| /* |
| * Common time routines among all ppc machines. |
| * |
| * Written by Cort Dougan (cort@cs.nmt.edu) to merge |
| * Paul Mackerras' version and mine for PReP and Pmac. |
| * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net). |
| * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com) |
| * |
| * First round of bugfixes by Gabriel Paubert (paubert@iram.es) |
| * to make clock more stable (2.4.0-test5). The only thing |
| * that this code assumes is that the timebases have been synchronized |
| * by firmware on SMP and are never stopped (never do sleep |
| * on SMP then, nap and doze are OK). |
| * |
| * Speeded up do_gettimeofday by getting rid of references to |
| * xtime (which required locks for consistency). (mikejc@us.ibm.com) |
| * |
| * TODO (not necessarily in this file): |
| * - improve precision and reproducibility of timebase frequency |
| * measurement at boot time. (for iSeries, we calibrate the timebase |
| * against the Titan chip's clock.) |
| * - for astronomical applications: add a new function to get |
| * non ambiguous timestamps even around leap seconds. This needs |
| * a new timestamp format and a good name. |
| * |
| * 1997-09-10 Updated NTP code according to technical memorandum Jan '96 |
| * "A Kernel Model for Precision Timekeeping" by Dave Mills |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * as published by the Free Software Foundation; either version |
| * 2 of the License, or (at your option) any later version. |
| */ |
| |
| #include <linux/config.h> |
| #include <linux/errno.h> |
| #include <linux/module.h> |
| #include <linux/sched.h> |
| #include <linux/kernel.h> |
| #include <linux/param.h> |
| #include <linux/string.h> |
| #include <linux/mm.h> |
| #include <linux/interrupt.h> |
| #include <linux/timex.h> |
| #include <linux/kernel_stat.h> |
| #include <linux/time.h> |
| #include <linux/init.h> |
| #include <linux/profile.h> |
| #include <linux/cpu.h> |
| #include <linux/security.h> |
| #include <linux/percpu.h> |
| #include <linux/rtc.h> |
| |
| #include <asm/io.h> |
| #include <asm/processor.h> |
| #include <asm/nvram.h> |
| #include <asm/cache.h> |
| #include <asm/machdep.h> |
| #include <asm/uaccess.h> |
| #include <asm/time.h> |
| #include <asm/prom.h> |
| #include <asm/irq.h> |
| #include <asm/div64.h> |
| #ifdef CONFIG_PPC64 |
| #include <asm/systemcfg.h> |
| #include <asm/firmware.h> |
| #endif |
| #ifdef CONFIG_PPC_ISERIES |
| #include <asm/iSeries/ItLpQueue.h> |
| #include <asm/iSeries/HvCallXm.h> |
| #endif |
| |
| u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES; |
| |
| EXPORT_SYMBOL(jiffies_64); |
| |
| /* keep track of when we need to update the rtc */ |
| time_t last_rtc_update; |
| extern int piranha_simulator; |
| #ifdef CONFIG_PPC_ISERIES |
| unsigned long iSeries_recal_titan = 0; |
| unsigned long iSeries_recal_tb = 0; |
| static unsigned long first_settimeofday = 1; |
| #endif |
| |
| /* The decrementer counts down by 128 every 128ns on a 601. */ |
| #define DECREMENTER_COUNT_601 (1000000000 / HZ) |
| |
| #define XSEC_PER_SEC (1024*1024) |
| |
| #ifdef CONFIG_PPC64 |
| #define SCALE_XSEC(xsec, max) (((xsec) * max) / XSEC_PER_SEC) |
| #else |
| /* compute ((xsec << 12) * max) >> 32 */ |
| #define SCALE_XSEC(xsec, max) mulhwu((xsec) << 12, max) |
| #endif |
| |
| unsigned long tb_ticks_per_jiffy; |
| unsigned long tb_ticks_per_usec = 100; /* sane default */ |
| EXPORT_SYMBOL(tb_ticks_per_usec); |
| unsigned long tb_ticks_per_sec; |
| u64 tb_to_xs; |
| unsigned tb_to_us; |
| unsigned long processor_freq; |
| DEFINE_SPINLOCK(rtc_lock); |
| EXPORT_SYMBOL_GPL(rtc_lock); |
| |
| u64 tb_to_ns_scale; |
| unsigned tb_to_ns_shift; |
| |
| struct gettimeofday_struct do_gtod; |
| |
| extern unsigned long wall_jiffies; |
| |
| extern struct timezone sys_tz; |
| static long timezone_offset; |
| |
| void ppc_adjtimex(void); |
| |
| static unsigned adjusting_time = 0; |
| |
| unsigned long ppc_proc_freq; |
| unsigned long ppc_tb_freq; |
| |
| #ifdef CONFIG_PPC32 /* XXX for now */ |
| #define boot_cpuid 0 |
| #endif |
| |
| static __inline__ void timer_check_rtc(void) |
| { |
| /* |
| * update the rtc when needed, this should be performed on the |
| * right fraction of a second. Half or full second ? |
| * Full second works on mk48t59 clocks, others need testing. |
| * Note that this update is basically only used through |
| * the adjtimex system calls. Setting the HW clock in |
| * any other way is a /dev/rtc and userland business. |
| * This is still wrong by -0.5/+1.5 jiffies because of the |
| * timer interrupt resolution and possible delay, but here we |
| * hit a quantization limit which can only be solved by higher |
| * resolution timers and decoupling time management from timer |
| * interrupts. This is also wrong on the clocks |
| * which require being written at the half second boundary. |
| * We should have an rtc call that only sets the minutes and |
| * seconds like on Intel to avoid problems with non UTC clocks. |
| */ |
| if (ntp_synced() && |
| xtime.tv_sec - last_rtc_update >= 659 && |
| abs((xtime.tv_nsec/1000) - (1000000-1000000/HZ)) < 500000/HZ && |
| jiffies - wall_jiffies == 1) { |
| struct rtc_time tm; |
| to_tm(xtime.tv_sec + 1 + timezone_offset, &tm); |
| tm.tm_year -= 1900; |
| tm.tm_mon -= 1; |
| if (ppc_md.set_rtc_time(&tm) == 0) |
| last_rtc_update = xtime.tv_sec + 1; |
| else |
| /* Try again one minute later */ |
| last_rtc_update += 60; |
| } |
| } |
| |
| /* |
| * This version of gettimeofday has microsecond resolution. |
| */ |
| static inline void __do_gettimeofday(struct timeval *tv, u64 tb_val) |
| { |
| unsigned long sec, usec; |
| u64 tb_ticks, xsec; |
| struct gettimeofday_vars *temp_varp; |
| u64 temp_tb_to_xs, temp_stamp_xsec; |
| |
| /* |
| * These calculations are faster (gets rid of divides) |
| * if done in units of 1/2^20 rather than microseconds. |
| * The conversion to microseconds at the end is done |
| * without a divide (and in fact, without a multiply) |
| */ |
| temp_varp = do_gtod.varp; |
| tb_ticks = tb_val - temp_varp->tb_orig_stamp; |
| temp_tb_to_xs = temp_varp->tb_to_xs; |
| temp_stamp_xsec = temp_varp->stamp_xsec; |
| xsec = temp_stamp_xsec + mulhdu(tb_ticks, temp_tb_to_xs); |
| sec = xsec / XSEC_PER_SEC; |
| usec = (unsigned long)xsec & (XSEC_PER_SEC - 1); |
| usec = SCALE_XSEC(usec, 1000000); |
| |
| tv->tv_sec = sec; |
| tv->tv_usec = usec; |
| } |
| |
| void do_gettimeofday(struct timeval *tv) |
| { |
| __do_gettimeofday(tv, get_tb()); |
| } |
| |
| EXPORT_SYMBOL(do_gettimeofday); |
| |
| /* Synchronize xtime with do_gettimeofday */ |
| |
| static inline void timer_sync_xtime(unsigned long cur_tb) |
| { |
| #ifdef CONFIG_PPC64 |
| /* why do we do this? */ |
| struct timeval my_tv; |
| |
| __do_gettimeofday(&my_tv, cur_tb); |
| |
| if (xtime.tv_sec <= my_tv.tv_sec) { |
| xtime.tv_sec = my_tv.tv_sec; |
| xtime.tv_nsec = my_tv.tv_usec * 1000; |
| } |
| #endif |
| } |
| |
| /* |
| * There are two copies of tb_to_xs and stamp_xsec so that no |
| * lock is needed to access and use these values in |
| * do_gettimeofday. We alternate the copies and as long as a |
| * reasonable time elapses between changes, there will never |
| * be inconsistent values. ntpd has a minimum of one minute |
| * between updates. |
| */ |
| static inline void update_gtod(u64 new_tb_stamp, u64 new_stamp_xsec, |
| unsigned int new_tb_to_xs) |
| { |
| unsigned temp_idx; |
| struct gettimeofday_vars *temp_varp; |
| |
| temp_idx = (do_gtod.var_idx == 0); |
| temp_varp = &do_gtod.vars[temp_idx]; |
| |
| temp_varp->tb_to_xs = new_tb_to_xs; |
| temp_varp->tb_orig_stamp = new_tb_stamp; |
| temp_varp->stamp_xsec = new_stamp_xsec; |
| smp_mb(); |
| do_gtod.varp = temp_varp; |
| do_gtod.var_idx = temp_idx; |
| |
| #ifdef CONFIG_PPC64 |
| /* |
| * tb_update_count is used to allow the userspace gettimeofday code |
| * to assure itself that it sees a consistent view of the tb_to_xs and |
| * stamp_xsec variables. It reads the tb_update_count, then reads |
| * tb_to_xs and stamp_xsec and then reads tb_update_count again. If |
| * the two values of tb_update_count match and are even then the |
| * tb_to_xs and stamp_xsec values are consistent. If not, then it |
| * loops back and reads them again until this criteria is met. |
| */ |
| ++(systemcfg->tb_update_count); |
| smp_wmb(); |
| systemcfg->tb_orig_stamp = new_tb_stamp; |
| systemcfg->stamp_xsec = new_stamp_xsec; |
| systemcfg->tb_to_xs = new_tb_to_xs; |
| smp_wmb(); |
| ++(systemcfg->tb_update_count); |
| #endif |
| } |
| |
| /* |
| * When the timebase - tb_orig_stamp gets too big, we do a manipulation |
| * between tb_orig_stamp and stamp_xsec. The goal here is to keep the |
| * difference tb - tb_orig_stamp small enough to always fit inside a |
| * 32 bits number. This is a requirement of our fast 32 bits userland |
| * implementation in the vdso. If we "miss" a call to this function |
| * (interrupt latency, CPU locked in a spinlock, ...) and we end up |
| * with a too big difference, then the vdso will fallback to calling |
| * the syscall |
| */ |
| static __inline__ void timer_recalc_offset(u64 cur_tb) |
| { |
| unsigned long offset; |
| u64 new_stamp_xsec; |
| |
| offset = cur_tb - do_gtod.varp->tb_orig_stamp; |
| if ((offset & 0x80000000u) == 0) |
| return; |
| new_stamp_xsec = do_gtod.varp->stamp_xsec |
| + mulhdu(offset, do_gtod.varp->tb_to_xs); |
| update_gtod(cur_tb, new_stamp_xsec, do_gtod.varp->tb_to_xs); |
| } |
| |
| #ifdef CONFIG_SMP |
| unsigned long profile_pc(struct pt_regs *regs) |
| { |
| unsigned long pc = instruction_pointer(regs); |
| |
| if (in_lock_functions(pc)) |
| return regs->link; |
| |
| return pc; |
| } |
| EXPORT_SYMBOL(profile_pc); |
| #endif |
| |
| #ifdef CONFIG_PPC_ISERIES |
| |
| /* |
| * This function recalibrates the timebase based on the 49-bit time-of-day |
| * value in the Titan chip. The Titan is much more accurate than the value |
| * returned by the service processor for the timebase frequency. |
| */ |
| |
| static void iSeries_tb_recal(void) |
| { |
| struct div_result divres; |
| unsigned long titan, tb; |
| tb = get_tb(); |
| titan = HvCallXm_loadTod(); |
| if ( iSeries_recal_titan ) { |
| unsigned long tb_ticks = tb - iSeries_recal_tb; |
| unsigned long titan_usec = (titan - iSeries_recal_titan) >> 12; |
| unsigned long new_tb_ticks_per_sec = (tb_ticks * USEC_PER_SEC)/titan_usec; |
| unsigned long new_tb_ticks_per_jiffy = (new_tb_ticks_per_sec+(HZ/2))/HZ; |
| long tick_diff = new_tb_ticks_per_jiffy - tb_ticks_per_jiffy; |
| char sign = '+'; |
| /* make sure tb_ticks_per_sec and tb_ticks_per_jiffy are consistent */ |
| new_tb_ticks_per_sec = new_tb_ticks_per_jiffy * HZ; |
| |
| if ( tick_diff < 0 ) { |
| tick_diff = -tick_diff; |
| sign = '-'; |
| } |
| if ( tick_diff ) { |
| if ( tick_diff < tb_ticks_per_jiffy/25 ) { |
| printk( "Titan recalibrate: new tb_ticks_per_jiffy = %lu (%c%ld)\n", |
| new_tb_ticks_per_jiffy, sign, tick_diff ); |
| tb_ticks_per_jiffy = new_tb_ticks_per_jiffy; |
| tb_ticks_per_sec = new_tb_ticks_per_sec; |
| div128_by_32( XSEC_PER_SEC, 0, tb_ticks_per_sec, &divres ); |
| do_gtod.tb_ticks_per_sec = tb_ticks_per_sec; |
| tb_to_xs = divres.result_low; |
| do_gtod.varp->tb_to_xs = tb_to_xs; |
| systemcfg->tb_ticks_per_sec = tb_ticks_per_sec; |
| systemcfg->tb_to_xs = tb_to_xs; |
| } |
| else { |
| printk( "Titan recalibrate: FAILED (difference > 4 percent)\n" |
| " new tb_ticks_per_jiffy = %lu\n" |
| " old tb_ticks_per_jiffy = %lu\n", |
| new_tb_ticks_per_jiffy, tb_ticks_per_jiffy ); |
| } |
| } |
| } |
| iSeries_recal_titan = titan; |
| iSeries_recal_tb = tb; |
| } |
| #endif |
| |
| /* |
| * For iSeries shared processors, we have to let the hypervisor |
| * set the hardware decrementer. We set a virtual decrementer |
| * in the lppaca and call the hypervisor if the virtual |
| * decrementer is less than the current value in the hardware |
| * decrementer. (almost always the new decrementer value will |
| * be greater than the current hardware decementer so the hypervisor |
| * call will not be needed) |
| */ |
| |
| u64 tb_last_stamp __cacheline_aligned_in_smp; |
| |
| /* |
| * Note that on ppc32 this only stores the bottom 32 bits of |
| * the timebase value, but that's enough to tell when a jiffy |
| * has passed. |
| */ |
| DEFINE_PER_CPU(unsigned long, last_jiffy); |
| |
| /* |
| * timer_interrupt - gets called when the decrementer overflows, |
| * with interrupts disabled. |
| */ |
| void timer_interrupt(struct pt_regs * regs) |
| { |
| int next_dec; |
| int cpu = smp_processor_id(); |
| unsigned long ticks; |
| |
| #ifdef CONFIG_PPC32 |
| if (atomic_read(&ppc_n_lost_interrupts) != 0) |
| do_IRQ(regs); |
| #endif |
| |
| irq_enter(); |
| |
| profile_tick(CPU_PROFILING, regs); |
| |
| #ifdef CONFIG_PPC_ISERIES |
| get_paca()->lppaca.int_dword.fields.decr_int = 0; |
| #endif |
| |
| while ((ticks = tb_ticks_since(per_cpu(last_jiffy, cpu))) |
| >= tb_ticks_per_jiffy) { |
| /* Update last_jiffy */ |
| per_cpu(last_jiffy, cpu) += tb_ticks_per_jiffy; |
| /* Handle RTCL overflow on 601 */ |
| if (__USE_RTC() && per_cpu(last_jiffy, cpu) >= 1000000000) |
| per_cpu(last_jiffy, cpu) -= 1000000000; |
| |
| /* |
| * We cannot disable the decrementer, so in the period |
| * between this cpu's being marked offline in cpu_online_map |
| * and calling stop-self, it is taking timer interrupts. |
| * Avoid calling into the scheduler rebalancing code if this |
| * is the case. |
| */ |
| if (!cpu_is_offline(cpu)) |
| update_process_times(user_mode(regs)); |
| |
| /* |
| * No need to check whether cpu is offline here; boot_cpuid |
| * should have been fixed up by now. |
| */ |
| if (cpu != boot_cpuid) |
| continue; |
| |
| write_seqlock(&xtime_lock); |
| tb_last_stamp += tb_ticks_per_jiffy; |
| timer_recalc_offset(tb_last_stamp); |
| do_timer(regs); |
| timer_sync_xtime(tb_last_stamp); |
| timer_check_rtc(); |
| write_sequnlock(&xtime_lock); |
| if (adjusting_time && (time_adjust == 0)) |
| ppc_adjtimex(); |
| } |
| |
| next_dec = tb_ticks_per_jiffy - ticks; |
| set_dec(next_dec); |
| |
| #ifdef CONFIG_PPC_ISERIES |
| if (hvlpevent_is_pending()) |
| process_hvlpevents(regs); |
| #endif |
| |
| #ifdef CONFIG_PPC64 |
| /* collect purr register values often, for accurate calculations */ |
| if (firmware_has_feature(FW_FEATURE_SPLPAR)) { |
| struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array); |
| cu->current_tb = mfspr(SPRN_PURR); |
| } |
| #endif |
| |
| irq_exit(); |
| } |
| |
| void wakeup_decrementer(void) |
| { |
| int i; |
| |
| set_dec(tb_ticks_per_jiffy); |
| /* |
| * We don't expect this to be called on a machine with a 601, |
| * so using get_tbl is fine. |
| */ |
| tb_last_stamp = get_tb(); |
| for_each_cpu(i) |
| per_cpu(last_jiffy, i) = tb_last_stamp; |
| } |
| |
| #ifdef CONFIG_SMPxxx |
| void __init smp_space_timers(unsigned int max_cpus) |
| { |
| int i; |
| unsigned long offset = tb_ticks_per_jiffy / max_cpus; |
| unsigned long previous_tb = per_cpu(last_jiffy, boot_cpuid); |
| |
| for_each_cpu(i) { |
| if (i != boot_cpuid) { |
| previous_tb += offset; |
| per_cpu(last_jiffy, i) = previous_tb; |
| } |
| } |
| } |
| #endif |
| |
| /* |
| * Scheduler clock - returns current time in nanosec units. |
| * |
| * Note: mulhdu(a, b) (multiply high double unsigned) returns |
| * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b |
| * are 64-bit unsigned numbers. |
| */ |
| unsigned long long sched_clock(void) |
| { |
| return mulhdu(get_tb(), tb_to_ns_scale) << tb_to_ns_shift; |
| } |
| |
| int do_settimeofday(struct timespec *tv) |
| { |
| time_t wtm_sec, new_sec = tv->tv_sec; |
| long wtm_nsec, new_nsec = tv->tv_nsec; |
| unsigned long flags; |
| long int tb_delta; |
| u64 new_xsec; |
| |
| if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC) |
| return -EINVAL; |
| |
| write_seqlock_irqsave(&xtime_lock, flags); |
| |
| /* |
| * Updating the RTC is not the job of this code. If the time is |
| * stepped under NTP, the RTC will be updated after STA_UNSYNC |
| * is cleared. Tools like clock/hwclock either copy the RTC |
| * to the system time, in which case there is no point in writing |
| * to the RTC again, or write to the RTC but then they don't call |
| * settimeofday to perform this operation. |
| */ |
| #ifdef CONFIG_PPC_ISERIES |
| if (first_settimeofday) { |
| iSeries_tb_recal(); |
| first_settimeofday = 0; |
| } |
| #endif |
| tb_delta = tb_ticks_since(tb_last_stamp); |
| tb_delta += (jiffies - wall_jiffies) * tb_ticks_per_jiffy; |
| |
| new_nsec -= 1000 * mulhwu(tb_to_us, tb_delta); |
| |
| wtm_sec = wall_to_monotonic.tv_sec + (xtime.tv_sec - new_sec); |
| wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - new_nsec); |
| |
| set_normalized_timespec(&xtime, new_sec, new_nsec); |
| set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec); |
| |
| /* In case of a large backwards jump in time with NTP, we want the |
| * clock to be updated as soon as the PLL is again in lock. |
| */ |
| last_rtc_update = new_sec - 658; |
| |
| ntp_clear(); |
| |
| new_xsec = (u64)new_nsec * XSEC_PER_SEC; |
| do_div(new_xsec, NSEC_PER_SEC); |
| new_xsec += (u64)new_sec * XSEC_PER_SEC; |
| update_gtod(tb_last_stamp, new_xsec, do_gtod.varp->tb_to_xs); |
| |
| #ifdef CONFIG_PPC64 |
| systemcfg->tz_minuteswest = sys_tz.tz_minuteswest; |
| systemcfg->tz_dsttime = sys_tz.tz_dsttime; |
| #endif |
| |
| write_sequnlock_irqrestore(&xtime_lock, flags); |
| clock_was_set(); |
| return 0; |
| } |
| |
| EXPORT_SYMBOL(do_settimeofday); |
| |
| void __init generic_calibrate_decr(void) |
| { |
| struct device_node *cpu; |
| unsigned int *fp; |
| int node_found; |
| |
| /* |
| * The cpu node should have a timebase-frequency property |
| * to tell us the rate at which the decrementer counts. |
| */ |
| cpu = of_find_node_by_type(NULL, "cpu"); |
| |
| ppc_tb_freq = DEFAULT_TB_FREQ; /* hardcoded default */ |
| node_found = 0; |
| if (cpu != 0) { |
| fp = (unsigned int *)get_property(cpu, "timebase-frequency", |
| NULL); |
| if (fp != 0) { |
| node_found = 1; |
| ppc_tb_freq = *fp; |
| } |
| } |
| if (!node_found) |
| printk(KERN_ERR "WARNING: Estimating decrementer frequency " |
| "(not found)\n"); |
| |
| ppc_proc_freq = DEFAULT_PROC_FREQ; |
| node_found = 0; |
| if (cpu != 0) { |
| fp = (unsigned int *)get_property(cpu, "clock-frequency", |
| NULL); |
| if (fp != 0) { |
| node_found = 1; |
| ppc_proc_freq = *fp; |
| } |
| } |
| if (!node_found) |
| printk(KERN_ERR "WARNING: Estimating processor frequency " |
| "(not found)\n"); |
| |
| of_node_put(cpu); |
| } |
| |
| unsigned long get_boot_time(void) |
| { |
| struct rtc_time tm; |
| |
| if (ppc_md.get_boot_time) |
| return ppc_md.get_boot_time(); |
| if (!ppc_md.get_rtc_time) |
| return 0; |
| ppc_md.get_rtc_time(&tm); |
| return mktime(tm.tm_year+1900, tm.tm_mon+1, tm.tm_mday, |
| tm.tm_hour, tm.tm_min, tm.tm_sec); |
| } |
| |
| /* This function is only called on the boot processor */ |
| void __init time_init(void) |
| { |
| unsigned long flags; |
| unsigned long tm = 0; |
| struct div_result res; |
| u64 scale; |
| unsigned shift; |
| |
| if (ppc_md.time_init != NULL) |
| timezone_offset = ppc_md.time_init(); |
| |
| ppc_md.calibrate_decr(); |
| |
| printk(KERN_INFO "time_init: decrementer frequency = %lu.%.6lu MHz\n", |
| ppc_tb_freq / 1000000, ppc_tb_freq % 1000000); |
| printk(KERN_INFO "time_init: processor frequency = %lu.%.6lu MHz\n", |
| ppc_proc_freq / 1000000, ppc_proc_freq % 1000000); |
| |
| tb_ticks_per_jiffy = ppc_tb_freq / HZ; |
| tb_ticks_per_sec = tb_ticks_per_jiffy * HZ; |
| tb_ticks_per_usec = ppc_tb_freq / 1000000; |
| tb_to_us = mulhwu_scale_factor(ppc_tb_freq, 1000000); |
| div128_by_32(1024*1024, 0, tb_ticks_per_sec, &res); |
| tb_to_xs = res.result_low; |
| |
| #ifdef CONFIG_PPC64 |
| get_paca()->default_decr = tb_ticks_per_jiffy; |
| #endif |
| |
| /* |
| * Compute scale factor for sched_clock. |
| * The calibrate_decr() function has set tb_ticks_per_sec, |
| * which is the timebase frequency. |
| * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret |
| * the 128-bit result as a 64.64 fixed-point number. |
| * We then shift that number right until it is less than 1.0, |
| * giving us the scale factor and shift count to use in |
| * sched_clock(). |
| */ |
| div128_by_32(1000000000, 0, tb_ticks_per_sec, &res); |
| scale = res.result_low; |
| for (shift = 0; res.result_high != 0; ++shift) { |
| scale = (scale >> 1) | (res.result_high << 63); |
| res.result_high >>= 1; |
| } |
| tb_to_ns_scale = scale; |
| tb_to_ns_shift = shift; |
| |
| #ifdef CONFIG_PPC_ISERIES |
| if (!piranha_simulator) |
| #endif |
| tm = get_boot_time(); |
| |
| write_seqlock_irqsave(&xtime_lock, flags); |
| xtime.tv_sec = tm; |
| xtime.tv_nsec = 0; |
| tb_last_stamp = get_tb(); |
| do_gtod.varp = &do_gtod.vars[0]; |
| do_gtod.var_idx = 0; |
| do_gtod.varp->tb_orig_stamp = tb_last_stamp; |
| __get_cpu_var(last_jiffy) = tb_last_stamp; |
| do_gtod.varp->stamp_xsec = (u64) xtime.tv_sec * XSEC_PER_SEC; |
| do_gtod.tb_ticks_per_sec = tb_ticks_per_sec; |
| do_gtod.varp->tb_to_xs = tb_to_xs; |
| do_gtod.tb_to_us = tb_to_us; |
| #ifdef CONFIG_PPC64 |
| systemcfg->tb_orig_stamp = tb_last_stamp; |
| systemcfg->tb_update_count = 0; |
| systemcfg->tb_ticks_per_sec = tb_ticks_per_sec; |
| systemcfg->stamp_xsec = xtime.tv_sec * XSEC_PER_SEC; |
| systemcfg->tb_to_xs = tb_to_xs; |
| #endif |
| |
| time_freq = 0; |
| |
| /* If platform provided a timezone (pmac), we correct the time */ |
| if (timezone_offset) { |
| sys_tz.tz_minuteswest = -timezone_offset / 60; |
| sys_tz.tz_dsttime = 0; |
| xtime.tv_sec -= timezone_offset; |
| } |
| |
| last_rtc_update = xtime.tv_sec; |
| set_normalized_timespec(&wall_to_monotonic, |
| -xtime.tv_sec, -xtime.tv_nsec); |
| write_sequnlock_irqrestore(&xtime_lock, flags); |
| |
| /* Not exact, but the timer interrupt takes care of this */ |
| set_dec(tb_ticks_per_jiffy); |
| } |
| |
| /* |
| * After adjtimex is called, adjust the conversion of tb ticks |
| * to microseconds to keep do_gettimeofday synchronized |
| * with ntpd. |
| * |
| * Use the time_adjust, time_freq and time_offset computed by adjtimex to |
| * adjust the frequency. |
| */ |
| |
| /* #define DEBUG_PPC_ADJTIMEX 1 */ |
| |
| void ppc_adjtimex(void) |
| { |
| #ifdef CONFIG_PPC64 |
| unsigned long den, new_tb_ticks_per_sec, tb_ticks, old_xsec, |
| new_tb_to_xs, new_xsec, new_stamp_xsec; |
| unsigned long tb_ticks_per_sec_delta; |
| long delta_freq, ltemp; |
| struct div_result divres; |
| unsigned long flags; |
| long singleshot_ppm = 0; |
| |
| /* |
| * Compute parts per million frequency adjustment to |
| * accomplish the time adjustment implied by time_offset to be |
| * applied over the elapsed time indicated by time_constant. |
| * Use SHIFT_USEC to get it into the same units as |
| * time_freq. |
| */ |
| if ( time_offset < 0 ) { |
| ltemp = -time_offset; |
| ltemp <<= SHIFT_USEC - SHIFT_UPDATE; |
| ltemp >>= SHIFT_KG + time_constant; |
| ltemp = -ltemp; |
| } else { |
| ltemp = time_offset; |
| ltemp <<= SHIFT_USEC - SHIFT_UPDATE; |
| ltemp >>= SHIFT_KG + time_constant; |
| } |
| |
| /* If there is a single shot time adjustment in progress */ |
| if ( time_adjust ) { |
| #ifdef DEBUG_PPC_ADJTIMEX |
| printk("ppc_adjtimex: "); |
| if ( adjusting_time == 0 ) |
| printk("starting "); |
| printk("single shot time_adjust = %ld\n", time_adjust); |
| #endif |
| |
| adjusting_time = 1; |
| |
| /* |
| * Compute parts per million frequency adjustment |
| * to match time_adjust |
| */ |
| singleshot_ppm = tickadj * HZ; |
| /* |
| * The adjustment should be tickadj*HZ to match the code in |
| * linux/kernel/timer.c, but experiments show that this is too |
| * large. 3/4 of tickadj*HZ seems about right |
| */ |
| singleshot_ppm -= singleshot_ppm / 4; |
| /* Use SHIFT_USEC to get it into the same units as time_freq */ |
| singleshot_ppm <<= SHIFT_USEC; |
| if ( time_adjust < 0 ) |
| singleshot_ppm = -singleshot_ppm; |
| } |
| else { |
| #ifdef DEBUG_PPC_ADJTIMEX |
| if ( adjusting_time ) |
| printk("ppc_adjtimex: ending single shot time_adjust\n"); |
| #endif |
| adjusting_time = 0; |
| } |
| |
| /* Add up all of the frequency adjustments */ |
| delta_freq = time_freq + ltemp + singleshot_ppm; |
| |
| /* |
| * Compute a new value for tb_ticks_per_sec based on |
| * the frequency adjustment |
| */ |
| den = 1000000 * (1 << (SHIFT_USEC - 8)); |
| if ( delta_freq < 0 ) { |
| tb_ticks_per_sec_delta = ( tb_ticks_per_sec * ( (-delta_freq) >> (SHIFT_USEC - 8))) / den; |
| new_tb_ticks_per_sec = tb_ticks_per_sec + tb_ticks_per_sec_delta; |
| } |
| else { |
| tb_ticks_per_sec_delta = ( tb_ticks_per_sec * ( delta_freq >> (SHIFT_USEC - 8))) / den; |
| new_tb_ticks_per_sec = tb_ticks_per_sec - tb_ticks_per_sec_delta; |
| } |
| |
| #ifdef DEBUG_PPC_ADJTIMEX |
| printk("ppc_adjtimex: ltemp = %ld, time_freq = %ld, singleshot_ppm = %ld\n", ltemp, time_freq, singleshot_ppm); |
| printk("ppc_adjtimex: tb_ticks_per_sec - base = %ld new = %ld\n", tb_ticks_per_sec, new_tb_ticks_per_sec); |
| #endif |
| |
| /* |
| * Compute a new value of tb_to_xs (used to convert tb to |
| * microseconds) and a new value of stamp_xsec which is the |
| * time (in 1/2^20 second units) corresponding to |
| * tb_orig_stamp. This new value of stamp_xsec compensates |
| * for the change in frequency (implied by the new tb_to_xs) |
| * which guarantees that the current time remains the same. |
| */ |
| write_seqlock_irqsave( &xtime_lock, flags ); |
| tb_ticks = get_tb() - do_gtod.varp->tb_orig_stamp; |
| div128_by_32(1024*1024, 0, new_tb_ticks_per_sec, &divres); |
| new_tb_to_xs = divres.result_low; |
| new_xsec = mulhdu(tb_ticks, new_tb_to_xs); |
| |
| old_xsec = mulhdu(tb_ticks, do_gtod.varp->tb_to_xs); |
| new_stamp_xsec = do_gtod.varp->stamp_xsec + old_xsec - new_xsec; |
| |
| update_gtod(do_gtod.varp->tb_orig_stamp, new_stamp_xsec, new_tb_to_xs); |
| |
| write_sequnlock_irqrestore( &xtime_lock, flags ); |
| #endif /* CONFIG_PPC64 */ |
| } |
| |
| |
| #define FEBRUARY 2 |
| #define STARTOFTIME 1970 |
| #define SECDAY 86400L |
| #define SECYR (SECDAY * 365) |
| #define leapyear(year) ((year) % 4 == 0 && \ |
| ((year) % 100 != 0 || (year) % 400 == 0)) |
| #define days_in_year(a) (leapyear(a) ? 366 : 365) |
| #define days_in_month(a) (month_days[(a) - 1]) |
| |
| static int month_days[12] = { |
| 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 |
| }; |
| |
| /* |
| * This only works for the Gregorian calendar - i.e. after 1752 (in the UK) |
| */ |
| void GregorianDay(struct rtc_time * tm) |
| { |
| int leapsToDate; |
| int lastYear; |
| int day; |
| int MonthOffset[] = { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 }; |
| |
| lastYear = tm->tm_year - 1; |
| |
| /* |
| * Number of leap corrections to apply up to end of last year |
| */ |
| leapsToDate = lastYear / 4 - lastYear / 100 + lastYear / 400; |
| |
| /* |
| * This year is a leap year if it is divisible by 4 except when it is |
| * divisible by 100 unless it is divisible by 400 |
| * |
| * e.g. 1904 was a leap year, 1900 was not, 1996 is, and 2000 was |
| */ |
| day = tm->tm_mon > 2 && leapyear(tm->tm_year); |
| |
| day += lastYear*365 + leapsToDate + MonthOffset[tm->tm_mon-1] + |
| tm->tm_mday; |
| |
| tm->tm_wday = day % 7; |
| } |
| |
| void to_tm(int tim, struct rtc_time * tm) |
| { |
| register int i; |
| register long hms, day; |
| |
| day = tim / SECDAY; |
| hms = tim % SECDAY; |
| |
| /* Hours, minutes, seconds are easy */ |
| tm->tm_hour = hms / 3600; |
| tm->tm_min = (hms % 3600) / 60; |
| tm->tm_sec = (hms % 3600) % 60; |
| |
| /* Number of years in days */ |
| for (i = STARTOFTIME; day >= days_in_year(i); i++) |
| day -= days_in_year(i); |
| tm->tm_year = i; |
| |
| /* Number of months in days left */ |
| if (leapyear(tm->tm_year)) |
| days_in_month(FEBRUARY) = 29; |
| for (i = 1; day >= days_in_month(i); i++) |
| day -= days_in_month(i); |
| days_in_month(FEBRUARY) = 28; |
| tm->tm_mon = i; |
| |
| /* Days are what is left over (+1) from all that. */ |
| tm->tm_mday = day + 1; |
| |
| /* |
| * Determine the day of week |
| */ |
| GregorianDay(tm); |
| } |
| |
| /* Auxiliary function to compute scaling factors */ |
| /* Actually the choice of a timebase running at 1/4 the of the bus |
| * frequency giving resolution of a few tens of nanoseconds is quite nice. |
| * It makes this computation very precise (27-28 bits typically) which |
| * is optimistic considering the stability of most processor clock |
| * oscillators and the precision with which the timebase frequency |
| * is measured but does not harm. |
| */ |
| unsigned mulhwu_scale_factor(unsigned inscale, unsigned outscale) |
| { |
| unsigned mlt=0, tmp, err; |
| /* No concern for performance, it's done once: use a stupid |
| * but safe and compact method to find the multiplier. |
| */ |
| |
| for (tmp = 1U<<31; tmp != 0; tmp >>= 1) { |
| if (mulhwu(inscale, mlt|tmp) < outscale) |
| mlt |= tmp; |
| } |
| |
| /* We might still be off by 1 for the best approximation. |
| * A side effect of this is that if outscale is too large |
| * the returned value will be zero. |
| * Many corner cases have been checked and seem to work, |
| * some might have been forgotten in the test however. |
| */ |
| |
| err = inscale * (mlt+1); |
| if (err <= inscale/2) |
| mlt++; |
| return mlt; |
| } |
| |
| /* |
| * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit |
| * result. |
| */ |
| void div128_by_32(u64 dividend_high, u64 dividend_low, |
| unsigned divisor, struct div_result *dr) |
| { |
| unsigned long a, b, c, d; |
| unsigned long w, x, y, z; |
| u64 ra, rb, rc; |
| |
| a = dividend_high >> 32; |
| b = dividend_high & 0xffffffff; |
| c = dividend_low >> 32; |
| d = dividend_low & 0xffffffff; |
| |
| w = a / divisor; |
| ra = ((u64)(a - (w * divisor)) << 32) + b; |
| |
| #ifdef CONFIG_PPC64 |
| x = ra / divisor; |
| rb = ((ra - (x * divisor)) << 32) + c; |
| |
| y = rb / divisor; |
| rc = ((rb - (y * divisor)) << 32) + d; |
| |
| z = rc / divisor; |
| #else |
| /* for 32-bit, use do_div from div64.h */ |
| rb = ((u64) do_div(ra, divisor) << 32) + c; |
| x = ra; |
| |
| rc = ((u64) do_div(rb, divisor) << 32) + d; |
| y = rb; |
| |
| do_div(rc, divisor); |
| z = rc; |
| #endif |
| |
| dr->result_high = ((u64)w << 32) + x; |
| dr->result_low = ((u64)y << 32) + z; |
| |
| } |
| |