| |
| #include <linux/interrupt.h> |
| #include <linux/kernel.h> |
| #include <linux/slab.h> |
| #include <linux/cpu.h> |
| |
| static void irq_spread_init_one(struct cpumask *irqmsk, struct cpumask *nmsk, |
| int cpus_per_vec) |
| { |
| const struct cpumask *siblmsk; |
| int cpu, sibl; |
| |
| for ( ; cpus_per_vec > 0; ) { |
| cpu = cpumask_first(nmsk); |
| |
| /* Should not happen, but I'm too lazy to think about it */ |
| if (cpu >= nr_cpu_ids) |
| return; |
| |
| cpumask_clear_cpu(cpu, nmsk); |
| cpumask_set_cpu(cpu, irqmsk); |
| cpus_per_vec--; |
| |
| /* If the cpu has siblings, use them first */ |
| siblmsk = topology_sibling_cpumask(cpu); |
| for (sibl = -1; cpus_per_vec > 0; ) { |
| sibl = cpumask_next(sibl, siblmsk); |
| if (sibl >= nr_cpu_ids) |
| break; |
| if (!cpumask_test_and_clear_cpu(sibl, nmsk)) |
| continue; |
| cpumask_set_cpu(sibl, irqmsk); |
| cpus_per_vec--; |
| } |
| } |
| } |
| |
| static int get_nodes_in_cpumask(const struct cpumask *mask, nodemask_t *nodemsk) |
| { |
| int n, nodes; |
| |
| /* Calculate the number of nodes in the supplied affinity mask */ |
| for (n = 0, nodes = 0; n < num_online_nodes(); n++) { |
| if (cpumask_intersects(mask, cpumask_of_node(n))) { |
| node_set(n, *nodemsk); |
| nodes++; |
| } |
| } |
| return nodes; |
| } |
| |
| /** |
| * irq_create_affinity_masks - Create affinity masks for multiqueue spreading |
| * @affinity: The affinity mask to spread. If NULL cpu_online_mask |
| * is used |
| * @nvecs: The number of vectors |
| * |
| * Returns the masks pointer or NULL if allocation failed. |
| */ |
| struct cpumask *irq_create_affinity_masks(const struct cpumask *affinity, |
| int nvec) |
| { |
| int n, nodes, vecs_per_node, cpus_per_vec, extra_vecs, curvec = 0; |
| nodemask_t nodemsk = NODE_MASK_NONE; |
| struct cpumask *masks; |
| cpumask_var_t nmsk; |
| |
| if (!zalloc_cpumask_var(&nmsk, GFP_KERNEL)) |
| return NULL; |
| |
| masks = kzalloc(nvec * sizeof(*masks), GFP_KERNEL); |
| if (!masks) |
| goto out; |
| |
| /* Stabilize the cpumasks */ |
| get_online_cpus(); |
| /* If the supplied affinity mask is NULL, use cpu online mask */ |
| if (!affinity) |
| affinity = cpu_online_mask; |
| |
| nodes = get_nodes_in_cpumask(affinity, &nodemsk); |
| |
| /* |
| * If the number of nodes in the mask is less than or equal the |
| * number of vectors we just spread the vectors across the nodes. |
| */ |
| if (nvec <= nodes) { |
| for_each_node_mask(n, nodemsk) { |
| cpumask_copy(masks + curvec, cpumask_of_node(n)); |
| if (++curvec == nvec) |
| break; |
| } |
| goto outonl; |
| } |
| |
| /* Spread the vectors per node */ |
| vecs_per_node = nvec / nodes; |
| /* Account for rounding errors */ |
| extra_vecs = nvec - (nodes * vecs_per_node); |
| |
| for_each_node_mask(n, nodemsk) { |
| int ncpus, v, vecs_to_assign = vecs_per_node; |
| |
| /* Get the cpus on this node which are in the mask */ |
| cpumask_and(nmsk, affinity, cpumask_of_node(n)); |
| |
| /* Calculate the number of cpus per vector */ |
| ncpus = cpumask_weight(nmsk); |
| |
| for (v = 0; curvec < nvec && v < vecs_to_assign; curvec++, v++) { |
| cpus_per_vec = ncpus / vecs_to_assign; |
| |
| /* Account for extra vectors to compensate rounding errors */ |
| if (extra_vecs) { |
| cpus_per_vec++; |
| if (!--extra_vecs) |
| vecs_per_node++; |
| } |
| irq_spread_init_one(masks + curvec, nmsk, cpus_per_vec); |
| } |
| |
| if (curvec >= nvec) |
| break; |
| } |
| |
| outonl: |
| put_online_cpus(); |
| out: |
| free_cpumask_var(nmsk); |
| return masks; |
| } |
| |
| /** |
| * irq_calc_affinity_vectors - Calculate the optimal number of vectors |
| * @maxvec: The maximum number of vectors available |
| * @affd: Description of the affinity requirements |
| */ |
| int irq_calc_affinity_vectors(int maxvec, const struct irq_affinity *affd) |
| { |
| int resv = affd->pre_vectors + affd->post_vectors; |
| int vecs = maxvec - resv; |
| int cpus; |
| |
| /* Stabilize the cpumasks */ |
| get_online_cpus(); |
| cpus = cpumask_weight(cpu_online_mask); |
| put_online_cpus(); |
| |
| return min(cpus, vecs) + resv; |
| } |