| /* |
| * Copyright © 2008 Intel Corporation |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a |
| * copy of this software and associated documentation files (the "Software"), |
| * to deal in the Software without restriction, including without limitation |
| * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| * and/or sell copies of the Software, and to permit persons to whom the |
| * Software is furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice (including the next |
| * paragraph) shall be included in all copies or substantial portions of the |
| * Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING |
| * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS |
| * IN THE SOFTWARE. |
| * |
| * Authors: |
| * Eric Anholt <eric@anholt.net> |
| * |
| */ |
| |
| #include "drmP.h" |
| #include "drm.h" |
| #include "i915_drm.h" |
| #include "i915_drv.h" |
| #include "i915_trace.h" |
| #include "intel_drv.h" |
| #include <linux/shmem_fs.h> |
| #include <linux/slab.h> |
| #include <linux/swap.h> |
| #include <linux/pci.h> |
| #include <linux/dma-buf.h> |
| |
| static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj); |
| static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj); |
| static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj, |
| unsigned alignment, |
| bool map_and_fenceable); |
| static int i915_gem_phys_pwrite(struct drm_device *dev, |
| struct drm_i915_gem_object *obj, |
| struct drm_i915_gem_pwrite *args, |
| struct drm_file *file); |
| |
| static void i915_gem_write_fence(struct drm_device *dev, int reg, |
| struct drm_i915_gem_object *obj); |
| static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj, |
| struct drm_i915_fence_reg *fence, |
| bool enable); |
| |
| static int i915_gem_inactive_shrink(struct shrinker *shrinker, |
| struct shrink_control *sc); |
| static void i915_gem_object_truncate(struct drm_i915_gem_object *obj); |
| |
| static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj) |
| { |
| if (obj->tiling_mode) |
| i915_gem_release_mmap(obj); |
| |
| /* As we do not have an associated fence register, we will force |
| * a tiling change if we ever need to acquire one. |
| */ |
| obj->fence_dirty = false; |
| obj->fence_reg = I915_FENCE_REG_NONE; |
| } |
| |
| /* some bookkeeping */ |
| static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv, |
| size_t size) |
| { |
| dev_priv->mm.object_count++; |
| dev_priv->mm.object_memory += size; |
| } |
| |
| static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv, |
| size_t size) |
| { |
| dev_priv->mm.object_count--; |
| dev_priv->mm.object_memory -= size; |
| } |
| |
| static int |
| i915_gem_wait_for_error(struct drm_device *dev) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct completion *x = &dev_priv->error_completion; |
| unsigned long flags; |
| int ret; |
| |
| if (!atomic_read(&dev_priv->mm.wedged)) |
| return 0; |
| |
| /* |
| * Only wait 10 seconds for the gpu reset to complete to avoid hanging |
| * userspace. If it takes that long something really bad is going on and |
| * we should simply try to bail out and fail as gracefully as possible. |
| */ |
| ret = wait_for_completion_interruptible_timeout(x, 10*HZ); |
| if (ret == 0) { |
| DRM_ERROR("Timed out waiting for the gpu reset to complete\n"); |
| return -EIO; |
| } else if (ret < 0) { |
| return ret; |
| } |
| |
| if (atomic_read(&dev_priv->mm.wedged)) { |
| /* GPU is hung, bump the completion count to account for |
| * the token we just consumed so that we never hit zero and |
| * end up waiting upon a subsequent completion event that |
| * will never happen. |
| */ |
| spin_lock_irqsave(&x->wait.lock, flags); |
| x->done++; |
| spin_unlock_irqrestore(&x->wait.lock, flags); |
| } |
| return 0; |
| } |
| |
| int i915_mutex_lock_interruptible(struct drm_device *dev) |
| { |
| int ret; |
| |
| ret = i915_gem_wait_for_error(dev); |
| if (ret) |
| return ret; |
| |
| ret = mutex_lock_interruptible(&dev->struct_mutex); |
| if (ret) |
| return ret; |
| |
| WARN_ON(i915_verify_lists(dev)); |
| return 0; |
| } |
| |
| static inline bool |
| i915_gem_object_is_inactive(struct drm_i915_gem_object *obj) |
| { |
| return !obj->active; |
| } |
| |
| int |
| i915_gem_init_ioctl(struct drm_device *dev, void *data, |
| struct drm_file *file) |
| { |
| struct drm_i915_gem_init *args = data; |
| |
| if (drm_core_check_feature(dev, DRIVER_MODESET)) |
| return -ENODEV; |
| |
| if (args->gtt_start >= args->gtt_end || |
| (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1)) |
| return -EINVAL; |
| |
| /* GEM with user mode setting was never supported on ilk and later. */ |
| if (INTEL_INFO(dev)->gen >= 5) |
| return -ENODEV; |
| |
| mutex_lock(&dev->struct_mutex); |
| i915_gem_init_global_gtt(dev, args->gtt_start, |
| args->gtt_end, args->gtt_end); |
| mutex_unlock(&dev->struct_mutex); |
| |
| return 0; |
| } |
| |
| int |
| i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data, |
| struct drm_file *file) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct drm_i915_gem_get_aperture *args = data; |
| struct drm_i915_gem_object *obj; |
| size_t pinned; |
| |
| pinned = 0; |
| mutex_lock(&dev->struct_mutex); |
| list_for_each_entry(obj, &dev_priv->mm.gtt_list, gtt_list) |
| if (obj->pin_count) |
| pinned += obj->gtt_space->size; |
| mutex_unlock(&dev->struct_mutex); |
| |
| args->aper_size = dev_priv->mm.gtt_total; |
| args->aper_available_size = args->aper_size - pinned; |
| |
| return 0; |
| } |
| |
| static int |
| i915_gem_create(struct drm_file *file, |
| struct drm_device *dev, |
| uint64_t size, |
| uint32_t *handle_p) |
| { |
| struct drm_i915_gem_object *obj; |
| int ret; |
| u32 handle; |
| |
| size = roundup(size, PAGE_SIZE); |
| if (size == 0) |
| return -EINVAL; |
| |
| /* Allocate the new object */ |
| obj = i915_gem_alloc_object(dev, size); |
| if (obj == NULL) |
| return -ENOMEM; |
| |
| ret = drm_gem_handle_create(file, &obj->base, &handle); |
| if (ret) { |
| drm_gem_object_release(&obj->base); |
| i915_gem_info_remove_obj(dev->dev_private, obj->base.size); |
| kfree(obj); |
| return ret; |
| } |
| |
| /* drop reference from allocate - handle holds it now */ |
| drm_gem_object_unreference(&obj->base); |
| trace_i915_gem_object_create(obj); |
| |
| *handle_p = handle; |
| return 0; |
| } |
| |
| int |
| i915_gem_dumb_create(struct drm_file *file, |
| struct drm_device *dev, |
| struct drm_mode_create_dumb *args) |
| { |
| /* have to work out size/pitch and return them */ |
| args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64); |
| args->size = args->pitch * args->height; |
| return i915_gem_create(file, dev, |
| args->size, &args->handle); |
| } |
| |
| int i915_gem_dumb_destroy(struct drm_file *file, |
| struct drm_device *dev, |
| uint32_t handle) |
| { |
| return drm_gem_handle_delete(file, handle); |
| } |
| |
| /** |
| * Creates a new mm object and returns a handle to it. |
| */ |
| int |
| i915_gem_create_ioctl(struct drm_device *dev, void *data, |
| struct drm_file *file) |
| { |
| struct drm_i915_gem_create *args = data; |
| |
| return i915_gem_create(file, dev, |
| args->size, &args->handle); |
| } |
| |
| static int i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj) |
| { |
| drm_i915_private_t *dev_priv = obj->base.dev->dev_private; |
| |
| return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 && |
| obj->tiling_mode != I915_TILING_NONE; |
| } |
| |
| static inline int |
| __copy_to_user_swizzled(char __user *cpu_vaddr, |
| const char *gpu_vaddr, int gpu_offset, |
| int length) |
| { |
| int ret, cpu_offset = 0; |
| |
| while (length > 0) { |
| int cacheline_end = ALIGN(gpu_offset + 1, 64); |
| int this_length = min(cacheline_end - gpu_offset, length); |
| int swizzled_gpu_offset = gpu_offset ^ 64; |
| |
| ret = __copy_to_user(cpu_vaddr + cpu_offset, |
| gpu_vaddr + swizzled_gpu_offset, |
| this_length); |
| if (ret) |
| return ret + length; |
| |
| cpu_offset += this_length; |
| gpu_offset += this_length; |
| length -= this_length; |
| } |
| |
| return 0; |
| } |
| |
| static inline int |
| __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset, |
| const char __user *cpu_vaddr, |
| int length) |
| { |
| int ret, cpu_offset = 0; |
| |
| while (length > 0) { |
| int cacheline_end = ALIGN(gpu_offset + 1, 64); |
| int this_length = min(cacheline_end - gpu_offset, length); |
| int swizzled_gpu_offset = gpu_offset ^ 64; |
| |
| ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset, |
| cpu_vaddr + cpu_offset, |
| this_length); |
| if (ret) |
| return ret + length; |
| |
| cpu_offset += this_length; |
| gpu_offset += this_length; |
| length -= this_length; |
| } |
| |
| return 0; |
| } |
| |
| /* Per-page copy function for the shmem pread fastpath. |
| * Flushes invalid cachelines before reading the target if |
| * needs_clflush is set. */ |
| static int |
| shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length, |
| char __user *user_data, |
| bool page_do_bit17_swizzling, bool needs_clflush) |
| { |
| char *vaddr; |
| int ret; |
| |
| if (unlikely(page_do_bit17_swizzling)) |
| return -EINVAL; |
| |
| vaddr = kmap_atomic(page); |
| if (needs_clflush) |
| drm_clflush_virt_range(vaddr + shmem_page_offset, |
| page_length); |
| ret = __copy_to_user_inatomic(user_data, |
| vaddr + shmem_page_offset, |
| page_length); |
| kunmap_atomic(vaddr); |
| |
| return ret; |
| } |
| |
| static void |
| shmem_clflush_swizzled_range(char *addr, unsigned long length, |
| bool swizzled) |
| { |
| if (unlikely(swizzled)) { |
| unsigned long start = (unsigned long) addr; |
| unsigned long end = (unsigned long) addr + length; |
| |
| /* For swizzling simply ensure that we always flush both |
| * channels. Lame, but simple and it works. Swizzled |
| * pwrite/pread is far from a hotpath - current userspace |
| * doesn't use it at all. */ |
| start = round_down(start, 128); |
| end = round_up(end, 128); |
| |
| drm_clflush_virt_range((void *)start, end - start); |
| } else { |
| drm_clflush_virt_range(addr, length); |
| } |
| |
| } |
| |
| /* Only difference to the fast-path function is that this can handle bit17 |
| * and uses non-atomic copy and kmap functions. */ |
| static int |
| shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length, |
| char __user *user_data, |
| bool page_do_bit17_swizzling, bool needs_clflush) |
| { |
| char *vaddr; |
| int ret; |
| |
| vaddr = kmap(page); |
| if (needs_clflush) |
| shmem_clflush_swizzled_range(vaddr + shmem_page_offset, |
| page_length, |
| page_do_bit17_swizzling); |
| |
| if (page_do_bit17_swizzling) |
| ret = __copy_to_user_swizzled(user_data, |
| vaddr, shmem_page_offset, |
| page_length); |
| else |
| ret = __copy_to_user(user_data, |
| vaddr + shmem_page_offset, |
| page_length); |
| kunmap(page); |
| |
| return ret; |
| } |
| |
| static int |
| i915_gem_shmem_pread(struct drm_device *dev, |
| struct drm_i915_gem_object *obj, |
| struct drm_i915_gem_pread *args, |
| struct drm_file *file) |
| { |
| struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping; |
| char __user *user_data; |
| ssize_t remain; |
| loff_t offset; |
| int shmem_page_offset, page_length, ret = 0; |
| int obj_do_bit17_swizzling, page_do_bit17_swizzling; |
| int hit_slowpath = 0; |
| int prefaulted = 0; |
| int needs_clflush = 0; |
| int release_page; |
| |
| user_data = (char __user *) (uintptr_t) args->data_ptr; |
| remain = args->size; |
| |
| obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj); |
| |
| if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) { |
| /* If we're not in the cpu read domain, set ourself into the gtt |
| * read domain and manually flush cachelines (if required). This |
| * optimizes for the case when the gpu will dirty the data |
| * anyway again before the next pread happens. */ |
| if (obj->cache_level == I915_CACHE_NONE) |
| needs_clflush = 1; |
| ret = i915_gem_object_set_to_gtt_domain(obj, false); |
| if (ret) |
| return ret; |
| } |
| |
| offset = args->offset; |
| |
| while (remain > 0) { |
| struct page *page; |
| |
| /* Operation in this page |
| * |
| * shmem_page_offset = offset within page in shmem file |
| * page_length = bytes to copy for this page |
| */ |
| shmem_page_offset = offset_in_page(offset); |
| page_length = remain; |
| if ((shmem_page_offset + page_length) > PAGE_SIZE) |
| page_length = PAGE_SIZE - shmem_page_offset; |
| |
| if (obj->pages) { |
| page = obj->pages[offset >> PAGE_SHIFT]; |
| release_page = 0; |
| } else { |
| page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT); |
| if (IS_ERR(page)) { |
| ret = PTR_ERR(page); |
| goto out; |
| } |
| release_page = 1; |
| } |
| |
| page_do_bit17_swizzling = obj_do_bit17_swizzling && |
| (page_to_phys(page) & (1 << 17)) != 0; |
| |
| ret = shmem_pread_fast(page, shmem_page_offset, page_length, |
| user_data, page_do_bit17_swizzling, |
| needs_clflush); |
| if (ret == 0) |
| goto next_page; |
| |
| hit_slowpath = 1; |
| page_cache_get(page); |
| mutex_unlock(&dev->struct_mutex); |
| |
| if (!prefaulted) { |
| ret = fault_in_multipages_writeable(user_data, remain); |
| /* Userspace is tricking us, but we've already clobbered |
| * its pages with the prefault and promised to write the |
| * data up to the first fault. Hence ignore any errors |
| * and just continue. */ |
| (void)ret; |
| prefaulted = 1; |
| } |
| |
| ret = shmem_pread_slow(page, shmem_page_offset, page_length, |
| user_data, page_do_bit17_swizzling, |
| needs_clflush); |
| |
| mutex_lock(&dev->struct_mutex); |
| page_cache_release(page); |
| next_page: |
| mark_page_accessed(page); |
| if (release_page) |
| page_cache_release(page); |
| |
| if (ret) { |
| ret = -EFAULT; |
| goto out; |
| } |
| |
| remain -= page_length; |
| user_data += page_length; |
| offset += page_length; |
| } |
| |
| out: |
| if (hit_slowpath) { |
| /* Fixup: Kill any reinstated backing storage pages */ |
| if (obj->madv == __I915_MADV_PURGED) |
| i915_gem_object_truncate(obj); |
| } |
| |
| return ret; |
| } |
| |
| /** |
| * Reads data from the object referenced by handle. |
| * |
| * On error, the contents of *data are undefined. |
| */ |
| int |
| i915_gem_pread_ioctl(struct drm_device *dev, void *data, |
| struct drm_file *file) |
| { |
| struct drm_i915_gem_pread *args = data; |
| struct drm_i915_gem_object *obj; |
| int ret = 0; |
| |
| if (args->size == 0) |
| return 0; |
| |
| if (!access_ok(VERIFY_WRITE, |
| (char __user *)(uintptr_t)args->data_ptr, |
| args->size)) |
| return -EFAULT; |
| |
| ret = i915_mutex_lock_interruptible(dev); |
| if (ret) |
| return ret; |
| |
| obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle)); |
| if (&obj->base == NULL) { |
| ret = -ENOENT; |
| goto unlock; |
| } |
| |
| /* Bounds check source. */ |
| if (args->offset > obj->base.size || |
| args->size > obj->base.size - args->offset) { |
| ret = -EINVAL; |
| goto out; |
| } |
| |
| /* prime objects have no backing filp to GEM pread/pwrite |
| * pages from. |
| */ |
| if (!obj->base.filp) { |
| ret = -EINVAL; |
| goto out; |
| } |
| |
| trace_i915_gem_object_pread(obj, args->offset, args->size); |
| |
| ret = i915_gem_shmem_pread(dev, obj, args, file); |
| |
| out: |
| drm_gem_object_unreference(&obj->base); |
| unlock: |
| mutex_unlock(&dev->struct_mutex); |
| return ret; |
| } |
| |
| /* This is the fast write path which cannot handle |
| * page faults in the source data |
| */ |
| |
| static inline int |
| fast_user_write(struct io_mapping *mapping, |
| loff_t page_base, int page_offset, |
| char __user *user_data, |
| int length) |
| { |
| void __iomem *vaddr_atomic; |
| void *vaddr; |
| unsigned long unwritten; |
| |
| vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base); |
| /* We can use the cpu mem copy function because this is X86. */ |
| vaddr = (void __force*)vaddr_atomic + page_offset; |
| unwritten = __copy_from_user_inatomic_nocache(vaddr, |
| user_data, length); |
| io_mapping_unmap_atomic(vaddr_atomic); |
| return unwritten; |
| } |
| |
| /** |
| * This is the fast pwrite path, where we copy the data directly from the |
| * user into the GTT, uncached. |
| */ |
| static int |
| i915_gem_gtt_pwrite_fast(struct drm_device *dev, |
| struct drm_i915_gem_object *obj, |
| struct drm_i915_gem_pwrite *args, |
| struct drm_file *file) |
| { |
| drm_i915_private_t *dev_priv = dev->dev_private; |
| ssize_t remain; |
| loff_t offset, page_base; |
| char __user *user_data; |
| int page_offset, page_length, ret; |
| |
| ret = i915_gem_object_pin(obj, 0, true); |
| if (ret) |
| goto out; |
| |
| ret = i915_gem_object_set_to_gtt_domain(obj, true); |
| if (ret) |
| goto out_unpin; |
| |
| ret = i915_gem_object_put_fence(obj); |
| if (ret) |
| goto out_unpin; |
| |
| user_data = (char __user *) (uintptr_t) args->data_ptr; |
| remain = args->size; |
| |
| offset = obj->gtt_offset + args->offset; |
| |
| while (remain > 0) { |
| /* Operation in this page |
| * |
| * page_base = page offset within aperture |
| * page_offset = offset within page |
| * page_length = bytes to copy for this page |
| */ |
| page_base = offset & PAGE_MASK; |
| page_offset = offset_in_page(offset); |
| page_length = remain; |
| if ((page_offset + remain) > PAGE_SIZE) |
| page_length = PAGE_SIZE - page_offset; |
| |
| /* If we get a fault while copying data, then (presumably) our |
| * source page isn't available. Return the error and we'll |
| * retry in the slow path. |
| */ |
| if (fast_user_write(dev_priv->mm.gtt_mapping, page_base, |
| page_offset, user_data, page_length)) { |
| ret = -EFAULT; |
| goto out_unpin; |
| } |
| |
| remain -= page_length; |
| user_data += page_length; |
| offset += page_length; |
| } |
| |
| out_unpin: |
| i915_gem_object_unpin(obj); |
| out: |
| return ret; |
| } |
| |
| /* Per-page copy function for the shmem pwrite fastpath. |
| * Flushes invalid cachelines before writing to the target if |
| * needs_clflush_before is set and flushes out any written cachelines after |
| * writing if needs_clflush is set. */ |
| static int |
| shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length, |
| char __user *user_data, |
| bool page_do_bit17_swizzling, |
| bool needs_clflush_before, |
| bool needs_clflush_after) |
| { |
| char *vaddr; |
| int ret; |
| |
| if (unlikely(page_do_bit17_swizzling)) |
| return -EINVAL; |
| |
| vaddr = kmap_atomic(page); |
| if (needs_clflush_before) |
| drm_clflush_virt_range(vaddr + shmem_page_offset, |
| page_length); |
| ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset, |
| user_data, |
| page_length); |
| if (needs_clflush_after) |
| drm_clflush_virt_range(vaddr + shmem_page_offset, |
| page_length); |
| kunmap_atomic(vaddr); |
| |
| return ret; |
| } |
| |
| /* Only difference to the fast-path function is that this can handle bit17 |
| * and uses non-atomic copy and kmap functions. */ |
| static int |
| shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length, |
| char __user *user_data, |
| bool page_do_bit17_swizzling, |
| bool needs_clflush_before, |
| bool needs_clflush_after) |
| { |
| char *vaddr; |
| int ret; |
| |
| vaddr = kmap(page); |
| if (unlikely(needs_clflush_before || page_do_bit17_swizzling)) |
| shmem_clflush_swizzled_range(vaddr + shmem_page_offset, |
| page_length, |
| page_do_bit17_swizzling); |
| if (page_do_bit17_swizzling) |
| ret = __copy_from_user_swizzled(vaddr, shmem_page_offset, |
| user_data, |
| page_length); |
| else |
| ret = __copy_from_user(vaddr + shmem_page_offset, |
| user_data, |
| page_length); |
| if (needs_clflush_after) |
| shmem_clflush_swizzled_range(vaddr + shmem_page_offset, |
| page_length, |
| page_do_bit17_swizzling); |
| kunmap(page); |
| |
| return ret; |
| } |
| |
| static int |
| i915_gem_shmem_pwrite(struct drm_device *dev, |
| struct drm_i915_gem_object *obj, |
| struct drm_i915_gem_pwrite *args, |
| struct drm_file *file) |
| { |
| struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping; |
| ssize_t remain; |
| loff_t offset; |
| char __user *user_data; |
| int shmem_page_offset, page_length, ret = 0; |
| int obj_do_bit17_swizzling, page_do_bit17_swizzling; |
| int hit_slowpath = 0; |
| int needs_clflush_after = 0; |
| int needs_clflush_before = 0; |
| int release_page; |
| |
| user_data = (char __user *) (uintptr_t) args->data_ptr; |
| remain = args->size; |
| |
| obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj); |
| |
| if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) { |
| /* If we're not in the cpu write domain, set ourself into the gtt |
| * write domain and manually flush cachelines (if required). This |
| * optimizes for the case when the gpu will use the data |
| * right away and we therefore have to clflush anyway. */ |
| if (obj->cache_level == I915_CACHE_NONE) |
| needs_clflush_after = 1; |
| ret = i915_gem_object_set_to_gtt_domain(obj, true); |
| if (ret) |
| return ret; |
| } |
| /* Same trick applies for invalidate partially written cachelines before |
| * writing. */ |
| if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU) |
| && obj->cache_level == I915_CACHE_NONE) |
| needs_clflush_before = 1; |
| |
| offset = args->offset; |
| obj->dirty = 1; |
| |
| while (remain > 0) { |
| struct page *page; |
| int partial_cacheline_write; |
| |
| /* Operation in this page |
| * |
| * shmem_page_offset = offset within page in shmem file |
| * page_length = bytes to copy for this page |
| */ |
| shmem_page_offset = offset_in_page(offset); |
| |
| page_length = remain; |
| if ((shmem_page_offset + page_length) > PAGE_SIZE) |
| page_length = PAGE_SIZE - shmem_page_offset; |
| |
| /* If we don't overwrite a cacheline completely we need to be |
| * careful to have up-to-date data by first clflushing. Don't |
| * overcomplicate things and flush the entire patch. */ |
| partial_cacheline_write = needs_clflush_before && |
| ((shmem_page_offset | page_length) |
| & (boot_cpu_data.x86_clflush_size - 1)); |
| |
| if (obj->pages) { |
| page = obj->pages[offset >> PAGE_SHIFT]; |
| release_page = 0; |
| } else { |
| page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT); |
| if (IS_ERR(page)) { |
| ret = PTR_ERR(page); |
| goto out; |
| } |
| release_page = 1; |
| } |
| |
| page_do_bit17_swizzling = obj_do_bit17_swizzling && |
| (page_to_phys(page) & (1 << 17)) != 0; |
| |
| ret = shmem_pwrite_fast(page, shmem_page_offset, page_length, |
| user_data, page_do_bit17_swizzling, |
| partial_cacheline_write, |
| needs_clflush_after); |
| if (ret == 0) |
| goto next_page; |
| |
| hit_slowpath = 1; |
| page_cache_get(page); |
| mutex_unlock(&dev->struct_mutex); |
| |
| ret = shmem_pwrite_slow(page, shmem_page_offset, page_length, |
| user_data, page_do_bit17_swizzling, |
| partial_cacheline_write, |
| needs_clflush_after); |
| |
| mutex_lock(&dev->struct_mutex); |
| page_cache_release(page); |
| next_page: |
| set_page_dirty(page); |
| mark_page_accessed(page); |
| if (release_page) |
| page_cache_release(page); |
| |
| if (ret) { |
| ret = -EFAULT; |
| goto out; |
| } |
| |
| remain -= page_length; |
| user_data += page_length; |
| offset += page_length; |
| } |
| |
| out: |
| if (hit_slowpath) { |
| /* Fixup: Kill any reinstated backing storage pages */ |
| if (obj->madv == __I915_MADV_PURGED) |
| i915_gem_object_truncate(obj); |
| /* and flush dirty cachelines in case the object isn't in the cpu write |
| * domain anymore. */ |
| if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) { |
| i915_gem_clflush_object(obj); |
| intel_gtt_chipset_flush(); |
| } |
| } |
| |
| if (needs_clflush_after) |
| intel_gtt_chipset_flush(); |
| |
| return ret; |
| } |
| |
| /** |
| * Writes data to the object referenced by handle. |
| * |
| * On error, the contents of the buffer that were to be modified are undefined. |
| */ |
| int |
| i915_gem_pwrite_ioctl(struct drm_device *dev, void *data, |
| struct drm_file *file) |
| { |
| struct drm_i915_gem_pwrite *args = data; |
| struct drm_i915_gem_object *obj; |
| int ret; |
| |
| if (args->size == 0) |
| return 0; |
| |
| if (!access_ok(VERIFY_READ, |
| (char __user *)(uintptr_t)args->data_ptr, |
| args->size)) |
| return -EFAULT; |
| |
| ret = fault_in_multipages_readable((char __user *)(uintptr_t)args->data_ptr, |
| args->size); |
| if (ret) |
| return -EFAULT; |
| |
| ret = i915_mutex_lock_interruptible(dev); |
| if (ret) |
| return ret; |
| |
| obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle)); |
| if (&obj->base == NULL) { |
| ret = -ENOENT; |
| goto unlock; |
| } |
| |
| /* Bounds check destination. */ |
| if (args->offset > obj->base.size || |
| args->size > obj->base.size - args->offset) { |
| ret = -EINVAL; |
| goto out; |
| } |
| |
| /* prime objects have no backing filp to GEM pread/pwrite |
| * pages from. |
| */ |
| if (!obj->base.filp) { |
| ret = -EINVAL; |
| goto out; |
| } |
| |
| trace_i915_gem_object_pwrite(obj, args->offset, args->size); |
| |
| ret = -EFAULT; |
| /* We can only do the GTT pwrite on untiled buffers, as otherwise |
| * it would end up going through the fenced access, and we'll get |
| * different detiling behavior between reading and writing. |
| * pread/pwrite currently are reading and writing from the CPU |
| * perspective, requiring manual detiling by the client. |
| */ |
| if (obj->phys_obj) { |
| ret = i915_gem_phys_pwrite(dev, obj, args, file); |
| goto out; |
| } |
| |
| if (obj->gtt_space && |
| obj->cache_level == I915_CACHE_NONE && |
| obj->tiling_mode == I915_TILING_NONE && |
| obj->map_and_fenceable && |
| obj->base.write_domain != I915_GEM_DOMAIN_CPU) { |
| ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file); |
| /* Note that the gtt paths might fail with non-page-backed user |
| * pointers (e.g. gtt mappings when moving data between |
| * textures). Fallback to the shmem path in that case. */ |
| } |
| |
| if (ret == -EFAULT) |
| ret = i915_gem_shmem_pwrite(dev, obj, args, file); |
| |
| out: |
| drm_gem_object_unreference(&obj->base); |
| unlock: |
| mutex_unlock(&dev->struct_mutex); |
| return ret; |
| } |
| |
| /** |
| * Called when user space prepares to use an object with the CPU, either |
| * through the mmap ioctl's mapping or a GTT mapping. |
| */ |
| int |
| i915_gem_set_domain_ioctl(struct drm_device *dev, void *data, |
| struct drm_file *file) |
| { |
| struct drm_i915_gem_set_domain *args = data; |
| struct drm_i915_gem_object *obj; |
| uint32_t read_domains = args->read_domains; |
| uint32_t write_domain = args->write_domain; |
| int ret; |
| |
| /* Only handle setting domains to types used by the CPU. */ |
| if (write_domain & I915_GEM_GPU_DOMAINS) |
| return -EINVAL; |
| |
| if (read_domains & I915_GEM_GPU_DOMAINS) |
| return -EINVAL; |
| |
| /* Having something in the write domain implies it's in the read |
| * domain, and only that read domain. Enforce that in the request. |
| */ |
| if (write_domain != 0 && read_domains != write_domain) |
| return -EINVAL; |
| |
| ret = i915_mutex_lock_interruptible(dev); |
| if (ret) |
| return ret; |
| |
| obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle)); |
| if (&obj->base == NULL) { |
| ret = -ENOENT; |
| goto unlock; |
| } |
| |
| if (read_domains & I915_GEM_DOMAIN_GTT) { |
| ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0); |
| |
| /* Silently promote "you're not bound, there was nothing to do" |
| * to success, since the client was just asking us to |
| * make sure everything was done. |
| */ |
| if (ret == -EINVAL) |
| ret = 0; |
| } else { |
| ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0); |
| } |
| |
| drm_gem_object_unreference(&obj->base); |
| unlock: |
| mutex_unlock(&dev->struct_mutex); |
| return ret; |
| } |
| |
| /** |
| * Called when user space has done writes to this buffer |
| */ |
| int |
| i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data, |
| struct drm_file *file) |
| { |
| struct drm_i915_gem_sw_finish *args = data; |
| struct drm_i915_gem_object *obj; |
| int ret = 0; |
| |
| ret = i915_mutex_lock_interruptible(dev); |
| if (ret) |
| return ret; |
| |
| obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle)); |
| if (&obj->base == NULL) { |
| ret = -ENOENT; |
| goto unlock; |
| } |
| |
| /* Pinned buffers may be scanout, so flush the cache */ |
| if (obj->pin_count) |
| i915_gem_object_flush_cpu_write_domain(obj); |
| |
| drm_gem_object_unreference(&obj->base); |
| unlock: |
| mutex_unlock(&dev->struct_mutex); |
| return ret; |
| } |
| |
| /** |
| * Maps the contents of an object, returning the address it is mapped |
| * into. |
| * |
| * While the mapping holds a reference on the contents of the object, it doesn't |
| * imply a ref on the object itself. |
| */ |
| int |
| i915_gem_mmap_ioctl(struct drm_device *dev, void *data, |
| struct drm_file *file) |
| { |
| struct drm_i915_gem_mmap *args = data; |
| struct drm_gem_object *obj; |
| unsigned long addr; |
| |
| obj = drm_gem_object_lookup(dev, file, args->handle); |
| if (obj == NULL) |
| return -ENOENT; |
| |
| /* prime objects have no backing filp to GEM mmap |
| * pages from. |
| */ |
| if (!obj->filp) { |
| drm_gem_object_unreference_unlocked(obj); |
| return -EINVAL; |
| } |
| |
| addr = vm_mmap(obj->filp, 0, args->size, |
| PROT_READ | PROT_WRITE, MAP_SHARED, |
| args->offset); |
| drm_gem_object_unreference_unlocked(obj); |
| if (IS_ERR((void *)addr)) |
| return addr; |
| |
| args->addr_ptr = (uint64_t) addr; |
| |
| return 0; |
| } |
| |
| /** |
| * i915_gem_fault - fault a page into the GTT |
| * vma: VMA in question |
| * vmf: fault info |
| * |
| * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped |
| * from userspace. The fault handler takes care of binding the object to |
| * the GTT (if needed), allocating and programming a fence register (again, |
| * only if needed based on whether the old reg is still valid or the object |
| * is tiled) and inserting a new PTE into the faulting process. |
| * |
| * Note that the faulting process may involve evicting existing objects |
| * from the GTT and/or fence registers to make room. So performance may |
| * suffer if the GTT working set is large or there are few fence registers |
| * left. |
| */ |
| int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf) |
| { |
| struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data); |
| struct drm_device *dev = obj->base.dev; |
| drm_i915_private_t *dev_priv = dev->dev_private; |
| pgoff_t page_offset; |
| unsigned long pfn; |
| int ret = 0; |
| bool write = !!(vmf->flags & FAULT_FLAG_WRITE); |
| |
| /* We don't use vmf->pgoff since that has the fake offset */ |
| page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >> |
| PAGE_SHIFT; |
| |
| ret = i915_mutex_lock_interruptible(dev); |
| if (ret) |
| goto out; |
| |
| trace_i915_gem_object_fault(obj, page_offset, true, write); |
| |
| /* Now bind it into the GTT if needed */ |
| if (!obj->map_and_fenceable) { |
| ret = i915_gem_object_unbind(obj); |
| if (ret) |
| goto unlock; |
| } |
| if (!obj->gtt_space) { |
| ret = i915_gem_object_bind_to_gtt(obj, 0, true); |
| if (ret) |
| goto unlock; |
| |
| ret = i915_gem_object_set_to_gtt_domain(obj, write); |
| if (ret) |
| goto unlock; |
| } |
| |
| if (!obj->has_global_gtt_mapping) |
| i915_gem_gtt_bind_object(obj, obj->cache_level); |
| |
| ret = i915_gem_object_get_fence(obj); |
| if (ret) |
| goto unlock; |
| |
| if (i915_gem_object_is_inactive(obj)) |
| list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list); |
| |
| obj->fault_mappable = true; |
| |
| pfn = ((dev_priv->mm.gtt_base_addr + obj->gtt_offset) >> PAGE_SHIFT) + |
| page_offset; |
| |
| /* Finally, remap it using the new GTT offset */ |
| ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn); |
| unlock: |
| mutex_unlock(&dev->struct_mutex); |
| out: |
| switch (ret) { |
| case -EIO: |
| /* If this -EIO is due to a gpu hang, give the reset code a |
| * chance to clean up the mess. Otherwise return the proper |
| * SIGBUS. */ |
| if (!atomic_read(&dev_priv->mm.wedged)) |
| return VM_FAULT_SIGBUS; |
| case -EAGAIN: |
| /* Give the error handler a chance to run and move the |
| * objects off the GPU active list. Next time we service the |
| * fault, we should be able to transition the page into the |
| * GTT without touching the GPU (and so avoid further |
| * EIO/EGAIN). If the GPU is wedged, then there is no issue |
| * with coherency, just lost writes. |
| */ |
| set_need_resched(); |
| case 0: |
| case -ERESTARTSYS: |
| case -EINTR: |
| return VM_FAULT_NOPAGE; |
| case -ENOMEM: |
| return VM_FAULT_OOM; |
| default: |
| return VM_FAULT_SIGBUS; |
| } |
| } |
| |
| /** |
| * i915_gem_release_mmap - remove physical page mappings |
| * @obj: obj in question |
| * |
| * Preserve the reservation of the mmapping with the DRM core code, but |
| * relinquish ownership of the pages back to the system. |
| * |
| * It is vital that we remove the page mapping if we have mapped a tiled |
| * object through the GTT and then lose the fence register due to |
| * resource pressure. Similarly if the object has been moved out of the |
| * aperture, than pages mapped into userspace must be revoked. Removing the |
| * mapping will then trigger a page fault on the next user access, allowing |
| * fixup by i915_gem_fault(). |
| */ |
| void |
| i915_gem_release_mmap(struct drm_i915_gem_object *obj) |
| { |
| if (!obj->fault_mappable) |
| return; |
| |
| if (obj->base.dev->dev_mapping) |
| unmap_mapping_range(obj->base.dev->dev_mapping, |
| (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT, |
| obj->base.size, 1); |
| |
| obj->fault_mappable = false; |
| } |
| |
| static uint32_t |
| i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode) |
| { |
| uint32_t gtt_size; |
| |
| if (INTEL_INFO(dev)->gen >= 4 || |
| tiling_mode == I915_TILING_NONE) |
| return size; |
| |
| /* Previous chips need a power-of-two fence region when tiling */ |
| if (INTEL_INFO(dev)->gen == 3) |
| gtt_size = 1024*1024; |
| else |
| gtt_size = 512*1024; |
| |
| while (gtt_size < size) |
| gtt_size <<= 1; |
| |
| return gtt_size; |
| } |
| |
| /** |
| * i915_gem_get_gtt_alignment - return required GTT alignment for an object |
| * @obj: object to check |
| * |
| * Return the required GTT alignment for an object, taking into account |
| * potential fence register mapping. |
| */ |
| static uint32_t |
| i915_gem_get_gtt_alignment(struct drm_device *dev, |
| uint32_t size, |
| int tiling_mode) |
| { |
| /* |
| * Minimum alignment is 4k (GTT page size), but might be greater |
| * if a fence register is needed for the object. |
| */ |
| if (INTEL_INFO(dev)->gen >= 4 || |
| tiling_mode == I915_TILING_NONE) |
| return 4096; |
| |
| /* |
| * Previous chips need to be aligned to the size of the smallest |
| * fence register that can contain the object. |
| */ |
| return i915_gem_get_gtt_size(dev, size, tiling_mode); |
| } |
| |
| /** |
| * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an |
| * unfenced object |
| * @dev: the device |
| * @size: size of the object |
| * @tiling_mode: tiling mode of the object |
| * |
| * Return the required GTT alignment for an object, only taking into account |
| * unfenced tiled surface requirements. |
| */ |
| uint32_t |
| i915_gem_get_unfenced_gtt_alignment(struct drm_device *dev, |
| uint32_t size, |
| int tiling_mode) |
| { |
| /* |
| * Minimum alignment is 4k (GTT page size) for sane hw. |
| */ |
| if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) || |
| tiling_mode == I915_TILING_NONE) |
| return 4096; |
| |
| /* Previous hardware however needs to be aligned to a power-of-two |
| * tile height. The simplest method for determining this is to reuse |
| * the power-of-tile object size. |
| */ |
| return i915_gem_get_gtt_size(dev, size, tiling_mode); |
| } |
| |
| int |
| i915_gem_mmap_gtt(struct drm_file *file, |
| struct drm_device *dev, |
| uint32_t handle, |
| uint64_t *offset) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct drm_i915_gem_object *obj; |
| int ret; |
| |
| ret = i915_mutex_lock_interruptible(dev); |
| if (ret) |
| return ret; |
| |
| obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle)); |
| if (&obj->base == NULL) { |
| ret = -ENOENT; |
| goto unlock; |
| } |
| |
| if (obj->base.size > dev_priv->mm.gtt_mappable_end) { |
| ret = -E2BIG; |
| goto out; |
| } |
| |
| if (obj->madv != I915_MADV_WILLNEED) { |
| DRM_ERROR("Attempting to mmap a purgeable buffer\n"); |
| ret = -EINVAL; |
| goto out; |
| } |
| |
| if (!obj->base.map_list.map) { |
| ret = drm_gem_create_mmap_offset(&obj->base); |
| if (ret) |
| goto out; |
| } |
| |
| *offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT; |
| |
| out: |
| drm_gem_object_unreference(&obj->base); |
| unlock: |
| mutex_unlock(&dev->struct_mutex); |
| return ret; |
| } |
| |
| /** |
| * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing |
| * @dev: DRM device |
| * @data: GTT mapping ioctl data |
| * @file: GEM object info |
| * |
| * Simply returns the fake offset to userspace so it can mmap it. |
| * The mmap call will end up in drm_gem_mmap(), which will set things |
| * up so we can get faults in the handler above. |
| * |
| * The fault handler will take care of binding the object into the GTT |
| * (since it may have been evicted to make room for something), allocating |
| * a fence register, and mapping the appropriate aperture address into |
| * userspace. |
| */ |
| int |
| i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data, |
| struct drm_file *file) |
| { |
| struct drm_i915_gem_mmap_gtt *args = data; |
| |
| return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset); |
| } |
| |
| /* Immediately discard the backing storage */ |
| static void |
| i915_gem_object_truncate(struct drm_i915_gem_object *obj) |
| { |
| struct inode *inode; |
| |
| /* Our goal here is to return as much of the memory as |
| * is possible back to the system as we are called from OOM. |
| * To do this we must instruct the shmfs to drop all of its |
| * backing pages, *now*. |
| */ |
| inode = obj->base.filp->f_path.dentry->d_inode; |
| shmem_truncate_range(inode, 0, (loff_t)-1); |
| |
| if (obj->base.map_list.map) |
| drm_gem_free_mmap_offset(&obj->base); |
| |
| obj->madv = __I915_MADV_PURGED; |
| } |
| |
| static inline int |
| i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj) |
| { |
| return obj->madv == I915_MADV_DONTNEED; |
| } |
| |
| static void |
| i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj) |
| { |
| int page_count = obj->base.size / PAGE_SIZE; |
| int i; |
| |
| if (!obj->pages) |
| return; |
| |
| BUG_ON(obj->madv == __I915_MADV_PURGED); |
| |
| if (i915_gem_object_needs_bit17_swizzle(obj)) |
| i915_gem_object_save_bit_17_swizzle(obj); |
| |
| if (obj->madv == I915_MADV_DONTNEED) |
| obj->dirty = 0; |
| |
| for (i = 0; i < page_count; i++) { |
| if (obj->dirty) |
| set_page_dirty(obj->pages[i]); |
| |
| if (obj->madv == I915_MADV_WILLNEED) |
| mark_page_accessed(obj->pages[i]); |
| |
| page_cache_release(obj->pages[i]); |
| } |
| obj->dirty = 0; |
| |
| drm_free_large(obj->pages); |
| obj->pages = NULL; |
| } |
| |
| int |
| i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj, |
| gfp_t gfpmask) |
| { |
| int page_count, i; |
| struct address_space *mapping; |
| struct inode *inode; |
| struct page *page; |
| |
| if (obj->pages || obj->sg_table) |
| return 0; |
| |
| /* Get the list of pages out of our struct file. They'll be pinned |
| * at this point until we release them. |
| */ |
| page_count = obj->base.size / PAGE_SIZE; |
| BUG_ON(obj->pages != NULL); |
| obj->pages = drm_malloc_ab(page_count, sizeof(struct page *)); |
| if (obj->pages == NULL) |
| return -ENOMEM; |
| |
| inode = obj->base.filp->f_path.dentry->d_inode; |
| mapping = inode->i_mapping; |
| gfpmask |= mapping_gfp_mask(mapping); |
| |
| for (i = 0; i < page_count; i++) { |
| page = shmem_read_mapping_page_gfp(mapping, i, gfpmask); |
| if (IS_ERR(page)) |
| goto err_pages; |
| |
| obj->pages[i] = page; |
| } |
| |
| if (i915_gem_object_needs_bit17_swizzle(obj)) |
| i915_gem_object_do_bit_17_swizzle(obj); |
| |
| return 0; |
| |
| err_pages: |
| while (i--) |
| page_cache_release(obj->pages[i]); |
| |
| drm_free_large(obj->pages); |
| obj->pages = NULL; |
| return PTR_ERR(page); |
| } |
| |
| void |
| i915_gem_object_move_to_active(struct drm_i915_gem_object *obj, |
| struct intel_ring_buffer *ring, |
| u32 seqno) |
| { |
| struct drm_device *dev = obj->base.dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| |
| BUG_ON(ring == NULL); |
| obj->ring = ring; |
| |
| /* Add a reference if we're newly entering the active list. */ |
| if (!obj->active) { |
| drm_gem_object_reference(&obj->base); |
| obj->active = 1; |
| } |
| |
| /* Move from whatever list we were on to the tail of execution. */ |
| list_move_tail(&obj->mm_list, &dev_priv->mm.active_list); |
| list_move_tail(&obj->ring_list, &ring->active_list); |
| |
| obj->last_read_seqno = seqno; |
| |
| if (obj->fenced_gpu_access) { |
| obj->last_fenced_seqno = seqno; |
| |
| /* Bump MRU to take account of the delayed flush */ |
| if (obj->fence_reg != I915_FENCE_REG_NONE) { |
| struct drm_i915_fence_reg *reg; |
| |
| reg = &dev_priv->fence_regs[obj->fence_reg]; |
| list_move_tail(®->lru_list, |
| &dev_priv->mm.fence_list); |
| } |
| } |
| } |
| |
| static void |
| i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj) |
| { |
| struct drm_device *dev = obj->base.dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| |
| BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS); |
| BUG_ON(!obj->active); |
| |
| if (obj->pin_count) /* are we a framebuffer? */ |
| intel_mark_fb_idle(obj); |
| |
| list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list); |
| |
| list_del_init(&obj->ring_list); |
| obj->ring = NULL; |
| |
| obj->last_read_seqno = 0; |
| obj->last_write_seqno = 0; |
| obj->base.write_domain = 0; |
| |
| obj->last_fenced_seqno = 0; |
| obj->fenced_gpu_access = false; |
| |
| obj->active = 0; |
| drm_gem_object_unreference(&obj->base); |
| |
| WARN_ON(i915_verify_lists(dev)); |
| } |
| |
| static u32 |
| i915_gem_get_seqno(struct drm_device *dev) |
| { |
| drm_i915_private_t *dev_priv = dev->dev_private; |
| u32 seqno = dev_priv->next_seqno; |
| |
| /* reserve 0 for non-seqno */ |
| if (++dev_priv->next_seqno == 0) |
| dev_priv->next_seqno = 1; |
| |
| return seqno; |
| } |
| |
| u32 |
| i915_gem_next_request_seqno(struct intel_ring_buffer *ring) |
| { |
| if (ring->outstanding_lazy_request == 0) |
| ring->outstanding_lazy_request = i915_gem_get_seqno(ring->dev); |
| |
| return ring->outstanding_lazy_request; |
| } |
| |
| int |
| i915_add_request(struct intel_ring_buffer *ring, |
| struct drm_file *file, |
| struct drm_i915_gem_request *request) |
| { |
| drm_i915_private_t *dev_priv = ring->dev->dev_private; |
| uint32_t seqno; |
| u32 request_ring_position; |
| int was_empty; |
| int ret; |
| |
| /* |
| * Emit any outstanding flushes - execbuf can fail to emit the flush |
| * after having emitted the batchbuffer command. Hence we need to fix |
| * things up similar to emitting the lazy request. The difference here |
| * is that the flush _must_ happen before the next request, no matter |
| * what. |
| */ |
| ret = intel_ring_flush_all_caches(ring); |
| if (ret) |
| return ret; |
| |
| if (request == NULL) { |
| request = kmalloc(sizeof(*request), GFP_KERNEL); |
| if (request == NULL) |
| return -ENOMEM; |
| } |
| |
| seqno = i915_gem_next_request_seqno(ring); |
| |
| /* Record the position of the start of the request so that |
| * should we detect the updated seqno part-way through the |
| * GPU processing the request, we never over-estimate the |
| * position of the head. |
| */ |
| request_ring_position = intel_ring_get_tail(ring); |
| |
| ret = ring->add_request(ring, &seqno); |
| if (ret) { |
| kfree(request); |
| return ret; |
| } |
| |
| trace_i915_gem_request_add(ring, seqno); |
| |
| request->seqno = seqno; |
| request->ring = ring; |
| request->tail = request_ring_position; |
| request->emitted_jiffies = jiffies; |
| was_empty = list_empty(&ring->request_list); |
| list_add_tail(&request->list, &ring->request_list); |
| request->file_priv = NULL; |
| |
| if (file) { |
| struct drm_i915_file_private *file_priv = file->driver_priv; |
| |
| spin_lock(&file_priv->mm.lock); |
| request->file_priv = file_priv; |
| list_add_tail(&request->client_list, |
| &file_priv->mm.request_list); |
| spin_unlock(&file_priv->mm.lock); |
| } |
| |
| ring->outstanding_lazy_request = 0; |
| |
| if (!dev_priv->mm.suspended) { |
| if (i915_enable_hangcheck) { |
| mod_timer(&dev_priv->hangcheck_timer, |
| jiffies + |
| msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD)); |
| } |
| if (was_empty) { |
| queue_delayed_work(dev_priv->wq, |
| &dev_priv->mm.retire_work, HZ); |
| intel_mark_busy(dev_priv->dev); |
| } |
| } |
| |
| return 0; |
| } |
| |
| static inline void |
| i915_gem_request_remove_from_client(struct drm_i915_gem_request *request) |
| { |
| struct drm_i915_file_private *file_priv = request->file_priv; |
| |
| if (!file_priv) |
| return; |
| |
| spin_lock(&file_priv->mm.lock); |
| if (request->file_priv) { |
| list_del(&request->client_list); |
| request->file_priv = NULL; |
| } |
| spin_unlock(&file_priv->mm.lock); |
| } |
| |
| static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv, |
| struct intel_ring_buffer *ring) |
| { |
| while (!list_empty(&ring->request_list)) { |
| struct drm_i915_gem_request *request; |
| |
| request = list_first_entry(&ring->request_list, |
| struct drm_i915_gem_request, |
| list); |
| |
| list_del(&request->list); |
| i915_gem_request_remove_from_client(request); |
| kfree(request); |
| } |
| |
| while (!list_empty(&ring->active_list)) { |
| struct drm_i915_gem_object *obj; |
| |
| obj = list_first_entry(&ring->active_list, |
| struct drm_i915_gem_object, |
| ring_list); |
| |
| i915_gem_object_move_to_inactive(obj); |
| } |
| } |
| |
| static void i915_gem_reset_fences(struct drm_device *dev) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| int i; |
| |
| for (i = 0; i < dev_priv->num_fence_regs; i++) { |
| struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i]; |
| |
| i915_gem_write_fence(dev, i, NULL); |
| |
| if (reg->obj) |
| i915_gem_object_fence_lost(reg->obj); |
| |
| reg->pin_count = 0; |
| reg->obj = NULL; |
| INIT_LIST_HEAD(®->lru_list); |
| } |
| |
| INIT_LIST_HEAD(&dev_priv->mm.fence_list); |
| } |
| |
| void i915_gem_reset(struct drm_device *dev) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct drm_i915_gem_object *obj; |
| struct intel_ring_buffer *ring; |
| int i; |
| |
| for_each_ring(ring, dev_priv, i) |
| i915_gem_reset_ring_lists(dev_priv, ring); |
| |
| /* Move everything out of the GPU domains to ensure we do any |
| * necessary invalidation upon reuse. |
| */ |
| list_for_each_entry(obj, |
| &dev_priv->mm.inactive_list, |
| mm_list) |
| { |
| obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS; |
| } |
| |
| /* The fence registers are invalidated so clear them out */ |
| i915_gem_reset_fences(dev); |
| } |
| |
| /** |
| * This function clears the request list as sequence numbers are passed. |
| */ |
| void |
| i915_gem_retire_requests_ring(struct intel_ring_buffer *ring) |
| { |
| uint32_t seqno; |
| int i; |
| |
| if (list_empty(&ring->request_list)) |
| return; |
| |
| WARN_ON(i915_verify_lists(ring->dev)); |
| |
| seqno = ring->get_seqno(ring, true); |
| |
| for (i = 0; i < ARRAY_SIZE(ring->sync_seqno); i++) |
| if (seqno >= ring->sync_seqno[i]) |
| ring->sync_seqno[i] = 0; |
| |
| while (!list_empty(&ring->request_list)) { |
| struct drm_i915_gem_request *request; |
| |
| request = list_first_entry(&ring->request_list, |
| struct drm_i915_gem_request, |
| list); |
| |
| if (!i915_seqno_passed(seqno, request->seqno)) |
| break; |
| |
| trace_i915_gem_request_retire(ring, request->seqno); |
| /* We know the GPU must have read the request to have |
| * sent us the seqno + interrupt, so use the position |
| * of tail of the request to update the last known position |
| * of the GPU head. |
| */ |
| ring->last_retired_head = request->tail; |
| |
| list_del(&request->list); |
| i915_gem_request_remove_from_client(request); |
| kfree(request); |
| } |
| |
| /* Move any buffers on the active list that are no longer referenced |
| * by the ringbuffer to the flushing/inactive lists as appropriate. |
| */ |
| while (!list_empty(&ring->active_list)) { |
| struct drm_i915_gem_object *obj; |
| |
| obj = list_first_entry(&ring->active_list, |
| struct drm_i915_gem_object, |
| ring_list); |
| |
| if (!i915_seqno_passed(seqno, obj->last_read_seqno)) |
| break; |
| |
| i915_gem_object_move_to_inactive(obj); |
| } |
| |
| if (unlikely(ring->trace_irq_seqno && |
| i915_seqno_passed(seqno, ring->trace_irq_seqno))) { |
| ring->irq_put(ring); |
| ring->trace_irq_seqno = 0; |
| } |
| |
| WARN_ON(i915_verify_lists(ring->dev)); |
| } |
| |
| void |
| i915_gem_retire_requests(struct drm_device *dev) |
| { |
| drm_i915_private_t *dev_priv = dev->dev_private; |
| struct intel_ring_buffer *ring; |
| int i; |
| |
| for_each_ring(ring, dev_priv, i) |
| i915_gem_retire_requests_ring(ring); |
| } |
| |
| static void |
| i915_gem_retire_work_handler(struct work_struct *work) |
| { |
| drm_i915_private_t *dev_priv; |
| struct drm_device *dev; |
| struct intel_ring_buffer *ring; |
| bool idle; |
| int i; |
| |
| dev_priv = container_of(work, drm_i915_private_t, |
| mm.retire_work.work); |
| dev = dev_priv->dev; |
| |
| /* Come back later if the device is busy... */ |
| if (!mutex_trylock(&dev->struct_mutex)) { |
| queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ); |
| return; |
| } |
| |
| i915_gem_retire_requests(dev); |
| |
| /* Send a periodic flush down the ring so we don't hold onto GEM |
| * objects indefinitely. |
| */ |
| idle = true; |
| for_each_ring(ring, dev_priv, i) { |
| if (ring->gpu_caches_dirty) |
| i915_add_request(ring, NULL, NULL); |
| |
| idle &= list_empty(&ring->request_list); |
| } |
| |
| if (!dev_priv->mm.suspended && !idle) |
| queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ); |
| if (idle) |
| intel_mark_idle(dev); |
| |
| mutex_unlock(&dev->struct_mutex); |
| } |
| |
| int |
| i915_gem_check_wedge(struct drm_i915_private *dev_priv, |
| bool interruptible) |
| { |
| if (atomic_read(&dev_priv->mm.wedged)) { |
| struct completion *x = &dev_priv->error_completion; |
| bool recovery_complete; |
| unsigned long flags; |
| |
| /* Give the error handler a chance to run. */ |
| spin_lock_irqsave(&x->wait.lock, flags); |
| recovery_complete = x->done > 0; |
| spin_unlock_irqrestore(&x->wait.lock, flags); |
| |
| /* Non-interruptible callers can't handle -EAGAIN, hence return |
| * -EIO unconditionally for these. */ |
| if (!interruptible) |
| return -EIO; |
| |
| /* Recovery complete, but still wedged means reset failure. */ |
| if (recovery_complete) |
| return -EIO; |
| |
| return -EAGAIN; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * Compare seqno against outstanding lazy request. Emit a request if they are |
| * equal. |
| */ |
| static int |
| i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno) |
| { |
| int ret; |
| |
| BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex)); |
| |
| ret = 0; |
| if (seqno == ring->outstanding_lazy_request) |
| ret = i915_add_request(ring, NULL, NULL); |
| |
| return ret; |
| } |
| |
| /** |
| * __wait_seqno - wait until execution of seqno has finished |
| * @ring: the ring expected to report seqno |
| * @seqno: duh! |
| * @interruptible: do an interruptible wait (normally yes) |
| * @timeout: in - how long to wait (NULL forever); out - how much time remaining |
| * |
| * Returns 0 if the seqno was found within the alloted time. Else returns the |
| * errno with remaining time filled in timeout argument. |
| */ |
| static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno, |
| bool interruptible, struct timespec *timeout) |
| { |
| drm_i915_private_t *dev_priv = ring->dev->dev_private; |
| struct timespec before, now, wait_time={1,0}; |
| unsigned long timeout_jiffies; |
| long end; |
| bool wait_forever = true; |
| int ret; |
| |
| if (i915_seqno_passed(ring->get_seqno(ring, true), seqno)) |
| return 0; |
| |
| trace_i915_gem_request_wait_begin(ring, seqno); |
| |
| if (timeout != NULL) { |
| wait_time = *timeout; |
| wait_forever = false; |
| } |
| |
| timeout_jiffies = timespec_to_jiffies(&wait_time); |
| |
| if (WARN_ON(!ring->irq_get(ring))) |
| return -ENODEV; |
| |
| /* Record current time in case interrupted by signal, or wedged * */ |
| getrawmonotonic(&before); |
| |
| #define EXIT_COND \ |
| (i915_seqno_passed(ring->get_seqno(ring, false), seqno) || \ |
| atomic_read(&dev_priv->mm.wedged)) |
| do { |
| if (interruptible) |
| end = wait_event_interruptible_timeout(ring->irq_queue, |
| EXIT_COND, |
| timeout_jiffies); |
| else |
| end = wait_event_timeout(ring->irq_queue, EXIT_COND, |
| timeout_jiffies); |
| |
| ret = i915_gem_check_wedge(dev_priv, interruptible); |
| if (ret) |
| end = ret; |
| } while (end == 0 && wait_forever); |
| |
| getrawmonotonic(&now); |
| |
| ring->irq_put(ring); |
| trace_i915_gem_request_wait_end(ring, seqno); |
| #undef EXIT_COND |
| |
| if (timeout) { |
| struct timespec sleep_time = timespec_sub(now, before); |
| *timeout = timespec_sub(*timeout, sleep_time); |
| } |
| |
| switch (end) { |
| case -EIO: |
| case -EAGAIN: /* Wedged */ |
| case -ERESTARTSYS: /* Signal */ |
| return (int)end; |
| case 0: /* Timeout */ |
| if (timeout) |
| set_normalized_timespec(timeout, 0, 0); |
| return -ETIME; |
| default: /* Completed */ |
| WARN_ON(end < 0); /* We're not aware of other errors */ |
| return 0; |
| } |
| } |
| |
| /** |
| * Waits for a sequence number to be signaled, and cleans up the |
| * request and object lists appropriately for that event. |
| */ |
| int |
| i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno) |
| { |
| drm_i915_private_t *dev_priv = ring->dev->dev_private; |
| int ret = 0; |
| |
| BUG_ON(seqno == 0); |
| |
| ret = i915_gem_check_wedge(dev_priv, dev_priv->mm.interruptible); |
| if (ret) |
| return ret; |
| |
| ret = i915_gem_check_olr(ring, seqno); |
| if (ret) |
| return ret; |
| |
| ret = __wait_seqno(ring, seqno, dev_priv->mm.interruptible, NULL); |
| |
| return ret; |
| } |
| |
| /** |
| * Ensures that all rendering to the object has completed and the object is |
| * safe to unbind from the GTT or access from the CPU. |
| */ |
| static __must_check int |
| i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj, |
| bool readonly) |
| { |
| u32 seqno; |
| int ret; |
| |
| /* If there is rendering queued on the buffer being evicted, wait for |
| * it. |
| */ |
| if (readonly) |
| seqno = obj->last_write_seqno; |
| else |
| seqno = obj->last_read_seqno; |
| if (seqno == 0) |
| return 0; |
| |
| ret = i915_wait_seqno(obj->ring, seqno); |
| if (ret) |
| return ret; |
| |
| /* Manually manage the write flush as we may have not yet retired |
| * the buffer. |
| */ |
| if (obj->last_write_seqno && |
| i915_seqno_passed(seqno, obj->last_write_seqno)) { |
| obj->last_write_seqno = 0; |
| obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS; |
| } |
| |
| i915_gem_retire_requests_ring(obj->ring); |
| return 0; |
| } |
| |
| /** |
| * Ensures that an object will eventually get non-busy by flushing any required |
| * write domains, emitting any outstanding lazy request and retiring and |
| * completed requests. |
| */ |
| static int |
| i915_gem_object_flush_active(struct drm_i915_gem_object *obj) |
| { |
| int ret; |
| |
| if (obj->active) { |
| ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno); |
| if (ret) |
| return ret; |
| |
| i915_gem_retire_requests_ring(obj->ring); |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT |
| * @DRM_IOCTL_ARGS: standard ioctl arguments |
| * |
| * Returns 0 if successful, else an error is returned with the remaining time in |
| * the timeout parameter. |
| * -ETIME: object is still busy after timeout |
| * -ERESTARTSYS: signal interrupted the wait |
| * -ENONENT: object doesn't exist |
| * Also possible, but rare: |
| * -EAGAIN: GPU wedged |
| * -ENOMEM: damn |
| * -ENODEV: Internal IRQ fail |
| * -E?: The add request failed |
| * |
| * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any |
| * non-zero timeout parameter the wait ioctl will wait for the given number of |
| * nanoseconds on an object becoming unbusy. Since the wait itself does so |
| * without holding struct_mutex the object may become re-busied before this |
| * function completes. A similar but shorter * race condition exists in the busy |
| * ioctl |
| */ |
| int |
| i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file) |
| { |
| struct drm_i915_gem_wait *args = data; |
| struct drm_i915_gem_object *obj; |
| struct intel_ring_buffer *ring = NULL; |
| struct timespec timeout_stack, *timeout = NULL; |
| u32 seqno = 0; |
| int ret = 0; |
| |
| if (args->timeout_ns >= 0) { |
| timeout_stack = ns_to_timespec(args->timeout_ns); |
| timeout = &timeout_stack; |
| } |
| |
| ret = i915_mutex_lock_interruptible(dev); |
| if (ret) |
| return ret; |
| |
| obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle)); |
| if (&obj->base == NULL) { |
| mutex_unlock(&dev->struct_mutex); |
| return -ENOENT; |
| } |
| |
| /* Need to make sure the object gets inactive eventually. */ |
| ret = i915_gem_object_flush_active(obj); |
| if (ret) |
| goto out; |
| |
| if (obj->active) { |
| seqno = obj->last_read_seqno; |
| ring = obj->ring; |
| } |
| |
| if (seqno == 0) |
| goto out; |
| |
| /* Do this after OLR check to make sure we make forward progress polling |
| * on this IOCTL with a 0 timeout (like busy ioctl) |
| */ |
| if (!args->timeout_ns) { |
| ret = -ETIME; |
| goto out; |
| } |
| |
| drm_gem_object_unreference(&obj->base); |
| mutex_unlock(&dev->struct_mutex); |
| |
| ret = __wait_seqno(ring, seqno, true, timeout); |
| if (timeout) { |
| WARN_ON(!timespec_valid(timeout)); |
| args->timeout_ns = timespec_to_ns(timeout); |
| } |
| return ret; |
| |
| out: |
| drm_gem_object_unreference(&obj->base); |
| mutex_unlock(&dev->struct_mutex); |
| return ret; |
| } |
| |
| /** |
| * i915_gem_object_sync - sync an object to a ring. |
| * |
| * @obj: object which may be in use on another ring. |
| * @to: ring we wish to use the object on. May be NULL. |
| * |
| * This code is meant to abstract object synchronization with the GPU. |
| * Calling with NULL implies synchronizing the object with the CPU |
| * rather than a particular GPU ring. |
| * |
| * Returns 0 if successful, else propagates up the lower layer error. |
| */ |
| int |
| i915_gem_object_sync(struct drm_i915_gem_object *obj, |
| struct intel_ring_buffer *to) |
| { |
| struct intel_ring_buffer *from = obj->ring; |
| u32 seqno; |
| int ret, idx; |
| |
| if (from == NULL || to == from) |
| return 0; |
| |
| if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev)) |
| return i915_gem_object_wait_rendering(obj, false); |
| |
| idx = intel_ring_sync_index(from, to); |
| |
| seqno = obj->last_read_seqno; |
| if (seqno <= from->sync_seqno[idx]) |
| return 0; |
| |
| ret = i915_gem_check_olr(obj->ring, seqno); |
| if (ret) |
| return ret; |
| |
| ret = to->sync_to(to, from, seqno); |
| if (!ret) |
| from->sync_seqno[idx] = seqno; |
| |
| return ret; |
| } |
| |
| static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj) |
| { |
| u32 old_write_domain, old_read_domains; |
| |
| /* Act a barrier for all accesses through the GTT */ |
| mb(); |
| |
| /* Force a pagefault for domain tracking on next user access */ |
| i915_gem_release_mmap(obj); |
| |
| if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0) |
| return; |
| |
| old_read_domains = obj->base.read_domains; |
| old_write_domain = obj->base.write_domain; |
| |
| obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT; |
| obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT; |
| |
| trace_i915_gem_object_change_domain(obj, |
| old_read_domains, |
| old_write_domain); |
| } |
| |
| /** |
| * Unbinds an object from the GTT aperture. |
| */ |
| int |
| i915_gem_object_unbind(struct drm_i915_gem_object *obj) |
| { |
| drm_i915_private_t *dev_priv = obj->base.dev->dev_private; |
| int ret = 0; |
| |
| if (obj->gtt_space == NULL) |
| return 0; |
| |
| if (obj->pin_count) |
| return -EBUSY; |
| |
| ret = i915_gem_object_finish_gpu(obj); |
| if (ret) |
| return ret; |
| /* Continue on if we fail due to EIO, the GPU is hung so we |
| * should be safe and we need to cleanup or else we might |
| * cause memory corruption through use-after-free. |
| */ |
| |
| i915_gem_object_finish_gtt(obj); |
| |
| /* Move the object to the CPU domain to ensure that |
| * any possible CPU writes while it's not in the GTT |
| * are flushed when we go to remap it. |
| */ |
| if (ret == 0) |
| ret = i915_gem_object_set_to_cpu_domain(obj, 1); |
| if (ret == -ERESTARTSYS) |
| return ret; |
| if (ret) { |
| /* In the event of a disaster, abandon all caches and |
| * hope for the best. |
| */ |
| i915_gem_clflush_object(obj); |
| obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU; |
| } |
| |
| /* release the fence reg _after_ flushing */ |
| ret = i915_gem_object_put_fence(obj); |
| if (ret) |
| return ret; |
| |
| trace_i915_gem_object_unbind(obj); |
| |
| if (obj->has_global_gtt_mapping) |
| i915_gem_gtt_unbind_object(obj); |
| if (obj->has_aliasing_ppgtt_mapping) { |
| i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj); |
| obj->has_aliasing_ppgtt_mapping = 0; |
| } |
| i915_gem_gtt_finish_object(obj); |
| |
| i915_gem_object_put_pages_gtt(obj); |
| |
| list_del_init(&obj->gtt_list); |
| list_del_init(&obj->mm_list); |
| /* Avoid an unnecessary call to unbind on rebind. */ |
| obj->map_and_fenceable = true; |
| |
| drm_mm_put_block(obj->gtt_space); |
| obj->gtt_space = NULL; |
| obj->gtt_offset = 0; |
| |
| if (i915_gem_object_is_purgeable(obj)) |
| i915_gem_object_truncate(obj); |
| |
| return ret; |
| } |
| |
| static int i915_ring_idle(struct intel_ring_buffer *ring) |
| { |
| if (list_empty(&ring->active_list)) |
| return 0; |
| |
| return i915_wait_seqno(ring, i915_gem_next_request_seqno(ring)); |
| } |
| |
| int i915_gpu_idle(struct drm_device *dev) |
| { |
| drm_i915_private_t *dev_priv = dev->dev_private; |
| struct intel_ring_buffer *ring; |
| int ret, i; |
| |
| /* Flush everything onto the inactive list. */ |
| for_each_ring(ring, dev_priv, i) { |
| ret = i915_ring_idle(ring); |
| if (ret) |
| return ret; |
| |
| ret = i915_switch_context(ring, NULL, DEFAULT_CONTEXT_ID); |
| if (ret) |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| static void sandybridge_write_fence_reg(struct drm_device *dev, int reg, |
| struct drm_i915_gem_object *obj) |
| { |
| drm_i915_private_t *dev_priv = dev->dev_private; |
| uint64_t val; |
| |
| if (obj) { |
| u32 size = obj->gtt_space->size; |
| |
| val = (uint64_t)((obj->gtt_offset + size - 4096) & |
| 0xfffff000) << 32; |
| val |= obj->gtt_offset & 0xfffff000; |
| val |= (uint64_t)((obj->stride / 128) - 1) << |
| SANDYBRIDGE_FENCE_PITCH_SHIFT; |
| |
| if (obj->tiling_mode == I915_TILING_Y) |
| val |= 1 << I965_FENCE_TILING_Y_SHIFT; |
| val |= I965_FENCE_REG_VALID; |
| } else |
| val = 0; |
| |
| I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + reg * 8, val); |
| POSTING_READ(FENCE_REG_SANDYBRIDGE_0 + reg * 8); |
| } |
| |
| static void i965_write_fence_reg(struct drm_device *dev, int reg, |
| struct drm_i915_gem_object *obj) |
| { |
| drm_i915_private_t *dev_priv = dev->dev_private; |
| uint64_t val; |
| |
| if (obj) { |
| u32 size = obj->gtt_space->size; |
| |
| val = (uint64_t)((obj->gtt_offset + size - 4096) & |
| 0xfffff000) << 32; |
| val |= obj->gtt_offset & 0xfffff000; |
| val |= ((obj->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT; |
| if (obj->tiling_mode == I915_TILING_Y) |
| val |= 1 << I965_FENCE_TILING_Y_SHIFT; |
| val |= I965_FENCE_REG_VALID; |
| } else |
| val = 0; |
| |
| I915_WRITE64(FENCE_REG_965_0 + reg * 8, val); |
| POSTING_READ(FENCE_REG_965_0 + reg * 8); |
| } |
| |
| static void i915_write_fence_reg(struct drm_device *dev, int reg, |
| struct drm_i915_gem_object *obj) |
| { |
| drm_i915_private_t *dev_priv = dev->dev_private; |
| u32 val; |
| |
| if (obj) { |
| u32 size = obj->gtt_space->size; |
| int pitch_val; |
| int tile_width; |
| |
| WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) || |
| (size & -size) != size || |
| (obj->gtt_offset & (size - 1)), |
| "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n", |
| obj->gtt_offset, obj->map_and_fenceable, size); |
| |
| if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev)) |
| tile_width = 128; |
| else |
| tile_width = 512; |
| |
| /* Note: pitch better be a power of two tile widths */ |
| pitch_val = obj->stride / tile_width; |
| pitch_val = ffs(pitch_val) - 1; |
| |
| val = obj->gtt_offset; |
| if (obj->tiling_mode == I915_TILING_Y) |
| val |= 1 << I830_FENCE_TILING_Y_SHIFT; |
| val |= I915_FENCE_SIZE_BITS(size); |
| val |= pitch_val << I830_FENCE_PITCH_SHIFT; |
| val |= I830_FENCE_REG_VALID; |
| } else |
| val = 0; |
| |
| if (reg < 8) |
| reg = FENCE_REG_830_0 + reg * 4; |
| else |
| reg = FENCE_REG_945_8 + (reg - 8) * 4; |
| |
| I915_WRITE(reg, val); |
| POSTING_READ(reg); |
| } |
| |
| static void i830_write_fence_reg(struct drm_device *dev, int reg, |
| struct drm_i915_gem_object *obj) |
| { |
| drm_i915_private_t *dev_priv = dev->dev_private; |
| uint32_t val; |
| |
| if (obj) { |
| u32 size = obj->gtt_space->size; |
| uint32_t pitch_val; |
| |
| WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) || |
| (size & -size) != size || |
| (obj->gtt_offset & (size - 1)), |
| "object 0x%08x not 512K or pot-size 0x%08x aligned\n", |
| obj->gtt_offset, size); |
| |
| pitch_val = obj->stride / 128; |
| pitch_val = ffs(pitch_val) - 1; |
| |
| val = obj->gtt_offset; |
| if (obj->tiling_mode == I915_TILING_Y) |
| val |= 1 << I830_FENCE_TILING_Y_SHIFT; |
| val |= I830_FENCE_SIZE_BITS(size); |
| val |= pitch_val << I830_FENCE_PITCH_SHIFT; |
| val |= I830_FENCE_REG_VALID; |
| } else |
| val = 0; |
| |
| I915_WRITE(FENCE_REG_830_0 + reg * 4, val); |
| POSTING_READ(FENCE_REG_830_0 + reg * 4); |
| } |
| |
| static void i915_gem_write_fence(struct drm_device *dev, int reg, |
| struct drm_i915_gem_object *obj) |
| { |
| switch (INTEL_INFO(dev)->gen) { |
| case 7: |
| case 6: sandybridge_write_fence_reg(dev, reg, obj); break; |
| case 5: |
| case 4: i965_write_fence_reg(dev, reg, obj); break; |
| case 3: i915_write_fence_reg(dev, reg, obj); break; |
| case 2: i830_write_fence_reg(dev, reg, obj); break; |
| default: break; |
| } |
| } |
| |
| static inline int fence_number(struct drm_i915_private *dev_priv, |
| struct drm_i915_fence_reg *fence) |
| { |
| return fence - dev_priv->fence_regs; |
| } |
| |
| static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj, |
| struct drm_i915_fence_reg *fence, |
| bool enable) |
| { |
| struct drm_i915_private *dev_priv = obj->base.dev->dev_private; |
| int reg = fence_number(dev_priv, fence); |
| |
| i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL); |
| |
| if (enable) { |
| obj->fence_reg = reg; |
| fence->obj = obj; |
| list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list); |
| } else { |
| obj->fence_reg = I915_FENCE_REG_NONE; |
| fence->obj = NULL; |
| list_del_init(&fence->lru_list); |
| } |
| } |
| |
| static int |
| i915_gem_object_flush_fence(struct drm_i915_gem_object *obj) |
| { |
| if (obj->last_fenced_seqno) { |
| int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno); |
| if (ret) |
| return ret; |
| |
| obj->last_fenced_seqno = 0; |
| } |
| |
| /* Ensure that all CPU reads are completed before installing a fence |
| * and all writes before removing the fence. |
| */ |
| if (obj->base.read_domains & I915_GEM_DOMAIN_GTT) |
| mb(); |
| |
| obj->fenced_gpu_access = false; |
| return 0; |
| } |
| |
| int |
| i915_gem_object_put_fence(struct drm_i915_gem_object *obj) |
| { |
| struct drm_i915_private *dev_priv = obj->base.dev->dev_private; |
| int ret; |
| |
| ret = i915_gem_object_flush_fence(obj); |
| if (ret) |
| return ret; |
| |
| if (obj->fence_reg == I915_FENCE_REG_NONE) |
| return 0; |
| |
| i915_gem_object_update_fence(obj, |
| &dev_priv->fence_regs[obj->fence_reg], |
| false); |
| i915_gem_object_fence_lost(obj); |
| |
| return 0; |
| } |
| |
| static struct drm_i915_fence_reg * |
| i915_find_fence_reg(struct drm_device *dev) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct drm_i915_fence_reg *reg, *avail; |
| int i; |
| |
| /* First try to find a free reg */ |
| avail = NULL; |
| for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) { |
| reg = &dev_priv->fence_regs[i]; |
| if (!reg->obj) |
| return reg; |
| |
| if (!reg->pin_count) |
| avail = reg; |
| } |
| |
| if (avail == NULL) |
| return NULL; |
| |
| /* None available, try to steal one or wait for a user to finish */ |
| list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) { |
| if (reg->pin_count) |
| continue; |
| |
| return reg; |
| } |
| |
| return NULL; |
| } |
| |
| /** |
| * i915_gem_object_get_fence - set up fencing for an object |
| * @obj: object to map through a fence reg |
| * |
| * When mapping objects through the GTT, userspace wants to be able to write |
| * to them without having to worry about swizzling if the object is tiled. |
| * This function walks the fence regs looking for a free one for @obj, |
| * stealing one if it can't find any. |
| * |
| * It then sets up the reg based on the object's properties: address, pitch |
| * and tiling format. |
| * |
| * For an untiled surface, this removes any existing fence. |
| */ |
| int |
| i915_gem_object_get_fence(struct drm_i915_gem_object *obj) |
| { |
| struct drm_device *dev = obj->base.dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| bool enable = obj->tiling_mode != I915_TILING_NONE; |
| struct drm_i915_fence_reg *reg; |
| int ret; |
| |
| /* Have we updated the tiling parameters upon the object and so |
| * will need to serialise the write to the associated fence register? |
| */ |
| if (obj->fence_dirty) { |
| ret = i915_gem_object_flush_fence(obj); |
| if (ret) |
| return ret; |
| } |
| |
| /* Just update our place in the LRU if our fence is getting reused. */ |
| if (obj->fence_reg != I915_FENCE_REG_NONE) { |
| reg = &dev_priv->fence_regs[obj->fence_reg]; |
| if (!obj->fence_dirty) { |
| list_move_tail(®->lru_list, |
| &dev_priv->mm.fence_list); |
| return 0; |
| } |
| } else if (enable) { |
| reg = i915_find_fence_reg(dev); |
| if (reg == NULL) |
| return -EDEADLK; |
| |
| if (reg->obj) { |
| struct drm_i915_gem_object *old = reg->obj; |
| |
| ret = i915_gem_object_flush_fence(old); |
| if (ret) |
| return ret; |
| |
| i915_gem_object_fence_lost(old); |
| } |
| } else |
| return 0; |
| |
| i915_gem_object_update_fence(obj, reg, enable); |
| obj->fence_dirty = false; |
| |
| return 0; |
| } |
| |
| static bool i915_gem_valid_gtt_space(struct drm_device *dev, |
| struct drm_mm_node *gtt_space, |
| unsigned long cache_level) |
| { |
| struct drm_mm_node *other; |
| |
| /* On non-LLC machines we have to be careful when putting differing |
| * types of snoopable memory together to avoid the prefetcher |
| * crossing memory domains and dieing. |
| */ |
| if (HAS_LLC(dev)) |
| return true; |
| |
| if (gtt_space == NULL) |
| return true; |
| |
| if (list_empty(>t_space->node_list)) |
| return true; |
| |
| other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list); |
| if (other->allocated && !other->hole_follows && other->color != cache_level) |
| return false; |
| |
| other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list); |
| if (other->allocated && !gtt_space->hole_follows && other->color != cache_level) |
| return false; |
| |
| return true; |
| } |
| |
| static void i915_gem_verify_gtt(struct drm_device *dev) |
| { |
| #if WATCH_GTT |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct drm_i915_gem_object *obj; |
| int err = 0; |
| |
| list_for_each_entry(obj, &dev_priv->mm.gtt_list, gtt_list) { |
| if (obj->gtt_space == NULL) { |
| printk(KERN_ERR "object found on GTT list with no space reserved\n"); |
| err++; |
| continue; |
| } |
| |
| if (obj->cache_level != obj->gtt_space->color) { |
| printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n", |
| obj->gtt_space->start, |
| obj->gtt_space->start + obj->gtt_space->size, |
| obj->cache_level, |
| obj->gtt_space->color); |
| err++; |
| continue; |
| } |
| |
| if (!i915_gem_valid_gtt_space(dev, |
| obj->gtt_space, |
| obj->cache_level)) { |
| printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n", |
| obj->gtt_space->start, |
| obj->gtt_space->start + obj->gtt_space->size, |
| obj->cache_level); |
| err++; |
| continue; |
| } |
| } |
| |
| WARN_ON(err); |
| #endif |
| } |
| |
| /** |
| * Finds free space in the GTT aperture and binds the object there. |
| */ |
| static int |
| i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj, |
| unsigned alignment, |
| bool map_and_fenceable) |
| { |
| struct drm_device *dev = obj->base.dev; |
| drm_i915_private_t *dev_priv = dev->dev_private; |
| struct drm_mm_node *free_space; |
| gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN; |
| u32 size, fence_size, fence_alignment, unfenced_alignment; |
| bool mappable, fenceable; |
| int ret; |
| |
| if (obj->madv != I915_MADV_WILLNEED) { |
| DRM_ERROR("Attempting to bind a purgeable object\n"); |
| return -EINVAL; |
| } |
| |
| fence_size = i915_gem_get_gtt_size(dev, |
| obj->base.size, |
| obj->tiling_mode); |
| fence_alignment = i915_gem_get_gtt_alignment(dev, |
| obj->base.size, |
| obj->tiling_mode); |
| unfenced_alignment = |
| i915_gem_get_unfenced_gtt_alignment(dev, |
| obj->base.size, |
| obj->tiling_mode); |
| |
| if (alignment == 0) |
| alignment = map_and_fenceable ? fence_alignment : |
| unfenced_alignment; |
| if (map_and_fenceable && alignment & (fence_alignment - 1)) { |
| DRM_ERROR("Invalid object alignment requested %u\n", alignment); |
| return -EINVAL; |
| } |
| |
| size = map_and_fenceable ? fence_size : obj->base.size; |
| |
| /* If the object is bigger than the entire aperture, reject it early |
| * before evicting everything in a vain attempt to find space. |
| */ |
| if (obj->base.size > |
| (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) { |
| DRM_ERROR("Attempting to bind an object larger than the aperture\n"); |
| return -E2BIG; |
| } |
| |
| search_free: |
| if (map_and_fenceable) |
| free_space = |
| drm_mm_search_free_in_range_color(&dev_priv->mm.gtt_space, |
| size, alignment, obj->cache_level, |
| 0, dev_priv->mm.gtt_mappable_end, |
| false); |
| else |
| free_space = drm_mm_search_free_color(&dev_priv->mm.gtt_space, |
| size, alignment, obj->cache_level, |
| false); |
| |
| if (free_space != NULL) { |
| if (map_and_fenceable) |
| obj->gtt_space = |
| drm_mm_get_block_range_generic(free_space, |
| size, alignment, obj->cache_level, |
| 0, dev_priv->mm.gtt_mappable_end, |
| false); |
| else |
| obj->gtt_space = |
| drm_mm_get_block_generic(free_space, |
| size, alignment, obj->cache_level, |
| false); |
| } |
| if (obj->gtt_space == NULL) { |
| /* If the gtt is empty and we're still having trouble |
| * fitting our object in, we're out of memory. |
| */ |
| ret = i915_gem_evict_something(dev, size, alignment, |
| obj->cache_level, |
| map_and_fenceable); |
| if (ret) |
| return ret; |
| |
| goto search_free; |
| } |
| if (WARN_ON(!i915_gem_valid_gtt_space(dev, |
| obj->gtt_space, |
| obj->cache_level))) { |
| drm_mm_put_block(obj->gtt_space); |
| obj->gtt_space = NULL; |
| return -EINVAL; |
| } |
| |
| ret = i915_gem_object_get_pages_gtt(obj, gfpmask); |
| if (ret) { |
| drm_mm_put_block(obj->gtt_space); |
| obj->gtt_space = NULL; |
| |
| if (ret == -ENOMEM) { |
| /* first try to reclaim some memory by clearing the GTT */ |
| ret = i915_gem_evict_everything(dev, false); |
| if (ret) { |
| /* now try to shrink everyone else */ |
| if (gfpmask) { |
| gfpmask = 0; |
| goto search_free; |
| } |
| |
| return -ENOMEM; |
| } |
| |
| goto search_free; |
| } |
| |
| return ret; |
| } |
| |
| ret = i915_gem_gtt_prepare_object(obj); |
| if (ret) { |
| i915_gem_object_put_pages_gtt(obj); |
| drm_mm_put_block(obj->gtt_space); |
| obj->gtt_space = NULL; |
| |
| if (i915_gem_evict_everything(dev, false)) |
| return ret; |
| |
| goto search_free; |
| } |
| |
| if (!dev_priv->mm.aliasing_ppgtt) |
| i915_gem_gtt_bind_object(obj, obj->cache_level); |
| |
| list_add_tail(&obj->gtt_list, &dev_priv->mm.gtt_list); |
| list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list); |
| |
| /* Assert that the object is not currently in any GPU domain. As it |
| * wasn't in the GTT, there shouldn't be any way it could have been in |
| * a GPU cache |
| */ |
| BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS); |
| BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS); |
| |
| obj->gtt_offset = obj->gtt_space->start; |
| |
| fenceable = |
| obj->gtt_space->size == fence_size && |
| (obj->gtt_space->start & (fence_alignment - 1)) == 0; |
| |
| mappable = |
| obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end; |
| |
| obj->map_and_fenceable = mappable && fenceable; |
| |
| trace_i915_gem_object_bind(obj, map_and_fenceable); |
| i915_gem_verify_gtt(dev); |
| return 0; |
| } |
| |
| void |
| i915_gem_clflush_object(struct drm_i915_gem_object *obj) |
| { |
| /* If we don't have a page list set up, then we're not pinned |
| * to GPU, and we can ignore the cache flush because it'll happen |
| * again at bind time. |
| */ |
| if (obj->pages == NULL) |
| return; |
| |
| /* If the GPU is snooping the contents of the CPU cache, |
| * we do not need to manually clear the CPU cache lines. However, |
| * the caches are only snooped when the render cache is |
| * flushed/invalidated. As we always have to emit invalidations |
| * and flushes when moving into and out of the RENDER domain, correct |
| * snooping behaviour occurs naturally as the result of our domain |
| * tracking. |
| */ |
| if (obj->cache_level != I915_CACHE_NONE) |
| return; |
| |
| trace_i915_gem_object_clflush(obj); |
| |
| drm_clflush_pages(obj->pages, obj->base.size / PAGE_SIZE); |
| } |
| |
| /** Flushes the GTT write domain for the object if it's dirty. */ |
| static void |
| i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj) |
| { |
| uint32_t old_write_domain; |
| |
| if (obj->base.write_domain != I915_GEM_DOMAIN_GTT) |
| return; |
| |
| /* No actual flushing is required for the GTT write domain. Writes |
| * to it immediately go to main memory as far as we know, so there's |
| * no chipset flush. It also doesn't land in render cache. |
| * |
| * However, we do have to enforce the order so that all writes through |
| * the GTT land before any writes to the device, such as updates to |
| * the GATT itself. |
| */ |
| wmb(); |
| |
| old_write_domain = obj->base.write_domain; |
| obj->base.write_domain = 0; |
| |
| trace_i915_gem_object_change_domain(obj, |
| obj->base.read_domains, |
| old_write_domain); |
| } |
| |
| /** Flushes the CPU write domain for the object if it's dirty. */ |
| static void |
| i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj) |
| { |
| uint32_t old_write_domain; |
| |
| if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) |
| return; |
| |
| i915_gem_clflush_object(obj); |
| intel_gtt_chipset_flush(); |
| old_write_domain = obj->base.write_domain; |
| obj->base.write_domain = 0; |
| |
| trace_i915_gem_object_change_domain(obj, |
| obj->base.read_domains, |
| old_write_domain); |
| } |
| |
| /** |
| * Moves a single object to the GTT read, and possibly write domain. |
| * |
| * This function returns when the move is complete, including waiting on |
| * flushes to occur. |
| */ |
| int |
| i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write) |
| { |
| drm_i915_private_t *dev_priv = obj->base.dev->dev_private; |
| uint32_t old_write_domain, old_read_domains; |
| int ret; |
| |
| /* Not valid to be called on unbound objects. */ |
| if (obj->gtt_space == NULL) |
| return -EINVAL; |
| |
| if (obj->base.write_domain == I915_GEM_DOMAIN_GTT) |
| return 0; |
| |
| ret = i915_gem_object_wait_rendering(obj, !write); |
| if (ret) |
| return ret; |
| |
| i915_gem_object_flush_cpu_write_domain(obj); |
| |
| old_write_domain = obj->base.write_domain; |
| old_read_domains = obj->base.read_domains; |
| |
| /* It should now be out of any other write domains, and we can update |
| * the domain values for our changes. |
| */ |
| BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0); |
| obj->base.read_domains |= I915_GEM_DOMAIN_GTT; |
| if (write) { |
| obj->base.read_domains = I915_GEM_DOMAIN_GTT; |
| obj->base.write_domain = I915_GEM_DOMAIN_GTT; |
| obj->dirty = 1; |
| } |
| |
| trace_i915_gem_object_change_domain(obj, |
| old_read_domains, |
| old_write_domain); |
| |
| /* And bump the LRU for this access */ |
| if (i915_gem_object_is_inactive(obj)) |
| list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list); |
| |
| return 0; |
| } |
| |
| int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj, |
| enum i915_cache_level cache_level) |
| { |
| struct drm_device *dev = obj->base.dev; |
| drm_i915_private_t *dev_priv = dev->dev_private; |
| int ret; |
| |
| if (obj->cache_level == cache_level) |
| return 0; |
| |
| if (obj->pin_count) { |
| DRM_DEBUG("can not change the cache level of pinned objects\n"); |
| return -EBUSY; |
| } |
| |
| if (!i915_gem_valid_gtt_space(dev, obj->gtt_space, cache_level)) { |
| ret = i915_gem_object_unbind(obj); |
| if (ret) |
| return ret; |
| } |
| |
| if (obj->gtt_space) { |
| ret = i915_gem_object_finish_gpu(obj); |
| if (ret) |
| return ret; |
| |
| i915_gem_object_finish_gtt(obj); |
| |
| /* Before SandyBridge, you could not use tiling or fence |
| * registers with snooped memory, so relinquish any fences |
| * currently pointing to our region in the aperture. |
| */ |
| if (INTEL_INFO(dev)->gen < 6) { |
| ret = i915_gem_object_put_fence(obj); |
| if (ret) |
| return ret; |
| } |
| |
| if (obj->has_global_gtt_mapping) |
| i915_gem_gtt_bind_object(obj, cache_level); |
| if (obj->has_aliasing_ppgtt_mapping) |
| i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt, |
| obj, cache_level); |
| |
| obj->gtt_space->color = cache_level; |
| } |
| |
| if (cache_level == I915_CACHE_NONE) { |
| u32 old_read_domains, old_write_domain; |
| |
| /* If we're coming from LLC cached, then we haven't |
| * actually been tracking whether the data is in the |
| * CPU cache or not, since we only allow one bit set |
| * in obj->write_domain and have been skipping the clflushes. |
| * Just set it to the CPU cache for now. |
| */ |
| WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU); |
| WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU); |
| |
| old_read_domains = obj->base.read_domains; |
| old_write_domain = obj->base.write_domain; |
| |
| obj->base.read_domains = I915_GEM_DOMAIN_CPU; |
| obj->base.write_domain = I915_GEM_DOMAIN_CPU; |
| |
| trace_i915_gem_object_change_domain(obj, |
| old_read_domains, |
| old_write_domain); |
| } |
| |
| obj->cache_level = cache_level; |
| i915_gem_verify_gtt(dev); |
| return 0; |
| } |
| |
| int i915_gem_get_cacheing_ioctl(struct drm_device *dev, void *data, |
| struct drm_file *file) |
| { |
| struct drm_i915_gem_cacheing *args = data; |
| struct drm_i915_gem_object *obj; |
| int ret; |
| |
| ret = i915_mutex_lock_interruptible(dev); |
| if (ret) |
| return ret; |
| |
| obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle)); |
| if (&obj->base == NULL) { |
| ret = -ENOENT; |
| goto unlock; |
| } |
| |
| args->cacheing = obj->cache_level != I915_CACHE_NONE; |
| |
| drm_gem_object_unreference(&obj->base); |
| unlock: |
| mutex_unlock(&dev->struct_mutex); |
| return ret; |
| } |
| |
| int i915_gem_set_cacheing_ioctl(struct drm_device *dev, void *data, |
| struct drm_file *file) |
| { |
| struct drm_i915_gem_cacheing *args = data; |
| struct drm_i915_gem_object *obj; |
| enum i915_cache_level level; |
| int ret; |
| |
| ret = i915_mutex_lock_interruptible(dev); |
| if (ret) |
| return ret; |
| |
| switch (args->cacheing) { |
| case I915_CACHEING_NONE: |
| level = I915_CACHE_NONE; |
| break; |
| case I915_CACHEING_CACHED: |
| level = I915_CACHE_LLC; |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle)); |
| if (&obj->base == NULL) { |
| ret = -ENOENT; |
| goto unlock; |
| } |
| |
| ret = i915_gem_object_set_cache_level(obj, level); |
| |
| drm_gem_object_unreference(&obj->base); |
| unlock: |
| mutex_unlock(&dev->struct_mutex); |
| return ret; |
| } |
| |
| /* |
| * Prepare buffer for display plane (scanout, cursors, etc). |
| * Can be called from an uninterruptible phase (modesetting) and allows |
| * any flushes to be pipelined (for pageflips). |
| */ |
| int |
| i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj, |
| u32 alignment, |
| struct intel_ring_buffer *pipelined) |
| { |
| u32 old_read_domains, old_write_domain; |
| int ret; |
| |
| if (pipelined != obj->ring) { |
| ret = i915_gem_object_sync(obj, pipelined); |
| if (ret) |
| return ret; |
| } |
| |
| /* The display engine is not coherent with the LLC cache on gen6. As |
| * a result, we make sure that the pinning that is about to occur is |
| * done with uncached PTEs. This is lowest common denominator for all |
| * chipsets. |
| * |
| * However for gen6+, we could do better by using the GFDT bit instead |
| * of uncaching, which would allow us to flush all the LLC-cached data |
| * with that bit in the PTE to main memory with just one PIPE_CONTROL. |
| */ |
| ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE); |
| if (ret) |
| return ret; |
| |
| /* As the user may map the buffer once pinned in the display plane |
| * (e.g. libkms for the bootup splash), we have to ensure that we |
| * always use map_and_fenceable for all scanout buffers. |
| */ |
| ret = i915_gem_object_pin(obj, alignment, true); |
| if (ret) |
| return ret; |
| |
| i915_gem_object_flush_cpu_write_domain(obj); |
| |
| old_write_domain = obj->base.write_domain; |
| old_read_domains = obj->base.read_domains; |
| |
| /* It should now be out of any other write domains, and we can update |
| * the domain values for our changes. |
| */ |
| obj->base.write_domain = 0; |
| obj->base.read_domains |= I915_GEM_DOMAIN_GTT; |
| |
| trace_i915_gem_object_change_domain(obj, |
| old_read_domains, |
| old_write_domain); |
| |
| return 0; |
| } |
| |
| int |
| i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj) |
| { |
| int ret; |
| |
| if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0) |
| return 0; |
| |
| ret = i915_gem_object_wait_rendering(obj, false); |
| if (ret) |
| return ret; |
| |
| /* Ensure that we invalidate the GPU's caches and TLBs. */ |
| obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS; |
| return 0; |
| } |
| |
| /** |
| * Moves a single object to the CPU read, and possibly write domain. |
| * |
| * This function returns when the move is complete, including waiting on |
| * flushes to occur. |
| */ |
| int |
| i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write) |
| { |
| uint32_t old_write_domain, old_read_domains; |
| int ret; |
| |
| if (obj->base.write_domain == I915_GEM_DOMAIN_CPU) |
| return 0; |
| |
| ret = i915_gem_object_wait_rendering(obj, !write); |
| if (ret) |
| return ret; |
| |
| i915_gem_object_flush_gtt_write_domain(obj); |
| |
| old_write_domain = obj->base.write_domain; |
| old_read_domains = obj->base.read_domains; |
| |
| /* Flush the CPU cache if it's still invalid. */ |
| if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) { |
| i915_gem_clflush_object(obj); |
| |
| obj->base.read_domains |= I915_GEM_DOMAIN_CPU; |
| } |
| |
| /* It should now be out of any other write domains, and we can update |
| * the domain values for our changes. |
| */ |
| BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0); |
| |
| /* If we're writing through the CPU, then the GPU read domains will |
| * need to be invalidated at next use. |
| */ |
| if (write) { |
| obj->base.read_domains = I915_GEM_DOMAIN_CPU; |
| obj->base.write_domain = I915_GEM_DOMAIN_CPU; |
| } |
| |
| trace_i915_gem_object_change_domain(obj, |
| old_read_domains, |
| old_write_domain); |
| |
| return 0; |
| } |
| |
| /* Throttle our rendering by waiting until the ring has completed our requests |
| * emitted over 20 msec ago. |
| * |
| * Note that if we were to use the current jiffies each time around the loop, |
| * we wouldn't escape the function with any frames outstanding if the time to |
| * render a frame was over 20ms. |
| * |
| * This should get us reasonable parallelism between CPU and GPU but also |
| * relatively low latency when blocking on a particular request to finish. |
| */ |
| static int |
| i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct drm_i915_file_private *file_priv = file->driver_priv; |
| unsigned long recent_enough = jiffies - msecs_to_jiffies(20); |
| struct drm_i915_gem_request *request; |
| struct intel_ring_buffer *ring = NULL; |
| u32 seqno = 0; |
| int ret; |
| |
| if (atomic_read(&dev_priv->mm.wedged)) |
| return -EIO; |
| |
| spin_lock(&file_priv->mm.lock); |
| list_for_each_entry(request, &file_priv->mm.request_list, client_list) { |
| if (time_after_eq(request->emitted_jiffies, recent_enough)) |
| break; |
| |
| ring = request->ring; |
| seqno = request->seqno; |
| } |
| spin_unlock(&file_priv->mm.lock); |
| |
| if (seqno == 0) |
| return 0; |
| |
| ret = __wait_seqno(ring, seqno, true, NULL); |
| if (ret == 0) |
| queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0); |
| |
| return ret; |
| } |
| |
| int |
| i915_gem_object_pin(struct drm_i915_gem_object *obj, |
| uint32_t alignment, |
| bool map_and_fenceable) |
| { |
| int ret; |
| |
| BUG_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT); |
| |
| if (obj->gtt_space != NULL) { |
| if ((alignment && obj->gtt_offset & (alignment - 1)) || |
| (map_and_fenceable && !obj->map_and_fenceable)) { |
| WARN(obj->pin_count, |
| "bo is already pinned with incorrect alignment:" |
| " offset=%x, req.alignment=%x, req.map_and_fenceable=%d," |
| " obj->map_and_fenceable=%d\n", |
| obj->gtt_offset, alignment, |
| map_and_fenceable, |
| obj->map_and_fenceable); |
| ret = i915_gem_object_unbind(obj); |
| if (ret) |
| return ret; |
| } |
| } |
| |
| if (obj->gtt_space == NULL) { |
| ret = i915_gem_object_bind_to_gtt(obj, alignment, |
| map_and_fenceable); |
| if (ret) |
| return ret; |
| } |
| |
| if (!obj->has_global_gtt_mapping && map_and_fenceable) |
| i915_gem_gtt_bind_object(obj, obj->cache_level); |
| |
| obj->pin_count++; |
| obj->pin_mappable |= map_and_fenceable; |
| |
| return 0; |
| } |
| |
| void |
| i915_gem_object_unpin(struct drm_i915_gem_object *obj) |
| { |
| BUG_ON(obj->pin_count == 0); |
| BUG_ON(obj->gtt_space == NULL); |
| |
| if (--obj->pin_count == 0) |
| obj->pin_mappable = false; |
| } |
| |
| int |
| i915_gem_pin_ioctl(struct drm_device *dev, void *data, |
| struct drm_file *file) |
| { |
| struct drm_i915_gem_pin *args = data; |
| struct drm_i915_gem_object *obj; |
| int ret; |
| |
| ret = i915_mutex_lock_interruptible(dev); |
| if (ret) |
| return ret; |
| |
| obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle)); |
| if (&obj->base == NULL) { |
| ret = -ENOENT; |
| goto unlock; |
| } |
| |
| if (obj->madv != I915_MADV_WILLNEED) { |
| DRM_ERROR("Attempting to pin a purgeable buffer\n"); |
| ret = -EINVAL; |
| goto out; |
| } |
| |
| if (obj->pin_filp != NULL && obj->pin_filp != file) { |
| DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n", |
| args->handle); |
| ret = -EINVAL; |
| goto out; |
| } |
| |
| obj->user_pin_count++; |
| obj->pin_filp = file; |
| if (obj->user_pin_count == 1) { |
| ret = i915_gem_object_pin(obj, args->alignment, true); |
| if (ret) |
| goto out; |
| } |
| |
| /* XXX - flush the CPU caches for pinned objects |
| * as the X server doesn't manage domains yet |
| */ |
| i915_gem_object_flush_cpu_write_domain(obj); |
| args->offset = obj->gtt_offset; |
| out: |
| drm_gem_object_unreference(&obj->base); |
| unlock: |
| mutex_unlock(&dev->struct_mutex); |
| return ret; |
| } |
| |
| int |
| i915_gem_unpin_ioctl(struct drm_device *dev, void *data, |
| struct drm_file *file) |
| { |
| struct drm_i915_gem_pin *args = data; |
| struct drm_i915_gem_object *obj; |
| int ret; |
| |
| ret = i915_mutex_lock_interruptible(dev); |
| if (ret) |
| return ret; |
| |
| obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle)); |
| if (&obj->base == NULL) { |
| ret = -ENOENT; |
| goto unlock; |
| } |
| |
| if (obj->pin_filp != file) { |
| DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n", |
| args->handle); |
| ret = -EINVAL; |
| goto out; |
| } |
| obj->user_pin_count--; |
| if (obj->user_pin_count == 0) { |
| obj->pin_filp = NULL; |
| i915_gem_object_unpin(obj); |
| } |
| |
| out: |
| drm_gem_object_unreference(&obj->base); |
| unlock: |
| mutex_unlock(&dev->struct_mutex); |
| return ret; |
| } |
| |
| int |
| i915_gem_busy_ioctl(struct drm_device *dev, void *data, |
| struct drm_file *file) |
| { |
| struct drm_i915_gem_busy *args = data; |
| struct drm_i915_gem_object *obj; |
| int ret; |
| |
| ret = i915_mutex_lock_interruptible(dev); |
| if (ret) |
| return ret; |
| |
| obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle)); |
| if (&obj->base == NULL) { |
| ret = -ENOENT; |
| goto unlock; |
| } |
| |
| /* Count all active objects as busy, even if they are currently not used |
| * by the gpu. Users of this interface expect objects to eventually |
| * become non-busy without any further actions, therefore emit any |
| * necessary flushes here. |
| */ |
| ret = i915_gem_object_flush_active(obj); |
| |
| args->busy = obj->active; |
| if (obj->ring) { |
| BUILD_BUG_ON(I915_NUM_RINGS > 16); |
| args->busy |= intel_ring_flag(obj->ring) << 16; |
| } |
| |
| drm_gem_object_unreference(&obj->base); |
| unlock: |
| mutex_unlock(&dev->struct_mutex); |
| return ret; |
| } |
| |
| int |
| i915_gem_throttle_ioctl(struct drm_device *dev, void *data, |
| struct drm_file *file_priv) |
| { |
| return i915_gem_ring_throttle(dev, file_priv); |
| } |
| |
| int |
| i915_gem_madvise_ioctl(struct drm_device *dev, void *data, |
| struct drm_file *file_priv) |
| { |
| struct drm_i915_gem_madvise *args = data; |
| struct drm_i915_gem_object *obj; |
| int ret; |
| |
| switch (args->madv) { |
| case I915_MADV_DONTNEED: |
| case I915_MADV_WILLNEED: |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| ret = i915_mutex_lock_interruptible(dev); |
| if (ret) |
| return ret; |
| |
| obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle)); |
| if (&obj->base == NULL) { |
| ret = -ENOENT; |
| goto unlock; |
| } |
| |
| if (obj->pin_count) { |
| ret = -EINVAL; |
| goto out; |
| } |
| |
| if (obj->madv != __I915_MADV_PURGED) |
| obj->madv = args->madv; |
| |
| /* if the object is no longer bound, discard its backing storage */ |
| if (i915_gem_object_is_purgeable(obj) && |
| obj->gtt_space == NULL) |
| i915_gem_object_truncate(obj); |
| |
| args->retained = obj->madv != __I915_MADV_PURGED; |
| |
| out: |
| drm_gem_object_unreference(&obj->base); |
| unlock: |
| mutex_unlock(&dev->struct_mutex); |
| return ret; |
| } |
| |
| struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev, |
| size_t size) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct drm_i915_gem_object *obj; |
| struct address_space *mapping; |
| u32 mask; |
| |
| obj = kzalloc(sizeof(*obj), GFP_KERNEL); |
| if (obj == NULL) |
| return NULL; |
| |
| if (drm_gem_object_init(dev, &obj->base, size) != 0) { |
| kfree(obj); |
| return NULL; |
| } |
| |
| mask = GFP_HIGHUSER | __GFP_RECLAIMABLE; |
| if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) { |
| /* 965gm cannot relocate objects above 4GiB. */ |
| mask &= ~__GFP_HIGHMEM; |
| mask |= __GFP_DMA32; |
| } |
| |
| mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping; |
| mapping_set_gfp_mask(mapping, mask); |
| |
| i915_gem_info_add_obj(dev_priv, size); |
| |
| obj->base.write_domain = I915_GEM_DOMAIN_CPU; |
| obj->base.read_domains = I915_GEM_DOMAIN_CPU; |
| |
| if (HAS_LLC(dev)) { |
| /* On some devices, we can have the GPU use the LLC (the CPU |
| * cache) for about a 10% performance improvement |
| * compared to uncached. Graphics requests other than |
| * display scanout are coherent with the CPU in |
| * accessing this cache. This means in this mode we |
| * don't need to clflush on the CPU side, and on the |
| * GPU side we only need to flush internal caches to |
| * get data visible to the CPU. |
| * |
| * However, we maintain the display planes as UC, and so |
| * need to rebind when first used as such. |
| */ |
| obj->cache_level = I915_CACHE_LLC; |
| } else |
| obj->cache_level = I915_CACHE_NONE; |
| |
| obj->base.driver_private = NULL; |
| obj->fence_reg = I915_FENCE_REG_NONE; |
| INIT_LIST_HEAD(&obj->mm_list); |
| INIT_LIST_HEAD(&obj->gtt_list); |
| INIT_LIST_HEAD(&obj->ring_list); |
| INIT_LIST_HEAD(&obj->exec_list); |
| obj->madv = I915_MADV_WILLNEED; |
| /* Avoid an unnecessary call to unbind on the first bind. */ |
| obj->map_and_fenceable = true; |
| |
| return obj; |
| } |
| |
| int i915_gem_init_object(struct drm_gem_object *obj) |
| { |
| BUG(); |
| |
| return 0; |
| } |
| |
| void i915_gem_free_object(struct drm_gem_object *gem_obj) |
| { |
| struct drm_i915_gem_object *obj = to_intel_bo(gem_obj); |
| struct drm_device *dev = obj->base.dev; |
| drm_i915_private_t *dev_priv = dev->dev_private; |
| |
| trace_i915_gem_object_destroy(obj); |
| |
| if (gem_obj->import_attach) |
| drm_prime_gem_destroy(gem_obj, obj->sg_table); |
| |
| if (obj->phys_obj) |
| i915_gem_detach_phys_object(dev, obj); |
| |
| obj->pin_count = 0; |
| if (WARN_ON(i915_gem_object_unbind(obj) == -ERESTARTSYS)) { |
| bool was_interruptible; |
| |
| was_interruptible = dev_priv->mm.interruptible; |
| dev_priv->mm.interruptible = false; |
| |
| WARN_ON(i915_gem_object_unbind(obj)); |
| |
| dev_priv->mm.interruptible = was_interruptible; |
| } |
| |
| if (obj->base.map_list.map) |
| drm_gem_free_mmap_offset(&obj->base); |
| |
| drm_gem_object_release(&obj->base); |
| i915_gem_info_remove_obj(dev_priv, obj->base.size); |
| |
| kfree(obj->bit_17); |
| kfree(obj); |
| } |
| |
| int |
| i915_gem_idle(struct drm_device *dev) |
| { |
| drm_i915_private_t *dev_priv = dev->dev_private; |
| int ret; |
| |
| mutex_lock(&dev->struct_mutex); |
| |
| if (dev_priv->mm.suspended) { |
| mutex_unlock(&dev->struct_mutex); |
| return 0; |
| } |
| |
| ret = i915_gpu_idle(dev); |
| if (ret) { |
| mutex_unlock(&dev->struct_mutex); |
| return ret; |
| } |
| i915_gem_retire_requests(dev); |
| |
| /* Under UMS, be paranoid and evict. */ |
| if (!drm_core_check_feature(dev, DRIVER_MODESET)) |
| i915_gem_evict_everything(dev, false); |
| |
| i915_gem_reset_fences(dev); |
| |
| /* Hack! Don't let anybody do execbuf while we don't control the chip. |
| * We need to replace this with a semaphore, or something. |
| * And not confound mm.suspended! |
| */ |
| dev_priv->mm.suspended = 1; |
| del_timer_sync(&dev_priv->hangcheck_timer); |
| |
| i915_kernel_lost_context(dev); |
| i915_gem_cleanup_ringbuffer(dev); |
| |
| mutex_unlock(&dev->struct_mutex); |
| |
| /* Cancel the retire work handler, which should be idle now. */ |
| cancel_delayed_work_sync(&dev_priv->mm.retire_work); |
| |
| return 0; |
| } |
| |
| void i915_gem_l3_remap(struct drm_device *dev) |
| { |
| drm_i915_private_t *dev_priv = dev->dev_private; |
| u32 misccpctl; |
| int i; |
| |
| if (!IS_IVYBRIDGE(dev)) |
| return; |
| |
| if (!dev_priv->mm.l3_remap_info) |
| return; |
| |
| misccpctl = I915_READ(GEN7_MISCCPCTL); |
| I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE); |
| POSTING_READ(GEN7_MISCCPCTL); |
| |
| for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) { |
| u32 remap = I915_READ(GEN7_L3LOG_BASE + i); |
| if (remap && remap != dev_priv->mm.l3_remap_info[i/4]) |
| DRM_DEBUG("0x%x was already programmed to %x\n", |
| GEN7_L3LOG_BASE + i, remap); |
| if (remap && !dev_priv->mm.l3_remap_info[i/4]) |
| DRM_DEBUG_DRIVER("Clearing remapped register\n"); |
| I915_WRITE(GEN7_L3LOG_BASE + i, dev_priv->mm.l3_remap_info[i/4]); |
| } |
| |
| /* Make sure all the writes land before disabling dop clock gating */ |
| POSTING_READ(GEN7_L3LOG_BASE); |
| |
| I915_WRITE(GEN7_MISCCPCTL, misccpctl); |
| } |
| |
| void i915_gem_init_swizzling(struct drm_device *dev) |
| { |
| drm_i915_private_t *dev_priv = dev->dev_private; |
| |
| if (INTEL_INFO(dev)->gen < 5 || |
| dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE) |
| return; |
| |
| I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) | |
| DISP_TILE_SURFACE_SWIZZLING); |
| |
| if (IS_GEN5(dev)) |
| return; |
| |
| I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL); |
| if (IS_GEN6(dev)) |
| I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB)); |
| else |
| I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB)); |
| } |
| |
| void i915_gem_init_ppgtt(struct drm_device *dev) |
| { |
| drm_i915_private_t *dev_priv = dev->dev_private; |
| uint32_t pd_offset; |
| struct intel_ring_buffer *ring; |
| struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt; |
| uint32_t __iomem *pd_addr; |
| uint32_t pd_entry; |
| int i; |
| |
| if (!dev_priv->mm.aliasing_ppgtt) |
| return; |
| |
| |
| pd_addr = dev_priv->mm.gtt->gtt + ppgtt->pd_offset/sizeof(uint32_t); |
| for (i = 0; i < ppgtt->num_pd_entries; i++) { |
| dma_addr_t pt_addr; |
| |
| if (dev_priv->mm.gtt->needs_dmar) |
| pt_addr = ppgtt->pt_dma_addr[i]; |
| else |
| pt_addr = page_to_phys(ppgtt->pt_pages[i]); |
| |
| pd_entry = GEN6_PDE_ADDR_ENCODE(pt_addr); |
| pd_entry |= GEN6_PDE_VALID; |
| |
| writel(pd_entry, pd_addr + i); |
| } |
| readl(pd_addr); |
| |
| pd_offset = ppgtt->pd_offset; |
| pd_offset /= 64; /* in cachelines, */ |
| pd_offset <<= 16; |
| |
| if (INTEL_INFO(dev)->gen == 6) { |
| uint32_t ecochk, gab_ctl, ecobits; |
| |
| ecobits = I915_READ(GAC_ECO_BITS); |
| I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B); |
| |
| gab_ctl = I915_READ(GAB_CTL); |
| I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT); |
| |
| ecochk = I915_READ(GAM_ECOCHK); |
| I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT | |
| ECOCHK_PPGTT_CACHE64B); |
| I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE)); |
| } else if (INTEL_INFO(dev)->gen >= 7) { |
| I915_WRITE(GAM_ECOCHK, ECOCHK_PPGTT_CACHE64B); |
| /* GFX_MODE is per-ring on gen7+ */ |
| } |
| |
| for_each_ring(ring, dev_priv, i) { |
| if (INTEL_INFO(dev)->gen >= 7) |
| I915_WRITE(RING_MODE_GEN7(ring), |
| _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE)); |
| |
| I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G); |
| I915_WRITE(RING_PP_DIR_BASE(ring), pd_offset); |
| } |
| } |
| |
| static bool |
| intel_enable_blt(struct drm_device *dev) |
| { |
| if (!HAS_BLT(dev)) |
| return false; |
| |
| /* The blitter was dysfunctional on early prototypes */ |
| if (IS_GEN6(dev) && dev->pdev->revision < 8) { |
| DRM_INFO("BLT not supported on this pre-production hardware;" |
| " graphics performance will be degraded.\n"); |
| return false; |
| } |
| |
| return true; |
| } |
| |
| int |
| i915_gem_init_hw(struct drm_device *dev) |
| { |
| drm_i915_private_t *dev_priv = dev->dev_private; |
| int ret; |
| |
| if (!intel_enable_gtt()) |
| return -EIO; |
| |
| i915_gem_l3_remap(dev); |
| |
| i915_gem_init_swizzling(dev); |
| |
| ret = intel_init_render_ring_buffer(dev); |
| if (ret) |
| return ret; |
| |
| if (HAS_BSD(dev)) { |
| ret = intel_init_bsd_ring_buffer(dev); |
| if (ret) |
| goto cleanup_render_ring; |
| } |
| |
| if (intel_enable_blt(dev)) { |
| ret = intel_init_blt_ring_buffer(dev); |
| if (ret) |
| goto cleanup_bsd_ring; |
| } |
| |
| dev_priv->next_seqno = 1; |
| |
| /* |
| * XXX: There was some w/a described somewhere suggesting loading |
| * contexts before PPGTT. |
| */ |
| i915_gem_context_init(dev); |
| i915_gem_init_ppgtt(dev); |
| |
| return 0; |
| |
| cleanup_bsd_ring: |
| intel_cleanup_ring_buffer(&dev_priv->ring[VCS]); |
| cleanup_render_ring: |
| intel_cleanup_ring_buffer(&dev_priv->ring[RCS]); |
| return ret; |
| } |
| |
| static bool |
| intel_enable_ppgtt(struct drm_device *dev) |
| { |
| if (i915_enable_ppgtt >= 0) |
| return i915_enable_ppgtt; |
| |
| #ifdef CONFIG_INTEL_IOMMU |
| /* Disable ppgtt on SNB if VT-d is on. */ |
| if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped) |
| return false; |
| #endif |
| |
| return true; |
| } |
| |
| int i915_gem_init(struct drm_device *dev) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| unsigned long gtt_size, mappable_size; |
| int ret; |
| |
| gtt_size = dev_priv->mm.gtt->gtt_total_entries << PAGE_SHIFT; |
| mappable_size = dev_priv->mm.gtt->gtt_mappable_entries << PAGE_SHIFT; |
| |
| mutex_lock(&dev->struct_mutex); |
| if (intel_enable_ppgtt(dev) && HAS_ALIASING_PPGTT(dev)) { |
| /* PPGTT pdes are stolen from global gtt ptes, so shrink the |
| * aperture accordingly when using aliasing ppgtt. */ |
| gtt_size -= I915_PPGTT_PD_ENTRIES*PAGE_SIZE; |
| |
| i915_gem_init_global_gtt(dev, 0, mappable_size, gtt_size); |
| |
| ret = i915_gem_init_aliasing_ppgtt(dev); |
| if (ret) { |
| mutex_unlock(&dev->struct_mutex); |
| return ret; |
| } |
| } else { |
| /* Let GEM Manage all of the aperture. |
| * |
| * However, leave one page at the end still bound to the scratch |
| * page. There are a number of places where the hardware |
| * apparently prefetches past the end of the object, and we've |
| * seen multiple hangs with the GPU head pointer stuck in a |
| * batchbuffer bound at the last page of the aperture. One page |
| * should be enough to keep any prefetching inside of the |
| * aperture. |
| */ |
| i915_gem_init_global_gtt(dev, 0, mappable_size, |
| gtt_size); |
| } |
| |
| ret = i915_gem_init_hw(dev); |
| mutex_unlock(&dev->struct_mutex); |
| if (ret) { |
| i915_gem_cleanup_aliasing_ppgtt(dev); |
| return ret; |
| } |
| |
| /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */ |
| if (!drm_core_check_feature(dev, DRIVER_MODESET)) |
| dev_priv->dri1.allow_batchbuffer = 1; |
| return 0; |
| } |
| |
| void |
| i915_gem_cleanup_ringbuffer(struct drm_device *dev) |
| { |
| drm_i915_private_t *dev_priv = dev->dev_private; |
| struct intel_ring_buffer *ring; |
| int i; |
| |
| for_each_ring(ring, dev_priv, i) |
| intel_cleanup_ring_buffer(ring); |
| } |
| |
| int |
| i915_gem_entervt_ioctl(struct drm_device *dev, void *data, |
| struct drm_file *file_priv) |
| { |
| drm_i915_private_t *dev_priv = dev->dev_private; |
| int ret; |
| |
| if (drm_core_check_feature(dev, DRIVER_MODESET)) |
| return 0; |
| |
| if (atomic_read(&dev_priv->mm.wedged)) { |
| DRM_ERROR("Reenabling wedged hardware, good luck\n"); |
| atomic_set(&dev_priv->mm.wedged, 0); |
| } |
| |
| mutex_lock(&dev->struct_mutex); |
| dev_priv->mm.suspended = 0; |
| |
| ret = i915_gem_init_hw(dev); |
| if (ret != 0) { |
| mutex_unlock(&dev->struct_mutex); |
| return ret; |
| } |
| |
| BUG_ON(!list_empty(&dev_priv->mm.active_list)); |
| BUG_ON(!list_empty(&dev_priv->mm.inactive_list)); |
| mutex_unlock(&dev->struct_mutex); |
| |
| ret = drm_irq_install(dev); |
| if (ret) |
| goto cleanup_ringbuffer; |
| |
| return 0; |
| |
| cleanup_ringbuffer: |
| mutex_lock(&dev->struct_mutex); |
| i915_gem_cleanup_ringbuffer(dev); |
| dev_priv->mm.suspended = 1; |
| mutex_unlock(&dev->struct_mutex); |
| |
| return ret; |
| } |
| |
| int |
| i915_gem_leavevt_ioctl(struct drm_device *dev, void *data, |
| struct drm_file *file_priv) |
| { |
| if (drm_core_check_feature(dev, DRIVER_MODESET)) |
| return 0; |
| |
| drm_irq_uninstall(dev); |
| return i915_gem_idle(dev); |
| } |
| |
| void |
| i915_gem_lastclose(struct drm_device *dev) |
| { |
| int ret; |
| |
| if (drm_core_check_feature(dev, DRIVER_MODESET)) |
| return; |
| |
| ret = i915_gem_idle(dev); |
| if (ret) |
| DRM_ERROR("failed to idle hardware: %d\n", ret); |
| } |
| |
| static void |
| init_ring_lists(struct intel_ring_buffer *ring) |
| { |
| INIT_LIST_HEAD(&ring->active_list); |
| INIT_LIST_HEAD(&ring->request_list); |
| } |
| |
| void |
| i915_gem_load(struct drm_device *dev) |
| { |
| int i; |
| drm_i915_private_t *dev_priv = dev->dev_private; |
| |
| INIT_LIST_HEAD(&dev_priv->mm.active_list); |
| INIT_LIST_HEAD(&dev_priv->mm.inactive_list); |
| INIT_LIST_HEAD(&dev_priv->mm.fence_list); |
| INIT_LIST_HEAD(&dev_priv->mm.gtt_list); |
| for (i = 0; i < I915_NUM_RINGS; i++) |
| init_ring_lists(&dev_priv->ring[i]); |
| for (i = 0; i < I915_MAX_NUM_FENCES; i++) |
| INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list); |
| INIT_DELAYED_WORK(&dev_priv->mm.retire_work, |
| i915_gem_retire_work_handler); |
| init_completion(&dev_priv->error_completion); |
| |
| /* On GEN3 we really need to make sure the ARB C3 LP bit is set */ |
| if (IS_GEN3(dev)) { |
| I915_WRITE(MI_ARB_STATE, |
| _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE)); |
| } |
| |
| dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL; |
| |
| /* Old X drivers will take 0-2 for front, back, depth buffers */ |
| if (!drm_core_check_feature(dev, DRIVER_MODESET)) |
| dev_priv->fence_reg_start = 3; |
| |
| if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) |
| dev_priv->num_fence_regs = 16; |
| else |
| dev_priv->num_fence_regs = 8; |
| |
| /* Initialize fence registers to zero */ |
| i915_gem_reset_fences(dev); |
| |
| i915_gem_detect_bit_6_swizzle(dev); |
| init_waitqueue_head(&dev_priv->pending_flip_queue); |
| |
| dev_priv->mm.interruptible = true; |
| |
| dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink; |
| dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS; |
| register_shrinker(&dev_priv->mm.inactive_shrinker); |
| } |
| |
| /* |
| * Create a physically contiguous memory object for this object |
| * e.g. for cursor + overlay regs |
| */ |
| static int i915_gem_init_phys_object(struct drm_device *dev, |
| int id, int size, int align) |
| { |
| drm_i915_private_t *dev_priv = dev->dev_private; |
| struct drm_i915_gem_phys_object *phys_obj; |
| int ret; |
| |
| if (dev_priv->mm.phys_objs[id - 1] || !size) |
| return 0; |
| |
| phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL); |
| if (!phys_obj) |
| return -ENOMEM; |
| |
| phys_obj->id = id; |
| |
| phys_obj->handle = drm_pci_alloc(dev, size, align); |
| if (!phys_obj->handle) { |
| ret = -ENOMEM; |
| goto kfree_obj; |
| } |
| #ifdef CONFIG_X86 |
| set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE); |
| #endif |
| |
| dev_priv->mm.phys_objs[id - 1] = phys_obj; |
| |
| return 0; |
| kfree_obj: |
| kfree(phys_obj); |
| return ret; |
| } |
| |
| static void i915_gem_free_phys_object(struct drm_device *dev, int id) |
| { |
| drm_i915_private_t *dev_priv = dev->dev_private; |
| struct drm_i915_gem_phys_object *phys_obj; |
| |
| if (!dev_priv->mm.phys_objs[id - 1]) |
| return; |
| |
| phys_obj = dev_priv->mm.phys_objs[id - 1]; |
| if (phys_obj->cur_obj) { |
| i915_gem_detach_phys_object(dev, phys_obj->cur_obj); |
| } |
| |
| #ifdef CONFIG_X86 |
| set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE); |
| #endif |
| drm_pci_free(dev, phys_obj->handle); |
| kfree(phys_obj); |
| dev_priv->mm.phys_objs[id - 1] = NULL; |
| } |
| |
| void i915_gem_free_all_phys_object(struct drm_device *dev) |
| { |
| int i; |
| |
| for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++) |
| i915_gem_free_phys_object(dev, i); |
| } |
| |
| void i915_gem_detach_phys_object(struct drm_device *dev, |
| struct drm_i915_gem_object *obj) |
| { |
| struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping; |
| char *vaddr; |
| int i; |
| int page_count; |
| |
| if (!obj->phys_obj) |
| return; |
| vaddr = obj->phys_obj->handle->vaddr; |
| |
| page_count = obj->base.size / PAGE_SIZE; |
| for (i = 0; i < page_count; i++) { |
| struct page *page = shmem_read_mapping_page(mapping, i); |
| if (!IS_ERR(page)) { |
| char *dst = kmap_atomic(page); |
| memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE); |
| kunmap_atomic(dst); |
| |
| drm_clflush_pages(&page, 1); |
| |
| set_page_dirty(page); |
| mark_page_accessed(page); |
| page_cache_release(page); |
| } |
| } |
| intel_gtt_chipset_flush(); |
| |
| obj->phys_obj->cur_obj = NULL; |
| obj->phys_obj = NULL; |
| } |
| |
| int |
| i915_gem_attach_phys_object(struct drm_device *dev, |
| struct drm_i915_gem_object *obj, |
| int id, |
| int align) |
| { |
| struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping; |
| drm_i915_private_t *dev_priv = dev->dev_private; |
| int ret = 0; |
| int page_count; |
| int i; |
| |
| if (id > I915_MAX_PHYS_OBJECT) |
| return -EINVAL; |
| |
| if (obj->phys_obj) { |
| if (obj->phys_obj->id == id) |
| return 0; |
| i915_gem_detach_phys_object(dev, obj); |
| } |
| |
| /* create a new object */ |
| if (!dev_priv->mm.phys_objs[id - 1]) { |
| ret = i915_gem_init_phys_object(dev, id, |
| obj->base.size, align); |
| if (ret) { |
| DRM_ERROR("failed to init phys object %d size: %zu\n", |
| id, obj->base.size); |
| return ret; |
| } |
| } |
| |
| /* bind to the object */ |
| obj->phys_obj = dev_priv->mm.phys_objs[id - 1]; |
| obj->phys_obj->cur_obj = obj; |
| |
| page_count = obj->base.size / PAGE_SIZE; |
| |
| for (i = 0; i < page_count; i++) { |
| struct page *page; |
| char *dst, *src; |
| |
| page = shmem_read_mapping_page(mapping, i); |
| if (IS_ERR(page)) |
| return PTR_ERR(page); |
| |
| src = kmap_atomic(page); |
| dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE); |
| memcpy(dst, src, PAGE_SIZE); |
| kunmap_atomic(src); |
| |
| mark_page_accessed(page); |
| page_cache_release(page); |
| } |
| |
| return 0; |
| } |
| |
| static int |
| i915_gem_phys_pwrite(struct drm_device *dev, |
| struct drm_i915_gem_object *obj, |
| struct drm_i915_gem_pwrite *args, |
| struct drm_file *file_priv) |
| { |
| void *vaddr = obj->phys_obj->handle->vaddr + args->offset; |
| char __user *user_data = (char __user *) (uintptr_t) args->data_ptr; |
| |
| if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) { |
| unsigned long unwritten; |
| |
| /* The physical object once assigned is fixed for the lifetime |
| * of the obj, so we can safely drop the lock and continue |
| * to access vaddr. |
| */ |
| mutex_unlock(&dev->struct_mutex); |
| unwritten = copy_from_user(vaddr, user_data, args->size); |
| mutex_lock(&dev->struct_mutex); |
| if (unwritten) |
| return -EFAULT; |
| } |
| |
| intel_gtt_chipset_flush(); |
| return 0; |
| } |
| |
| void i915_gem_release(struct drm_device *dev, struct drm_file *file) |
| { |
| struct drm_i915_file_private *file_priv = file->driver_priv; |
| |
| /* Clean up our request list when the client is going away, so that |
| * later retire_requests won't dereference our soon-to-be-gone |
| * file_priv. |
| */ |
| spin_lock(&file_priv->mm.lock); |
| while (!list_empty(&file_priv->mm.request_list)) { |
| struct drm_i915_gem_request *request; |
| |
| request = list_first_entry(&file_priv->mm.request_list, |
| struct drm_i915_gem_request, |
| client_list); |
| list_del(&request->client_list); |
| request->file_priv = NULL; |
| } |
| spin_unlock(&file_priv->mm.lock); |
| } |
| |
| static int |
| i915_gpu_is_active(struct drm_device *dev) |
| { |
| drm_i915_private_t *dev_priv = dev->dev_private; |
| return !list_empty(&dev_priv->mm.active_list); |
| } |
| |
| static int |
| i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc) |
| { |
| struct drm_i915_private *dev_priv = |
| container_of(shrinker, |
| struct drm_i915_private, |
| mm.inactive_shrinker); |
| struct drm_device *dev = dev_priv->dev; |
| struct drm_i915_gem_object *obj, *next; |
| int nr_to_scan = sc->nr_to_scan; |
| int cnt; |
| |
| if (!mutex_trylock(&dev->struct_mutex)) |
| return 0; |
| |
| /* "fast-path" to count number of available objects */ |
| if (nr_to_scan == 0) { |
| cnt = 0; |
| list_for_each_entry(obj, |
| &dev_priv->mm.inactive_list, |
| mm_list) |
| cnt++; |
| mutex_unlock(&dev->struct_mutex); |
| return cnt / 100 * sysctl_vfs_cache_pressure; |
| } |
| |
| rescan: |
| /* first scan for clean buffers */ |
| i915_gem_retire_requests(dev); |
| |
| list_for_each_entry_safe(obj, next, |
| &dev_priv->mm.inactive_list, |
| mm_list) { |
| if (i915_gem_object_is_purgeable(obj)) { |
| if (i915_gem_object_unbind(obj) == 0 && |
| --nr_to_scan == 0) |
| break; |
| } |
| } |
| |
| /* second pass, evict/count anything still on the inactive list */ |
| cnt = 0; |
| list_for_each_entry_safe(obj, next, |
| &dev_priv->mm.inactive_list, |
| mm_list) { |
| if (nr_to_scan && |
| i915_gem_object_unbind(obj) == 0) |
| nr_to_scan--; |
| else |
| cnt++; |
| } |
| |
| if (nr_to_scan && i915_gpu_is_active(dev)) { |
| /* |
| * We are desperate for pages, so as a last resort, wait |
| * for the GPU to finish and discard whatever we can. |
| * This has a dramatic impact to reduce the number of |
| * OOM-killer events whilst running the GPU aggressively. |
| */ |
| if (i915_gpu_idle(dev) == 0) |
| goto rescan; |
| } |
| mutex_unlock(&dev->struct_mutex); |
| return cnt / 100 * sysctl_vfs_cache_pressure; |
| } |