| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * kgdbts is a test suite for kgdb for the sole purpose of validating |
| * that key pieces of the kgdb internals are working properly such as |
| * HW/SW breakpoints, single stepping, and NMI. |
| * |
| * Created by: Jason Wessel <jason.wessel@windriver.com> |
| * |
| * Copyright (c) 2008 Wind River Systems, Inc. |
| */ |
| /* Information about the kgdb test suite. |
| * ------------------------------------- |
| * |
| * The kgdb test suite is designed as a KGDB I/O module which |
| * simulates the communications that a debugger would have with kgdb. |
| * The tests are broken up in to a line by line and referenced here as |
| * a "get" which is kgdb requesting input and "put" which is kgdb |
| * sending a response. |
| * |
| * The kgdb suite can be invoked from the kernel command line |
| * arguments system or executed dynamically at run time. The test |
| * suite uses the variable "kgdbts" to obtain the information about |
| * which tests to run and to configure the verbosity level. The |
| * following are the various characters you can use with the kgdbts= |
| * line: |
| * |
| * When using the "kgdbts=" you only choose one of the following core |
| * test types: |
| * A = Run all the core tests silently |
| * V1 = Run all the core tests with minimal output |
| * V2 = Run all the core tests in debug mode |
| * |
| * You can also specify optional tests: |
| * N## = Go to sleep with interrupts of for ## seconds |
| * to test the HW NMI watchdog |
| * F## = Break at kernel_clone for ## iterations |
| * S## = Break at sys_open for ## iterations |
| * I## = Run the single step test ## iterations |
| * |
| * NOTE: that the kernel_clone and sys_open tests are mutually exclusive. |
| * |
| * To invoke the kgdb test suite from boot you use a kernel start |
| * argument as follows: |
| * kgdbts=V1 kgdbwait |
| * Or if you wanted to perform the NMI test for 6 seconds and kernel_clone |
| * test for 100 forks, you could use: |
| * kgdbts=V1N6F100 kgdbwait |
| * |
| * The test suite can also be invoked at run time with: |
| * echo kgdbts=V1N6F100 > /sys/module/kgdbts/parameters/kgdbts |
| * Or as another example: |
| * echo kgdbts=V2 > /sys/module/kgdbts/parameters/kgdbts |
| * |
| * When developing a new kgdb arch specific implementation or |
| * using these tests for the purpose of regression testing, |
| * several invocations are required. |
| * |
| * 1) Boot with the test suite enabled by using the kernel arguments |
| * "kgdbts=V1F100 kgdbwait" |
| * ## If kgdb arch specific implementation has NMI use |
| * "kgdbts=V1N6F100 |
| * |
| * 2) After the system boot run the basic test. |
| * echo kgdbts=V1 > /sys/module/kgdbts/parameters/kgdbts |
| * |
| * 3) Run the concurrency tests. It is best to use n+1 |
| * while loops where n is the number of cpus you have |
| * in your system. The example below uses only two |
| * loops. |
| * |
| * ## This tests break points on sys_open |
| * while [ 1 ] ; do find / > /dev/null 2>&1 ; done & |
| * while [ 1 ] ; do find / > /dev/null 2>&1 ; done & |
| * echo kgdbts=V1S10000 > /sys/module/kgdbts/parameters/kgdbts |
| * fg # and hit control-c |
| * fg # and hit control-c |
| * ## This tests break points on kernel_clone |
| * while [ 1 ] ; do date > /dev/null ; done & |
| * while [ 1 ] ; do date > /dev/null ; done & |
| * echo kgdbts=V1F1000 > /sys/module/kgdbts/parameters/kgdbts |
| * fg # and hit control-c |
| * |
| */ |
| |
| #include <linux/kernel.h> |
| #include <linux/kgdb.h> |
| #include <linux/ctype.h> |
| #include <linux/uaccess.h> |
| #include <linux/syscalls.h> |
| #include <linux/nmi.h> |
| #include <linux/delay.h> |
| #include <linux/kthread.h> |
| #include <linux/module.h> |
| #include <linux/sched/task.h> |
| #include <linux/kallsyms.h> |
| |
| #include <asm/sections.h> |
| |
| #define v1printk(a...) do { \ |
| if (verbose) \ |
| printk(KERN_INFO a); \ |
| } while (0) |
| #define v2printk(a...) do { \ |
| if (verbose > 1) \ |
| printk(KERN_INFO a); \ |
| touch_nmi_watchdog(); \ |
| } while (0) |
| #define eprintk(a...) do { \ |
| printk(KERN_ERR a); \ |
| WARN_ON(1); \ |
| } while (0) |
| #define MAX_CONFIG_LEN 40 |
| |
| static struct kgdb_io kgdbts_io_ops; |
| static char get_buf[BUFMAX]; |
| static int get_buf_cnt; |
| static char put_buf[BUFMAX]; |
| static int put_buf_cnt; |
| static char scratch_buf[BUFMAX]; |
| static int verbose; |
| static int repeat_test; |
| static int test_complete; |
| static int send_ack; |
| static int final_ack; |
| static int force_hwbrks; |
| static int hwbreaks_ok; |
| static int hw_break_val; |
| static int hw_break_val2; |
| static int cont_instead_of_sstep; |
| static unsigned long cont_thread_id; |
| static unsigned long sstep_thread_id; |
| #if defined(CONFIG_ARM) || defined(CONFIG_MIPS) || defined(CONFIG_SPARC) |
| static int arch_needs_sstep_emulation = 1; |
| #else |
| static int arch_needs_sstep_emulation; |
| #endif |
| static unsigned long cont_addr; |
| static unsigned long sstep_addr; |
| static int restart_from_top_after_write; |
| static int sstep_state; |
| |
| /* Storage for the registers, in GDB format. */ |
| static unsigned long kgdbts_gdb_regs[(NUMREGBYTES + |
| sizeof(unsigned long) - 1) / |
| sizeof(unsigned long)]; |
| static struct pt_regs kgdbts_regs; |
| |
| /* -1 = init not run yet, 0 = unconfigured, 1 = configured. */ |
| static int configured = -1; |
| |
| #ifdef CONFIG_KGDB_TESTS_BOOT_STRING |
| static char config[MAX_CONFIG_LEN] = CONFIG_KGDB_TESTS_BOOT_STRING; |
| #else |
| static char config[MAX_CONFIG_LEN]; |
| #endif |
| static struct kparam_string kps = { |
| .string = config, |
| .maxlen = MAX_CONFIG_LEN, |
| }; |
| |
| static void fill_get_buf(char *buf); |
| |
| struct test_struct { |
| char *get; |
| char *put; |
| void (*get_handler)(char *); |
| int (*put_handler)(char *, char *); |
| }; |
| |
| struct test_state { |
| char *name; |
| struct test_struct *tst; |
| int idx; |
| int (*run_test) (int, int); |
| int (*validate_put) (char *); |
| }; |
| |
| static struct test_state ts; |
| |
| static int kgdbts_unreg_thread(void *ptr) |
| { |
| /* Wait until the tests are complete and then ungresiter the I/O |
| * driver. |
| */ |
| while (!final_ack) |
| msleep_interruptible(1500); |
| /* Pause for any other threads to exit after final ack. */ |
| msleep_interruptible(1000); |
| if (configured) |
| kgdb_unregister_io_module(&kgdbts_io_ops); |
| configured = 0; |
| |
| return 0; |
| } |
| |
| /* This is noinline such that it can be used for a single location to |
| * place a breakpoint |
| */ |
| static noinline void kgdbts_break_test(void) |
| { |
| v2printk("kgdbts: breakpoint complete\n"); |
| } |
| |
| /* |
| * This is a cached wrapper for kallsyms_lookup_name(). |
| * |
| * The cache is a big win for several tests. For example it more the doubles |
| * the cycles per second during the sys_open test. This is not theoretic, |
| * the performance improvement shows up at human scale, especially when |
| * testing using emulators. |
| * |
| * Obviously neither re-entrant nor thread-safe but that is OK since it |
| * can only be called from the debug trap (and therefore all other CPUs |
| * are halted). |
| */ |
| static unsigned long lookup_addr(char *arg) |
| { |
| static char cached_arg[KSYM_NAME_LEN]; |
| static unsigned long cached_addr; |
| |
| if (strcmp(arg, cached_arg)) { |
| strscpy(cached_arg, arg, KSYM_NAME_LEN); |
| cached_addr = kallsyms_lookup_name(arg); |
| } |
| |
| return (unsigned long)dereference_function_descriptor( |
| (void *)cached_addr); |
| } |
| |
| static void break_helper(char *bp_type, char *arg, unsigned long vaddr) |
| { |
| unsigned long addr; |
| |
| if (arg) |
| addr = lookup_addr(arg); |
| else |
| addr = vaddr; |
| |
| sprintf(scratch_buf, "%s,%lx,%i", bp_type, addr, |
| BREAK_INSTR_SIZE); |
| fill_get_buf(scratch_buf); |
| } |
| |
| static void sw_break(char *arg) |
| { |
| break_helper(force_hwbrks ? "Z1" : "Z0", arg, 0); |
| } |
| |
| static void sw_rem_break(char *arg) |
| { |
| break_helper(force_hwbrks ? "z1" : "z0", arg, 0); |
| } |
| |
| static void hw_break(char *arg) |
| { |
| break_helper("Z1", arg, 0); |
| } |
| |
| static void hw_rem_break(char *arg) |
| { |
| break_helper("z1", arg, 0); |
| } |
| |
| static void hw_write_break(char *arg) |
| { |
| break_helper("Z2", arg, 0); |
| } |
| |
| static void hw_rem_write_break(char *arg) |
| { |
| break_helper("z2", arg, 0); |
| } |
| |
| static void hw_access_break(char *arg) |
| { |
| break_helper("Z4", arg, 0); |
| } |
| |
| static void hw_rem_access_break(char *arg) |
| { |
| break_helper("z4", arg, 0); |
| } |
| |
| static void hw_break_val_access(void) |
| { |
| hw_break_val2 = hw_break_val; |
| } |
| |
| static void hw_break_val_write(void) |
| { |
| hw_break_val++; |
| } |
| |
| static int get_thread_id_continue(char *put_str, char *arg) |
| { |
| char *ptr = &put_str[11]; |
| |
| if (put_str[1] != 'T' || put_str[2] != '0') |
| return 1; |
| kgdb_hex2long(&ptr, &cont_thread_id); |
| return 0; |
| } |
| |
| static int check_and_rewind_pc(char *put_str, char *arg) |
| { |
| unsigned long addr = lookup_addr(arg); |
| unsigned long ip; |
| int offset = 0; |
| |
| kgdb_hex2mem(&put_str[1], (char *)kgdbts_gdb_regs, |
| NUMREGBYTES); |
| gdb_regs_to_pt_regs(kgdbts_gdb_regs, &kgdbts_regs); |
| ip = instruction_pointer(&kgdbts_regs); |
| v2printk("Stopped at IP: %lx\n", ip); |
| #ifdef GDB_ADJUSTS_BREAK_OFFSET |
| /* On some arches, a breakpoint stop requires it to be decremented */ |
| if (addr + BREAK_INSTR_SIZE == ip) |
| offset = -BREAK_INSTR_SIZE; |
| #endif |
| |
| if (arch_needs_sstep_emulation && sstep_addr && |
| ip + offset == sstep_addr && |
| ((!strcmp(arg, "do_sys_openat2") || !strcmp(arg, "kernel_clone")))) { |
| /* This is special case for emulated single step */ |
| v2printk("Emul: rewind hit single step bp\n"); |
| restart_from_top_after_write = 1; |
| } else if (strcmp(arg, "silent") && ip + offset != addr) { |
| eprintk("kgdbts: BP mismatch %lx expected %lx\n", |
| ip + offset, addr); |
| return 1; |
| } |
| /* Readjust the instruction pointer if needed */ |
| ip += offset; |
| cont_addr = ip; |
| #ifdef GDB_ADJUSTS_BREAK_OFFSET |
| instruction_pointer_set(&kgdbts_regs, ip); |
| #endif |
| return 0; |
| } |
| |
| static int check_single_step(char *put_str, char *arg) |
| { |
| unsigned long addr = lookup_addr(arg); |
| static int matched_id; |
| |
| /* |
| * From an arch indepent point of view the instruction pointer |
| * should be on a different instruction |
| */ |
| kgdb_hex2mem(&put_str[1], (char *)kgdbts_gdb_regs, |
| NUMREGBYTES); |
| gdb_regs_to_pt_regs(kgdbts_gdb_regs, &kgdbts_regs); |
| v2printk("Singlestep stopped at IP: %lx\n", |
| instruction_pointer(&kgdbts_regs)); |
| |
| if (sstep_thread_id != cont_thread_id) { |
| /* |
| * Ensure we stopped in the same thread id as before, else the |
| * debugger should continue until the original thread that was |
| * single stepped is scheduled again, emulating gdb's behavior. |
| */ |
| v2printk("ThrID does not match: %lx\n", cont_thread_id); |
| if (arch_needs_sstep_emulation) { |
| if (matched_id && |
| instruction_pointer(&kgdbts_regs) != addr) |
| goto continue_test; |
| matched_id++; |
| ts.idx -= 2; |
| sstep_state = 0; |
| return 0; |
| } |
| cont_instead_of_sstep = 1; |
| ts.idx -= 4; |
| return 0; |
| } |
| continue_test: |
| matched_id = 0; |
| if (instruction_pointer(&kgdbts_regs) == addr) { |
| eprintk("kgdbts: SingleStep failed at %lx\n", |
| instruction_pointer(&kgdbts_regs)); |
| return 1; |
| } |
| |
| return 0; |
| } |
| |
| static void write_regs(char *arg) |
| { |
| memset(scratch_buf, 0, sizeof(scratch_buf)); |
| scratch_buf[0] = 'G'; |
| pt_regs_to_gdb_regs(kgdbts_gdb_regs, &kgdbts_regs); |
| kgdb_mem2hex((char *)kgdbts_gdb_regs, &scratch_buf[1], NUMREGBYTES); |
| fill_get_buf(scratch_buf); |
| } |
| |
| static void skip_back_repeat_test(char *arg) |
| { |
| int go_back = simple_strtol(arg, NULL, 10); |
| |
| repeat_test--; |
| if (repeat_test <= 0) { |
| ts.idx++; |
| } else { |
| if (repeat_test % 100 == 0) |
| v1printk("kgdbts:RUN ... %d remaining\n", repeat_test); |
| |
| ts.idx -= go_back; |
| } |
| fill_get_buf(ts.tst[ts.idx].get); |
| } |
| |
| static int got_break(char *put_str, char *arg) |
| { |
| test_complete = 1; |
| if (!strncmp(put_str+1, arg, 2)) { |
| if (!strncmp(arg, "T0", 2)) |
| test_complete = 2; |
| return 0; |
| } |
| return 1; |
| } |
| |
| static void get_cont_catch(char *arg) |
| { |
| /* Always send detach because the test is completed at this point */ |
| fill_get_buf("D"); |
| } |
| |
| static int put_cont_catch(char *put_str, char *arg) |
| { |
| /* This is at the end of the test and we catch any and all input */ |
| v2printk("kgdbts: cleanup task: %lx\n", sstep_thread_id); |
| ts.idx--; |
| return 0; |
| } |
| |
| static int emul_reset(char *put_str, char *arg) |
| { |
| if (strncmp(put_str, "$OK", 3)) |
| return 1; |
| if (restart_from_top_after_write) { |
| restart_from_top_after_write = 0; |
| ts.idx = -1; |
| } |
| return 0; |
| } |
| |
| static void emul_sstep_get(char *arg) |
| { |
| if (!arch_needs_sstep_emulation) { |
| if (cont_instead_of_sstep) { |
| cont_instead_of_sstep = 0; |
| fill_get_buf("c"); |
| } else { |
| fill_get_buf(arg); |
| } |
| return; |
| } |
| switch (sstep_state) { |
| case 0: |
| v2printk("Emulate single step\n"); |
| /* Start by looking at the current PC */ |
| fill_get_buf("g"); |
| break; |
| case 1: |
| /* set breakpoint */ |
| break_helper("Z0", NULL, sstep_addr); |
| break; |
| case 2: |
| /* Continue */ |
| fill_get_buf("c"); |
| break; |
| case 3: |
| /* Clear breakpoint */ |
| break_helper("z0", NULL, sstep_addr); |
| break; |
| default: |
| eprintk("kgdbts: ERROR failed sstep get emulation\n"); |
| } |
| sstep_state++; |
| } |
| |
| static int emul_sstep_put(char *put_str, char *arg) |
| { |
| if (!arch_needs_sstep_emulation) { |
| char *ptr = &put_str[11]; |
| if (put_str[1] != 'T' || put_str[2] != '0') |
| return 1; |
| kgdb_hex2long(&ptr, &sstep_thread_id); |
| return 0; |
| } |
| switch (sstep_state) { |
| case 1: |
| /* validate the "g" packet to get the IP */ |
| kgdb_hex2mem(&put_str[1], (char *)kgdbts_gdb_regs, |
| NUMREGBYTES); |
| gdb_regs_to_pt_regs(kgdbts_gdb_regs, &kgdbts_regs); |
| v2printk("Stopped at IP: %lx\n", |
| instruction_pointer(&kgdbts_regs)); |
| /* Want to stop at IP + break instruction size by default */ |
| sstep_addr = cont_addr + BREAK_INSTR_SIZE; |
| break; |
| case 2: |
| if (strncmp(put_str, "$OK", 3)) { |
| eprintk("kgdbts: failed sstep break set\n"); |
| return 1; |
| } |
| break; |
| case 3: |
| if (strncmp(put_str, "$T0", 3)) { |
| eprintk("kgdbts: failed continue sstep\n"); |
| return 1; |
| } else { |
| char *ptr = &put_str[11]; |
| kgdb_hex2long(&ptr, &sstep_thread_id); |
| } |
| break; |
| case 4: |
| if (strncmp(put_str, "$OK", 3)) { |
| eprintk("kgdbts: failed sstep break unset\n"); |
| return 1; |
| } |
| /* Single step is complete so continue on! */ |
| sstep_state = 0; |
| return 0; |
| default: |
| eprintk("kgdbts: ERROR failed sstep put emulation\n"); |
| } |
| |
| /* Continue on the same test line until emulation is complete */ |
| ts.idx--; |
| return 0; |
| } |
| |
| static int final_ack_set(char *put_str, char *arg) |
| { |
| if (strncmp(put_str+1, arg, 2)) |
| return 1; |
| final_ack = 1; |
| return 0; |
| } |
| /* |
| * Test to plant a breakpoint and detach, which should clear out the |
| * breakpoint and restore the original instruction. |
| */ |
| static struct test_struct plant_and_detach_test[] = { |
| { "?", "S0*" }, /* Clear break points */ |
| { "kgdbts_break_test", "OK", sw_break, }, /* set sw breakpoint */ |
| { "D", "OK" }, /* Detach */ |
| { "", "" }, |
| }; |
| |
| /* |
| * Simple test to write in a software breakpoint, check for the |
| * correct stop location and detach. |
| */ |
| static struct test_struct sw_breakpoint_test[] = { |
| { "?", "S0*" }, /* Clear break points */ |
| { "kgdbts_break_test", "OK", sw_break, }, /* set sw breakpoint */ |
| { "c", "T0*", }, /* Continue */ |
| { "g", "kgdbts_break_test", NULL, check_and_rewind_pc }, |
| { "write", "OK", write_regs }, |
| { "kgdbts_break_test", "OK", sw_rem_break }, /*remove breakpoint */ |
| { "D", "OK" }, /* Detach */ |
| { "D", "OK", NULL, got_break }, /* On success we made it here */ |
| { "", "" }, |
| }; |
| |
| /* |
| * Test a known bad memory read location to test the fault handler and |
| * read bytes 1-8 at the bad address |
| */ |
| static struct test_struct bad_read_test[] = { |
| { "?", "S0*" }, /* Clear break points */ |
| { "m0,1", "E*" }, /* read 1 byte at address 1 */ |
| { "m0,2", "E*" }, /* read 1 byte at address 2 */ |
| { "m0,3", "E*" }, /* read 1 byte at address 3 */ |
| { "m0,4", "E*" }, /* read 1 byte at address 4 */ |
| { "m0,5", "E*" }, /* read 1 byte at address 5 */ |
| { "m0,6", "E*" }, /* read 1 byte at address 6 */ |
| { "m0,7", "E*" }, /* read 1 byte at address 7 */ |
| { "m0,8", "E*" }, /* read 1 byte at address 8 */ |
| { "D", "OK" }, /* Detach which removes all breakpoints and continues */ |
| { "", "" }, |
| }; |
| |
| /* |
| * Test for hitting a breakpoint, remove it, single step, plant it |
| * again and detach. |
| */ |
| static struct test_struct singlestep_break_test[] = { |
| { "?", "S0*" }, /* Clear break points */ |
| { "kgdbts_break_test", "OK", sw_break, }, /* set sw breakpoint */ |
| { "c", "T0*", NULL, get_thread_id_continue }, /* Continue */ |
| { "kgdbts_break_test", "OK", sw_rem_break }, /*remove breakpoint */ |
| { "g", "kgdbts_break_test", NULL, check_and_rewind_pc }, |
| { "write", "OK", write_regs }, /* Write registers */ |
| { "s", "T0*", emul_sstep_get, emul_sstep_put }, /* Single step */ |
| { "g", "kgdbts_break_test", NULL, check_single_step }, |
| { "kgdbts_break_test", "OK", sw_break, }, /* set sw breakpoint */ |
| { "c", "T0*", }, /* Continue */ |
| { "g", "kgdbts_break_test", NULL, check_and_rewind_pc }, |
| { "write", "OK", write_regs }, /* Write registers */ |
| { "D", "OK" }, /* Remove all breakpoints and continues */ |
| { "", "" }, |
| }; |
| |
| /* |
| * Test for hitting a breakpoint at kernel_clone for what ever the number |
| * of iterations required by the variable repeat_test. |
| */ |
| static struct test_struct do_kernel_clone_test[] = { |
| { "?", "S0*" }, /* Clear break points */ |
| { "kernel_clone", "OK", sw_break, }, /* set sw breakpoint */ |
| { "c", "T0*", NULL, get_thread_id_continue }, /* Continue */ |
| { "kernel_clone", "OK", sw_rem_break }, /*remove breakpoint */ |
| { "g", "kernel_clone", NULL, check_and_rewind_pc }, /* check location */ |
| { "write", "OK", write_regs, emul_reset }, /* Write registers */ |
| { "s", "T0*", emul_sstep_get, emul_sstep_put }, /* Single step */ |
| { "g", "kernel_clone", NULL, check_single_step }, |
| { "kernel_clone", "OK", sw_break, }, /* set sw breakpoint */ |
| { "7", "T0*", skip_back_repeat_test }, /* Loop based on repeat_test */ |
| { "D", "OK", NULL, final_ack_set }, /* detach and unregister I/O */ |
| { "", "", get_cont_catch, put_cont_catch }, |
| }; |
| |
| /* Test for hitting a breakpoint at sys_open for what ever the number |
| * of iterations required by the variable repeat_test. |
| */ |
| static struct test_struct sys_open_test[] = { |
| { "?", "S0*" }, /* Clear break points */ |
| { "do_sys_openat2", "OK", sw_break, }, /* set sw breakpoint */ |
| { "c", "T0*", NULL, get_thread_id_continue }, /* Continue */ |
| { "do_sys_openat2", "OK", sw_rem_break }, /*remove breakpoint */ |
| { "g", "do_sys_openat2", NULL, check_and_rewind_pc }, /* check location */ |
| { "write", "OK", write_regs, emul_reset }, /* Write registers */ |
| { "s", "T0*", emul_sstep_get, emul_sstep_put }, /* Single step */ |
| { "g", "do_sys_openat2", NULL, check_single_step }, |
| { "do_sys_openat2", "OK", sw_break, }, /* set sw breakpoint */ |
| { "7", "T0*", skip_back_repeat_test }, /* Loop based on repeat_test */ |
| { "D", "OK", NULL, final_ack_set }, /* detach and unregister I/O */ |
| { "", "", get_cont_catch, put_cont_catch }, |
| }; |
| |
| /* |
| * Test for hitting a simple hw breakpoint |
| */ |
| static struct test_struct hw_breakpoint_test[] = { |
| { "?", "S0*" }, /* Clear break points */ |
| { "kgdbts_break_test", "OK", hw_break, }, /* set hw breakpoint */ |
| { "c", "T0*", }, /* Continue */ |
| { "g", "kgdbts_break_test", NULL, check_and_rewind_pc }, |
| { "write", "OK", write_regs }, |
| { "kgdbts_break_test", "OK", hw_rem_break }, /*remove breakpoint */ |
| { "D", "OK" }, /* Detach */ |
| { "D", "OK", NULL, got_break }, /* On success we made it here */ |
| { "", "" }, |
| }; |
| |
| /* |
| * Test for hitting a hw write breakpoint |
| */ |
| static struct test_struct hw_write_break_test[] = { |
| { "?", "S0*" }, /* Clear break points */ |
| { "hw_break_val", "OK", hw_write_break, }, /* set hw breakpoint */ |
| { "c", "T0*", NULL, got_break }, /* Continue */ |
| { "g", "silent", NULL, check_and_rewind_pc }, |
| { "write", "OK", write_regs }, |
| { "hw_break_val", "OK", hw_rem_write_break }, /*remove breakpoint */ |
| { "D", "OK" }, /* Detach */ |
| { "D", "OK", NULL, got_break }, /* On success we made it here */ |
| { "", "" }, |
| }; |
| |
| /* |
| * Test for hitting a hw access breakpoint |
| */ |
| static struct test_struct hw_access_break_test[] = { |
| { "?", "S0*" }, /* Clear break points */ |
| { "hw_break_val", "OK", hw_access_break, }, /* set hw breakpoint */ |
| { "c", "T0*", NULL, got_break }, /* Continue */ |
| { "g", "silent", NULL, check_and_rewind_pc }, |
| { "write", "OK", write_regs }, |
| { "hw_break_val", "OK", hw_rem_access_break }, /*remove breakpoint */ |
| { "D", "OK" }, /* Detach */ |
| { "D", "OK", NULL, got_break }, /* On success we made it here */ |
| { "", "" }, |
| }; |
| |
| /* |
| * Test for hitting a hw access breakpoint |
| */ |
| static struct test_struct nmi_sleep_test[] = { |
| { "?", "S0*" }, /* Clear break points */ |
| { "c", "T0*", NULL, got_break }, /* Continue */ |
| { "D", "OK" }, /* Detach */ |
| { "D", "OK", NULL, got_break }, /* On success we made it here */ |
| { "", "" }, |
| }; |
| |
| static void fill_get_buf(char *buf) |
| { |
| unsigned char checksum = 0; |
| int count = 0; |
| char ch; |
| |
| strcpy(get_buf, "$"); |
| strcat(get_buf, buf); |
| while ((ch = buf[count])) { |
| checksum += ch; |
| count++; |
| } |
| strcat(get_buf, "#"); |
| get_buf[count + 2] = hex_asc_hi(checksum); |
| get_buf[count + 3] = hex_asc_lo(checksum); |
| get_buf[count + 4] = '\0'; |
| v2printk("get%i: %s\n", ts.idx, get_buf); |
| } |
| |
| static int validate_simple_test(char *put_str) |
| { |
| char *chk_str; |
| |
| if (ts.tst[ts.idx].put_handler) |
| return ts.tst[ts.idx].put_handler(put_str, |
| ts.tst[ts.idx].put); |
| |
| chk_str = ts.tst[ts.idx].put; |
| if (*put_str == '$') |
| put_str++; |
| |
| while (*chk_str != '\0' && *put_str != '\0') { |
| /* If someone does a * to match the rest of the string, allow |
| * it, or stop if the received string is complete. |
| */ |
| if (*put_str == '#' || *chk_str == '*') |
| return 0; |
| if (*put_str != *chk_str) |
| return 1; |
| |
| chk_str++; |
| put_str++; |
| } |
| if (*chk_str == '\0' && (*put_str == '\0' || *put_str == '#')) |
| return 0; |
| |
| return 1; |
| } |
| |
| static int run_simple_test(int is_get_char, int chr) |
| { |
| int ret = 0; |
| if (is_get_char) { |
| /* Send an ACK on the get if a prior put completed and set the |
| * send ack variable |
| */ |
| if (send_ack) { |
| send_ack = 0; |
| return '+'; |
| } |
| /* On the first get char, fill the transmit buffer and then |
| * take from the get_string. |
| */ |
| if (get_buf_cnt == 0) { |
| if (ts.tst[ts.idx].get_handler) |
| ts.tst[ts.idx].get_handler(ts.tst[ts.idx].get); |
| else |
| fill_get_buf(ts.tst[ts.idx].get); |
| } |
| |
| if (get_buf[get_buf_cnt] == '\0') { |
| eprintk("kgdbts: ERROR GET: EOB on '%s' at %i\n", |
| ts.name, ts.idx); |
| get_buf_cnt = 0; |
| fill_get_buf("D"); |
| } |
| ret = get_buf[get_buf_cnt]; |
| get_buf_cnt++; |
| return ret; |
| } |
| |
| /* This callback is a put char which is when kgdb sends data to |
| * this I/O module. |
| */ |
| if (ts.tst[ts.idx].get[0] == '\0' && ts.tst[ts.idx].put[0] == '\0' && |
| !ts.tst[ts.idx].get_handler) { |
| eprintk("kgdbts: ERROR: beyond end of test on" |
| " '%s' line %i\n", ts.name, ts.idx); |
| return 0; |
| } |
| |
| if (put_buf_cnt >= BUFMAX) { |
| eprintk("kgdbts: ERROR: put buffer overflow on" |
| " '%s' line %i\n", ts.name, ts.idx); |
| put_buf_cnt = 0; |
| return 0; |
| } |
| /* Ignore everything until the first valid packet start '$' */ |
| if (put_buf_cnt == 0 && chr != '$') |
| return 0; |
| |
| put_buf[put_buf_cnt] = chr; |
| put_buf_cnt++; |
| |
| /* End of packet == #XX so look for the '#' */ |
| if (put_buf_cnt > 3 && put_buf[put_buf_cnt - 3] == '#') { |
| if (put_buf_cnt >= BUFMAX) { |
| eprintk("kgdbts: ERROR: put buffer overflow on" |
| " '%s' line %i\n", ts.name, ts.idx); |
| put_buf_cnt = 0; |
| return 0; |
| } |
| put_buf[put_buf_cnt] = '\0'; |
| v2printk("put%i: %s\n", ts.idx, put_buf); |
| /* Trigger check here */ |
| if (ts.validate_put && ts.validate_put(put_buf)) { |
| eprintk("kgdbts: ERROR PUT: end of test " |
| "buffer on '%s' line %i expected %s got %s\n", |
| ts.name, ts.idx, ts.tst[ts.idx].put, put_buf); |
| } |
| ts.idx++; |
| put_buf_cnt = 0; |
| get_buf_cnt = 0; |
| send_ack = 1; |
| } |
| return 0; |
| } |
| |
| static void init_simple_test(void) |
| { |
| memset(&ts, 0, sizeof(ts)); |
| ts.run_test = run_simple_test; |
| ts.validate_put = validate_simple_test; |
| } |
| |
| static void run_plant_and_detach_test(int is_early) |
| { |
| char before[BREAK_INSTR_SIZE]; |
| char after[BREAK_INSTR_SIZE]; |
| |
| copy_from_kernel_nofault(before, (char *)kgdbts_break_test, |
| BREAK_INSTR_SIZE); |
| init_simple_test(); |
| ts.tst = plant_and_detach_test; |
| ts.name = "plant_and_detach_test"; |
| /* Activate test with initial breakpoint */ |
| if (!is_early) |
| kgdb_breakpoint(); |
| copy_from_kernel_nofault(after, (char *)kgdbts_break_test, |
| BREAK_INSTR_SIZE); |
| if (memcmp(before, after, BREAK_INSTR_SIZE)) { |
| printk(KERN_CRIT "kgdbts: ERROR kgdb corrupted memory\n"); |
| panic("kgdb memory corruption"); |
| } |
| |
| /* complete the detach test */ |
| if (!is_early) |
| kgdbts_break_test(); |
| } |
| |
| static void run_breakpoint_test(int is_hw_breakpoint) |
| { |
| test_complete = 0; |
| init_simple_test(); |
| if (is_hw_breakpoint) { |
| ts.tst = hw_breakpoint_test; |
| ts.name = "hw_breakpoint_test"; |
| } else { |
| ts.tst = sw_breakpoint_test; |
| ts.name = "sw_breakpoint_test"; |
| } |
| /* Activate test with initial breakpoint */ |
| kgdb_breakpoint(); |
| /* run code with the break point in it */ |
| kgdbts_break_test(); |
| kgdb_breakpoint(); |
| |
| if (test_complete) |
| return; |
| |
| eprintk("kgdbts: ERROR %s test failed\n", ts.name); |
| if (is_hw_breakpoint) |
| hwbreaks_ok = 0; |
| } |
| |
| static void run_hw_break_test(int is_write_test) |
| { |
| test_complete = 0; |
| init_simple_test(); |
| if (is_write_test) { |
| ts.tst = hw_write_break_test; |
| ts.name = "hw_write_break_test"; |
| } else { |
| ts.tst = hw_access_break_test; |
| ts.name = "hw_access_break_test"; |
| } |
| /* Activate test with initial breakpoint */ |
| kgdb_breakpoint(); |
| hw_break_val_access(); |
| if (is_write_test) { |
| if (test_complete == 2) { |
| eprintk("kgdbts: ERROR %s broke on access\n", |
| ts.name); |
| hwbreaks_ok = 0; |
| } |
| hw_break_val_write(); |
| } |
| kgdb_breakpoint(); |
| |
| if (test_complete == 1) |
| return; |
| |
| eprintk("kgdbts: ERROR %s test failed\n", ts.name); |
| hwbreaks_ok = 0; |
| } |
| |
| static void run_nmi_sleep_test(int nmi_sleep) |
| { |
| unsigned long flags; |
| |
| init_simple_test(); |
| ts.tst = nmi_sleep_test; |
| ts.name = "nmi_sleep_test"; |
| /* Activate test with initial breakpoint */ |
| kgdb_breakpoint(); |
| local_irq_save(flags); |
| mdelay(nmi_sleep*1000); |
| touch_nmi_watchdog(); |
| local_irq_restore(flags); |
| if (test_complete != 2) |
| eprintk("kgdbts: ERROR nmi_test did not hit nmi\n"); |
| kgdb_breakpoint(); |
| if (test_complete == 1) |
| return; |
| |
| eprintk("kgdbts: ERROR %s test failed\n", ts.name); |
| } |
| |
| static void run_bad_read_test(void) |
| { |
| init_simple_test(); |
| ts.tst = bad_read_test; |
| ts.name = "bad_read_test"; |
| /* Activate test with initial breakpoint */ |
| kgdb_breakpoint(); |
| } |
| |
| static void run_kernel_clone_test(void) |
| { |
| init_simple_test(); |
| ts.tst = do_kernel_clone_test; |
| ts.name = "do_kernel_clone_test"; |
| /* Activate test with initial breakpoint */ |
| kgdb_breakpoint(); |
| } |
| |
| static void run_sys_open_test(void) |
| { |
| init_simple_test(); |
| ts.tst = sys_open_test; |
| ts.name = "sys_open_test"; |
| /* Activate test with initial breakpoint */ |
| kgdb_breakpoint(); |
| } |
| |
| static void run_singlestep_break_test(void) |
| { |
| init_simple_test(); |
| ts.tst = singlestep_break_test; |
| ts.name = "singlestep_breakpoint_test"; |
| /* Activate test with initial breakpoint */ |
| kgdb_breakpoint(); |
| kgdbts_break_test(); |
| kgdbts_break_test(); |
| } |
| |
| static void kgdbts_run_tests(void) |
| { |
| char *ptr; |
| int clone_test = 0; |
| int do_sys_open_test = 0; |
| int sstep_test = 1000; |
| int nmi_sleep = 0; |
| int i; |
| |
| verbose = 0; |
| if (strstr(config, "V1")) |
| verbose = 1; |
| if (strstr(config, "V2")) |
| verbose = 2; |
| |
| ptr = strchr(config, 'F'); |
| if (ptr) |
| clone_test = simple_strtol(ptr + 1, NULL, 10); |
| ptr = strchr(config, 'S'); |
| if (ptr) |
| do_sys_open_test = simple_strtol(ptr + 1, NULL, 10); |
| ptr = strchr(config, 'N'); |
| if (ptr) |
| nmi_sleep = simple_strtol(ptr+1, NULL, 10); |
| ptr = strchr(config, 'I'); |
| if (ptr) |
| sstep_test = simple_strtol(ptr+1, NULL, 10); |
| |
| /* All HW break point tests */ |
| if (arch_kgdb_ops.flags & KGDB_HW_BREAKPOINT) { |
| hwbreaks_ok = 1; |
| v1printk("kgdbts:RUN hw breakpoint test\n"); |
| run_breakpoint_test(1); |
| v1printk("kgdbts:RUN hw write breakpoint test\n"); |
| run_hw_break_test(1); |
| v1printk("kgdbts:RUN access write breakpoint test\n"); |
| run_hw_break_test(0); |
| } |
| |
| /* required internal KGDB tests */ |
| v1printk("kgdbts:RUN plant and detach test\n"); |
| run_plant_and_detach_test(0); |
| v1printk("kgdbts:RUN sw breakpoint test\n"); |
| run_breakpoint_test(0); |
| v1printk("kgdbts:RUN bad memory access test\n"); |
| run_bad_read_test(); |
| v1printk("kgdbts:RUN singlestep test %i iterations\n", sstep_test); |
| for (i = 0; i < sstep_test; i++) { |
| run_singlestep_break_test(); |
| if (i % 100 == 0) |
| v1printk("kgdbts:RUN singlestep [%i/%i]\n", |
| i, sstep_test); |
| } |
| |
| /* ===Optional tests=== */ |
| |
| if (nmi_sleep) { |
| v1printk("kgdbts:RUN NMI sleep %i seconds test\n", nmi_sleep); |
| run_nmi_sleep_test(nmi_sleep); |
| } |
| |
| /* If the kernel_clone test is run it will be the last test that is |
| * executed because a kernel thread will be spawned at the very |
| * end to unregister the debug hooks. |
| */ |
| if (clone_test) { |
| repeat_test = clone_test; |
| printk(KERN_INFO "kgdbts:RUN kernel_clone for %i breakpoints\n", |
| repeat_test); |
| kthread_run(kgdbts_unreg_thread, NULL, "kgdbts_unreg"); |
| run_kernel_clone_test(); |
| return; |
| } |
| |
| /* If the sys_open test is run it will be the last test that is |
| * executed because a kernel thread will be spawned at the very |
| * end to unregister the debug hooks. |
| */ |
| if (do_sys_open_test) { |
| repeat_test = do_sys_open_test; |
| printk(KERN_INFO "kgdbts:RUN sys_open for %i breakpoints\n", |
| repeat_test); |
| kthread_run(kgdbts_unreg_thread, NULL, "kgdbts_unreg"); |
| run_sys_open_test(); |
| return; |
| } |
| /* Shutdown and unregister */ |
| kgdb_unregister_io_module(&kgdbts_io_ops); |
| configured = 0; |
| } |
| |
| static int kgdbts_option_setup(char *opt) |
| { |
| if (strlen(opt) >= MAX_CONFIG_LEN) { |
| printk(KERN_ERR "kgdbts: config string too long\n"); |
| return -ENOSPC; |
| } |
| strcpy(config, opt); |
| return 0; |
| } |
| |
| __setup("kgdbts=", kgdbts_option_setup); |
| |
| static int configure_kgdbts(void) |
| { |
| int err = 0; |
| |
| if (!strlen(config) || isspace(config[0])) |
| goto noconfig; |
| |
| final_ack = 0; |
| run_plant_and_detach_test(1); |
| |
| err = kgdb_register_io_module(&kgdbts_io_ops); |
| if (err) { |
| configured = 0; |
| return err; |
| } |
| configured = 1; |
| kgdbts_run_tests(); |
| |
| return err; |
| |
| noconfig: |
| config[0] = 0; |
| configured = 0; |
| |
| return err; |
| } |
| |
| static int __init init_kgdbts(void) |
| { |
| /* Already configured? */ |
| if (configured == 1) |
| return 0; |
| |
| return configure_kgdbts(); |
| } |
| device_initcall(init_kgdbts); |
| |
| static int kgdbts_get_char(void) |
| { |
| int val = 0; |
| |
| if (ts.run_test) |
| val = ts.run_test(1, 0); |
| |
| return val; |
| } |
| |
| static void kgdbts_put_char(u8 chr) |
| { |
| if (ts.run_test) |
| ts.run_test(0, chr); |
| } |
| |
| static int param_set_kgdbts_var(const char *kmessage, |
| const struct kernel_param *kp) |
| { |
| size_t len = strlen(kmessage); |
| |
| if (len >= MAX_CONFIG_LEN) { |
| printk(KERN_ERR "kgdbts: config string too long\n"); |
| return -ENOSPC; |
| } |
| |
| /* Only copy in the string if the init function has not run yet */ |
| if (configured < 0) { |
| strcpy(config, kmessage); |
| return 0; |
| } |
| |
| if (configured == 1) { |
| printk(KERN_ERR "kgdbts: ERROR: Already configured and running.\n"); |
| return -EBUSY; |
| } |
| |
| strcpy(config, kmessage); |
| /* Chop out \n char as a result of echo */ |
| if (len && config[len - 1] == '\n') |
| config[len - 1] = '\0'; |
| |
| /* Go and configure with the new params. */ |
| return configure_kgdbts(); |
| } |
| |
| static void kgdbts_pre_exp_handler(void) |
| { |
| /* Increment the module count when the debugger is active */ |
| if (!kgdb_connected) |
| try_module_get(THIS_MODULE); |
| } |
| |
| static void kgdbts_post_exp_handler(void) |
| { |
| /* decrement the module count when the debugger detaches */ |
| if (!kgdb_connected) |
| module_put(THIS_MODULE); |
| } |
| |
| static struct kgdb_io kgdbts_io_ops = { |
| .name = "kgdbts", |
| .read_char = kgdbts_get_char, |
| .write_char = kgdbts_put_char, |
| .pre_exception = kgdbts_pre_exp_handler, |
| .post_exception = kgdbts_post_exp_handler, |
| }; |
| |
| /* |
| * not really modular, but the easiest way to keep compat with existing |
| * bootargs behaviour is to continue using module_param here. |
| */ |
| module_param_call(kgdbts, param_set_kgdbts_var, param_get_string, &kps, 0644); |
| MODULE_PARM_DESC(kgdbts, "<A|V1|V2>[F#|S#][N#]"); |