blob: 79f82819086fc6c4f858a9829b8fa8f656653632 [file] [log] [blame]
/*
* fs/f2fs/checkpoint.c
*
* Copyright (c) 2012 Samsung Electronics Co., Ltd.
* http://www.samsung.com/
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/fs.h>
#include <linux/bio.h>
#include <linux/mpage.h>
#include <linux/writeback.h>
#include <linux/blkdev.h>
#include <linux/f2fs_fs.h>
#include <linux/pagevec.h>
#include <linux/swap.h>
#include "f2fs.h"
#include "node.h"
#include "segment.h"
#include "trace.h"
#include <trace/events/f2fs.h>
static struct kmem_cache *ino_entry_slab;
struct kmem_cache *inode_entry_slab;
/*
* We guarantee no failure on the returned page.
*/
struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
{
struct address_space *mapping = META_MAPPING(sbi);
struct page *page = NULL;
repeat:
page = grab_cache_page(mapping, index);
if (!page) {
cond_resched();
goto repeat;
}
f2fs_wait_on_page_writeback(page, META);
SetPageUptodate(page);
return page;
}
/*
* We guarantee no failure on the returned page.
*/
struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
{
struct address_space *mapping = META_MAPPING(sbi);
struct page *page;
struct f2fs_io_info fio = {
.type = META,
.rw = READ_SYNC | REQ_META | REQ_PRIO,
.blk_addr = index,
};
repeat:
page = grab_cache_page(mapping, index);
if (!page) {
cond_resched();
goto repeat;
}
if (PageUptodate(page))
goto out;
if (f2fs_submit_page_bio(sbi, page, &fio))
goto repeat;
lock_page(page);
if (unlikely(page->mapping != mapping)) {
f2fs_put_page(page, 1);
goto repeat;
}
out:
return page;
}
static inline bool is_valid_blkaddr(struct f2fs_sb_info *sbi,
block_t blkaddr, int type)
{
switch (type) {
case META_NAT:
break;
case META_SIT:
if (unlikely(blkaddr >= SIT_BLK_CNT(sbi)))
return false;
break;
case META_SSA:
if (unlikely(blkaddr >= MAIN_BLKADDR(sbi) ||
blkaddr < SM_I(sbi)->ssa_blkaddr))
return false;
break;
case META_CP:
if (unlikely(blkaddr >= SIT_I(sbi)->sit_base_addr ||
blkaddr < __start_cp_addr(sbi)))
return false;
break;
case META_POR:
if (unlikely(blkaddr >= MAX_BLKADDR(sbi) ||
blkaddr < MAIN_BLKADDR(sbi)))
return false;
break;
default:
BUG();
}
return true;
}
/*
* Readahead CP/NAT/SIT/SSA pages
*/
int ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages, int type)
{
block_t prev_blk_addr = 0;
struct page *page;
block_t blkno = start;
struct f2fs_io_info fio = {
.type = META,
.rw = READ_SYNC | REQ_META | REQ_PRIO
};
for (; nrpages-- > 0; blkno++) {
if (!is_valid_blkaddr(sbi, blkno, type))
goto out;
switch (type) {
case META_NAT:
if (unlikely(blkno >=
NAT_BLOCK_OFFSET(NM_I(sbi)->max_nid)))
blkno = 0;
/* get nat block addr */
fio.blk_addr = current_nat_addr(sbi,
blkno * NAT_ENTRY_PER_BLOCK);
break;
case META_SIT:
/* get sit block addr */
fio.blk_addr = current_sit_addr(sbi,
blkno * SIT_ENTRY_PER_BLOCK);
if (blkno != start && prev_blk_addr + 1 != fio.blk_addr)
goto out;
prev_blk_addr = fio.blk_addr;
break;
case META_SSA:
case META_CP:
case META_POR:
fio.blk_addr = blkno;
break;
default:
BUG();
}
page = grab_cache_page(META_MAPPING(sbi), fio.blk_addr);
if (!page)
continue;
if (PageUptodate(page)) {
f2fs_put_page(page, 1);
continue;
}
f2fs_submit_page_mbio(sbi, page, &fio);
f2fs_put_page(page, 0);
}
out:
f2fs_submit_merged_bio(sbi, META, READ);
return blkno - start;
}
void ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index)
{
struct page *page;
bool readahead = false;
page = find_get_page(META_MAPPING(sbi), index);
if (!page || (page && !PageUptodate(page)))
readahead = true;
f2fs_put_page(page, 0);
if (readahead)
ra_meta_pages(sbi, index, MAX_BIO_BLOCKS(sbi), META_POR);
}
static int f2fs_write_meta_page(struct page *page,
struct writeback_control *wbc)
{
struct f2fs_sb_info *sbi = F2FS_P_SB(page);
trace_f2fs_writepage(page, META);
if (unlikely(sbi->por_doing))
goto redirty_out;
if (wbc->for_reclaim && page->index < GET_SUM_BLOCK(sbi, 0))
goto redirty_out;
if (unlikely(f2fs_cp_error(sbi)))
goto redirty_out;
f2fs_wait_on_page_writeback(page, META);
write_meta_page(sbi, page);
dec_page_count(sbi, F2FS_DIRTY_META);
unlock_page(page);
if (wbc->for_reclaim)
f2fs_submit_merged_bio(sbi, META, WRITE);
return 0;
redirty_out:
redirty_page_for_writepage(wbc, page);
return AOP_WRITEPAGE_ACTIVATE;
}
static int f2fs_write_meta_pages(struct address_space *mapping,
struct writeback_control *wbc)
{
struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
long diff, written;
trace_f2fs_writepages(mapping->host, wbc, META);
/* collect a number of dirty meta pages and write together */
if (wbc->for_kupdate ||
get_pages(sbi, F2FS_DIRTY_META) < nr_pages_to_skip(sbi, META))
goto skip_write;
/* if mounting is failed, skip writing node pages */
mutex_lock(&sbi->cp_mutex);
diff = nr_pages_to_write(sbi, META, wbc);
written = sync_meta_pages(sbi, META, wbc->nr_to_write);
mutex_unlock(&sbi->cp_mutex);
wbc->nr_to_write = max((long)0, wbc->nr_to_write - written - diff);
return 0;
skip_write:
wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_META);
return 0;
}
long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
long nr_to_write)
{
struct address_space *mapping = META_MAPPING(sbi);
pgoff_t index = 0, end = LONG_MAX;
struct pagevec pvec;
long nwritten = 0;
struct writeback_control wbc = {
.for_reclaim = 0,
};
pagevec_init(&pvec, 0);
while (index <= end) {
int i, nr_pages;
nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
PAGECACHE_TAG_DIRTY,
min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
if (unlikely(nr_pages == 0))
break;
for (i = 0; i < nr_pages; i++) {
struct page *page = pvec.pages[i];
lock_page(page);
if (unlikely(page->mapping != mapping)) {
continue_unlock:
unlock_page(page);
continue;
}
if (!PageDirty(page)) {
/* someone wrote it for us */
goto continue_unlock;
}
if (!clear_page_dirty_for_io(page))
goto continue_unlock;
if (f2fs_write_meta_page(page, &wbc)) {
unlock_page(page);
break;
}
nwritten++;
if (unlikely(nwritten >= nr_to_write))
break;
}
pagevec_release(&pvec);
cond_resched();
}
if (nwritten)
f2fs_submit_merged_bio(sbi, type, WRITE);
return nwritten;
}
static int f2fs_set_meta_page_dirty(struct page *page)
{
trace_f2fs_set_page_dirty(page, META);
SetPageUptodate(page);
if (!PageDirty(page)) {
__set_page_dirty_nobuffers(page);
inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_META);
SetPagePrivate(page);
f2fs_trace_pid(page);
return 1;
}
return 0;
}
static void f2fs_invalidate_meta_page(struct page *page, unsigned int offset,
unsigned int length)
{
struct inode *inode = page->mapping->host;
if (PageDirty(page))
dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_META);
ClearPagePrivate(page);
}
static int f2fs_release_meta_page(struct page *page, gfp_t wait)
{
ClearPagePrivate(page);
return 1;
}
const struct address_space_operations f2fs_meta_aops = {
.writepage = f2fs_write_meta_page,
.writepages = f2fs_write_meta_pages,
.set_page_dirty = f2fs_set_meta_page_dirty,
.invalidatepage = f2fs_invalidate_meta_page,
.releasepage = f2fs_release_meta_page,
};
static void __add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
{
struct inode_management *im = &sbi->im[type];
struct ino_entry *e;
retry:
if (radix_tree_preload(GFP_NOFS)) {
cond_resched();
goto retry;
}
spin_lock(&im->ino_lock);
e = radix_tree_lookup(&im->ino_root, ino);
if (!e) {
e = kmem_cache_alloc(ino_entry_slab, GFP_ATOMIC);
if (!e) {
spin_unlock(&im->ino_lock);
radix_tree_preload_end();
goto retry;
}
if (radix_tree_insert(&im->ino_root, ino, e)) {
spin_unlock(&im->ino_lock);
kmem_cache_free(ino_entry_slab, e);
radix_tree_preload_end();
goto retry;
}
memset(e, 0, sizeof(struct ino_entry));
e->ino = ino;
list_add_tail(&e->list, &im->ino_list);
if (type != ORPHAN_INO)
im->ino_num++;
}
spin_unlock(&im->ino_lock);
radix_tree_preload_end();
}
static void __remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
{
struct inode_management *im = &sbi->im[type];
struct ino_entry *e;
spin_lock(&im->ino_lock);
e = radix_tree_lookup(&im->ino_root, ino);
if (e) {
list_del(&e->list);
radix_tree_delete(&im->ino_root, ino);
im->ino_num--;
spin_unlock(&im->ino_lock);
kmem_cache_free(ino_entry_slab, e);
return;
}
spin_unlock(&im->ino_lock);
}
void add_dirty_inode(struct f2fs_sb_info *sbi, nid_t ino, int type)
{
/* add new dirty ino entry into list */
__add_ino_entry(sbi, ino, type);
}
void remove_dirty_inode(struct f2fs_sb_info *sbi, nid_t ino, int type)
{
/* remove dirty ino entry from list */
__remove_ino_entry(sbi, ino, type);
}
/* mode should be APPEND_INO or UPDATE_INO */
bool exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode)
{
struct inode_management *im = &sbi->im[mode];
struct ino_entry *e;
spin_lock(&im->ino_lock);
e = radix_tree_lookup(&im->ino_root, ino);
spin_unlock(&im->ino_lock);
return e ? true : false;
}
void release_dirty_inode(struct f2fs_sb_info *sbi)
{
struct ino_entry *e, *tmp;
int i;
for (i = APPEND_INO; i <= UPDATE_INO; i++) {
struct inode_management *im = &sbi->im[i];
spin_lock(&im->ino_lock);
list_for_each_entry_safe(e, tmp, &im->ino_list, list) {
list_del(&e->list);
radix_tree_delete(&im->ino_root, e->ino);
kmem_cache_free(ino_entry_slab, e);
im->ino_num--;
}
spin_unlock(&im->ino_lock);
}
}
int acquire_orphan_inode(struct f2fs_sb_info *sbi)
{
struct inode_management *im = &sbi->im[ORPHAN_INO];
int err = 0;
spin_lock(&im->ino_lock);
if (unlikely(im->ino_num >= sbi->max_orphans))
err = -ENOSPC;
else
im->ino_num++;
spin_unlock(&im->ino_lock);
return err;
}
void release_orphan_inode(struct f2fs_sb_info *sbi)
{
struct inode_management *im = &sbi->im[ORPHAN_INO];
spin_lock(&im->ino_lock);
f2fs_bug_on(sbi, im->ino_num == 0);
im->ino_num--;
spin_unlock(&im->ino_lock);
}
void add_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
{
/* add new orphan ino entry into list */
__add_ino_entry(sbi, ino, ORPHAN_INO);
}
void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
{
/* remove orphan entry from orphan list */
__remove_ino_entry(sbi, ino, ORPHAN_INO);
}
static void recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
{
struct inode *inode = f2fs_iget(sbi->sb, ino);
f2fs_bug_on(sbi, IS_ERR(inode));
clear_nlink(inode);
/* truncate all the data during iput */
iput(inode);
}
void recover_orphan_inodes(struct f2fs_sb_info *sbi)
{
block_t start_blk, orphan_blkaddr, i, j;
if (!is_set_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG))
return;
sbi->por_doing = true;
start_blk = __start_cp_addr(sbi) + 1 +
le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
orphan_blkaddr = __start_sum_addr(sbi) - 1;
ra_meta_pages(sbi, start_blk, orphan_blkaddr, META_CP);
for (i = 0; i < orphan_blkaddr; i++) {
struct page *page = get_meta_page(sbi, start_blk + i);
struct f2fs_orphan_block *orphan_blk;
orphan_blk = (struct f2fs_orphan_block *)page_address(page);
for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) {
nid_t ino = le32_to_cpu(orphan_blk->ino[j]);
recover_orphan_inode(sbi, ino);
}
f2fs_put_page(page, 1);
}
/* clear Orphan Flag */
clear_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG);
sbi->por_doing = false;
return;
}
static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk)
{
struct list_head *head;
struct f2fs_orphan_block *orphan_blk = NULL;
unsigned int nentries = 0;
unsigned short index;
unsigned short orphan_blocks;
struct page *page = NULL;
struct ino_entry *orphan = NULL;
struct inode_management *im = &sbi->im[ORPHAN_INO];
orphan_blocks = GET_ORPHAN_BLOCKS(im->ino_num);
for (index = 0; index < orphan_blocks; index++)
grab_meta_page(sbi, start_blk + index);
index = 1;
spin_lock(&im->ino_lock);
head = &im->ino_list;
/* loop for each orphan inode entry and write them in Jornal block */
list_for_each_entry(orphan, head, list) {
if (!page) {
page = find_get_page(META_MAPPING(sbi), start_blk++);
f2fs_bug_on(sbi, !page);
orphan_blk =
(struct f2fs_orphan_block *)page_address(page);
memset(orphan_blk, 0, sizeof(*orphan_blk));
f2fs_put_page(page, 0);
}
orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino);
if (nentries == F2FS_ORPHANS_PER_BLOCK) {
/*
* an orphan block is full of 1020 entries,
* then we need to flush current orphan blocks
* and bring another one in memory
*/
orphan_blk->blk_addr = cpu_to_le16(index);
orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
orphan_blk->entry_count = cpu_to_le32(nentries);
set_page_dirty(page);
f2fs_put_page(page, 1);
index++;
nentries = 0;
page = NULL;
}
}
if (page) {
orphan_blk->blk_addr = cpu_to_le16(index);
orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
orphan_blk->entry_count = cpu_to_le32(nentries);
set_page_dirty(page);
f2fs_put_page(page, 1);
}
spin_unlock(&im->ino_lock);
}
static struct page *validate_checkpoint(struct f2fs_sb_info *sbi,
block_t cp_addr, unsigned long long *version)
{
struct page *cp_page_1, *cp_page_2 = NULL;
unsigned long blk_size = sbi->blocksize;
struct f2fs_checkpoint *cp_block;
unsigned long long cur_version = 0, pre_version = 0;
size_t crc_offset;
__u32 crc = 0;
/* Read the 1st cp block in this CP pack */
cp_page_1 = get_meta_page(sbi, cp_addr);
/* get the version number */
cp_block = (struct f2fs_checkpoint *)page_address(cp_page_1);
crc_offset = le32_to_cpu(cp_block->checksum_offset);
if (crc_offset >= blk_size)
goto invalid_cp1;
crc = le32_to_cpu(*((__u32 *)((unsigned char *)cp_block + crc_offset)));
if (!f2fs_crc_valid(crc, cp_block, crc_offset))
goto invalid_cp1;
pre_version = cur_cp_version(cp_block);
/* Read the 2nd cp block in this CP pack */
cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1;
cp_page_2 = get_meta_page(sbi, cp_addr);
cp_block = (struct f2fs_checkpoint *)page_address(cp_page_2);
crc_offset = le32_to_cpu(cp_block->checksum_offset);
if (crc_offset >= blk_size)
goto invalid_cp2;
crc = le32_to_cpu(*((__u32 *)((unsigned char *)cp_block + crc_offset)));
if (!f2fs_crc_valid(crc, cp_block, crc_offset))
goto invalid_cp2;
cur_version = cur_cp_version(cp_block);
if (cur_version == pre_version) {
*version = cur_version;
f2fs_put_page(cp_page_2, 1);
return cp_page_1;
}
invalid_cp2:
f2fs_put_page(cp_page_2, 1);
invalid_cp1:
f2fs_put_page(cp_page_1, 1);
return NULL;
}
int get_valid_checkpoint(struct f2fs_sb_info *sbi)
{
struct f2fs_checkpoint *cp_block;
struct f2fs_super_block *fsb = sbi->raw_super;
struct page *cp1, *cp2, *cur_page;
unsigned long blk_size = sbi->blocksize;
unsigned long long cp1_version = 0, cp2_version = 0;
unsigned long long cp_start_blk_no;
unsigned int cp_blks = 1 + le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
block_t cp_blk_no;
int i;
sbi->ckpt = kzalloc(cp_blks * blk_size, GFP_KERNEL);
if (!sbi->ckpt)
return -ENOMEM;
/*
* Finding out valid cp block involves read both
* sets( cp pack1 and cp pack 2)
*/
cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr);
cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version);
/* The second checkpoint pack should start at the next segment */
cp_start_blk_no += ((unsigned long long)1) <<
le32_to_cpu(fsb->log_blocks_per_seg);
cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version);
if (cp1 && cp2) {
if (ver_after(cp2_version, cp1_version))
cur_page = cp2;
else
cur_page = cp1;
} else if (cp1) {
cur_page = cp1;
} else if (cp2) {
cur_page = cp2;
} else {
goto fail_no_cp;
}
cp_block = (struct f2fs_checkpoint *)page_address(cur_page);
memcpy(sbi->ckpt, cp_block, blk_size);
if (cp_blks <= 1)
goto done;
cp_blk_no = le32_to_cpu(fsb->cp_blkaddr);
if (cur_page == cp2)
cp_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg);
for (i = 1; i < cp_blks; i++) {
void *sit_bitmap_ptr;
unsigned char *ckpt = (unsigned char *)sbi->ckpt;
cur_page = get_meta_page(sbi, cp_blk_no + i);
sit_bitmap_ptr = page_address(cur_page);
memcpy(ckpt + i * blk_size, sit_bitmap_ptr, blk_size);
f2fs_put_page(cur_page, 1);
}
done:
f2fs_put_page(cp1, 1);
f2fs_put_page(cp2, 1);
return 0;
fail_no_cp:
kfree(sbi->ckpt);
return -EINVAL;
}
static int __add_dirty_inode(struct inode *inode, struct inode_entry *new)
{
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
if (is_inode_flag_set(F2FS_I(inode), FI_DIRTY_DIR))
return -EEXIST;
set_inode_flag(F2FS_I(inode), FI_DIRTY_DIR);
F2FS_I(inode)->dirty_dir = new;
list_add_tail(&new->list, &sbi->dir_inode_list);
stat_inc_dirty_dir(sbi);
return 0;
}
void update_dirty_page(struct inode *inode, struct page *page)
{
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
struct inode_entry *new;
int ret = 0;
if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode))
return;
if (!S_ISDIR(inode->i_mode)) {
inode_inc_dirty_pages(inode);
goto out;
}
new = f2fs_kmem_cache_alloc(inode_entry_slab, GFP_NOFS);
new->inode = inode;
INIT_LIST_HEAD(&new->list);
spin_lock(&sbi->dir_inode_lock);
ret = __add_dirty_inode(inode, new);
inode_inc_dirty_pages(inode);
spin_unlock(&sbi->dir_inode_lock);
if (ret)
kmem_cache_free(inode_entry_slab, new);
out:
SetPagePrivate(page);
f2fs_trace_pid(page);
}
void add_dirty_dir_inode(struct inode *inode)
{
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
struct inode_entry *new =
f2fs_kmem_cache_alloc(inode_entry_slab, GFP_NOFS);
int ret = 0;
new->inode = inode;
INIT_LIST_HEAD(&new->list);
spin_lock(&sbi->dir_inode_lock);
ret = __add_dirty_inode(inode, new);
spin_unlock(&sbi->dir_inode_lock);
if (ret)
kmem_cache_free(inode_entry_slab, new);
}
void remove_dirty_dir_inode(struct inode *inode)
{
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
struct inode_entry *entry;
if (!S_ISDIR(inode->i_mode))
return;
spin_lock(&sbi->dir_inode_lock);
if (get_dirty_pages(inode) ||
!is_inode_flag_set(F2FS_I(inode), FI_DIRTY_DIR)) {
spin_unlock(&sbi->dir_inode_lock);
return;
}
entry = F2FS_I(inode)->dirty_dir;
list_del(&entry->list);
F2FS_I(inode)->dirty_dir = NULL;
clear_inode_flag(F2FS_I(inode), FI_DIRTY_DIR);
stat_dec_dirty_dir(sbi);
spin_unlock(&sbi->dir_inode_lock);
kmem_cache_free(inode_entry_slab, entry);
/* Only from the recovery routine */
if (is_inode_flag_set(F2FS_I(inode), FI_DELAY_IPUT)) {
clear_inode_flag(F2FS_I(inode), FI_DELAY_IPUT);
iput(inode);
}
}
void sync_dirty_dir_inodes(struct f2fs_sb_info *sbi)
{
struct list_head *head;
struct inode_entry *entry;
struct inode *inode;
retry:
if (unlikely(f2fs_cp_error(sbi)))
return;
spin_lock(&sbi->dir_inode_lock);
head = &sbi->dir_inode_list;
if (list_empty(head)) {
spin_unlock(&sbi->dir_inode_lock);
return;
}
entry = list_entry(head->next, struct inode_entry, list);
inode = igrab(entry->inode);
spin_unlock(&sbi->dir_inode_lock);
if (inode) {
filemap_fdatawrite(inode->i_mapping);
iput(inode);
} else {
/*
* We should submit bio, since it exists several
* wribacking dentry pages in the freeing inode.
*/
f2fs_submit_merged_bio(sbi, DATA, WRITE);
}
goto retry;
}
/*
* Freeze all the FS-operations for checkpoint.
*/
static int block_operations(struct f2fs_sb_info *sbi)
{
struct writeback_control wbc = {
.sync_mode = WB_SYNC_ALL,
.nr_to_write = LONG_MAX,
.for_reclaim = 0,
};
struct blk_plug plug;
int err = 0;
blk_start_plug(&plug);
retry_flush_dents:
f2fs_lock_all(sbi);
/* write all the dirty dentry pages */
if (get_pages(sbi, F2FS_DIRTY_DENTS)) {
f2fs_unlock_all(sbi);
sync_dirty_dir_inodes(sbi);
if (unlikely(f2fs_cp_error(sbi))) {
err = -EIO;
goto out;
}
goto retry_flush_dents;
}
/*
* POR: we should ensure that there are no dirty node pages
* until finishing nat/sit flush.
*/
retry_flush_nodes:
down_write(&sbi->node_write);
if (get_pages(sbi, F2FS_DIRTY_NODES)) {
up_write(&sbi->node_write);
sync_node_pages(sbi, 0, &wbc);
if (unlikely(f2fs_cp_error(sbi))) {
f2fs_unlock_all(sbi);
err = -EIO;
goto out;
}
goto retry_flush_nodes;
}
out:
blk_finish_plug(&plug);
return err;
}
static void unblock_operations(struct f2fs_sb_info *sbi)
{
up_write(&sbi->node_write);
f2fs_unlock_all(sbi);
}
static void wait_on_all_pages_writeback(struct f2fs_sb_info *sbi)
{
DEFINE_WAIT(wait);
for (;;) {
prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE);
if (!get_pages(sbi, F2FS_WRITEBACK))
break;
io_schedule();
}
finish_wait(&sbi->cp_wait, &wait);
}
static void do_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
{
struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_WARM_NODE);
struct f2fs_nm_info *nm_i = NM_I(sbi);
unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num;
nid_t last_nid = nm_i->next_scan_nid;
block_t start_blk;
struct page *cp_page;
unsigned int data_sum_blocks, orphan_blocks;
__u32 crc32 = 0;
void *kaddr;
int i;
int cp_payload_blks = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
/*
* This avoids to conduct wrong roll-forward operations and uses
* metapages, so should be called prior to sync_meta_pages below.
*/
discard_next_dnode(sbi, NEXT_FREE_BLKADDR(sbi, curseg));
/* Flush all the NAT/SIT pages */
while (get_pages(sbi, F2FS_DIRTY_META)) {
sync_meta_pages(sbi, META, LONG_MAX);
if (unlikely(f2fs_cp_error(sbi)))
return;
}
next_free_nid(sbi, &last_nid);
/*
* modify checkpoint
* version number is already updated
*/
ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi));
ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi));
ckpt->free_segment_count = cpu_to_le32(free_segments(sbi));
for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
ckpt->cur_node_segno[i] =
cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE));
ckpt->cur_node_blkoff[i] =
cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE));
ckpt->alloc_type[i + CURSEG_HOT_NODE] =
curseg_alloc_type(sbi, i + CURSEG_HOT_NODE);
}
for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) {
ckpt->cur_data_segno[i] =
cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA));
ckpt->cur_data_blkoff[i] =
cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA));
ckpt->alloc_type[i + CURSEG_HOT_DATA] =
curseg_alloc_type(sbi, i + CURSEG_HOT_DATA);
}
ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi));
ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi));
ckpt->next_free_nid = cpu_to_le32(last_nid);
/* 2 cp + n data seg summary + orphan inode blocks */
data_sum_blocks = npages_for_summary_flush(sbi, false);
if (data_sum_blocks < NR_CURSEG_DATA_TYPE)
set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
else
clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
orphan_blocks = GET_ORPHAN_BLOCKS(orphan_num);
ckpt->cp_pack_start_sum = cpu_to_le32(1 + cp_payload_blks +
orphan_blocks);
if (cpc->reason == CP_UMOUNT) {
set_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS+
cp_payload_blks + data_sum_blocks +
orphan_blocks + NR_CURSEG_NODE_TYPE);
} else {
clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS +
cp_payload_blks + data_sum_blocks +
orphan_blocks);
}
if (orphan_num)
set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
else
clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
if (sbi->need_fsck)
set_ckpt_flags(ckpt, CP_FSCK_FLAG);
/* update SIT/NAT bitmap */
get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP));
get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP));
crc32 = f2fs_crc32(ckpt, le32_to_cpu(ckpt->checksum_offset));
*((__le32 *)((unsigned char *)ckpt +
le32_to_cpu(ckpt->checksum_offset)))
= cpu_to_le32(crc32);
start_blk = __start_cp_addr(sbi);
/* write out checkpoint buffer at block 0 */
cp_page = grab_meta_page(sbi, start_blk++);
kaddr = page_address(cp_page);
memcpy(kaddr, ckpt, (1 << sbi->log_blocksize));
set_page_dirty(cp_page);
f2fs_put_page(cp_page, 1);
for (i = 1; i < 1 + cp_payload_blks; i++) {
cp_page = grab_meta_page(sbi, start_blk++);
kaddr = page_address(cp_page);
memcpy(kaddr, (char *)ckpt + i * F2FS_BLKSIZE,
(1 << sbi->log_blocksize));
set_page_dirty(cp_page);
f2fs_put_page(cp_page, 1);
}
if (orphan_num) {
write_orphan_inodes(sbi, start_blk);
start_blk += orphan_blocks;
}
write_data_summaries(sbi, start_blk);
start_blk += data_sum_blocks;
if (cpc->reason == CP_UMOUNT) {
write_node_summaries(sbi, start_blk);
start_blk += NR_CURSEG_NODE_TYPE;
}
/* writeout checkpoint block */
cp_page = grab_meta_page(sbi, start_blk);
kaddr = page_address(cp_page);
memcpy(kaddr, ckpt, (1 << sbi->log_blocksize));
set_page_dirty(cp_page);
f2fs_put_page(cp_page, 1);
/* wait for previous submitted node/meta pages writeback */
wait_on_all_pages_writeback(sbi);
if (unlikely(f2fs_cp_error(sbi)))
return;
filemap_fdatawait_range(NODE_MAPPING(sbi), 0, LONG_MAX);
filemap_fdatawait_range(META_MAPPING(sbi), 0, LONG_MAX);
/* update user_block_counts */
sbi->last_valid_block_count = sbi->total_valid_block_count;
sbi->alloc_valid_block_count = 0;
/* Here, we only have one bio having CP pack */
sync_meta_pages(sbi, META_FLUSH, LONG_MAX);
/* wait for previous submitted meta pages writeback */
wait_on_all_pages_writeback(sbi);
release_dirty_inode(sbi);
if (unlikely(f2fs_cp_error(sbi)))
return;
clear_prefree_segments(sbi);
F2FS_RESET_SB_DIRT(sbi);
}
/*
* We guarantee that this checkpoint procedure will not fail.
*/
void write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
{
struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
unsigned long long ckpt_ver;
trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "start block_ops");
mutex_lock(&sbi->cp_mutex);
if (!sbi->s_dirty &&
cpc->reason != CP_DISCARD && cpc->reason != CP_UMOUNT)
goto out;
if (unlikely(f2fs_cp_error(sbi)))
goto out;
if (block_operations(sbi))
goto out;
trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish block_ops");
f2fs_submit_merged_bio(sbi, DATA, WRITE);
f2fs_submit_merged_bio(sbi, NODE, WRITE);
f2fs_submit_merged_bio(sbi, META, WRITE);
/*
* update checkpoint pack index
* Increase the version number so that
* SIT entries and seg summaries are written at correct place
*/
ckpt_ver = cur_cp_version(ckpt);
ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver);
/* write cached NAT/SIT entries to NAT/SIT area */
flush_nat_entries(sbi);
flush_sit_entries(sbi, cpc);
/* unlock all the fs_lock[] in do_checkpoint() */
do_checkpoint(sbi, cpc);
unblock_operations(sbi);
stat_inc_cp_count(sbi->stat_info);
out:
mutex_unlock(&sbi->cp_mutex);
trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish checkpoint");
}
void init_ino_entry_info(struct f2fs_sb_info *sbi)
{
int i;
for (i = 0; i < MAX_INO_ENTRY; i++) {
struct inode_management *im = &sbi->im[i];
INIT_RADIX_TREE(&im->ino_root, GFP_ATOMIC);
spin_lock_init(&im->ino_lock);
INIT_LIST_HEAD(&im->ino_list);
im->ino_num = 0;
}
/*
* considering 512 blocks in a segment 8 blocks are needed for cp
* and log segment summaries. Remaining blocks are used to keep
* orphan entries with the limitation one reserved segment
* for cp pack we can have max 1020*504 orphan entries
*/
sbi->max_orphans = (sbi->blocks_per_seg - F2FS_CP_PACKS -
NR_CURSEG_TYPE) * F2FS_ORPHANS_PER_BLOCK;
}
int __init create_checkpoint_caches(void)
{
ino_entry_slab = f2fs_kmem_cache_create("f2fs_ino_entry",
sizeof(struct ino_entry));
if (!ino_entry_slab)
return -ENOMEM;
inode_entry_slab = f2fs_kmem_cache_create("f2fs_inode_entry",
sizeof(struct inode_entry));
if (!inode_entry_slab) {
kmem_cache_destroy(ino_entry_slab);
return -ENOMEM;
}
return 0;
}
void destroy_checkpoint_caches(void)
{
kmem_cache_destroy(ino_entry_slab);
kmem_cache_destroy(inode_entry_slab);
}