| // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause |
| /* |
| * Copyright (c) 2014-2017 Oracle. All rights reserved. |
| * Copyright (c) 2003-2007 Network Appliance, Inc. All rights reserved. |
| * |
| * This software is available to you under a choice of one of two |
| * licenses. You may choose to be licensed under the terms of the GNU |
| * General Public License (GPL) Version 2, available from the file |
| * COPYING in the main directory of this source tree, or the BSD-type |
| * license below: |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * |
| * Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * |
| * Redistributions in binary form must reproduce the above |
| * copyright notice, this list of conditions and the following |
| * disclaimer in the documentation and/or other materials provided |
| * with the distribution. |
| * |
| * Neither the name of the Network Appliance, Inc. nor the names of |
| * its contributors may be used to endorse or promote products |
| * derived from this software without specific prior written |
| * permission. |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| */ |
| |
| /* |
| * verbs.c |
| * |
| * Encapsulates the major functions managing: |
| * o adapters |
| * o endpoints |
| * o connections |
| * o buffer memory |
| */ |
| |
| #include <linux/interrupt.h> |
| #include <linux/slab.h> |
| #include <linux/sunrpc/addr.h> |
| #include <linux/sunrpc/svc_rdma.h> |
| #include <linux/log2.h> |
| |
| #include <asm-generic/barrier.h> |
| #include <asm/bitops.h> |
| |
| #include <rdma/ib_cm.h> |
| |
| #include "xprt_rdma.h" |
| #include <trace/events/rpcrdma.h> |
| |
| /* |
| * Globals/Macros |
| */ |
| |
| #if IS_ENABLED(CONFIG_SUNRPC_DEBUG) |
| # define RPCDBG_FACILITY RPCDBG_TRANS |
| #endif |
| |
| /* |
| * internal functions |
| */ |
| static int rpcrdma_sendctxs_create(struct rpcrdma_xprt *r_xprt); |
| static void rpcrdma_sendctxs_destroy(struct rpcrdma_xprt *r_xprt); |
| static void rpcrdma_sendctx_put_locked(struct rpcrdma_xprt *r_xprt, |
| struct rpcrdma_sendctx *sc); |
| static int rpcrdma_reqs_setup(struct rpcrdma_xprt *r_xprt); |
| static void rpcrdma_reqs_reset(struct rpcrdma_xprt *r_xprt); |
| static void rpcrdma_rep_destroy(struct rpcrdma_rep *rep); |
| static void rpcrdma_reps_unmap(struct rpcrdma_xprt *r_xprt); |
| static void rpcrdma_mrs_create(struct rpcrdma_xprt *r_xprt); |
| static void rpcrdma_mrs_destroy(struct rpcrdma_xprt *r_xprt); |
| static void rpcrdma_ep_get(struct rpcrdma_ep *ep); |
| static int rpcrdma_ep_put(struct rpcrdma_ep *ep); |
| static struct rpcrdma_regbuf * |
| rpcrdma_regbuf_alloc(size_t size, enum dma_data_direction direction, |
| gfp_t flags); |
| static void rpcrdma_regbuf_dma_unmap(struct rpcrdma_regbuf *rb); |
| static void rpcrdma_regbuf_free(struct rpcrdma_regbuf *rb); |
| |
| /* Wait for outstanding transport work to finish. ib_drain_qp |
| * handles the drains in the wrong order for us, so open code |
| * them here. |
| */ |
| static void rpcrdma_xprt_drain(struct rpcrdma_xprt *r_xprt) |
| { |
| struct rpcrdma_ep *ep = r_xprt->rx_ep; |
| struct rdma_cm_id *id = ep->re_id; |
| |
| /* Wait for rpcrdma_post_recvs() to leave its critical |
| * section. |
| */ |
| if (atomic_inc_return(&ep->re_receiving) > 1) |
| wait_for_completion(&ep->re_done); |
| |
| /* Flush Receives, then wait for deferred Reply work |
| * to complete. |
| */ |
| ib_drain_rq(id->qp); |
| |
| /* Deferred Reply processing might have scheduled |
| * local invalidations. |
| */ |
| ib_drain_sq(id->qp); |
| |
| rpcrdma_ep_put(ep); |
| } |
| |
| /** |
| * rpcrdma_qp_event_handler - Handle one QP event (error notification) |
| * @event: details of the event |
| * @context: ep that owns QP where event occurred |
| * |
| * Called from the RDMA provider (device driver) possibly in an interrupt |
| * context. The QP is always destroyed before the ID, so the ID will be |
| * reliably available when this handler is invoked. |
| */ |
| static void rpcrdma_qp_event_handler(struct ib_event *event, void *context) |
| { |
| struct rpcrdma_ep *ep = context; |
| |
| trace_xprtrdma_qp_event(ep, event); |
| } |
| |
| /* Ensure xprt_force_disconnect() is invoked exactly once when a |
| * connection is closed or lost. (The important thing is it needs |
| * to be invoked "at least" once). |
| */ |
| static void rpcrdma_force_disconnect(struct rpcrdma_ep *ep) |
| { |
| if (atomic_add_unless(&ep->re_force_disconnect, 1, 1)) |
| xprt_force_disconnect(ep->re_xprt); |
| } |
| |
| /** |
| * rpcrdma_flush_disconnect - Disconnect on flushed completion |
| * @r_xprt: transport to disconnect |
| * @wc: work completion entry |
| * |
| * Must be called in process context. |
| */ |
| void rpcrdma_flush_disconnect(struct rpcrdma_xprt *r_xprt, struct ib_wc *wc) |
| { |
| if (wc->status != IB_WC_SUCCESS) |
| rpcrdma_force_disconnect(r_xprt->rx_ep); |
| } |
| |
| /** |
| * rpcrdma_wc_send - Invoked by RDMA provider for each polled Send WC |
| * @cq: completion queue |
| * @wc: WCE for a completed Send WR |
| * |
| */ |
| static void rpcrdma_wc_send(struct ib_cq *cq, struct ib_wc *wc) |
| { |
| struct ib_cqe *cqe = wc->wr_cqe; |
| struct rpcrdma_sendctx *sc = |
| container_of(cqe, struct rpcrdma_sendctx, sc_cqe); |
| struct rpcrdma_xprt *r_xprt = cq->cq_context; |
| |
| /* WARNING: Only wr_cqe and status are reliable at this point */ |
| trace_xprtrdma_wc_send(wc, &sc->sc_cid); |
| rpcrdma_sendctx_put_locked(r_xprt, sc); |
| rpcrdma_flush_disconnect(r_xprt, wc); |
| } |
| |
| /** |
| * rpcrdma_wc_receive - Invoked by RDMA provider for each polled Receive WC |
| * @cq: completion queue |
| * @wc: WCE for a completed Receive WR |
| * |
| */ |
| static void rpcrdma_wc_receive(struct ib_cq *cq, struct ib_wc *wc) |
| { |
| struct ib_cqe *cqe = wc->wr_cqe; |
| struct rpcrdma_rep *rep = container_of(cqe, struct rpcrdma_rep, |
| rr_cqe); |
| struct rpcrdma_xprt *r_xprt = cq->cq_context; |
| |
| /* WARNING: Only wr_cqe and status are reliable at this point */ |
| trace_xprtrdma_wc_receive(wc, &rep->rr_cid); |
| --r_xprt->rx_ep->re_receive_count; |
| if (wc->status != IB_WC_SUCCESS) |
| goto out_flushed; |
| |
| /* status == SUCCESS means all fields in wc are trustworthy */ |
| rpcrdma_set_xdrlen(&rep->rr_hdrbuf, wc->byte_len); |
| rep->rr_wc_flags = wc->wc_flags; |
| rep->rr_inv_rkey = wc->ex.invalidate_rkey; |
| |
| ib_dma_sync_single_for_cpu(rdmab_device(rep->rr_rdmabuf), |
| rdmab_addr(rep->rr_rdmabuf), |
| wc->byte_len, DMA_FROM_DEVICE); |
| |
| rpcrdma_reply_handler(rep); |
| return; |
| |
| out_flushed: |
| rpcrdma_flush_disconnect(r_xprt, wc); |
| rpcrdma_rep_destroy(rep); |
| } |
| |
| static void rpcrdma_update_cm_private(struct rpcrdma_ep *ep, |
| struct rdma_conn_param *param) |
| { |
| const struct rpcrdma_connect_private *pmsg = param->private_data; |
| unsigned int rsize, wsize; |
| |
| /* Default settings for RPC-over-RDMA Version One */ |
| ep->re_implicit_roundup = xprt_rdma_pad_optimize; |
| rsize = RPCRDMA_V1_DEF_INLINE_SIZE; |
| wsize = RPCRDMA_V1_DEF_INLINE_SIZE; |
| |
| if (pmsg && |
| pmsg->cp_magic == rpcrdma_cmp_magic && |
| pmsg->cp_version == RPCRDMA_CMP_VERSION) { |
| ep->re_implicit_roundup = true; |
| rsize = rpcrdma_decode_buffer_size(pmsg->cp_send_size); |
| wsize = rpcrdma_decode_buffer_size(pmsg->cp_recv_size); |
| } |
| |
| if (rsize < ep->re_inline_recv) |
| ep->re_inline_recv = rsize; |
| if (wsize < ep->re_inline_send) |
| ep->re_inline_send = wsize; |
| |
| rpcrdma_set_max_header_sizes(ep); |
| } |
| |
| /** |
| * rpcrdma_cm_event_handler - Handle RDMA CM events |
| * @id: rdma_cm_id on which an event has occurred |
| * @event: details of the event |
| * |
| * Called with @id's mutex held. Returns 1 if caller should |
| * destroy @id, otherwise 0. |
| */ |
| static int |
| rpcrdma_cm_event_handler(struct rdma_cm_id *id, struct rdma_cm_event *event) |
| { |
| struct sockaddr *sap = (struct sockaddr *)&id->route.addr.dst_addr; |
| struct rpcrdma_ep *ep = id->context; |
| |
| might_sleep(); |
| |
| switch (event->event) { |
| case RDMA_CM_EVENT_ADDR_RESOLVED: |
| case RDMA_CM_EVENT_ROUTE_RESOLVED: |
| ep->re_async_rc = 0; |
| complete(&ep->re_done); |
| return 0; |
| case RDMA_CM_EVENT_ADDR_ERROR: |
| ep->re_async_rc = -EPROTO; |
| complete(&ep->re_done); |
| return 0; |
| case RDMA_CM_EVENT_ROUTE_ERROR: |
| ep->re_async_rc = -ENETUNREACH; |
| complete(&ep->re_done); |
| return 0; |
| case RDMA_CM_EVENT_DEVICE_REMOVAL: |
| pr_info("rpcrdma: removing device %s for %pISpc\n", |
| ep->re_id->device->name, sap); |
| fallthrough; |
| case RDMA_CM_EVENT_ADDR_CHANGE: |
| ep->re_connect_status = -ENODEV; |
| goto disconnected; |
| case RDMA_CM_EVENT_ESTABLISHED: |
| rpcrdma_ep_get(ep); |
| ep->re_connect_status = 1; |
| rpcrdma_update_cm_private(ep, &event->param.conn); |
| trace_xprtrdma_inline_thresh(ep); |
| wake_up_all(&ep->re_connect_wait); |
| break; |
| case RDMA_CM_EVENT_CONNECT_ERROR: |
| ep->re_connect_status = -ENOTCONN; |
| goto wake_connect_worker; |
| case RDMA_CM_EVENT_UNREACHABLE: |
| ep->re_connect_status = -ENETUNREACH; |
| goto wake_connect_worker; |
| case RDMA_CM_EVENT_REJECTED: |
| dprintk("rpcrdma: connection to %pISpc rejected: %s\n", |
| sap, rdma_reject_msg(id, event->status)); |
| ep->re_connect_status = -ECONNREFUSED; |
| if (event->status == IB_CM_REJ_STALE_CONN) |
| ep->re_connect_status = -ENOTCONN; |
| wake_connect_worker: |
| wake_up_all(&ep->re_connect_wait); |
| return 0; |
| case RDMA_CM_EVENT_DISCONNECTED: |
| ep->re_connect_status = -ECONNABORTED; |
| disconnected: |
| rpcrdma_force_disconnect(ep); |
| return rpcrdma_ep_put(ep); |
| default: |
| break; |
| } |
| |
| dprintk("RPC: %s: %pISpc on %s/frwr: %s\n", __func__, sap, |
| ep->re_id->device->name, rdma_event_msg(event->event)); |
| return 0; |
| } |
| |
| static struct rdma_cm_id *rpcrdma_create_id(struct rpcrdma_xprt *r_xprt, |
| struct rpcrdma_ep *ep) |
| { |
| unsigned long wtimeout = msecs_to_jiffies(RDMA_RESOLVE_TIMEOUT) + 1; |
| struct rpc_xprt *xprt = &r_xprt->rx_xprt; |
| struct rdma_cm_id *id; |
| int rc; |
| |
| init_completion(&ep->re_done); |
| |
| id = rdma_create_id(xprt->xprt_net, rpcrdma_cm_event_handler, ep, |
| RDMA_PS_TCP, IB_QPT_RC); |
| if (IS_ERR(id)) |
| return id; |
| |
| ep->re_async_rc = -ETIMEDOUT; |
| rc = rdma_resolve_addr(id, NULL, (struct sockaddr *)&xprt->addr, |
| RDMA_RESOLVE_TIMEOUT); |
| if (rc) |
| goto out; |
| rc = wait_for_completion_interruptible_timeout(&ep->re_done, wtimeout); |
| if (rc < 0) |
| goto out; |
| |
| rc = ep->re_async_rc; |
| if (rc) |
| goto out; |
| |
| ep->re_async_rc = -ETIMEDOUT; |
| rc = rdma_resolve_route(id, RDMA_RESOLVE_TIMEOUT); |
| if (rc) |
| goto out; |
| rc = wait_for_completion_interruptible_timeout(&ep->re_done, wtimeout); |
| if (rc < 0) |
| goto out; |
| rc = ep->re_async_rc; |
| if (rc) |
| goto out; |
| |
| return id; |
| |
| out: |
| rdma_destroy_id(id); |
| return ERR_PTR(rc); |
| } |
| |
| static void rpcrdma_ep_destroy(struct kref *kref) |
| { |
| struct rpcrdma_ep *ep = container_of(kref, struct rpcrdma_ep, re_kref); |
| |
| if (ep->re_id->qp) { |
| rdma_destroy_qp(ep->re_id); |
| ep->re_id->qp = NULL; |
| } |
| |
| if (ep->re_attr.recv_cq) |
| ib_free_cq(ep->re_attr.recv_cq); |
| ep->re_attr.recv_cq = NULL; |
| if (ep->re_attr.send_cq) |
| ib_free_cq(ep->re_attr.send_cq); |
| ep->re_attr.send_cq = NULL; |
| |
| if (ep->re_pd) |
| ib_dealloc_pd(ep->re_pd); |
| ep->re_pd = NULL; |
| |
| kfree(ep); |
| module_put(THIS_MODULE); |
| } |
| |
| static noinline void rpcrdma_ep_get(struct rpcrdma_ep *ep) |
| { |
| kref_get(&ep->re_kref); |
| } |
| |
| /* Returns: |
| * %0 if @ep still has a positive kref count, or |
| * %1 if @ep was destroyed successfully. |
| */ |
| static noinline int rpcrdma_ep_put(struct rpcrdma_ep *ep) |
| { |
| return kref_put(&ep->re_kref, rpcrdma_ep_destroy); |
| } |
| |
| static int rpcrdma_ep_create(struct rpcrdma_xprt *r_xprt) |
| { |
| struct rpcrdma_connect_private *pmsg; |
| struct ib_device *device; |
| struct rdma_cm_id *id; |
| struct rpcrdma_ep *ep; |
| int rc; |
| |
| ep = kzalloc(sizeof(*ep), GFP_NOFS); |
| if (!ep) |
| return -ENOTCONN; |
| ep->re_xprt = &r_xprt->rx_xprt; |
| kref_init(&ep->re_kref); |
| |
| id = rpcrdma_create_id(r_xprt, ep); |
| if (IS_ERR(id)) { |
| kfree(ep); |
| return PTR_ERR(id); |
| } |
| __module_get(THIS_MODULE); |
| device = id->device; |
| ep->re_id = id; |
| reinit_completion(&ep->re_done); |
| |
| ep->re_max_requests = r_xprt->rx_xprt.max_reqs; |
| ep->re_inline_send = xprt_rdma_max_inline_write; |
| ep->re_inline_recv = xprt_rdma_max_inline_read; |
| rc = frwr_query_device(ep, device); |
| if (rc) |
| goto out_destroy; |
| |
| r_xprt->rx_buf.rb_max_requests = cpu_to_be32(ep->re_max_requests); |
| |
| ep->re_attr.event_handler = rpcrdma_qp_event_handler; |
| ep->re_attr.qp_context = ep; |
| ep->re_attr.srq = NULL; |
| ep->re_attr.cap.max_inline_data = 0; |
| ep->re_attr.sq_sig_type = IB_SIGNAL_REQ_WR; |
| ep->re_attr.qp_type = IB_QPT_RC; |
| ep->re_attr.port_num = ~0; |
| |
| dprintk("RPC: %s: requested max: dtos: send %d recv %d; " |
| "iovs: send %d recv %d\n", |
| __func__, |
| ep->re_attr.cap.max_send_wr, |
| ep->re_attr.cap.max_recv_wr, |
| ep->re_attr.cap.max_send_sge, |
| ep->re_attr.cap.max_recv_sge); |
| |
| ep->re_send_batch = ep->re_max_requests >> 3; |
| ep->re_send_count = ep->re_send_batch; |
| init_waitqueue_head(&ep->re_connect_wait); |
| |
| ep->re_attr.send_cq = ib_alloc_cq_any(device, r_xprt, |
| ep->re_attr.cap.max_send_wr, |
| IB_POLL_WORKQUEUE); |
| if (IS_ERR(ep->re_attr.send_cq)) { |
| rc = PTR_ERR(ep->re_attr.send_cq); |
| goto out_destroy; |
| } |
| |
| ep->re_attr.recv_cq = ib_alloc_cq_any(device, r_xprt, |
| ep->re_attr.cap.max_recv_wr, |
| IB_POLL_WORKQUEUE); |
| if (IS_ERR(ep->re_attr.recv_cq)) { |
| rc = PTR_ERR(ep->re_attr.recv_cq); |
| goto out_destroy; |
| } |
| ep->re_receive_count = 0; |
| |
| /* Initialize cma parameters */ |
| memset(&ep->re_remote_cma, 0, sizeof(ep->re_remote_cma)); |
| |
| /* Prepare RDMA-CM private message */ |
| pmsg = &ep->re_cm_private; |
| pmsg->cp_magic = rpcrdma_cmp_magic; |
| pmsg->cp_version = RPCRDMA_CMP_VERSION; |
| pmsg->cp_flags |= RPCRDMA_CMP_F_SND_W_INV_OK; |
| pmsg->cp_send_size = rpcrdma_encode_buffer_size(ep->re_inline_send); |
| pmsg->cp_recv_size = rpcrdma_encode_buffer_size(ep->re_inline_recv); |
| ep->re_remote_cma.private_data = pmsg; |
| ep->re_remote_cma.private_data_len = sizeof(*pmsg); |
| |
| /* Client offers RDMA Read but does not initiate */ |
| ep->re_remote_cma.initiator_depth = 0; |
| ep->re_remote_cma.responder_resources = |
| min_t(int, U8_MAX, device->attrs.max_qp_rd_atom); |
| |
| /* Limit transport retries so client can detect server |
| * GID changes quickly. RPC layer handles re-establishing |
| * transport connection and retransmission. |
| */ |
| ep->re_remote_cma.retry_count = 6; |
| |
| /* RPC-over-RDMA handles its own flow control. In addition, |
| * make all RNR NAKs visible so we know that RPC-over-RDMA |
| * flow control is working correctly (no NAKs should be seen). |
| */ |
| ep->re_remote_cma.flow_control = 0; |
| ep->re_remote_cma.rnr_retry_count = 0; |
| |
| ep->re_pd = ib_alloc_pd(device, 0); |
| if (IS_ERR(ep->re_pd)) { |
| rc = PTR_ERR(ep->re_pd); |
| goto out_destroy; |
| } |
| |
| rc = rdma_create_qp(id, ep->re_pd, &ep->re_attr); |
| if (rc) |
| goto out_destroy; |
| |
| r_xprt->rx_ep = ep; |
| return 0; |
| |
| out_destroy: |
| rpcrdma_ep_put(ep); |
| rdma_destroy_id(id); |
| return rc; |
| } |
| |
| /** |
| * rpcrdma_xprt_connect - Connect an unconnected transport |
| * @r_xprt: controlling transport instance |
| * |
| * Returns 0 on success or a negative errno. |
| */ |
| int rpcrdma_xprt_connect(struct rpcrdma_xprt *r_xprt) |
| { |
| struct rpc_xprt *xprt = &r_xprt->rx_xprt; |
| struct rpcrdma_ep *ep; |
| int rc; |
| |
| rc = rpcrdma_ep_create(r_xprt); |
| if (rc) |
| return rc; |
| ep = r_xprt->rx_ep; |
| |
| xprt_clear_connected(xprt); |
| rpcrdma_reset_cwnd(r_xprt); |
| |
| /* Bump the ep's reference count while there are |
| * outstanding Receives. |
| */ |
| rpcrdma_ep_get(ep); |
| rpcrdma_post_recvs(r_xprt, true); |
| |
| rc = rdma_connect(ep->re_id, &ep->re_remote_cma); |
| if (rc) |
| goto out; |
| |
| if (xprt->reestablish_timeout < RPCRDMA_INIT_REEST_TO) |
| xprt->reestablish_timeout = RPCRDMA_INIT_REEST_TO; |
| wait_event_interruptible(ep->re_connect_wait, |
| ep->re_connect_status != 0); |
| if (ep->re_connect_status <= 0) { |
| rc = ep->re_connect_status; |
| goto out; |
| } |
| |
| rc = rpcrdma_sendctxs_create(r_xprt); |
| if (rc) { |
| rc = -ENOTCONN; |
| goto out; |
| } |
| |
| rc = rpcrdma_reqs_setup(r_xprt); |
| if (rc) { |
| rc = -ENOTCONN; |
| goto out; |
| } |
| rpcrdma_mrs_create(r_xprt); |
| |
| out: |
| trace_xprtrdma_connect(r_xprt, rc); |
| return rc; |
| } |
| |
| /** |
| * rpcrdma_xprt_disconnect - Disconnect underlying transport |
| * @r_xprt: controlling transport instance |
| * |
| * Caller serializes. Either the transport send lock is held, |
| * or we're being called to destroy the transport. |
| * |
| * On return, @r_xprt is completely divested of all hardware |
| * resources and prepared for the next ->connect operation. |
| */ |
| void rpcrdma_xprt_disconnect(struct rpcrdma_xprt *r_xprt) |
| { |
| struct rpcrdma_ep *ep = r_xprt->rx_ep; |
| struct rdma_cm_id *id; |
| int rc; |
| |
| if (!ep) |
| return; |
| |
| id = ep->re_id; |
| rc = rdma_disconnect(id); |
| trace_xprtrdma_disconnect(r_xprt, rc); |
| |
| rpcrdma_xprt_drain(r_xprt); |
| rpcrdma_reps_unmap(r_xprt); |
| rpcrdma_reqs_reset(r_xprt); |
| rpcrdma_mrs_destroy(r_xprt); |
| rpcrdma_sendctxs_destroy(r_xprt); |
| |
| if (rpcrdma_ep_put(ep)) |
| rdma_destroy_id(id); |
| |
| r_xprt->rx_ep = NULL; |
| } |
| |
| /* Fixed-size circular FIFO queue. This implementation is wait-free and |
| * lock-free. |
| * |
| * Consumer is the code path that posts Sends. This path dequeues a |
| * sendctx for use by a Send operation. Multiple consumer threads |
| * are serialized by the RPC transport lock, which allows only one |
| * ->send_request call at a time. |
| * |
| * Producer is the code path that handles Send completions. This path |
| * enqueues a sendctx that has been completed. Multiple producer |
| * threads are serialized by the ib_poll_cq() function. |
| */ |
| |
| /* rpcrdma_sendctxs_destroy() assumes caller has already quiesced |
| * queue activity, and rpcrdma_xprt_drain has flushed all remaining |
| * Send requests. |
| */ |
| static void rpcrdma_sendctxs_destroy(struct rpcrdma_xprt *r_xprt) |
| { |
| struct rpcrdma_buffer *buf = &r_xprt->rx_buf; |
| unsigned long i; |
| |
| if (!buf->rb_sc_ctxs) |
| return; |
| for (i = 0; i <= buf->rb_sc_last; i++) |
| kfree(buf->rb_sc_ctxs[i]); |
| kfree(buf->rb_sc_ctxs); |
| buf->rb_sc_ctxs = NULL; |
| } |
| |
| static struct rpcrdma_sendctx *rpcrdma_sendctx_create(struct rpcrdma_ep *ep) |
| { |
| struct rpcrdma_sendctx *sc; |
| |
| sc = kzalloc(struct_size(sc, sc_sges, ep->re_attr.cap.max_send_sge), |
| GFP_KERNEL); |
| if (!sc) |
| return NULL; |
| |
| sc->sc_cqe.done = rpcrdma_wc_send; |
| sc->sc_cid.ci_queue_id = ep->re_attr.send_cq->res.id; |
| sc->sc_cid.ci_completion_id = |
| atomic_inc_return(&ep->re_completion_ids); |
| return sc; |
| } |
| |
| static int rpcrdma_sendctxs_create(struct rpcrdma_xprt *r_xprt) |
| { |
| struct rpcrdma_buffer *buf = &r_xprt->rx_buf; |
| struct rpcrdma_sendctx *sc; |
| unsigned long i; |
| |
| /* Maximum number of concurrent outstanding Send WRs. Capping |
| * the circular queue size stops Send Queue overflow by causing |
| * the ->send_request call to fail temporarily before too many |
| * Sends are posted. |
| */ |
| i = r_xprt->rx_ep->re_max_requests + RPCRDMA_MAX_BC_REQUESTS; |
| buf->rb_sc_ctxs = kcalloc(i, sizeof(sc), GFP_KERNEL); |
| if (!buf->rb_sc_ctxs) |
| return -ENOMEM; |
| |
| buf->rb_sc_last = i - 1; |
| for (i = 0; i <= buf->rb_sc_last; i++) { |
| sc = rpcrdma_sendctx_create(r_xprt->rx_ep); |
| if (!sc) |
| return -ENOMEM; |
| |
| buf->rb_sc_ctxs[i] = sc; |
| } |
| |
| buf->rb_sc_head = 0; |
| buf->rb_sc_tail = 0; |
| return 0; |
| } |
| |
| /* The sendctx queue is not guaranteed to have a size that is a |
| * power of two, thus the helpers in circ_buf.h cannot be used. |
| * The other option is to use modulus (%), which can be expensive. |
| */ |
| static unsigned long rpcrdma_sendctx_next(struct rpcrdma_buffer *buf, |
| unsigned long item) |
| { |
| return likely(item < buf->rb_sc_last) ? item + 1 : 0; |
| } |
| |
| /** |
| * rpcrdma_sendctx_get_locked - Acquire a send context |
| * @r_xprt: controlling transport instance |
| * |
| * Returns pointer to a free send completion context; or NULL if |
| * the queue is empty. |
| * |
| * Usage: Called to acquire an SGE array before preparing a Send WR. |
| * |
| * The caller serializes calls to this function (per transport), and |
| * provides an effective memory barrier that flushes the new value |
| * of rb_sc_head. |
| */ |
| struct rpcrdma_sendctx *rpcrdma_sendctx_get_locked(struct rpcrdma_xprt *r_xprt) |
| { |
| struct rpcrdma_buffer *buf = &r_xprt->rx_buf; |
| struct rpcrdma_sendctx *sc; |
| unsigned long next_head; |
| |
| next_head = rpcrdma_sendctx_next(buf, buf->rb_sc_head); |
| |
| if (next_head == READ_ONCE(buf->rb_sc_tail)) |
| goto out_emptyq; |
| |
| /* ORDER: item must be accessed _before_ head is updated */ |
| sc = buf->rb_sc_ctxs[next_head]; |
| |
| /* Releasing the lock in the caller acts as a memory |
| * barrier that flushes rb_sc_head. |
| */ |
| buf->rb_sc_head = next_head; |
| |
| return sc; |
| |
| out_emptyq: |
| /* The queue is "empty" if there have not been enough Send |
| * completions recently. This is a sign the Send Queue is |
| * backing up. Cause the caller to pause and try again. |
| */ |
| xprt_wait_for_buffer_space(&r_xprt->rx_xprt); |
| r_xprt->rx_stats.empty_sendctx_q++; |
| return NULL; |
| } |
| |
| /** |
| * rpcrdma_sendctx_put_locked - Release a send context |
| * @r_xprt: controlling transport instance |
| * @sc: send context to release |
| * |
| * Usage: Called from Send completion to return a sendctxt |
| * to the queue. |
| * |
| * The caller serializes calls to this function (per transport). |
| */ |
| static void rpcrdma_sendctx_put_locked(struct rpcrdma_xprt *r_xprt, |
| struct rpcrdma_sendctx *sc) |
| { |
| struct rpcrdma_buffer *buf = &r_xprt->rx_buf; |
| unsigned long next_tail; |
| |
| /* Unmap SGEs of previously completed but unsignaled |
| * Sends by walking up the queue until @sc is found. |
| */ |
| next_tail = buf->rb_sc_tail; |
| do { |
| next_tail = rpcrdma_sendctx_next(buf, next_tail); |
| |
| /* ORDER: item must be accessed _before_ tail is updated */ |
| rpcrdma_sendctx_unmap(buf->rb_sc_ctxs[next_tail]); |
| |
| } while (buf->rb_sc_ctxs[next_tail] != sc); |
| |
| /* Paired with READ_ONCE */ |
| smp_store_release(&buf->rb_sc_tail, next_tail); |
| |
| xprt_write_space(&r_xprt->rx_xprt); |
| } |
| |
| static void |
| rpcrdma_mrs_create(struct rpcrdma_xprt *r_xprt) |
| { |
| struct rpcrdma_buffer *buf = &r_xprt->rx_buf; |
| struct rpcrdma_ep *ep = r_xprt->rx_ep; |
| unsigned int count; |
| |
| for (count = 0; count < ep->re_max_rdma_segs; count++) { |
| struct rpcrdma_mr *mr; |
| int rc; |
| |
| mr = kzalloc(sizeof(*mr), GFP_NOFS); |
| if (!mr) |
| break; |
| |
| rc = frwr_mr_init(r_xprt, mr); |
| if (rc) { |
| kfree(mr); |
| break; |
| } |
| |
| spin_lock(&buf->rb_lock); |
| rpcrdma_mr_push(mr, &buf->rb_mrs); |
| list_add(&mr->mr_all, &buf->rb_all_mrs); |
| spin_unlock(&buf->rb_lock); |
| } |
| |
| r_xprt->rx_stats.mrs_allocated += count; |
| trace_xprtrdma_createmrs(r_xprt, count); |
| } |
| |
| static void |
| rpcrdma_mr_refresh_worker(struct work_struct *work) |
| { |
| struct rpcrdma_buffer *buf = container_of(work, struct rpcrdma_buffer, |
| rb_refresh_worker); |
| struct rpcrdma_xprt *r_xprt = container_of(buf, struct rpcrdma_xprt, |
| rx_buf); |
| |
| rpcrdma_mrs_create(r_xprt); |
| xprt_write_space(&r_xprt->rx_xprt); |
| } |
| |
| /** |
| * rpcrdma_mrs_refresh - Wake the MR refresh worker |
| * @r_xprt: controlling transport instance |
| * |
| */ |
| void rpcrdma_mrs_refresh(struct rpcrdma_xprt *r_xprt) |
| { |
| struct rpcrdma_buffer *buf = &r_xprt->rx_buf; |
| struct rpcrdma_ep *ep = r_xprt->rx_ep; |
| |
| /* If there is no underlying connection, it's no use |
| * to wake the refresh worker. |
| */ |
| if (ep->re_connect_status == 1) { |
| /* The work is scheduled on a WQ_MEM_RECLAIM |
| * workqueue in order to prevent MR allocation |
| * from recursing into NFS during direct reclaim. |
| */ |
| queue_work(xprtiod_workqueue, &buf->rb_refresh_worker); |
| } |
| } |
| |
| /** |
| * rpcrdma_req_create - Allocate an rpcrdma_req object |
| * @r_xprt: controlling r_xprt |
| * @size: initial size, in bytes, of send and receive buffers |
| * @flags: GFP flags passed to memory allocators |
| * |
| * Returns an allocated and fully initialized rpcrdma_req or NULL. |
| */ |
| struct rpcrdma_req *rpcrdma_req_create(struct rpcrdma_xprt *r_xprt, size_t size, |
| gfp_t flags) |
| { |
| struct rpcrdma_buffer *buffer = &r_xprt->rx_buf; |
| struct rpcrdma_req *req; |
| |
| req = kzalloc(sizeof(*req), flags); |
| if (req == NULL) |
| goto out1; |
| |
| req->rl_sendbuf = rpcrdma_regbuf_alloc(size, DMA_TO_DEVICE, flags); |
| if (!req->rl_sendbuf) |
| goto out2; |
| |
| req->rl_recvbuf = rpcrdma_regbuf_alloc(size, DMA_NONE, flags); |
| if (!req->rl_recvbuf) |
| goto out3; |
| |
| INIT_LIST_HEAD(&req->rl_free_mrs); |
| INIT_LIST_HEAD(&req->rl_registered); |
| spin_lock(&buffer->rb_lock); |
| list_add(&req->rl_all, &buffer->rb_allreqs); |
| spin_unlock(&buffer->rb_lock); |
| return req; |
| |
| out3: |
| kfree(req->rl_sendbuf); |
| out2: |
| kfree(req); |
| out1: |
| return NULL; |
| } |
| |
| /** |
| * rpcrdma_req_setup - Per-connection instance setup of an rpcrdma_req object |
| * @r_xprt: controlling transport instance |
| * @req: rpcrdma_req object to set up |
| * |
| * Returns zero on success, and a negative errno on failure. |
| */ |
| int rpcrdma_req_setup(struct rpcrdma_xprt *r_xprt, struct rpcrdma_req *req) |
| { |
| struct rpcrdma_regbuf *rb; |
| size_t maxhdrsize; |
| |
| /* Compute maximum header buffer size in bytes */ |
| maxhdrsize = rpcrdma_fixed_maxsz + 3 + |
| r_xprt->rx_ep->re_max_rdma_segs * rpcrdma_readchunk_maxsz; |
| maxhdrsize *= sizeof(__be32); |
| rb = rpcrdma_regbuf_alloc(__roundup_pow_of_two(maxhdrsize), |
| DMA_TO_DEVICE, GFP_KERNEL); |
| if (!rb) |
| goto out; |
| |
| if (!__rpcrdma_regbuf_dma_map(r_xprt, rb)) |
| goto out_free; |
| |
| req->rl_rdmabuf = rb; |
| xdr_buf_init(&req->rl_hdrbuf, rdmab_data(rb), rdmab_length(rb)); |
| return 0; |
| |
| out_free: |
| rpcrdma_regbuf_free(rb); |
| out: |
| return -ENOMEM; |
| } |
| |
| /* ASSUMPTION: the rb_allreqs list is stable for the duration, |
| * and thus can be walked without holding rb_lock. Eg. the |
| * caller is holding the transport send lock to exclude |
| * device removal or disconnection. |
| */ |
| static int rpcrdma_reqs_setup(struct rpcrdma_xprt *r_xprt) |
| { |
| struct rpcrdma_buffer *buf = &r_xprt->rx_buf; |
| struct rpcrdma_req *req; |
| int rc; |
| |
| list_for_each_entry(req, &buf->rb_allreqs, rl_all) { |
| rc = rpcrdma_req_setup(r_xprt, req); |
| if (rc) |
| return rc; |
| } |
| return 0; |
| } |
| |
| static void rpcrdma_req_reset(struct rpcrdma_req *req) |
| { |
| /* Credits are valid for only one connection */ |
| req->rl_slot.rq_cong = 0; |
| |
| rpcrdma_regbuf_free(req->rl_rdmabuf); |
| req->rl_rdmabuf = NULL; |
| |
| rpcrdma_regbuf_dma_unmap(req->rl_sendbuf); |
| rpcrdma_regbuf_dma_unmap(req->rl_recvbuf); |
| |
| frwr_reset(req); |
| } |
| |
| /* ASSUMPTION: the rb_allreqs list is stable for the duration, |
| * and thus can be walked without holding rb_lock. Eg. the |
| * caller is holding the transport send lock to exclude |
| * device removal or disconnection. |
| */ |
| static void rpcrdma_reqs_reset(struct rpcrdma_xprt *r_xprt) |
| { |
| struct rpcrdma_buffer *buf = &r_xprt->rx_buf; |
| struct rpcrdma_req *req; |
| |
| list_for_each_entry(req, &buf->rb_allreqs, rl_all) |
| rpcrdma_req_reset(req); |
| } |
| |
| /* No locking needed here. This function is called only by the |
| * Receive completion handler. |
| */ |
| static noinline |
| struct rpcrdma_rep *rpcrdma_rep_create(struct rpcrdma_xprt *r_xprt, |
| bool temp) |
| { |
| struct rpcrdma_rep *rep; |
| |
| rep = kzalloc(sizeof(*rep), GFP_KERNEL); |
| if (rep == NULL) |
| goto out; |
| |
| rep->rr_rdmabuf = rpcrdma_regbuf_alloc(r_xprt->rx_ep->re_inline_recv, |
| DMA_FROM_DEVICE, GFP_KERNEL); |
| if (!rep->rr_rdmabuf) |
| goto out_free; |
| |
| if (!rpcrdma_regbuf_dma_map(r_xprt, rep->rr_rdmabuf)) |
| goto out_free_regbuf; |
| |
| rep->rr_cid.ci_completion_id = |
| atomic_inc_return(&r_xprt->rx_ep->re_completion_ids); |
| |
| xdr_buf_init(&rep->rr_hdrbuf, rdmab_data(rep->rr_rdmabuf), |
| rdmab_length(rep->rr_rdmabuf)); |
| rep->rr_cqe.done = rpcrdma_wc_receive; |
| rep->rr_rxprt = r_xprt; |
| rep->rr_recv_wr.next = NULL; |
| rep->rr_recv_wr.wr_cqe = &rep->rr_cqe; |
| rep->rr_recv_wr.sg_list = &rep->rr_rdmabuf->rg_iov; |
| rep->rr_recv_wr.num_sge = 1; |
| rep->rr_temp = temp; |
| list_add(&rep->rr_all, &r_xprt->rx_buf.rb_all_reps); |
| return rep; |
| |
| out_free_regbuf: |
| rpcrdma_regbuf_free(rep->rr_rdmabuf); |
| out_free: |
| kfree(rep); |
| out: |
| return NULL; |
| } |
| |
| /* No locking needed here. This function is invoked only by the |
| * Receive completion handler, or during transport shutdown. |
| */ |
| static void rpcrdma_rep_destroy(struct rpcrdma_rep *rep) |
| { |
| list_del(&rep->rr_all); |
| rpcrdma_regbuf_free(rep->rr_rdmabuf); |
| kfree(rep); |
| } |
| |
| static struct rpcrdma_rep *rpcrdma_rep_get_locked(struct rpcrdma_buffer *buf) |
| { |
| struct llist_node *node; |
| |
| /* Calls to llist_del_first are required to be serialized */ |
| node = llist_del_first(&buf->rb_free_reps); |
| if (!node) |
| return NULL; |
| return llist_entry(node, struct rpcrdma_rep, rr_node); |
| } |
| |
| static void rpcrdma_rep_put(struct rpcrdma_buffer *buf, |
| struct rpcrdma_rep *rep) |
| { |
| llist_add(&rep->rr_node, &buf->rb_free_reps); |
| } |
| |
| static void rpcrdma_reps_unmap(struct rpcrdma_xprt *r_xprt) |
| { |
| struct rpcrdma_buffer *buf = &r_xprt->rx_buf; |
| struct rpcrdma_rep *rep; |
| |
| list_for_each_entry(rep, &buf->rb_all_reps, rr_all) { |
| rpcrdma_regbuf_dma_unmap(rep->rr_rdmabuf); |
| rep->rr_temp = true; |
| } |
| } |
| |
| static void rpcrdma_reps_destroy(struct rpcrdma_buffer *buf) |
| { |
| struct rpcrdma_rep *rep; |
| |
| while ((rep = rpcrdma_rep_get_locked(buf)) != NULL) |
| rpcrdma_rep_destroy(rep); |
| } |
| |
| /** |
| * rpcrdma_buffer_create - Create initial set of req/rep objects |
| * @r_xprt: transport instance to (re)initialize |
| * |
| * Returns zero on success, otherwise a negative errno. |
| */ |
| int rpcrdma_buffer_create(struct rpcrdma_xprt *r_xprt) |
| { |
| struct rpcrdma_buffer *buf = &r_xprt->rx_buf; |
| int i, rc; |
| |
| buf->rb_bc_srv_max_requests = 0; |
| spin_lock_init(&buf->rb_lock); |
| INIT_LIST_HEAD(&buf->rb_mrs); |
| INIT_LIST_HEAD(&buf->rb_all_mrs); |
| INIT_WORK(&buf->rb_refresh_worker, rpcrdma_mr_refresh_worker); |
| |
| INIT_LIST_HEAD(&buf->rb_send_bufs); |
| INIT_LIST_HEAD(&buf->rb_allreqs); |
| INIT_LIST_HEAD(&buf->rb_all_reps); |
| |
| rc = -ENOMEM; |
| for (i = 0; i < r_xprt->rx_xprt.max_reqs; i++) { |
| struct rpcrdma_req *req; |
| |
| req = rpcrdma_req_create(r_xprt, RPCRDMA_V1_DEF_INLINE_SIZE * 2, |
| GFP_KERNEL); |
| if (!req) |
| goto out; |
| list_add(&req->rl_list, &buf->rb_send_bufs); |
| } |
| |
| init_llist_head(&buf->rb_free_reps); |
| |
| return 0; |
| out: |
| rpcrdma_buffer_destroy(buf); |
| return rc; |
| } |
| |
| /** |
| * rpcrdma_req_destroy - Destroy an rpcrdma_req object |
| * @req: unused object to be destroyed |
| * |
| * Relies on caller holding the transport send lock to protect |
| * removing req->rl_all from buf->rb_all_reqs safely. |
| */ |
| void rpcrdma_req_destroy(struct rpcrdma_req *req) |
| { |
| struct rpcrdma_mr *mr; |
| |
| list_del(&req->rl_all); |
| |
| while ((mr = rpcrdma_mr_pop(&req->rl_free_mrs))) { |
| struct rpcrdma_buffer *buf = &mr->mr_xprt->rx_buf; |
| |
| spin_lock(&buf->rb_lock); |
| list_del(&mr->mr_all); |
| spin_unlock(&buf->rb_lock); |
| |
| frwr_release_mr(mr); |
| } |
| |
| rpcrdma_regbuf_free(req->rl_recvbuf); |
| rpcrdma_regbuf_free(req->rl_sendbuf); |
| rpcrdma_regbuf_free(req->rl_rdmabuf); |
| kfree(req); |
| } |
| |
| /** |
| * rpcrdma_mrs_destroy - Release all of a transport's MRs |
| * @r_xprt: controlling transport instance |
| * |
| * Relies on caller holding the transport send lock to protect |
| * removing mr->mr_list from req->rl_free_mrs safely. |
| */ |
| static void rpcrdma_mrs_destroy(struct rpcrdma_xprt *r_xprt) |
| { |
| struct rpcrdma_buffer *buf = &r_xprt->rx_buf; |
| struct rpcrdma_mr *mr; |
| |
| cancel_work_sync(&buf->rb_refresh_worker); |
| |
| spin_lock(&buf->rb_lock); |
| while ((mr = list_first_entry_or_null(&buf->rb_all_mrs, |
| struct rpcrdma_mr, |
| mr_all)) != NULL) { |
| list_del(&mr->mr_list); |
| list_del(&mr->mr_all); |
| spin_unlock(&buf->rb_lock); |
| |
| frwr_release_mr(mr); |
| |
| spin_lock(&buf->rb_lock); |
| } |
| spin_unlock(&buf->rb_lock); |
| } |
| |
| /** |
| * rpcrdma_buffer_destroy - Release all hw resources |
| * @buf: root control block for resources |
| * |
| * ORDERING: relies on a prior rpcrdma_xprt_drain : |
| * - No more Send or Receive completions can occur |
| * - All MRs, reps, and reqs are returned to their free lists |
| */ |
| void |
| rpcrdma_buffer_destroy(struct rpcrdma_buffer *buf) |
| { |
| rpcrdma_reps_destroy(buf); |
| |
| while (!list_empty(&buf->rb_send_bufs)) { |
| struct rpcrdma_req *req; |
| |
| req = list_first_entry(&buf->rb_send_bufs, |
| struct rpcrdma_req, rl_list); |
| list_del(&req->rl_list); |
| rpcrdma_req_destroy(req); |
| } |
| } |
| |
| /** |
| * rpcrdma_mr_get - Allocate an rpcrdma_mr object |
| * @r_xprt: controlling transport |
| * |
| * Returns an initialized rpcrdma_mr or NULL if no free |
| * rpcrdma_mr objects are available. |
| */ |
| struct rpcrdma_mr * |
| rpcrdma_mr_get(struct rpcrdma_xprt *r_xprt) |
| { |
| struct rpcrdma_buffer *buf = &r_xprt->rx_buf; |
| struct rpcrdma_mr *mr; |
| |
| spin_lock(&buf->rb_lock); |
| mr = rpcrdma_mr_pop(&buf->rb_mrs); |
| spin_unlock(&buf->rb_lock); |
| return mr; |
| } |
| |
| /** |
| * rpcrdma_buffer_get - Get a request buffer |
| * @buffers: Buffer pool from which to obtain a buffer |
| * |
| * Returns a fresh rpcrdma_req, or NULL if none are available. |
| */ |
| struct rpcrdma_req * |
| rpcrdma_buffer_get(struct rpcrdma_buffer *buffers) |
| { |
| struct rpcrdma_req *req; |
| |
| spin_lock(&buffers->rb_lock); |
| req = list_first_entry_or_null(&buffers->rb_send_bufs, |
| struct rpcrdma_req, rl_list); |
| if (req) |
| list_del_init(&req->rl_list); |
| spin_unlock(&buffers->rb_lock); |
| return req; |
| } |
| |
| /** |
| * rpcrdma_buffer_put - Put request/reply buffers back into pool |
| * @buffers: buffer pool |
| * @req: object to return |
| * |
| */ |
| void rpcrdma_buffer_put(struct rpcrdma_buffer *buffers, struct rpcrdma_req *req) |
| { |
| if (req->rl_reply) |
| rpcrdma_rep_put(buffers, req->rl_reply); |
| req->rl_reply = NULL; |
| |
| spin_lock(&buffers->rb_lock); |
| list_add(&req->rl_list, &buffers->rb_send_bufs); |
| spin_unlock(&buffers->rb_lock); |
| } |
| |
| /** |
| * rpcrdma_recv_buffer_put - Release rpcrdma_rep back to free list |
| * @rep: rep to release |
| * |
| * Used after error conditions. |
| */ |
| void rpcrdma_recv_buffer_put(struct rpcrdma_rep *rep) |
| { |
| rpcrdma_rep_put(&rep->rr_rxprt->rx_buf, rep); |
| } |
| |
| /* Returns a pointer to a rpcrdma_regbuf object, or NULL. |
| * |
| * xprtrdma uses a regbuf for posting an outgoing RDMA SEND, or for |
| * receiving the payload of RDMA RECV operations. During Long Calls |
| * or Replies they may be registered externally via frwr_map. |
| */ |
| static struct rpcrdma_regbuf * |
| rpcrdma_regbuf_alloc(size_t size, enum dma_data_direction direction, |
| gfp_t flags) |
| { |
| struct rpcrdma_regbuf *rb; |
| |
| rb = kmalloc(sizeof(*rb), flags); |
| if (!rb) |
| return NULL; |
| rb->rg_data = kmalloc(size, flags); |
| if (!rb->rg_data) { |
| kfree(rb); |
| return NULL; |
| } |
| |
| rb->rg_device = NULL; |
| rb->rg_direction = direction; |
| rb->rg_iov.length = size; |
| return rb; |
| } |
| |
| /** |
| * rpcrdma_regbuf_realloc - re-allocate a SEND/RECV buffer |
| * @rb: regbuf to reallocate |
| * @size: size of buffer to be allocated, in bytes |
| * @flags: GFP flags |
| * |
| * Returns true if reallocation was successful. If false is |
| * returned, @rb is left untouched. |
| */ |
| bool rpcrdma_regbuf_realloc(struct rpcrdma_regbuf *rb, size_t size, gfp_t flags) |
| { |
| void *buf; |
| |
| buf = kmalloc(size, flags); |
| if (!buf) |
| return false; |
| |
| rpcrdma_regbuf_dma_unmap(rb); |
| kfree(rb->rg_data); |
| |
| rb->rg_data = buf; |
| rb->rg_iov.length = size; |
| return true; |
| } |
| |
| /** |
| * __rpcrdma_regbuf_dma_map - DMA-map a regbuf |
| * @r_xprt: controlling transport instance |
| * @rb: regbuf to be mapped |
| * |
| * Returns true if the buffer is now DMA mapped to @r_xprt's device |
| */ |
| bool __rpcrdma_regbuf_dma_map(struct rpcrdma_xprt *r_xprt, |
| struct rpcrdma_regbuf *rb) |
| { |
| struct ib_device *device = r_xprt->rx_ep->re_id->device; |
| |
| if (rb->rg_direction == DMA_NONE) |
| return false; |
| |
| rb->rg_iov.addr = ib_dma_map_single(device, rdmab_data(rb), |
| rdmab_length(rb), rb->rg_direction); |
| if (ib_dma_mapping_error(device, rdmab_addr(rb))) { |
| trace_xprtrdma_dma_maperr(rdmab_addr(rb)); |
| return false; |
| } |
| |
| rb->rg_device = device; |
| rb->rg_iov.lkey = r_xprt->rx_ep->re_pd->local_dma_lkey; |
| return true; |
| } |
| |
| static void rpcrdma_regbuf_dma_unmap(struct rpcrdma_regbuf *rb) |
| { |
| if (!rb) |
| return; |
| |
| if (!rpcrdma_regbuf_is_mapped(rb)) |
| return; |
| |
| ib_dma_unmap_single(rb->rg_device, rdmab_addr(rb), rdmab_length(rb), |
| rb->rg_direction); |
| rb->rg_device = NULL; |
| } |
| |
| static void rpcrdma_regbuf_free(struct rpcrdma_regbuf *rb) |
| { |
| rpcrdma_regbuf_dma_unmap(rb); |
| if (rb) |
| kfree(rb->rg_data); |
| kfree(rb); |
| } |
| |
| /** |
| * rpcrdma_post_sends - Post WRs to a transport's Send Queue |
| * @r_xprt: controlling transport instance |
| * @req: rpcrdma_req containing the Send WR to post |
| * |
| * Returns 0 if the post was successful, otherwise -ENOTCONN |
| * is returned. |
| */ |
| int rpcrdma_post_sends(struct rpcrdma_xprt *r_xprt, struct rpcrdma_req *req) |
| { |
| struct ib_send_wr *send_wr = &req->rl_wr; |
| struct rpcrdma_ep *ep = r_xprt->rx_ep; |
| int rc; |
| |
| if (!ep->re_send_count || kref_read(&req->rl_kref) > 1) { |
| send_wr->send_flags |= IB_SEND_SIGNALED; |
| ep->re_send_count = ep->re_send_batch; |
| } else { |
| send_wr->send_flags &= ~IB_SEND_SIGNALED; |
| --ep->re_send_count; |
| } |
| |
| trace_xprtrdma_post_send(req); |
| rc = frwr_send(r_xprt, req); |
| if (rc) |
| return -ENOTCONN; |
| return 0; |
| } |
| |
| /** |
| * rpcrdma_post_recvs - Refill the Receive Queue |
| * @r_xprt: controlling transport instance |
| * @temp: mark Receive buffers to be deleted after use |
| * |
| */ |
| void rpcrdma_post_recvs(struct rpcrdma_xprt *r_xprt, bool temp) |
| { |
| struct rpcrdma_buffer *buf = &r_xprt->rx_buf; |
| struct rpcrdma_ep *ep = r_xprt->rx_ep; |
| struct ib_recv_wr *wr, *bad_wr; |
| struct rpcrdma_rep *rep; |
| int needed, count, rc; |
| |
| rc = 0; |
| count = 0; |
| |
| needed = buf->rb_credits + (buf->rb_bc_srv_max_requests << 1); |
| if (likely(ep->re_receive_count > needed)) |
| goto out; |
| needed -= ep->re_receive_count; |
| if (!temp) |
| needed += RPCRDMA_MAX_RECV_BATCH; |
| |
| if (atomic_inc_return(&ep->re_receiving) > 1) |
| goto out; |
| |
| /* fast path: all needed reps can be found on the free list */ |
| wr = NULL; |
| while (needed) { |
| rep = rpcrdma_rep_get_locked(buf); |
| if (rep && rep->rr_temp) { |
| rpcrdma_rep_destroy(rep); |
| continue; |
| } |
| if (!rep) |
| rep = rpcrdma_rep_create(r_xprt, temp); |
| if (!rep) |
| break; |
| |
| rep->rr_cid.ci_queue_id = ep->re_attr.recv_cq->res.id; |
| trace_xprtrdma_post_recv(rep); |
| rep->rr_recv_wr.next = wr; |
| wr = &rep->rr_recv_wr; |
| --needed; |
| ++count; |
| } |
| if (!wr) |
| goto out; |
| |
| rc = ib_post_recv(ep->re_id->qp, wr, |
| (const struct ib_recv_wr **)&bad_wr); |
| if (atomic_dec_return(&ep->re_receiving) > 0) |
| complete(&ep->re_done); |
| |
| out: |
| trace_xprtrdma_post_recvs(r_xprt, count, rc); |
| if (rc) { |
| for (wr = bad_wr; wr;) { |
| struct rpcrdma_rep *rep; |
| |
| rep = container_of(wr, struct rpcrdma_rep, rr_recv_wr); |
| wr = wr->next; |
| rpcrdma_recv_buffer_put(rep); |
| --count; |
| } |
| } |
| ep->re_receive_count += count; |
| return; |
| } |