| /* |
| * Copyright (c) 2017, Oracle and/or its affiliates. All rights reserved. |
| * |
| * This program is free software: you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation, either version 2 of the License, or |
| * (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program. If not, see <http://www.gnu.org/licenses/>. |
| */ |
| |
| /* |
| * Oracle Data Analytics Accelerator (DAX) |
| * |
| * DAX is a coprocessor which resides on the SPARC M7 (DAX1) and M8 |
| * (DAX2) processor chips, and has direct access to the CPU's L3 |
| * caches as well as physical memory. It can perform several |
| * operations on data streams with various input and output formats. |
| * The driver provides a transport mechanism only and has limited |
| * knowledge of the various opcodes and data formats. A user space |
| * library provides high level services and translates these into low |
| * level commands which are then passed into the driver and |
| * subsequently the hypervisor and the coprocessor. The library is |
| * the recommended way for applications to use the coprocessor, and |
| * the driver interface is not intended for general use. |
| * |
| * See Documentation/sparc/oradax/oracle-dax.rst for more details. |
| */ |
| |
| #include <linux/uaccess.h> |
| #include <linux/module.h> |
| #include <linux/delay.h> |
| #include <linux/cdev.h> |
| #include <linux/slab.h> |
| #include <linux/mm.h> |
| |
| #include <asm/hypervisor.h> |
| #include <asm/mdesc.h> |
| #include <asm/oradax.h> |
| |
| MODULE_LICENSE("GPL"); |
| MODULE_DESCRIPTION("Driver for Oracle Data Analytics Accelerator"); |
| |
| #define DAX_DBG_FLG_BASIC 0x01 |
| #define DAX_DBG_FLG_STAT 0x02 |
| #define DAX_DBG_FLG_INFO 0x04 |
| #define DAX_DBG_FLG_ALL 0xff |
| |
| #define dax_err(fmt, ...) pr_err("%s: " fmt "\n", __func__, ##__VA_ARGS__) |
| #define dax_info(fmt, ...) pr_info("%s: " fmt "\n", __func__, ##__VA_ARGS__) |
| |
| #define dax_dbg(fmt, ...) do { \ |
| if (dax_debug & DAX_DBG_FLG_BASIC)\ |
| dax_info(fmt, ##__VA_ARGS__); \ |
| } while (0) |
| #define dax_stat_dbg(fmt, ...) do { \ |
| if (dax_debug & DAX_DBG_FLG_STAT) \ |
| dax_info(fmt, ##__VA_ARGS__); \ |
| } while (0) |
| #define dax_info_dbg(fmt, ...) do { \ |
| if (dax_debug & DAX_DBG_FLG_INFO) \ |
| dax_info(fmt, ##__VA_ARGS__); \ |
| } while (0) |
| |
| #define DAX1_MINOR 1 |
| #define DAX1_MAJOR 1 |
| #define DAX2_MINOR 0 |
| #define DAX2_MAJOR 2 |
| |
| #define DAX1_STR "ORCL,sun4v-dax" |
| #define DAX2_STR "ORCL,sun4v-dax2" |
| |
| #define DAX_CA_ELEMS (DAX_MMAP_LEN / sizeof(struct dax_cca)) |
| |
| #define DAX_CCB_USEC 100 |
| #define DAX_CCB_RETRIES 10000 |
| |
| /* stream types */ |
| enum { |
| OUT, |
| PRI, |
| SEC, |
| TBL, |
| NUM_STREAM_TYPES |
| }; |
| |
| /* completion status */ |
| #define CCA_STAT_NOT_COMPLETED 0 |
| #define CCA_STAT_COMPLETED 1 |
| #define CCA_STAT_FAILED 2 |
| #define CCA_STAT_KILLED 3 |
| #define CCA_STAT_NOT_RUN 4 |
| #define CCA_STAT_PIPE_OUT 5 |
| #define CCA_STAT_PIPE_SRC 6 |
| #define CCA_STAT_PIPE_DST 7 |
| |
| /* completion err */ |
| #define CCA_ERR_SUCCESS 0x0 /* no error */ |
| #define CCA_ERR_OVERFLOW 0x1 /* buffer overflow */ |
| #define CCA_ERR_DECODE 0x2 /* CCB decode error */ |
| #define CCA_ERR_PAGE_OVERFLOW 0x3 /* page overflow */ |
| #define CCA_ERR_KILLED 0x7 /* command was killed */ |
| #define CCA_ERR_TIMEOUT 0x8 /* Timeout */ |
| #define CCA_ERR_ADI 0x9 /* ADI error */ |
| #define CCA_ERR_DATA_FMT 0xA /* data format error */ |
| #define CCA_ERR_OTHER_NO_RETRY 0xE /* Other error, do not retry */ |
| #define CCA_ERR_OTHER_RETRY 0xF /* Other error, retry */ |
| #define CCA_ERR_PARTIAL_SYMBOL 0x80 /* QP partial symbol warning */ |
| |
| /* CCB address types */ |
| #define DAX_ADDR_TYPE_NONE 0 |
| #define DAX_ADDR_TYPE_VA_ALT 1 /* secondary context */ |
| #define DAX_ADDR_TYPE_RA 2 /* real address */ |
| #define DAX_ADDR_TYPE_VA 3 /* virtual address */ |
| |
| /* dax_header_t opcode */ |
| #define DAX_OP_SYNC_NOP 0x0 |
| #define DAX_OP_EXTRACT 0x1 |
| #define DAX_OP_SCAN_VALUE 0x2 |
| #define DAX_OP_SCAN_RANGE 0x3 |
| #define DAX_OP_TRANSLATE 0x4 |
| #define DAX_OP_SELECT 0x5 |
| #define DAX_OP_INVERT 0x10 /* OR with translate, scan opcodes */ |
| |
| struct dax_header { |
| u32 ccb_version:4; /* 31:28 CCB Version */ |
| /* 27:24 Sync Flags */ |
| u32 pipe:1; /* Pipeline */ |
| u32 longccb:1; /* Longccb. Set for scan with lu2, lu3, lu4. */ |
| u32 cond:1; /* Conditional */ |
| u32 serial:1; /* Serial */ |
| u32 opcode:8; /* 23:16 Opcode */ |
| /* 15:0 Address Type. */ |
| u32 reserved:3; /* 15:13 reserved */ |
| u32 table_addr_type:2; /* 12:11 Huffman Table Address Type */ |
| u32 out_addr_type:3; /* 10:8 Destination Address Type */ |
| u32 sec_addr_type:3; /* 7:5 Secondary Source Address Type */ |
| u32 pri_addr_type:3; /* 4:2 Primary Source Address Type */ |
| u32 cca_addr_type:2; /* 1:0 Completion Address Type */ |
| }; |
| |
| struct dax_control { |
| u32 pri_fmt:4; /* 31:28 Primary Input Format */ |
| u32 pri_elem_size:5; /* 27:23 Primary Input Element Size(less1) */ |
| u32 pri_offset:3; /* 22:20 Primary Input Starting Offset */ |
| u32 sec_encoding:1; /* 19 Secondary Input Encoding */ |
| /* (must be 0 for Select) */ |
| u32 sec_offset:3; /* 18:16 Secondary Input Starting Offset */ |
| u32 sec_elem_size:2; /* 15:14 Secondary Input Element Size */ |
| /* (must be 0 for Select) */ |
| u32 out_fmt:2; /* 13:12 Output Format */ |
| u32 out_elem_size:2; /* 11:10 Output Element Size */ |
| u32 misc:10; /* 9:0 Opcode specific info */ |
| }; |
| |
| struct dax_data_access { |
| u64 flow_ctrl:2; /* 63:62 Flow Control Type */ |
| u64 pipe_target:2; /* 61:60 Pipeline Target */ |
| u64 out_buf_size:20; /* 59:40 Output Buffer Size */ |
| /* (cachelines less 1) */ |
| u64 unused1:8; /* 39:32 Reserved, Set to 0 */ |
| u64 out_alloc:5; /* 31:27 Output Allocation */ |
| u64 unused2:1; /* 26 Reserved */ |
| u64 pri_len_fmt:2; /* 25:24 Input Length Format */ |
| u64 pri_len:24; /* 23:0 Input Element/Byte/Bit Count */ |
| /* (less 1) */ |
| }; |
| |
| struct dax_ccb { |
| struct dax_header hdr; /* CCB Header */ |
| struct dax_control ctrl;/* Control Word */ |
| void *ca; /* Completion Address */ |
| void *pri; /* Primary Input Address */ |
| struct dax_data_access dac; /* Data Access Control */ |
| void *sec; /* Secondary Input Address */ |
| u64 dword5; /* depends on opcode */ |
| void *out; /* Output Address */ |
| void *tbl; /* Table Address or bitmap */ |
| }; |
| |
| struct dax_cca { |
| u8 status; /* user may mwait on this address */ |
| u8 err; /* user visible error notification */ |
| u8 rsvd[2]; /* reserved */ |
| u32 n_remaining; /* for QP partial symbol warning */ |
| u32 output_sz; /* output in bytes */ |
| u32 rsvd2; /* reserved */ |
| u64 run_cycles; /* run time in OCND2 cycles */ |
| u64 run_stats; /* nothing reported in version 1.0 */ |
| u32 n_processed; /* number input elements */ |
| u32 rsvd3[5]; /* reserved */ |
| u64 retval; /* command return value */ |
| u64 rsvd4[8]; /* reserved */ |
| }; |
| |
| /* per thread CCB context */ |
| struct dax_ctx { |
| struct dax_ccb *ccb_buf; |
| u64 ccb_buf_ra; /* cached RA of ccb_buf */ |
| struct dax_cca *ca_buf; |
| u64 ca_buf_ra; /* cached RA of ca_buf */ |
| struct page *pages[DAX_CA_ELEMS][NUM_STREAM_TYPES]; |
| /* array of locked pages */ |
| struct task_struct *owner; /* thread that owns ctx */ |
| struct task_struct *client; /* requesting thread */ |
| union ccb_result result; |
| u32 ccb_count; |
| u32 fail_count; |
| }; |
| |
| /* driver public entry points */ |
| static int dax_open(struct inode *inode, struct file *file); |
| static ssize_t dax_read(struct file *filp, char __user *buf, |
| size_t count, loff_t *ppos); |
| static ssize_t dax_write(struct file *filp, const char __user *buf, |
| size_t count, loff_t *ppos); |
| static int dax_devmap(struct file *f, struct vm_area_struct *vma); |
| static int dax_close(struct inode *i, struct file *f); |
| |
| static const struct file_operations dax_fops = { |
| .owner = THIS_MODULE, |
| .open = dax_open, |
| .read = dax_read, |
| .write = dax_write, |
| .mmap = dax_devmap, |
| .release = dax_close, |
| }; |
| |
| static int dax_ccb_exec(struct dax_ctx *ctx, const char __user *buf, |
| size_t count, loff_t *ppos); |
| static int dax_ccb_info(u64 ca, struct ccb_info_result *info); |
| static int dax_ccb_kill(u64 ca, u16 *kill_res); |
| |
| static struct cdev c_dev; |
| static struct class *cl; |
| static dev_t first; |
| |
| static int max_ccb_version; |
| static int dax_debug; |
| module_param(dax_debug, int, 0644); |
| MODULE_PARM_DESC(dax_debug, "Debug flags"); |
| |
| static int __init dax_attach(void) |
| { |
| unsigned long dummy, hv_rv, major, minor, minor_requested, max_ccbs; |
| struct mdesc_handle *hp = mdesc_grab(); |
| char *prop, *dax_name; |
| bool found = false; |
| int len, ret = 0; |
| u64 pn; |
| |
| if (hp == NULL) { |
| dax_err("Unable to grab mdesc"); |
| return -ENODEV; |
| } |
| |
| mdesc_for_each_node_by_name(hp, pn, "virtual-device") { |
| prop = (char *)mdesc_get_property(hp, pn, "name", &len); |
| if (prop == NULL) |
| continue; |
| if (strncmp(prop, "dax", strlen("dax"))) |
| continue; |
| dax_dbg("Found node 0x%llx = %s", pn, prop); |
| |
| prop = (char *)mdesc_get_property(hp, pn, "compatible", &len); |
| if (prop == NULL) |
| continue; |
| dax_dbg("Found node 0x%llx = %s", pn, prop); |
| found = true; |
| break; |
| } |
| |
| if (!found) { |
| dax_err("No DAX device found"); |
| ret = -ENODEV; |
| goto done; |
| } |
| |
| if (strncmp(prop, DAX2_STR, strlen(DAX2_STR)) == 0) { |
| dax_name = DAX_NAME "2"; |
| major = DAX2_MAJOR; |
| minor_requested = DAX2_MINOR; |
| max_ccb_version = 1; |
| dax_dbg("MD indicates DAX2 coprocessor"); |
| } else if (strncmp(prop, DAX1_STR, strlen(DAX1_STR)) == 0) { |
| dax_name = DAX_NAME "1"; |
| major = DAX1_MAJOR; |
| minor_requested = DAX1_MINOR; |
| max_ccb_version = 0; |
| dax_dbg("MD indicates DAX1 coprocessor"); |
| } else { |
| dax_err("Unknown dax type: %s", prop); |
| ret = -ENODEV; |
| goto done; |
| } |
| |
| minor = minor_requested; |
| dax_dbg("Registering DAX HV api with major %ld minor %ld", major, |
| minor); |
| if (sun4v_hvapi_register(HV_GRP_DAX, major, &minor)) { |
| dax_err("hvapi_register failed"); |
| ret = -ENODEV; |
| goto done; |
| } else { |
| dax_dbg("Max minor supported by HV = %ld (major %ld)", minor, |
| major); |
| minor = min(minor, minor_requested); |
| dax_dbg("registered DAX major %ld minor %ld", major, minor); |
| } |
| |
| /* submit a zero length ccb array to query coprocessor queue size */ |
| hv_rv = sun4v_ccb_submit(0, 0, HV_CCB_QUERY_CMD, 0, &max_ccbs, &dummy); |
| if (hv_rv != 0) { |
| dax_err("get_hwqueue_size failed with status=%ld and max_ccbs=%ld", |
| hv_rv, max_ccbs); |
| ret = -ENODEV; |
| goto done; |
| } |
| |
| if (max_ccbs != DAX_MAX_CCBS) { |
| dax_err("HV reports unsupported max_ccbs=%ld", max_ccbs); |
| ret = -ENODEV; |
| goto done; |
| } |
| |
| if (alloc_chrdev_region(&first, 0, 1, DAX_NAME) < 0) { |
| dax_err("alloc_chrdev_region failed"); |
| ret = -ENXIO; |
| goto done; |
| } |
| |
| cl = class_create(THIS_MODULE, DAX_NAME); |
| if (IS_ERR(cl)) { |
| dax_err("class_create failed"); |
| ret = PTR_ERR(cl); |
| goto class_error; |
| } |
| |
| if (device_create(cl, NULL, first, NULL, dax_name) == NULL) { |
| dax_err("device_create failed"); |
| ret = -ENXIO; |
| goto device_error; |
| } |
| |
| cdev_init(&c_dev, &dax_fops); |
| if (cdev_add(&c_dev, first, 1) == -1) { |
| dax_err("cdev_add failed"); |
| ret = -ENXIO; |
| goto cdev_error; |
| } |
| |
| pr_info("Attached DAX module\n"); |
| goto done; |
| |
| cdev_error: |
| device_destroy(cl, first); |
| device_error: |
| class_destroy(cl); |
| class_error: |
| unregister_chrdev_region(first, 1); |
| done: |
| mdesc_release(hp); |
| return ret; |
| } |
| module_init(dax_attach); |
| |
| static void __exit dax_detach(void) |
| { |
| pr_info("Cleaning up DAX module\n"); |
| cdev_del(&c_dev); |
| device_destroy(cl, first); |
| class_destroy(cl); |
| unregister_chrdev_region(first, 1); |
| } |
| module_exit(dax_detach); |
| |
| /* map completion area */ |
| static int dax_devmap(struct file *f, struct vm_area_struct *vma) |
| { |
| struct dax_ctx *ctx = (struct dax_ctx *)f->private_data; |
| size_t len = vma->vm_end - vma->vm_start; |
| |
| dax_dbg("len=0x%lx, flags=0x%lx", len, vma->vm_flags); |
| |
| if (ctx->owner != current) { |
| dax_dbg("devmap called from wrong thread"); |
| return -EINVAL; |
| } |
| |
| if (len != DAX_MMAP_LEN) { |
| dax_dbg("len(%lu) != DAX_MMAP_LEN(%d)", len, DAX_MMAP_LEN); |
| return -EINVAL; |
| } |
| |
| /* completion area is mapped read-only for user */ |
| if (vma->vm_flags & VM_WRITE) |
| return -EPERM; |
| vma->vm_flags &= ~VM_MAYWRITE; |
| |
| if (remap_pfn_range(vma, vma->vm_start, ctx->ca_buf_ra >> PAGE_SHIFT, |
| len, vma->vm_page_prot)) |
| return -EAGAIN; |
| |
| dax_dbg("mmapped completion area at uva 0x%lx", vma->vm_start); |
| return 0; |
| } |
| |
| /* Unlock user pages. Called during dequeue or device close */ |
| static void dax_unlock_pages(struct dax_ctx *ctx, int ccb_index, int nelem) |
| { |
| int i, j; |
| |
| for (i = ccb_index; i < ccb_index + nelem; i++) { |
| for (j = 0; j < NUM_STREAM_TYPES; j++) { |
| struct page *p = ctx->pages[i][j]; |
| |
| if (p) { |
| dax_dbg("freeing page %p", p); |
| if (j == OUT) |
| set_page_dirty(p); |
| put_page(p); |
| ctx->pages[i][j] = NULL; |
| } |
| } |
| } |
| } |
| |
| static int dax_lock_page(void *va, struct page **p) |
| { |
| int ret; |
| |
| dax_dbg("uva %p", va); |
| |
| ret = get_user_pages_fast((unsigned long)va, 1, FOLL_WRITE, p); |
| if (ret == 1) { |
| dax_dbg("locked page %p, for VA %p", *p, va); |
| return 0; |
| } |
| |
| dax_dbg("get_user_pages failed, va=%p, ret=%d", va, ret); |
| return -1; |
| } |
| |
| static int dax_lock_pages(struct dax_ctx *ctx, int idx, |
| int nelem, u64 *err_va) |
| { |
| int i; |
| |
| for (i = 0; i < nelem; i++) { |
| struct dax_ccb *ccbp = &ctx->ccb_buf[i]; |
| |
| /* |
| * For each address in the CCB whose type is virtual, |
| * lock the page and change the type to virtual alternate |
| * context. On error, return the offending address in |
| * err_va. |
| */ |
| if (ccbp->hdr.out_addr_type == DAX_ADDR_TYPE_VA) { |
| dax_dbg("output"); |
| if (dax_lock_page(ccbp->out, |
| &ctx->pages[i + idx][OUT]) != 0) { |
| *err_va = (u64)ccbp->out; |
| goto error; |
| } |
| ccbp->hdr.out_addr_type = DAX_ADDR_TYPE_VA_ALT; |
| } |
| |
| if (ccbp->hdr.pri_addr_type == DAX_ADDR_TYPE_VA) { |
| dax_dbg("input"); |
| if (dax_lock_page(ccbp->pri, |
| &ctx->pages[i + idx][PRI]) != 0) { |
| *err_va = (u64)ccbp->pri; |
| goto error; |
| } |
| ccbp->hdr.pri_addr_type = DAX_ADDR_TYPE_VA_ALT; |
| } |
| |
| if (ccbp->hdr.sec_addr_type == DAX_ADDR_TYPE_VA) { |
| dax_dbg("sec input"); |
| if (dax_lock_page(ccbp->sec, |
| &ctx->pages[i + idx][SEC]) != 0) { |
| *err_va = (u64)ccbp->sec; |
| goto error; |
| } |
| ccbp->hdr.sec_addr_type = DAX_ADDR_TYPE_VA_ALT; |
| } |
| |
| if (ccbp->hdr.table_addr_type == DAX_ADDR_TYPE_VA) { |
| dax_dbg("tbl"); |
| if (dax_lock_page(ccbp->tbl, |
| &ctx->pages[i + idx][TBL]) != 0) { |
| *err_va = (u64)ccbp->tbl; |
| goto error; |
| } |
| ccbp->hdr.table_addr_type = DAX_ADDR_TYPE_VA_ALT; |
| } |
| |
| /* skip over 2nd 64 bytes of long CCB */ |
| if (ccbp->hdr.longccb) |
| i++; |
| } |
| return DAX_SUBMIT_OK; |
| |
| error: |
| dax_unlock_pages(ctx, idx, nelem); |
| return DAX_SUBMIT_ERR_NOACCESS; |
| } |
| |
| static void dax_ccb_wait(struct dax_ctx *ctx, int idx) |
| { |
| int ret, nretries; |
| u16 kill_res; |
| |
| dax_dbg("idx=%d", idx); |
| |
| for (nretries = 0; nretries < DAX_CCB_RETRIES; nretries++) { |
| if (ctx->ca_buf[idx].status == CCA_STAT_NOT_COMPLETED) |
| udelay(DAX_CCB_USEC); |
| else |
| return; |
| } |
| dax_dbg("ctx (%p): CCB[%d] timed out, wait usec=%d, retries=%d. Killing ccb", |
| (void *)ctx, idx, DAX_CCB_USEC, DAX_CCB_RETRIES); |
| |
| ret = dax_ccb_kill(ctx->ca_buf_ra + idx * sizeof(struct dax_cca), |
| &kill_res); |
| dax_dbg("Kill CCB[%d] %s", idx, ret ? "failed" : "succeeded"); |
| } |
| |
| static int dax_close(struct inode *ino, struct file *f) |
| { |
| struct dax_ctx *ctx = (struct dax_ctx *)f->private_data; |
| int i; |
| |
| f->private_data = NULL; |
| |
| for (i = 0; i < DAX_CA_ELEMS; i++) { |
| if (ctx->ca_buf[i].status == CCA_STAT_NOT_COMPLETED) { |
| dax_dbg("CCB[%d] not completed", i); |
| dax_ccb_wait(ctx, i); |
| } |
| dax_unlock_pages(ctx, i, 1); |
| } |
| |
| kfree(ctx->ccb_buf); |
| kfree(ctx->ca_buf); |
| dax_stat_dbg("CCBs: %d good, %d bad", ctx->ccb_count, ctx->fail_count); |
| kfree(ctx); |
| |
| return 0; |
| } |
| |
| static ssize_t dax_read(struct file *f, char __user *buf, |
| size_t count, loff_t *ppos) |
| { |
| struct dax_ctx *ctx = f->private_data; |
| |
| if (ctx->client != current) |
| return -EUSERS; |
| |
| ctx->client = NULL; |
| |
| if (count != sizeof(union ccb_result)) |
| return -EINVAL; |
| if (copy_to_user(buf, &ctx->result, sizeof(union ccb_result))) |
| return -EFAULT; |
| return count; |
| } |
| |
| static ssize_t dax_write(struct file *f, const char __user *buf, |
| size_t count, loff_t *ppos) |
| { |
| struct dax_ctx *ctx = f->private_data; |
| struct dax_command hdr; |
| unsigned long ca; |
| int i, idx, ret; |
| |
| if (ctx->client != NULL) |
| return -EINVAL; |
| |
| if (count == 0 || count > DAX_MAX_CCBS * sizeof(struct dax_ccb)) |
| return -EINVAL; |
| |
| if (count % sizeof(struct dax_ccb) == 0) |
| return dax_ccb_exec(ctx, buf, count, ppos); /* CCB EXEC */ |
| |
| if (count != sizeof(struct dax_command)) |
| return -EINVAL; |
| |
| /* immediate command */ |
| if (ctx->owner != current) |
| return -EUSERS; |
| |
| if (copy_from_user(&hdr, buf, sizeof(hdr))) |
| return -EFAULT; |
| |
| ca = ctx->ca_buf_ra + hdr.ca_offset; |
| |
| switch (hdr.command) { |
| case CCB_KILL: |
| if (hdr.ca_offset >= DAX_MMAP_LEN) { |
| dax_dbg("invalid ca_offset (%d) >= ca_buflen (%d)", |
| hdr.ca_offset, DAX_MMAP_LEN); |
| return -EINVAL; |
| } |
| |
| ret = dax_ccb_kill(ca, &ctx->result.kill.action); |
| if (ret != 0) { |
| dax_dbg("dax_ccb_kill failed (ret=%d)", ret); |
| return ret; |
| } |
| |
| dax_info_dbg("killed (ca_offset %d)", hdr.ca_offset); |
| idx = hdr.ca_offset / sizeof(struct dax_cca); |
| ctx->ca_buf[idx].status = CCA_STAT_KILLED; |
| ctx->ca_buf[idx].err = CCA_ERR_KILLED; |
| ctx->client = current; |
| return count; |
| |
| case CCB_INFO: |
| if (hdr.ca_offset >= DAX_MMAP_LEN) { |
| dax_dbg("invalid ca_offset (%d) >= ca_buflen (%d)", |
| hdr.ca_offset, DAX_MMAP_LEN); |
| return -EINVAL; |
| } |
| |
| ret = dax_ccb_info(ca, &ctx->result.info); |
| if (ret != 0) { |
| dax_dbg("dax_ccb_info failed (ret=%d)", ret); |
| return ret; |
| } |
| |
| dax_info_dbg("info succeeded on ca_offset %d", hdr.ca_offset); |
| ctx->client = current; |
| return count; |
| |
| case CCB_DEQUEUE: |
| for (i = 0; i < DAX_CA_ELEMS; i++) { |
| if (ctx->ca_buf[i].status != |
| CCA_STAT_NOT_COMPLETED) |
| dax_unlock_pages(ctx, i, 1); |
| } |
| return count; |
| |
| default: |
| return -EINVAL; |
| } |
| } |
| |
| static int dax_open(struct inode *inode, struct file *f) |
| { |
| struct dax_ctx *ctx = NULL; |
| int i; |
| |
| ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); |
| if (ctx == NULL) |
| goto done; |
| |
| ctx->ccb_buf = kcalloc(DAX_MAX_CCBS, sizeof(struct dax_ccb), |
| GFP_KERNEL); |
| if (ctx->ccb_buf == NULL) |
| goto done; |
| |
| ctx->ccb_buf_ra = virt_to_phys(ctx->ccb_buf); |
| dax_dbg("ctx->ccb_buf=0x%p, ccb_buf_ra=0x%llx", |
| (void *)ctx->ccb_buf, ctx->ccb_buf_ra); |
| |
| /* allocate CCB completion area buffer */ |
| ctx->ca_buf = kzalloc(DAX_MMAP_LEN, GFP_KERNEL); |
| if (ctx->ca_buf == NULL) |
| goto alloc_error; |
| for (i = 0; i < DAX_CA_ELEMS; i++) |
| ctx->ca_buf[i].status = CCA_STAT_COMPLETED; |
| |
| ctx->ca_buf_ra = virt_to_phys(ctx->ca_buf); |
| dax_dbg("ctx=0x%p, ctx->ca_buf=0x%p, ca_buf_ra=0x%llx", |
| (void *)ctx, (void *)ctx->ca_buf, ctx->ca_buf_ra); |
| |
| ctx->owner = current; |
| f->private_data = ctx; |
| return 0; |
| |
| alloc_error: |
| kfree(ctx->ccb_buf); |
| done: |
| kfree(ctx); |
| return -ENOMEM; |
| } |
| |
| static char *dax_hv_errno(unsigned long hv_ret, int *ret) |
| { |
| switch (hv_ret) { |
| case HV_EBADALIGN: |
| *ret = -EFAULT; |
| return "HV_EBADALIGN"; |
| case HV_ENORADDR: |
| *ret = -EFAULT; |
| return "HV_ENORADDR"; |
| case HV_EINVAL: |
| *ret = -EINVAL; |
| return "HV_EINVAL"; |
| case HV_EWOULDBLOCK: |
| *ret = -EAGAIN; |
| return "HV_EWOULDBLOCK"; |
| case HV_ENOACCESS: |
| *ret = -EPERM; |
| return "HV_ENOACCESS"; |
| default: |
| break; |
| } |
| |
| *ret = -EIO; |
| return "UNKNOWN"; |
| } |
| |
| static int dax_ccb_kill(u64 ca, u16 *kill_res) |
| { |
| unsigned long hv_ret; |
| int count, ret = 0; |
| char *err_str; |
| |
| for (count = 0; count < DAX_CCB_RETRIES; count++) { |
| dax_dbg("attempting kill on ca_ra 0x%llx", ca); |
| hv_ret = sun4v_ccb_kill(ca, kill_res); |
| |
| if (hv_ret == HV_EOK) { |
| dax_info_dbg("HV_EOK (ca_ra 0x%llx): %d", ca, |
| *kill_res); |
| } else { |
| err_str = dax_hv_errno(hv_ret, &ret); |
| dax_dbg("%s (ca_ra 0x%llx)", err_str, ca); |
| } |
| |
| if (ret != -EAGAIN) |
| return ret; |
| dax_info_dbg("ccb_kill count = %d", count); |
| udelay(DAX_CCB_USEC); |
| } |
| |
| return -EAGAIN; |
| } |
| |
| static int dax_ccb_info(u64 ca, struct ccb_info_result *info) |
| { |
| unsigned long hv_ret; |
| char *err_str; |
| int ret = 0; |
| |
| dax_dbg("attempting info on ca_ra 0x%llx", ca); |
| hv_ret = sun4v_ccb_info(ca, info); |
| |
| if (hv_ret == HV_EOK) { |
| dax_info_dbg("HV_EOK (ca_ra 0x%llx): %d", ca, info->state); |
| if (info->state == DAX_CCB_ENQUEUED) { |
| dax_info_dbg("dax_unit %d, queue_num %d, queue_pos %d", |
| info->inst_num, info->q_num, info->q_pos); |
| } |
| } else { |
| err_str = dax_hv_errno(hv_ret, &ret); |
| dax_dbg("%s (ca_ra 0x%llx)", err_str, ca); |
| } |
| |
| return ret; |
| } |
| |
| static void dax_prt_ccbs(struct dax_ccb *ccb, int nelem) |
| { |
| int i, j; |
| u64 *ccbp; |
| |
| dax_dbg("ccb buffer:"); |
| for (i = 0; i < nelem; i++) { |
| ccbp = (u64 *)&ccb[i]; |
| dax_dbg(" %sccb[%d]", ccb[i].hdr.longccb ? "long " : "", i); |
| for (j = 0; j < 8; j++) |
| dax_dbg("\tccb[%d].dwords[%d]=0x%llx", |
| i, j, *(ccbp + j)); |
| } |
| } |
| |
| /* |
| * Validates user CCB content. Also sets completion address and address types |
| * for all addresses contained in CCB. |
| */ |
| static int dax_preprocess_usr_ccbs(struct dax_ctx *ctx, int idx, int nelem) |
| { |
| int i; |
| |
| /* |
| * The user is not allowed to specify real address types in |
| * the CCB header. This must be enforced by the kernel before |
| * submitting the CCBs to HV. The only allowed values for all |
| * address fields are VA or IMM |
| */ |
| for (i = 0; i < nelem; i++) { |
| struct dax_ccb *ccbp = &ctx->ccb_buf[i]; |
| unsigned long ca_offset; |
| |
| if (ccbp->hdr.ccb_version > max_ccb_version) |
| return DAX_SUBMIT_ERR_CCB_INVAL; |
| |
| switch (ccbp->hdr.opcode) { |
| case DAX_OP_SYNC_NOP: |
| case DAX_OP_EXTRACT: |
| case DAX_OP_SCAN_VALUE: |
| case DAX_OP_SCAN_RANGE: |
| case DAX_OP_TRANSLATE: |
| case DAX_OP_SCAN_VALUE | DAX_OP_INVERT: |
| case DAX_OP_SCAN_RANGE | DAX_OP_INVERT: |
| case DAX_OP_TRANSLATE | DAX_OP_INVERT: |
| case DAX_OP_SELECT: |
| break; |
| default: |
| return DAX_SUBMIT_ERR_CCB_INVAL; |
| } |
| |
| if (ccbp->hdr.out_addr_type != DAX_ADDR_TYPE_VA && |
| ccbp->hdr.out_addr_type != DAX_ADDR_TYPE_NONE) { |
| dax_dbg("invalid out_addr_type in user CCB[%d]", i); |
| return DAX_SUBMIT_ERR_CCB_INVAL; |
| } |
| |
| if (ccbp->hdr.pri_addr_type != DAX_ADDR_TYPE_VA && |
| ccbp->hdr.pri_addr_type != DAX_ADDR_TYPE_NONE) { |
| dax_dbg("invalid pri_addr_type in user CCB[%d]", i); |
| return DAX_SUBMIT_ERR_CCB_INVAL; |
| } |
| |
| if (ccbp->hdr.sec_addr_type != DAX_ADDR_TYPE_VA && |
| ccbp->hdr.sec_addr_type != DAX_ADDR_TYPE_NONE) { |
| dax_dbg("invalid sec_addr_type in user CCB[%d]", i); |
| return DAX_SUBMIT_ERR_CCB_INVAL; |
| } |
| |
| if (ccbp->hdr.table_addr_type != DAX_ADDR_TYPE_VA && |
| ccbp->hdr.table_addr_type != DAX_ADDR_TYPE_NONE) { |
| dax_dbg("invalid table_addr_type in user CCB[%d]", i); |
| return DAX_SUBMIT_ERR_CCB_INVAL; |
| } |
| |
| /* set completion (real) address and address type */ |
| ccbp->hdr.cca_addr_type = DAX_ADDR_TYPE_RA; |
| ca_offset = (idx + i) * sizeof(struct dax_cca); |
| ccbp->ca = (void *)ctx->ca_buf_ra + ca_offset; |
| memset(&ctx->ca_buf[idx + i], 0, sizeof(struct dax_cca)); |
| |
| dax_dbg("ccb[%d]=%p, ca_offset=0x%lx, compl RA=0x%llx", |
| i, ccbp, ca_offset, ctx->ca_buf_ra + ca_offset); |
| |
| /* skip over 2nd 64 bytes of long CCB */ |
| if (ccbp->hdr.longccb) |
| i++; |
| } |
| |
| return DAX_SUBMIT_OK; |
| } |
| |
| static int dax_ccb_exec(struct dax_ctx *ctx, const char __user *buf, |
| size_t count, loff_t *ppos) |
| { |
| unsigned long accepted_len, hv_rv; |
| int i, idx, nccbs, naccepted; |
| |
| ctx->client = current; |
| idx = *ppos; |
| nccbs = count / sizeof(struct dax_ccb); |
| |
| if (ctx->owner != current) { |
| dax_dbg("wrong thread"); |
| ctx->result.exec.status = DAX_SUBMIT_ERR_THR_INIT; |
| return 0; |
| } |
| dax_dbg("args: ccb_buf_len=%ld, idx=%d", count, idx); |
| |
| /* for given index and length, verify ca_buf range exists */ |
| if (idx < 0 || idx > (DAX_CA_ELEMS - nccbs)) { |
| ctx->result.exec.status = DAX_SUBMIT_ERR_NO_CA_AVAIL; |
| return 0; |
| } |
| |
| /* |
| * Copy CCBs into kernel buffer to prevent modification by the |
| * user in between validation and submission. |
| */ |
| if (copy_from_user(ctx->ccb_buf, buf, count)) { |
| dax_dbg("copyin of user CCB buffer failed"); |
| ctx->result.exec.status = DAX_SUBMIT_ERR_CCB_ARR_MMU_MISS; |
| return 0; |
| } |
| |
| /* check to see if ca_buf[idx] .. ca_buf[idx + nccbs] are available */ |
| for (i = idx; i < idx + nccbs; i++) { |
| if (ctx->ca_buf[i].status == CCA_STAT_NOT_COMPLETED) { |
| dax_dbg("CA range not available, dequeue needed"); |
| ctx->result.exec.status = DAX_SUBMIT_ERR_NO_CA_AVAIL; |
| return 0; |
| } |
| } |
| dax_unlock_pages(ctx, idx, nccbs); |
| |
| ctx->result.exec.status = dax_preprocess_usr_ccbs(ctx, idx, nccbs); |
| if (ctx->result.exec.status != DAX_SUBMIT_OK) |
| return 0; |
| |
| ctx->result.exec.status = dax_lock_pages(ctx, idx, nccbs, |
| &ctx->result.exec.status_data); |
| if (ctx->result.exec.status != DAX_SUBMIT_OK) |
| return 0; |
| |
| if (dax_debug & DAX_DBG_FLG_BASIC) |
| dax_prt_ccbs(ctx->ccb_buf, nccbs); |
| |
| hv_rv = sun4v_ccb_submit(ctx->ccb_buf_ra, count, |
| HV_CCB_QUERY_CMD | HV_CCB_VA_SECONDARY, 0, |
| &accepted_len, &ctx->result.exec.status_data); |
| |
| switch (hv_rv) { |
| case HV_EOK: |
| /* |
| * Hcall succeeded with no errors but the accepted |
| * length may be less than the requested length. The |
| * only way the driver can resubmit the remainder is |
| * to wait for completion of the submitted CCBs since |
| * there is no way to guarantee the ordering semantics |
| * required by the client applications. Therefore we |
| * let the user library deal with resubmissions. |
| */ |
| ctx->result.exec.status = DAX_SUBMIT_OK; |
| break; |
| case HV_EWOULDBLOCK: |
| /* |
| * This is a transient HV API error. The user library |
| * can retry. |
| */ |
| dax_dbg("hcall returned HV_EWOULDBLOCK"); |
| ctx->result.exec.status = DAX_SUBMIT_ERR_WOULDBLOCK; |
| break; |
| case HV_ENOMAP: |
| /* |
| * HV was unable to translate a VA. The VA it could |
| * not translate is returned in the status_data param. |
| */ |
| dax_dbg("hcall returned HV_ENOMAP"); |
| ctx->result.exec.status = DAX_SUBMIT_ERR_NOMAP; |
| break; |
| case HV_EINVAL: |
| /* |
| * This is the result of an invalid user CCB as HV is |
| * validating some of the user CCB fields. Pass this |
| * error back to the user. There is no supporting info |
| * to isolate the invalid field. |
| */ |
| dax_dbg("hcall returned HV_EINVAL"); |
| ctx->result.exec.status = DAX_SUBMIT_ERR_CCB_INVAL; |
| break; |
| case HV_ENOACCESS: |
| /* |
| * HV found a VA that did not have the appropriate |
| * permissions (such as the w bit). The VA in question |
| * is returned in status_data param. |
| */ |
| dax_dbg("hcall returned HV_ENOACCESS"); |
| ctx->result.exec.status = DAX_SUBMIT_ERR_NOACCESS; |
| break; |
| case HV_EUNAVAILABLE: |
| /* |
| * The requested CCB operation could not be performed |
| * at this time. Return the specific unavailable code |
| * in the status_data field. |
| */ |
| dax_dbg("hcall returned HV_EUNAVAILABLE"); |
| ctx->result.exec.status = DAX_SUBMIT_ERR_UNAVAIL; |
| break; |
| default: |
| ctx->result.exec.status = DAX_SUBMIT_ERR_INTERNAL; |
| dax_dbg("unknown hcall return value (%ld)", hv_rv); |
| break; |
| } |
| |
| /* unlock pages associated with the unaccepted CCBs */ |
| naccepted = accepted_len / sizeof(struct dax_ccb); |
| dax_unlock_pages(ctx, idx + naccepted, nccbs - naccepted); |
| |
| /* mark unaccepted CCBs as not completed */ |
| for (i = idx + naccepted; i < idx + nccbs; i++) |
| ctx->ca_buf[i].status = CCA_STAT_COMPLETED; |
| |
| ctx->ccb_count += naccepted; |
| ctx->fail_count += nccbs - naccepted; |
| |
| dax_dbg("hcall rv=%ld, accepted_len=%ld, status_data=0x%llx, ret status=%d", |
| hv_rv, accepted_len, ctx->result.exec.status_data, |
| ctx->result.exec.status); |
| |
| if (count == accepted_len) |
| ctx->client = NULL; /* no read needed to complete protocol */ |
| return accepted_len; |
| } |