| /* SPDX-License-Identifier: GPL-2.0-only */ |
| /* |
| * Copyright (c) 2013-2021, Arm Limited. |
| * |
| * Adapted from the original at: |
| * https://github.com/ARM-software/optimized-routines/blob/e823e3abf5f89ecb/string/aarch64/strncmp.S |
| */ |
| |
| #include <linux/linkage.h> |
| #include <asm/assembler.h> |
| |
| /* Assumptions: |
| * |
| * ARMv8-a, AArch64 |
| */ |
| |
| #define L(label) .L ## label |
| |
| #define REP8_01 0x0101010101010101 |
| #define REP8_7f 0x7f7f7f7f7f7f7f7f |
| #define REP8_80 0x8080808080808080 |
| |
| /* Parameters and result. */ |
| #define src1 x0 |
| #define src2 x1 |
| #define limit x2 |
| #define result x0 |
| |
| /* Internal variables. */ |
| #define data1 x3 |
| #define data1w w3 |
| #define data2 x4 |
| #define data2w w4 |
| #define has_nul x5 |
| #define diff x6 |
| #define syndrome x7 |
| #define tmp1 x8 |
| #define tmp2 x9 |
| #define tmp3 x10 |
| #define zeroones x11 |
| #define pos x12 |
| #define limit_wd x13 |
| #define mask x14 |
| #define endloop x15 |
| #define count mask |
| |
| SYM_FUNC_START_WEAK_PI(strncmp) |
| cbz limit, L(ret0) |
| eor tmp1, src1, src2 |
| mov zeroones, #REP8_01 |
| tst tmp1, #7 |
| and count, src1, #7 |
| b.ne L(misaligned8) |
| cbnz count, L(mutual_align) |
| /* Calculate the number of full and partial words -1. */ |
| sub limit_wd, limit, #1 /* limit != 0, so no underflow. */ |
| lsr limit_wd, limit_wd, #3 /* Convert to Dwords. */ |
| |
| /* NUL detection works on the principle that (X - 1) & (~X) & 0x80 |
| (=> (X - 1) & ~(X | 0x7f)) is non-zero iff a byte is zero, and |
| can be done in parallel across the entire word. */ |
| .p2align 4 |
| L(loop_aligned): |
| ldr data1, [src1], #8 |
| ldr data2, [src2], #8 |
| L(start_realigned): |
| subs limit_wd, limit_wd, #1 |
| sub tmp1, data1, zeroones |
| orr tmp2, data1, #REP8_7f |
| eor diff, data1, data2 /* Non-zero if differences found. */ |
| csinv endloop, diff, xzr, pl /* Last Dword or differences. */ |
| bics has_nul, tmp1, tmp2 /* Non-zero if NUL terminator. */ |
| ccmp endloop, #0, #0, eq |
| b.eq L(loop_aligned) |
| /* End of main loop */ |
| |
| /* Not reached the limit, must have found the end or a diff. */ |
| tbz limit_wd, #63, L(not_limit) |
| |
| /* Limit % 8 == 0 => all bytes significant. */ |
| ands limit, limit, #7 |
| b.eq L(not_limit) |
| |
| lsl limit, limit, #3 /* Bits -> bytes. */ |
| mov mask, #~0 |
| #ifdef __AARCH64EB__ |
| lsr mask, mask, limit |
| #else |
| lsl mask, mask, limit |
| #endif |
| bic data1, data1, mask |
| bic data2, data2, mask |
| |
| /* Make sure that the NUL byte is marked in the syndrome. */ |
| orr has_nul, has_nul, mask |
| |
| L(not_limit): |
| orr syndrome, diff, has_nul |
| |
| #ifndef __AARCH64EB__ |
| rev syndrome, syndrome |
| rev data1, data1 |
| /* The MS-non-zero bit of the syndrome marks either the first bit |
| that is different, or the top bit of the first zero byte. |
| Shifting left now will bring the critical information into the |
| top bits. */ |
| clz pos, syndrome |
| rev data2, data2 |
| lsl data1, data1, pos |
| lsl data2, data2, pos |
| /* But we need to zero-extend (char is unsigned) the value and then |
| perform a signed 32-bit subtraction. */ |
| lsr data1, data1, #56 |
| sub result, data1, data2, lsr #56 |
| ret |
| #else |
| /* For big-endian we cannot use the trick with the syndrome value |
| as carry-propagation can corrupt the upper bits if the trailing |
| bytes in the string contain 0x01. */ |
| /* However, if there is no NUL byte in the dword, we can generate |
| the result directly. We can't just subtract the bytes as the |
| MSB might be significant. */ |
| cbnz has_nul, 1f |
| cmp data1, data2 |
| cset result, ne |
| cneg result, result, lo |
| ret |
| 1: |
| /* Re-compute the NUL-byte detection, using a byte-reversed value. */ |
| rev tmp3, data1 |
| sub tmp1, tmp3, zeroones |
| orr tmp2, tmp3, #REP8_7f |
| bic has_nul, tmp1, tmp2 |
| rev has_nul, has_nul |
| orr syndrome, diff, has_nul |
| clz pos, syndrome |
| /* The MS-non-zero bit of the syndrome marks either the first bit |
| that is different, or the top bit of the first zero byte. |
| Shifting left now will bring the critical information into the |
| top bits. */ |
| lsl data1, data1, pos |
| lsl data2, data2, pos |
| /* But we need to zero-extend (char is unsigned) the value and then |
| perform a signed 32-bit subtraction. */ |
| lsr data1, data1, #56 |
| sub result, data1, data2, lsr #56 |
| ret |
| #endif |
| |
| L(mutual_align): |
| /* Sources are mutually aligned, but are not currently at an |
| alignment boundary. Round down the addresses and then mask off |
| the bytes that precede the start point. |
| We also need to adjust the limit calculations, but without |
| overflowing if the limit is near ULONG_MAX. */ |
| bic src1, src1, #7 |
| bic src2, src2, #7 |
| ldr data1, [src1], #8 |
| neg tmp3, count, lsl #3 /* 64 - bits(bytes beyond align). */ |
| ldr data2, [src2], #8 |
| mov tmp2, #~0 |
| sub limit_wd, limit, #1 /* limit != 0, so no underflow. */ |
| #ifdef __AARCH64EB__ |
| /* Big-endian. Early bytes are at MSB. */ |
| lsl tmp2, tmp2, tmp3 /* Shift (count & 63). */ |
| #else |
| /* Little-endian. Early bytes are at LSB. */ |
| lsr tmp2, tmp2, tmp3 /* Shift (count & 63). */ |
| #endif |
| and tmp3, limit_wd, #7 |
| lsr limit_wd, limit_wd, #3 |
| /* Adjust the limit. Only low 3 bits used, so overflow irrelevant. */ |
| add limit, limit, count |
| add tmp3, tmp3, count |
| orr data1, data1, tmp2 |
| orr data2, data2, tmp2 |
| add limit_wd, limit_wd, tmp3, lsr #3 |
| b L(start_realigned) |
| |
| .p2align 4 |
| /* Don't bother with dwords for up to 16 bytes. */ |
| L(misaligned8): |
| cmp limit, #16 |
| b.hs L(try_misaligned_words) |
| |
| L(byte_loop): |
| /* Perhaps we can do better than this. */ |
| ldrb data1w, [src1], #1 |
| ldrb data2w, [src2], #1 |
| subs limit, limit, #1 |
| ccmp data1w, #1, #0, hi /* NZCV = 0b0000. */ |
| ccmp data1w, data2w, #0, cs /* NZCV = 0b0000. */ |
| b.eq L(byte_loop) |
| L(done): |
| sub result, data1, data2 |
| ret |
| /* Align the SRC1 to a dword by doing a bytewise compare and then do |
| the dword loop. */ |
| L(try_misaligned_words): |
| lsr limit_wd, limit, #3 |
| cbz count, L(do_misaligned) |
| |
| neg count, count |
| and count, count, #7 |
| sub limit, limit, count |
| lsr limit_wd, limit, #3 |
| |
| L(page_end_loop): |
| ldrb data1w, [src1], #1 |
| ldrb data2w, [src2], #1 |
| cmp data1w, #1 |
| ccmp data1w, data2w, #0, cs /* NZCV = 0b0000. */ |
| b.ne L(done) |
| subs count, count, #1 |
| b.hi L(page_end_loop) |
| |
| L(do_misaligned): |
| /* Prepare ourselves for the next page crossing. Unlike the aligned |
| loop, we fetch 1 less dword because we risk crossing bounds on |
| SRC2. */ |
| mov count, #8 |
| subs limit_wd, limit_wd, #1 |
| b.lo L(done_loop) |
| L(loop_misaligned): |
| and tmp2, src2, #0xff8 |
| eor tmp2, tmp2, #0xff8 |
| cbz tmp2, L(page_end_loop) |
| |
| ldr data1, [src1], #8 |
| ldr data2, [src2], #8 |
| sub tmp1, data1, zeroones |
| orr tmp2, data1, #REP8_7f |
| eor diff, data1, data2 /* Non-zero if differences found. */ |
| bics has_nul, tmp1, tmp2 /* Non-zero if NUL terminator. */ |
| ccmp diff, #0, #0, eq |
| b.ne L(not_limit) |
| subs limit_wd, limit_wd, #1 |
| b.pl L(loop_misaligned) |
| |
| L(done_loop): |
| /* We found a difference or a NULL before the limit was reached. */ |
| and limit, limit, #7 |
| cbz limit, L(not_limit) |
| /* Read the last word. */ |
| sub src1, src1, 8 |
| sub src2, src2, 8 |
| ldr data1, [src1, limit] |
| ldr data2, [src2, limit] |
| sub tmp1, data1, zeroones |
| orr tmp2, data1, #REP8_7f |
| eor diff, data1, data2 /* Non-zero if differences found. */ |
| bics has_nul, tmp1, tmp2 /* Non-zero if NUL terminator. */ |
| ccmp diff, #0, #0, eq |
| b.ne L(not_limit) |
| |
| L(ret0): |
| mov result, #0 |
| ret |
| |
| SYM_FUNC_END_PI(strncmp) |
| EXPORT_SYMBOL_NOKASAN(strncmp) |