instruction[3];
unsigned long rip = kvm_rip_read(vcpu);
/*
* Blow out the MMU to ensure that no other VCPU has an active mapping
* to ensure that the updated hypercall appears atomically across all
* VCPUs.
*/
kvm_mmu_zap_all(vcpu->kvm);
kvm_x86_ops->patch_hypercall(vcpu, instruction);
return emulator_write_emulated(rip, instruction, 3, NULL, vcpu);
}
void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
{
struct desc_ptr dt = { limit, base };
kvm_x86_ops->set_gdt(vcpu, &dt);
}
void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
{
struct desc_ptr dt = { limit, base };
kvm_x86_ops->set_idt(vcpu, &dt);
}
static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
{
struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
int j, nent = vcpu->arch.cpuid_nent;
e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
/* when no next entry is found, the current entry[i] is reselected */
for (j = i + 1; ; j = (j + 1) % nent) {
struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
if (ej->function == e->function) {
ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
return j;
}
}
return 0; /* silence gcc, even though control never reaches here */
}
/* find an entry with matching function, matching index (if needed), and that
* should be read next (if it's stateful) */
static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
u32 function, u32 index)
{
if (e->function != function)
return 0;
if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
return 0;
if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
!(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
return 0;
return 1;
}
struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
u32 function, u32 index)
{
int i;
struct kvm_cpuid_entry2 *best = NULL;
for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
struct kvm_cpuid_entry2 *e;
e = &vcpu->arch.cpuid_entries[i];
if (is_matching_cpuid_entry(e, function, index)) {
if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
move_to_next_stateful_cpuid_entry(vcpu, i);
best = e;
break;
}
/*
* Both basic or both extended?
*/
if (((e->function ^ function) & 0x80000000) == 0)
if (!best || e->function > best->function)
best = e;
}
return best;
}
EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry);
int cpuid_maxphyaddr(struct kvm_vcpu *vcpu)
{
struct kvm_cpuid_entry2 *best;
best = kvm_find_cpuid_entry(vcpu, 0x80000000, 0);
if (!best || best->eax < 0x80000008)
goto not_found;
best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
if (best)
return best->eax & 0xff;
not_found:
return 36;
}
void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
{
u32 function, index;
struct kvm_cpuid_entry2 *best;
function = kvm_register_read(vcpu, VCPU_REGS_RAX);
index = kvm_register_read(vcpu, VCPU_REGS_RCX);
kvm_register_write(vcpu, VCPU_REGS_RAX, 0);
kvm_register_write(vcpu, VCPU_REGS_RBX, 0);
kvm_register_write(vcpu, VCPU_REGS_RCX, 0);
kvm_register_write(vcpu, VCPU_REGS_RDX, 0);
best = kvm_find_cpuid_entry(vcpu, function, index);
if (best) {
kvm_register_write(vcpu, VCPU_REGS_RAX, best->eax);
kvm_register_write(vcpu, VCPU_REGS_RBX, best->ebx);
kvm_register_write(vcpu, VCPU_REGS_RCX, best->ecx);
kvm_register_write(vcpu, VCPU_REGS_RDX, best->edx);
}
kvm_x86_ops->skip_emulated_instruction(vcpu);
trace_kvm_cpuid(function,
kvm_register_read(vcpu, VCPU_REGS_RAX),
kvm_register_read(vcpu, VCPU_REGS_RBX),
kvm_register_read(vcpu, VCPU_REGS_RCX),
kvm_register_read(vcpu, VCPU_REGS_RDX));
}
EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
/*
* Check if userspace requested an interrupt window, and that the
* interrupt window is open.
*
* No need to exit to userspace if we already have an interrupt queued.
*/
static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
{
return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
vcpu->run->request_interrupt_window &&
kvm_arch_interrupt_allowed(vcpu));
}
static void post_kvm_run_save(struct kvm_vcpu *vcpu)
{
struct kvm_run *kvm_run = vcpu->run;
kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
kvm_run->cr8 = kvm_get_cr8(vcpu);
kvm_run->apic_base = kvm_get_apic_base(vcpu);
if (irqchip_in_kernel(vcpu->kvm))
kvm_run->ready_for_interrupt_injection = 1;
else
kvm_run->ready_for_interrupt_injection =
kvm_arch_interrupt_allowed(vcpu) &&
!kvm_cpu_has_interrupt(vcpu) &&
!kvm_event_needs_reinjection(vcpu);
}
static void vapic_enter(struct kvm_vcpu *vcpu)
{
struct kvm_lapic *apic = vcpu->arch.apic;
struct page *page;
if (!apic || !apic->vapic_addr)
return;
page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
vcpu->arch.apic->vapic_page = page;
}
static void vapic_exit(struct kvm_vcpu *vcpu)
{
struct kvm_lapic *apic = vcpu->arch.apic;
int idx;
if (!apic || !apic->vapic_addr)
return;
idx = srcu_read_lock(&vcpu->kvm->srcu);
kvm_release_page_dirty(apic->vapic_page);
mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
srcu_read_unlock(&vcpu->kvm->srcu, idx);
}
static void update_cr8_intercept(struct kvm_vcpu *vcpu)
{
int max_irr, tpr;
if (!kvm_x86_ops->update_cr8_intercept)
return;
if (!vcpu->arch.apic)
return;
if (!vcpu->arch.apic->vapic_addr)
max_irr = kvm_lapic_find_highest_irr(vcpu);
else
max_irr = -1;
if (max_irr != -1)
max_irr >>= 4;
tpr = kvm_lapic_get_cr8(vcpu);
kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
}
static void inject_pending_event(struct kvm_vcpu *vcpu)
{
/* try to reinject previous events if any */
if (vcpu->arch.exception.pending) {
trace_kvm_inj_exception(vcpu->arch.exception.nr,
vcpu->arch.exception.has_error_code,
vcpu->arch.exception.error_code);
kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
vcpu->arch.exception.has_error_code,
vcpu->arch.exception.error_code,
vcpu->arch.exception.reinject);
return;
}
if (vcpu->arch.nmi_injected) {
kvm_x86_ops->set_nmi(vcpu);
return;
}
if (vcpu->arch.interrupt.pending) {
kvm_x86_ops->set_irq(vcpu);
return;
}
/* try to inject new event if pending */
if (vcpu->arch.nmi_pending) {
if (kvm_x86_ops->nmi_allowed(vcpu)) {
vcpu->arch.nmi_pending = false;
vcpu->arch.nmi_injected = true;
kvm_x86_ops->set_nmi(vcpu);
}
} else if (kvm_cpu_has_interrupt(vcpu)) {
if (kvm_x86_ops->interrupt_allowed(vcpu)) {
kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
false);
kvm_x86_ops->set_irq(vcpu);
}
}
}
static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
{
if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
!vcpu->guest_xcr0_loaded) {
/* kvm_set_xcr() also depends on this */
xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
vcpu->guest_xcr0_loaded = 1;
}
}
static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
{
if (vcpu->guest_xcr0_loaded) {
if (vcpu->arch.xcr0 != host_xcr0)
xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
vcpu->guest_xcr0_loaded = 0;
}
}
static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
{
int r;
bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
vcpu->run->request_interrupt_window;
if (vcpu->requests) {
if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
kvm_mmu_unload(vcpu);
if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
__kvm_migrate_timers(vcpu);
if (kvm_check_request(KVM_REQ_KVMCLOCK_UPDATE, vcpu)) {
r = kvm_write_guest_time(vcpu);
if (unlikely(r))
goto out;
}
if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
kvm_mmu_sync_roots(vcpu);
if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
kvm_x86_ops->tlb_flush(vcpu);
if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
r = 0;
goto out;
}
if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
r = 0;
goto out;
}
if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) {
vcpu->fpu_active = 0;
kvm_x86_ops->fpu_deactivate(vcpu);
}
}
r = kvm_mmu_reload(vcpu);
if (unlikely(r))
goto out;
preempt_disable();
kvm_x86_ops->prepare_guest_switch(vcpu);
if (vcpu->fpu_active)
kvm_load_guest_fpu(vcpu);
kvm_load_guest_xcr0(vcpu);
atomic_set(&vcpu->guest_mode, 1);
smp_wmb();
local_irq_disable();
if (!atomic_read(&vcpu->guest_mode) || vcpu->requests
|| need_resched() || signal_pending(current)) {
atomic_set(&vcpu->guest_mode, 0);
smp_wmb();
local_irq_enable();
preempt_enable();
r = 1;
goto out;
}
inject_pending_event(vcpu);
/* enable NMI/IRQ window open exits if needed */
if (vcpu->arch.nmi_pending)
kvm_x86_ops->enable_nmi_window(vcpu);
else if (kvm_cpu_has_interrupt(vcpu) || req_int_win)
kvm_x86_ops->enable_irq_window(vcpu);
if (kvm_lapic_enabled(vcpu)) {
update_cr8_intercept(vcpu);
kvm_lapic_sync_to_vapic(vcpu);
}
srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
kvm_guest_enter();
if (unlikely(vcpu->arch.switch_db_regs)) {
set_debugreg(0, 7);
set_debugreg(vcpu->arch.eff_db[0], 0);
set_debugreg(vcpu->arch.eff_db[1], 1);
set_debugreg(vcpu->arch.eff_db[2], 2);
set_debugreg(vcpu->arch.eff_db[3], 3);
}
trace_kvm_entry(vcpu->vcpu_id);
kvm_x86_ops->run(vcpu);
/*
* If the guest has used debug registers, at least dr7
* will be disabled while returning to the host.
* If we don't have active breakpoints in the host, we don't
* care about the messed up debug address registers. But if
* we have some of them active, restore the old state.
*/
if (hw_breakpoint_active())
hw_breakpoint_restore();
kvm_get_msr(vcpu, MSR_IA32_TSC, &vcpu->arch.last_guest_tsc);
atomic_set(&vcpu->guest_mode, 0);
smp_wmb();
local_irq_enable();
++vcpu->stat.exits;
/*
* We must have an instruction between local_irq_enable() and
* kvm_guest_exit(), so the timer interrupt isn't delayed by
* the interrupt shadow. The stat.exits increment will do nicely.
* But we need to prevent reordering, hence this barrier():
*/
barrier();
kvm_guest_exit();
preempt_enable();
vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
/*
* Profile KVM exit RIPs:
*/
if (unlikely(prof_on == KVM_PROFILING)) {
unsigned long rip = kvm_rip_read(vcpu);
profile_hit(KVM_PROFILING, (void *)rip);
}
kvm_lapic_sync_from_vapic(vcpu);
r = kvm_x86_ops->handle_exit(vcpu);
out:
return r;
}
static int __vcpu_run(struct kvm_vcpu *vcpu)
{
int r;
struct kvm *kvm = vcpu->kvm;
if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
pr_debug("vcpu %d received sipi with vector # %x\n",
vcpu->vcpu_id, vcpu->arch.sipi_vector);
kvm_lapic_reset(vcpu);
r = kvm_arch_vcpu_reset(vcpu);
if (r)
return r;
vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
}
vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
vapic_enter(vcpu);
r = 1;
while (r > 0) {
if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE)
r = vcpu_enter_guest(vcpu);
else {
srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
kvm_vcpu_block(vcpu);
vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
if (kvm_check_request(KVM_REQ_UNHALT, vcpu))
{
switch(vcpu->arch.mp_state) {
case KVM_MP_STATE_HALTED:
vcpu->arch.mp_state =
KVM_MP_STATE_RUNNABLE;
case KVM_MP_STATE_RUNNABLE:
break;
case KVM_MP_STATE_SIPI_RECEIVED:
default:
r = -EINTR;
break;
}
}
}
if (r <= 0)
break;
clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
if (kvm_cpu_has_pending_timer(vcpu))
kvm_inject_pending_timer_irqs(vcpu);
if (dm_request_for_irq_injection(vcpu)) {
r = -EINTR;
vcpu->run->exit_reason = KVM_EXIT_INTR;
++vcpu->stat.request_irq_exits;
}
if (signal_pending(current)) {
r = -EINTR;
vcpu->run->exit_reason = KVM_EXIT_INTR;
++vcpu->stat.signal_exits;
}
if (need_resched()) {
srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
kvm_resched(vcpu);
vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
}
}
srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
vapic_exit(vcpu);
return r;
}
int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
int r;
sigset_t sigsaved;
if (vcpu->sigset_active)
sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
kvm_vcpu_block(vcpu);
clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
r = -EAGAIN;
goto out;
}
/* re-sync apic's tpr */
if (!irqchip_in_kernel(vcpu->kvm))
kvm_set_cr8(vcpu, kvm_run->cr8);
if (vcpu->arch.pio.count || vcpu->mmio_needed) {
if (vcpu->mmio_needed) {
memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
vcpu->mmio_read_completed = 1;
vcpu->mmio_needed = 0;
}
vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
r = emulate_instruction(vcpu, 0, 0, EMULTYPE_NO_DECODE);
srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
if (r != EMULATE_DONE) {
r = 0;
goto out;
}
}
if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL)
kvm_register_write(vcpu, VCPU_REGS_RAX,
kvm_run->hypercall.ret);
r = __vcpu_run(vcpu);
out:
post_kvm_run_save(vcpu);
if (vcpu->sigset_active)
sigprocmask(SIG_SETMASK, &sigsaved, NULL);
return r;
}
int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
{
regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
#ifdef CONFIG_X86_64
regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
#endif
regs->rip = kvm_rip_read(vcpu);
regs->rflags = kvm_get_rflags(vcpu);
return 0;
}
int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
{
kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
#ifdef CONFIG_X86_64
kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
#endif
kvm_rip_write(vcpu, regs->rip);
kvm_set_rflags(vcpu, regs->rflags);
vcpu->arch.exception.pending = false;
return 0;
}
void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
{
struct kvm_segment cs;
kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
*db = cs.db;
*l = cs.l;
}
EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
struct kvm_sregs *sregs)
{
struct desc_ptr dt;
kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
kvm_x86_ops->get_idt(vcpu, &dt);
sregs->idt.limit = dt.size;
sregs->idt.base = dt.address;
kvm_x86_ops->get_gdt(vcpu, &dt);
sregs->gdt.limit = dt.size;
sregs->gdt.base = dt.address;
sregs->cr0 = kvm_read_cr0(vcpu);
sregs->cr2 = vcpu->arch.cr2;
sregs->cr3 = vcpu->arch.cr3;
sregs->cr4 = kvm_read_cr4(vcpu);
sregs->cr8 = kvm_get_cr8(vcpu);
sregs->efer = vcpu->arch.efer;
sregs->apic_base = kvm_get_apic_base(vcpu);
memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
set_bit(vcpu->arch.interrupt.nr,
(unsigned long *)sregs->interrupt_bitmap);
return 0;
}
int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
struct kvm_mp_state *mp_state)
{
mp_state->mp_state = vcpu->arch.mp_state;
return 0;
}
int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
struct kvm_mp_state *mp_state)
{
vcpu->arch.mp_state = mp_state->mp_state;
return 0;
}
int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int reason,
bool has_error_code, u32 error_code)
{
struct decode_cache *c = &vcpu->arch.emulate_ctxt.decode;
int ret;
init_emulate_ctxt(vcpu);
ret = emulator_task_switch(&vcpu->arch.emulate_ctxt,
tss_selector, reason, has_error_code,
error_code);
if (ret)
return EMULATE_FAIL;
memcpy(vcpu->arch.regs, c->regs, sizeof c->regs);
kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.eip);
kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
return EMULATE_DONE;
}
EXPORT_SYMBOL_GPL(kvm_task_switch);
int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
struct kvm_sregs *sregs)
{
int mmu_reset_needed = 0;
int pending_vec, max_bits;
struct desc_ptr dt;
dt.size = sregs->idt.limit;
dt.address = sregs->idt.base;
kvm_x86_ops->set_idt(vcpu, &dt);
dt.size = sregs->gdt.limit;
dt.address = sregs->gdt.base;
kvm_x86_ops->set_gdt(vcpu, &dt);
vcpu->arch.cr2 = sregs->cr2;
mmu_reset_needed |= vcpu->arch.cr3 != sregs->cr3;
vcpu->arch.cr3 = sregs->cr3;
kvm_set_cr8(vcpu, sregs->cr8);
mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
kvm_x86_ops->set_efer(vcpu, sregs->efer);
kvm_set_apic_base(vcpu, sregs->apic_base);
mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
vcpu->arch.cr0 = sregs->cr0;
mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
if (!is_long_mode(vcpu) && is_pae(vcpu)) {
load_pdptrs(vcpu, vcpu->arch.cr3);
mmu_reset_needed = 1;
}
if (mmu_reset_needed)
kvm_mmu_reset_context(vcpu);
max_bits = (sizeof sregs->interrupt_bitmap) << 3;
pending_vec = find_first_bit(
(const unsigned long *)sregs->interrupt_bitmap, max_bits);
if (pending_vec < max_bits) {
kvm_queue_interrupt(vcpu, pending_vec, false);
pr_debug("Set back pending irq %d\n", pending_vec);
if (irqchip_in_kernel(vcpu->kvm))
kvm_pic_clear_isr_ack(vcpu->kvm);
}
kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
update_cr8_intercept(vcpu);
/* Older userspace won't unhalt the vcpu on reset. */
if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
!is_protmode(vcpu))
vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
return 0;
}
int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
struct kvm_guest_debug *dbg)
{
unsigned long rflags;
int i, r;
if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
r = -EBUSY;
if (vcpu->arch.exception.pending)
goto out;
if (dbg->control & KVM_GUESTDBG_INJECT_DB)
kvm_queue_exception(vcpu, DB_VECTOR);
else
kvm_queue_exception(vcpu, BP_VECTOR);
}
/*
* Read rflags as long as potentially injected trace flags are still
* filtered out.
*/
rflags = kvm_get_rflags(vcpu);
vcpu->guest_debug = dbg->control;
if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
vcpu->guest_debug = 0;
if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
for (i = 0; i < KVM_NR_DB_REGS; ++i)
vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
vcpu->arch.switch_db_regs =
(dbg->arch.debugreg[7] & DR7_BP_EN_MASK);
} else {
for (i = 0; i < KVM_NR_DB_REGS; i++)
vcpu->arch.eff_db[i] = vcpu->arch.db[i];
vcpu->arch.switch_db_regs = (vcpu->arch.dr7 & DR7_BP_EN_MASK);
}
if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
get_segment_base(vcpu, VCPU_SREG_CS);
/*
* Trigger an rflags update that will inject or remove the trace
* flags.
*/
kvm_set_rflags(vcpu, rflags);
kvm_x86_ops->set_guest_debug(vcpu, dbg);
r = 0;
out:
return r;
}
/*
* Translate a guest virtual address to a guest physical address.
*/
int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
struct kvm_translation *tr)
{
unsigned long vaddr = tr->linear_address;
gpa_t gpa;
int idx;
idx = srcu_read_lock(&vcpu->kvm->srcu);
gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
srcu_read_unlock(&vcpu->kvm->srcu, idx);
tr->physical_address = gpa;
tr->valid = gpa != UNMAPPED_GVA;
tr->writeable = 1;
tr->usermode = 0;
return 0;
}
int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
{
struct i387_fxsave_struct *fxsave =
&vcpu->arch.guest_fpu.state->fxsave;
memcpy(fpu->fpr, fxsave->st_space, 128);
fpu->fcw = fxsave->cwd;
fpu->fsw = fxsave->swd;
fpu->ftwx = fxsave->twd;
fpu->last_opcode = fxsave->fop;
fpu->last_ip = fxsave->rip;
fpu->last_dp = fxsave->rdp;
memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
return 0;
}
int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
{
struct i387_fxsave_struct *fxsave =
&vcpu->arch.guest_fpu.state->fxsave;
memcpy(fxsave->st_space, fpu->fpr, 128);
fxsave->cwd = fpu->fcw;
fxsave->swd = fpu->fsw;
fxsave->twd = fpu->ftwx;
fxsave->fop = fpu->last_opcode;
fxsave->rip = fpu->last_ip;
fxsave->rdp = fpu->last_dp;
memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
return 0;
}
int fx_init(struct kvm_vcpu *vcpu)
{
int err;
err = fpu_alloc(&vcpu->arch.guest_fpu);
if (err)
return err;
fpu_finit(&vcpu->arch.guest_fpu);
/*
* Ensure guest xcr0 is valid for loading
*/
vcpu->arch.xcr0 = XSTATE_FP;
vcpu->arch.cr0 |= X86_CR0_ET;
return 0;
}
EXPORT_SYMBOL_GPL(fx_init);
static void fx_free(struct kvm_vcpu *vcpu)
{
fpu_free(&vcpu->arch.guest_fpu);
}
void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
{
if (vcpu->guest_fpu_loaded)
return;
/*
* Restore all possible states in the guest,
* and assume host would use all available bits.
* Guest xcr0 would be loaded later.
*/
kvm_put_guest_xcr0(vcpu);
vcpu->guest_fpu_loaded = 1;
unlazy_fpu(current);
fpu_restore_checking(&vcpu->arch.guest_fpu);
trace_kvm_fpu(1);
}
void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
{
kvm_put_guest_xcr0(vcpu);
if (!vcpu->guest_fpu_loaded)
return;
vcpu->guest_fpu_loaded = 0;
fpu_save_init(&vcpu->arch.guest_fpu);
++vcpu->stat.fpu_reload;
kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu);
trace_kvm_fpu(0);
}
void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
{
if (vcpu->arch.time_page) {
kvm_release_page_dirty(vcpu->arch.time_page);
vcpu->arch.time_page = NULL;
}
free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
fx_free(vcpu);
kvm_x86_ops->vcpu_free(vcpu);
}
struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
unsigned int id)
{
if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
printk_once(KERN_WARNING
"kvm: SMP vm created on host with unstable TSC; "
"guest TSC will not be reliable\n");
return kvm_x86_ops->vcpu_create(kvm, id);
}
int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
{
int r;
vcpu->arch.mtrr_state.have_fixed = 1;
vcpu_load(vcpu);
r = kvm_arch_vcpu_reset(vcpu);
if (r == 0)
r = kvm_mmu_setup(vcpu);
vcpu_put(vcpu);
if (r < 0)
goto free_vcpu;
return 0;
free_vcpu:
kvm_x86_ops->vcpu_free(vcpu);
return r;
}
void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
{
vcpu_load(vcpu);
kvm_mmu_unload(vcpu);
vcpu_put(vcpu);
fx_free(vcpu);
kvm_x86_ops->vcpu_free(vcpu);
}
int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
{
vcpu->arch.nmi_pending = false;
vcpu->arch.nmi_injected = false;
vcpu->arch.switch_db_regs = 0;
memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
vcpu->arch.dr6 = DR6_FIXED_1;
vcpu->arch.dr7 = DR7_FIXED_1;
return kvm_x86_ops->vcpu_reset(vcpu);
}
int kvm_arch_hardware_enable(void *garbage)
{
struct kvm *kvm;
struct kvm_vcpu *vcpu;
int i;
kvm_shared_msr_cpu_online();
list_for_each_entry(kvm, &vm_list, vm_list)
kvm_for_each_vcpu(i, vcpu, kvm)
if (vcpu->cpu == smp_processor_id())
kvm_request_guest_time_update(vcpu);
return kvm_x86_ops->hardware_enable(garbage);
}
void kvm_arch_hardware_disable(void *garbage)
{
kvm_x86_ops->hardware_disable(garbage);
drop_user_return_notifiers(garbage);
}
int kvm_arch_hardware_setup(void)
{
return kvm_x86_ops->hardware_setup();
}
void kvm_arch_hardware_unsetup(void)
{
kvm_x86_ops->hardware_unsetup();
}
void kvm_arch_check_processor_compat(void *rtn)
{
kvm_x86_ops->check_processor_compatibility(rtn);
}
int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
{
struct page *page;
struct kvm *kvm;
int r;
BUG_ON(vcpu->kvm == NULL);
kvm = vcpu->kvm;
vcpu->arch.emulate_ctxt.ops = &emulate_ops;
vcpu->arch.walk_mmu = &vcpu->arch.mmu;
vcpu->arch.mmu.root_hpa = INVALID_PAGE;
vcpu->arch.mmu.translate_gpa = translate_gpa;
if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu))
vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
else
vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
page = alloc_page(GFP_KERNEL | __GFP_ZERO);
if (!page) {
r = -ENOMEM;
goto fail;
}
vcpu->arch.pio_data = page_address(page);
r = kvm_mmu_create(vcpu);
if (r < 0)
goto fail_free_pio_data;
if (irqchip_in_kernel(kvm)) {
r = kvm_create_lapic(vcpu);
if (r < 0)
goto fail_mmu_destroy;
}
vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
GFP_KERNEL);
if (!vcpu->arch.mce_banks) {
r = -ENOMEM;
goto fail_free_lapic;
}
vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL))
goto fail_free_mce_banks;
return 0;
fail_free_mce_banks:
kfree(vcpu->arch.mce_banks);
fail_free_lapic:
kvm_free_lapic(vcpu);
fail_mmu_destroy:
kvm_mmu_destroy(vcpu);
fail_free_pio_data:
free_page((unsigned long)vcpu->arch.pio_data);
fail:
return r;
}
void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
{
int idx;
kfree(vcpu->arch.mce_banks);
kvm_free_lapic(vcpu);
idx = srcu_read_lock(&vcpu->kvm->srcu);
kvm_mmu_destroy(vcpu);
srcu_read_unlock(&vcpu->kvm->srcu, idx);
free_page((unsigned long)vcpu->arch.pio_data);
}
struct kvm *kvm_arch_create_vm(void)
{
struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
if (!kvm)
return ERR_PTR(-ENOMEM);
INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
/* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
spin_lock_init(&kvm->arch.tsc_write_lock);
return kvm;
}
static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
{
vcpu_load(vcpu);
kvm_mmu_unload(vcpu);
vcpu_put(vcpu);
}
static void kvm_free_vcpus(struct kvm *kvm)
{
unsigned int i;
struct kvm_vcpu *vcpu;
/*
* Unpin any mmu pages first.
*/
kvm_for_each_vcpu(i, vcpu, kvm)
kvm_unload_vcpu_mmu(vcpu);
kvm_for_each_vcpu(i, vcpu, kvm)
kvm_arch_vcpu_free(vcpu);
mutex_lock(&kvm->lock);
for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
kvm->vcpus[i] = NULL;
atomic_set(&kvm->online_vcpus, 0);
mutex_unlock(&kvm->lock);
}
void kvm_arch_sync_events(struct kvm *kvm)
{
kvm_free_all_assigned_devices(kvm);
kvm_free_pit(kvm);
}
void kvm_arch_destroy_vm(struct kvm *kvm)
{
kvm_iommu_unmap_guest(kvm);
kfree(kvm->arch.vpic);
kfree(kvm->arch.vioapic);
kvm_free_vcpus(kvm);
kvm_free_physmem(kvm);
if (kvm->arch.apic_access_page)
put_page(kvm->arch.apic_access_page);
if (kvm->arch.ept_identity_pagetable)
put_page(kvm->arch.ept_identity_pagetable);
cleanup_srcu_struct(&kvm->srcu);
kfree(kvm);
}
int kvm_arch_prepare_memory_region(struct kvm *kvm,
struct kvm_memory_slot *memslot,
struct kvm_memory_slot old,
struct kvm_userspace_memory_region *mem,
int user_alloc)
{
int npages = memslot->npages;
int map_flags = MAP_PRIVATE | MAP_ANONYMOUS;
/* Prevent internal slot pages from being moved by fork()/COW. */
if (memslot->id >= KVM_MEMORY_SLOTS)
map_flags = MAP_SHARED | MAP_ANONYMOUS;
/*To keep backward compatibility with older userspace,
*x86 needs to hanlde !user_alloc case.
*/
if (!user_alloc) {
if (npages && !old.rmap) {
unsigned long userspace_addr;
down_write(&current->mm->mmap_sem);
userspace_addr = do_mmap(NULL, 0,
npages * PAGE_SIZE,
PROT_READ | PROT_WRITE,
map_flags,
0);
up_write(&current->mm->mmap_sem);
if (IS_ERR((void *)userspace_addr))
return PTR_ERR((void *)userspace_addr);
memslot->userspace_addr = userspace_addr;
}
}
return 0;
}
void kvm_arch_commit_memory_region(struct kvm *kvm,
struct kvm_userspace_memory_region *mem,
struct kvm_memory_slot old,
int user_alloc)
{
int npages = mem->memory_size >> PAGE_SHIFT;
if (!user_alloc && !old.user_alloc && old.rmap && !npages) {
int ret;
down_write(&current->mm->mmap_sem);
ret = do_munmap(current->mm, old.userspace_addr,
old.npages * PAGE_SIZE);
up_write(&current->mm->mmap_sem);
if (ret < 0)
printk(KERN_WARNING
"kvm_vm_ioctl_set_memory_region: "
"failed to munmap memory\n");
}
spin_lock(&kvm->mmu_lock);
if (!kvm->arch.n_requested_mmu_pages) {
unsigned int nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
}
kvm_mmu_slot_remove_write_access(kvm, mem->slot);
spin_unlock(&kvm->mmu_lock);
}
void kvm_arch_flush_shadow(struct kvm *kvm)
{
kvm_mmu_zap_all(kvm);
kvm_reload_remote_mmus(kvm);
}
int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
{
return vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE
|| vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED
|| vcpu->arch.nmi_pending ||
(kvm_arch_interrupt_allowed(vcpu) &&
kvm_cpu_has_interrupt(vcpu));
}
void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
{
int me;
int cpu = vcpu->cpu;
if (waitqueue_active(&vcpu->wq)) {
wake_up_interruptible(&vcpu->wq);
++vcpu->stat.halt_wakeup;
}
me = get_cpu();
if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
if (atomic_xchg(&vcpu->guest_mode, 0))
smp_send_reschedule(cpu);
put_cpu();
}
int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
{
return kvm_x86_ops->interrupt_allowed(vcpu);
}
bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
{
unsigned long current_rip = kvm_rip_read(vcpu) +
get_segment_base(vcpu, VCPU_SREG_CS);
return current_rip == linear_rip;
}
EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
{
unsigned long rflags;
rflags = kvm_x86_ops->get_rflags(vcpu);
if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
rflags &= ~X86_EFLAGS_TF;
return rflags;
}
EXPORT_SYMBOL_GPL(kvm_get_rflags);
void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
{
if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
rflags |= X86_EFLAGS_TF;
kvm_x86_ops->set_rflags(vcpu, rflags);
}
EXPORT_SYMBOL_GPL(kvm_set_rflags);
EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);