| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * |
| * Copyright (C) 2013 Freescale Semiconductor, Inc. |
| */ |
| |
| #define pr_fmt(fmt) "fsl-pamu: %s: " fmt, __func__ |
| |
| #include "fsl_pamu.h" |
| |
| #include <linux/fsl/guts.h> |
| #include <linux/interrupt.h> |
| #include <linux/genalloc.h> |
| |
| #include <asm/mpc85xx.h> |
| |
| /* define indexes for each operation mapping scenario */ |
| #define OMI_QMAN 0x00 |
| #define OMI_FMAN 0x01 |
| #define OMI_QMAN_PRIV 0x02 |
| #define OMI_CAAM 0x03 |
| |
| #define make64(high, low) (((u64)(high) << 32) | (low)) |
| |
| struct pamu_isr_data { |
| void __iomem *pamu_reg_base; /* Base address of PAMU regs */ |
| unsigned int count; /* The number of PAMUs */ |
| }; |
| |
| static struct paace *ppaact; |
| static struct paace *spaact; |
| |
| static bool probed; /* Has PAMU been probed? */ |
| |
| /* |
| * Table for matching compatible strings, for device tree |
| * guts node, for QorIQ SOCs. |
| * "fsl,qoriq-device-config-2.0" corresponds to T4 & B4 |
| * SOCs. For the older SOCs "fsl,qoriq-device-config-1.0" |
| * string would be used. |
| */ |
| static const struct of_device_id guts_device_ids[] = { |
| { .compatible = "fsl,qoriq-device-config-1.0", }, |
| { .compatible = "fsl,qoriq-device-config-2.0", }, |
| {} |
| }; |
| |
| /* |
| * Table for matching compatible strings, for device tree |
| * L3 cache controller node. |
| * "fsl,t4240-l3-cache-controller" corresponds to T4, |
| * "fsl,b4860-l3-cache-controller" corresponds to B4 & |
| * "fsl,p4080-l3-cache-controller" corresponds to other, |
| * SOCs. |
| */ |
| static const struct of_device_id l3_device_ids[] = { |
| { .compatible = "fsl,t4240-l3-cache-controller", }, |
| { .compatible = "fsl,b4860-l3-cache-controller", }, |
| { .compatible = "fsl,p4080-l3-cache-controller", }, |
| {} |
| }; |
| |
| /* maximum subwindows permitted per liodn */ |
| static u32 max_subwindow_count; |
| |
| /** |
| * pamu_get_ppaace() - Return the primary PACCE |
| * @liodn: liodn PAACT index for desired PAACE |
| * |
| * Returns the ppace pointer upon success else return |
| * null. |
| */ |
| static struct paace *pamu_get_ppaace(int liodn) |
| { |
| if (!ppaact || liodn >= PAACE_NUMBER_ENTRIES) { |
| pr_debug("PPAACT doesn't exist\n"); |
| return NULL; |
| } |
| |
| return &ppaact[liodn]; |
| } |
| |
| /** |
| * pamu_enable_liodn() - Set valid bit of PACCE |
| * @liodn: liodn PAACT index for desired PAACE |
| * |
| * Returns 0 upon success else error code < 0 returned |
| */ |
| int pamu_enable_liodn(int liodn) |
| { |
| struct paace *ppaace; |
| |
| ppaace = pamu_get_ppaace(liodn); |
| if (!ppaace) { |
| pr_debug("Invalid primary paace entry\n"); |
| return -ENOENT; |
| } |
| |
| if (!get_bf(ppaace->addr_bitfields, PPAACE_AF_WSE)) { |
| pr_debug("liodn %d not configured\n", liodn); |
| return -EINVAL; |
| } |
| |
| /* Ensure that all other stores to the ppaace complete first */ |
| mb(); |
| |
| set_bf(ppaace->addr_bitfields, PAACE_AF_V, PAACE_V_VALID); |
| mb(); |
| |
| return 0; |
| } |
| |
| /** |
| * pamu_disable_liodn() - Clears valid bit of PACCE |
| * @liodn: liodn PAACT index for desired PAACE |
| * |
| * Returns 0 upon success else error code < 0 returned |
| */ |
| int pamu_disable_liodn(int liodn) |
| { |
| struct paace *ppaace; |
| |
| ppaace = pamu_get_ppaace(liodn); |
| if (!ppaace) { |
| pr_debug("Invalid primary paace entry\n"); |
| return -ENOENT; |
| } |
| |
| set_bf(ppaace->addr_bitfields, PAACE_AF_V, PAACE_V_INVALID); |
| mb(); |
| |
| return 0; |
| } |
| |
| /* Derive the window size encoding for a particular PAACE entry */ |
| static unsigned int map_addrspace_size_to_wse(phys_addr_t addrspace_size) |
| { |
| /* Bug if not a power of 2 */ |
| BUG_ON(addrspace_size & (addrspace_size - 1)); |
| |
| /* window size is 2^(WSE+1) bytes */ |
| return fls64(addrspace_size) - 2; |
| } |
| |
| /* |
| * Set the PAACE type as primary and set the coherency required domain |
| * attribute |
| */ |
| static void pamu_init_ppaace(struct paace *ppaace) |
| { |
| set_bf(ppaace->addr_bitfields, PAACE_AF_PT, PAACE_PT_PRIMARY); |
| |
| set_bf(ppaace->domain_attr.to_host.coherency_required, PAACE_DA_HOST_CR, |
| PAACE_M_COHERENCE_REQ); |
| } |
| |
| /* |
| * Function used for updating stash destination for the coressponding |
| * LIODN. |
| */ |
| int pamu_update_paace_stash(int liodn, u32 value) |
| { |
| struct paace *paace; |
| |
| paace = pamu_get_ppaace(liodn); |
| if (!paace) { |
| pr_debug("Invalid liodn entry\n"); |
| return -ENOENT; |
| } |
| set_bf(paace->impl_attr, PAACE_IA_CID, value); |
| |
| mb(); |
| |
| return 0; |
| } |
| |
| /** |
| * pamu_config_paace() - Sets up PPAACE entry for specified liodn |
| * |
| * @liodn: Logical IO device number |
| * @win_addr: starting address of DSA window |
| * @win-size: size of DSA window |
| * @omi: Operation mapping index -- if ~omi == 0 then omi not defined |
| * @stashid: cache stash id for associated cpu -- if ~stashid == 0 then |
| * stashid not defined |
| * @prot: window permissions |
| * |
| * Returns 0 upon success else error code < 0 returned |
| */ |
| int pamu_config_ppaace(int liodn, phys_addr_t win_addr, phys_addr_t win_size, |
| u32 omi, u32 stashid, int prot) |
| { |
| struct paace *ppaace; |
| |
| if ((win_size & (win_size - 1)) || win_size < PAMU_PAGE_SIZE) { |
| pr_debug("window size too small or not a power of two %pa\n", |
| &win_size); |
| return -EINVAL; |
| } |
| |
| if (win_addr & (win_size - 1)) { |
| pr_debug("window address is not aligned with window size\n"); |
| return -EINVAL; |
| } |
| |
| ppaace = pamu_get_ppaace(liodn); |
| if (!ppaace) |
| return -ENOENT; |
| |
| /* window size is 2^(WSE+1) bytes */ |
| set_bf(ppaace->addr_bitfields, PPAACE_AF_WSE, |
| map_addrspace_size_to_wse(win_size)); |
| |
| pamu_init_ppaace(ppaace); |
| |
| ppaace->wbah = win_addr >> (PAMU_PAGE_SHIFT + 20); |
| set_bf(ppaace->addr_bitfields, PPAACE_AF_WBAL, |
| (win_addr >> PAMU_PAGE_SHIFT)); |
| |
| /* set up operation mapping if it's configured */ |
| if (omi < OME_NUMBER_ENTRIES) { |
| set_bf(ppaace->impl_attr, PAACE_IA_OTM, PAACE_OTM_INDEXED); |
| ppaace->op_encode.index_ot.omi = omi; |
| } else if (~omi != 0) { |
| pr_debug("bad operation mapping index: %d\n", omi); |
| return -EINVAL; |
| } |
| |
| /* configure stash id */ |
| if (~stashid != 0) |
| set_bf(ppaace->impl_attr, PAACE_IA_CID, stashid); |
| |
| set_bf(ppaace->impl_attr, PAACE_IA_ATM, PAACE_ATM_WINDOW_XLATE); |
| ppaace->twbah = 0; |
| set_bf(ppaace->win_bitfields, PAACE_WIN_TWBAL, 0); |
| set_bf(ppaace->addr_bitfields, PAACE_AF_AP, prot); |
| set_bf(ppaace->impl_attr, PAACE_IA_WCE, 0); |
| set_bf(ppaace->addr_bitfields, PPAACE_AF_MW, 0); |
| mb(); |
| |
| return 0; |
| } |
| |
| /** |
| * get_ome_index() - Returns the index in the operation mapping table |
| * for device. |
| * @*omi_index: pointer for storing the index value |
| * |
| */ |
| void get_ome_index(u32 *omi_index, struct device *dev) |
| { |
| if (of_device_is_compatible(dev->of_node, "fsl,qman-portal")) |
| *omi_index = OMI_QMAN; |
| if (of_device_is_compatible(dev->of_node, "fsl,qman")) |
| *omi_index = OMI_QMAN_PRIV; |
| } |
| |
| /** |
| * get_stash_id - Returns stash destination id corresponding to a |
| * cache type and vcpu. |
| * @stash_dest_hint: L1, L2 or L3 |
| * @vcpu: vpcu target for a particular cache type. |
| * |
| * Returs stash on success or ~(u32)0 on failure. |
| * |
| */ |
| u32 get_stash_id(u32 stash_dest_hint, u32 vcpu) |
| { |
| const u32 *prop; |
| struct device_node *node; |
| u32 cache_level; |
| int len, found = 0; |
| int i; |
| |
| /* Fastpath, exit early if L3/CPC cache is target for stashing */ |
| if (stash_dest_hint == PAMU_ATTR_CACHE_L3) { |
| node = of_find_matching_node(NULL, l3_device_ids); |
| if (node) { |
| prop = of_get_property(node, "cache-stash-id", NULL); |
| if (!prop) { |
| pr_debug("missing cache-stash-id at %pOF\n", |
| node); |
| of_node_put(node); |
| return ~(u32)0; |
| } |
| of_node_put(node); |
| return be32_to_cpup(prop); |
| } |
| return ~(u32)0; |
| } |
| |
| for_each_of_cpu_node(node) { |
| prop = of_get_property(node, "reg", &len); |
| for (i = 0; i < len / sizeof(u32); i++) { |
| if (be32_to_cpup(&prop[i]) == vcpu) { |
| found = 1; |
| goto found_cpu_node; |
| } |
| } |
| } |
| found_cpu_node: |
| |
| /* find the hwnode that represents the cache */ |
| for (cache_level = PAMU_ATTR_CACHE_L1; (cache_level < PAMU_ATTR_CACHE_L3) && found; cache_level++) { |
| if (stash_dest_hint == cache_level) { |
| prop = of_get_property(node, "cache-stash-id", NULL); |
| if (!prop) { |
| pr_debug("missing cache-stash-id at %pOF\n", |
| node); |
| of_node_put(node); |
| return ~(u32)0; |
| } |
| of_node_put(node); |
| return be32_to_cpup(prop); |
| } |
| |
| prop = of_get_property(node, "next-level-cache", NULL); |
| if (!prop) { |
| pr_debug("can't find next-level-cache at %pOF\n", node); |
| of_node_put(node); |
| return ~(u32)0; /* can't traverse any further */ |
| } |
| of_node_put(node); |
| |
| /* advance to next node in cache hierarchy */ |
| node = of_find_node_by_phandle(*prop); |
| if (!node) { |
| pr_debug("Invalid node for cache hierarchy\n"); |
| return ~(u32)0; |
| } |
| } |
| |
| pr_debug("stash dest not found for %d on vcpu %d\n", |
| stash_dest_hint, vcpu); |
| return ~(u32)0; |
| } |
| |
| /* Identify if the PAACT table entry belongs to QMAN, BMAN or QMAN Portal */ |
| #define QMAN_PAACE 1 |
| #define QMAN_PORTAL_PAACE 2 |
| #define BMAN_PAACE 3 |
| |
| /** |
| * Setup operation mapping and stash destinations for QMAN and QMAN portal. |
| * Memory accesses to QMAN and BMAN private memory need not be coherent, so |
| * clear the PAACE entry coherency attribute for them. |
| */ |
| static void setup_qbman_paace(struct paace *ppaace, int paace_type) |
| { |
| switch (paace_type) { |
| case QMAN_PAACE: |
| set_bf(ppaace->impl_attr, PAACE_IA_OTM, PAACE_OTM_INDEXED); |
| ppaace->op_encode.index_ot.omi = OMI_QMAN_PRIV; |
| /* setup QMAN Private data stashing for the L3 cache */ |
| set_bf(ppaace->impl_attr, PAACE_IA_CID, get_stash_id(PAMU_ATTR_CACHE_L3, 0)); |
| set_bf(ppaace->domain_attr.to_host.coherency_required, PAACE_DA_HOST_CR, |
| 0); |
| break; |
| case QMAN_PORTAL_PAACE: |
| set_bf(ppaace->impl_attr, PAACE_IA_OTM, PAACE_OTM_INDEXED); |
| ppaace->op_encode.index_ot.omi = OMI_QMAN; |
| /* Set DQRR and Frame stashing for the L3 cache */ |
| set_bf(ppaace->impl_attr, PAACE_IA_CID, get_stash_id(PAMU_ATTR_CACHE_L3, 0)); |
| break; |
| case BMAN_PAACE: |
| set_bf(ppaace->domain_attr.to_host.coherency_required, PAACE_DA_HOST_CR, |
| 0); |
| break; |
| } |
| } |
| |
| /** |
| * Setup the operation mapping table for various devices. This is a static |
| * table where each table index corresponds to a particular device. PAMU uses |
| * this table to translate device transaction to appropriate corenet |
| * transaction. |
| */ |
| static void setup_omt(struct ome *omt) |
| { |
| struct ome *ome; |
| |
| /* Configure OMI_QMAN */ |
| ome = &omt[OMI_QMAN]; |
| |
| ome->moe[IOE_READ_IDX] = EOE_VALID | EOE_READ; |
| ome->moe[IOE_EREAD0_IDX] = EOE_VALID | EOE_RSA; |
| ome->moe[IOE_WRITE_IDX] = EOE_VALID | EOE_WRITE; |
| ome->moe[IOE_EWRITE0_IDX] = EOE_VALID | EOE_WWSAO; |
| |
| ome->moe[IOE_DIRECT0_IDX] = EOE_VALID | EOE_LDEC; |
| ome->moe[IOE_DIRECT1_IDX] = EOE_VALID | EOE_LDECPE; |
| |
| /* Configure OMI_FMAN */ |
| ome = &omt[OMI_FMAN]; |
| ome->moe[IOE_READ_IDX] = EOE_VALID | EOE_READI; |
| ome->moe[IOE_WRITE_IDX] = EOE_VALID | EOE_WRITE; |
| |
| /* Configure OMI_QMAN private */ |
| ome = &omt[OMI_QMAN_PRIV]; |
| ome->moe[IOE_READ_IDX] = EOE_VALID | EOE_READ; |
| ome->moe[IOE_WRITE_IDX] = EOE_VALID | EOE_WRITE; |
| ome->moe[IOE_EREAD0_IDX] = EOE_VALID | EOE_RSA; |
| ome->moe[IOE_EWRITE0_IDX] = EOE_VALID | EOE_WWSA; |
| |
| /* Configure OMI_CAAM */ |
| ome = &omt[OMI_CAAM]; |
| ome->moe[IOE_READ_IDX] = EOE_VALID | EOE_READI; |
| ome->moe[IOE_WRITE_IDX] = EOE_VALID | EOE_WRITE; |
| } |
| |
| /* |
| * Get the maximum number of PAACT table entries |
| * and subwindows supported by PAMU |
| */ |
| static void get_pamu_cap_values(unsigned long pamu_reg_base) |
| { |
| u32 pc_val; |
| |
| pc_val = in_be32((u32 *)(pamu_reg_base + PAMU_PC3)); |
| /* Maximum number of subwindows per liodn */ |
| max_subwindow_count = 1 << (1 + PAMU_PC3_MWCE(pc_val)); |
| } |
| |
| /* Setup PAMU registers pointing to PAACT, SPAACT and OMT */ |
| static int setup_one_pamu(unsigned long pamu_reg_base, unsigned long pamu_reg_size, |
| phys_addr_t ppaact_phys, phys_addr_t spaact_phys, |
| phys_addr_t omt_phys) |
| { |
| u32 *pc; |
| struct pamu_mmap_regs *pamu_regs; |
| |
| pc = (u32 *) (pamu_reg_base + PAMU_PC); |
| pamu_regs = (struct pamu_mmap_regs *) |
| (pamu_reg_base + PAMU_MMAP_REGS_BASE); |
| |
| /* set up pointers to corenet control blocks */ |
| |
| out_be32(&pamu_regs->ppbah, upper_32_bits(ppaact_phys)); |
| out_be32(&pamu_regs->ppbal, lower_32_bits(ppaact_phys)); |
| ppaact_phys = ppaact_phys + PAACT_SIZE; |
| out_be32(&pamu_regs->pplah, upper_32_bits(ppaact_phys)); |
| out_be32(&pamu_regs->pplal, lower_32_bits(ppaact_phys)); |
| |
| out_be32(&pamu_regs->spbah, upper_32_bits(spaact_phys)); |
| out_be32(&pamu_regs->spbal, lower_32_bits(spaact_phys)); |
| spaact_phys = spaact_phys + SPAACT_SIZE; |
| out_be32(&pamu_regs->splah, upper_32_bits(spaact_phys)); |
| out_be32(&pamu_regs->splal, lower_32_bits(spaact_phys)); |
| |
| out_be32(&pamu_regs->obah, upper_32_bits(omt_phys)); |
| out_be32(&pamu_regs->obal, lower_32_bits(omt_phys)); |
| omt_phys = omt_phys + OMT_SIZE; |
| out_be32(&pamu_regs->olah, upper_32_bits(omt_phys)); |
| out_be32(&pamu_regs->olal, lower_32_bits(omt_phys)); |
| |
| /* |
| * set PAMU enable bit, |
| * allow ppaact & omt to be cached |
| * & enable PAMU access violation interrupts. |
| */ |
| |
| out_be32((u32 *)(pamu_reg_base + PAMU_PICS), |
| PAMU_ACCESS_VIOLATION_ENABLE); |
| out_be32(pc, PAMU_PC_PE | PAMU_PC_OCE | PAMU_PC_SPCC | PAMU_PC_PPCC); |
| return 0; |
| } |
| |
| /* Enable all device LIODNS */ |
| static void setup_liodns(void) |
| { |
| int i, len; |
| struct paace *ppaace; |
| struct device_node *node = NULL; |
| const u32 *prop; |
| |
| for_each_node_with_property(node, "fsl,liodn") { |
| prop = of_get_property(node, "fsl,liodn", &len); |
| for (i = 0; i < len / sizeof(u32); i++) { |
| int liodn; |
| |
| liodn = be32_to_cpup(&prop[i]); |
| if (liodn >= PAACE_NUMBER_ENTRIES) { |
| pr_debug("Invalid LIODN value %d\n", liodn); |
| continue; |
| } |
| ppaace = pamu_get_ppaace(liodn); |
| pamu_init_ppaace(ppaace); |
| /* window size is 2^(WSE+1) bytes */ |
| set_bf(ppaace->addr_bitfields, PPAACE_AF_WSE, 35); |
| ppaace->wbah = 0; |
| set_bf(ppaace->addr_bitfields, PPAACE_AF_WBAL, 0); |
| set_bf(ppaace->impl_attr, PAACE_IA_ATM, |
| PAACE_ATM_NO_XLATE); |
| set_bf(ppaace->addr_bitfields, PAACE_AF_AP, |
| PAACE_AP_PERMS_ALL); |
| if (of_device_is_compatible(node, "fsl,qman-portal")) |
| setup_qbman_paace(ppaace, QMAN_PORTAL_PAACE); |
| if (of_device_is_compatible(node, "fsl,qman")) |
| setup_qbman_paace(ppaace, QMAN_PAACE); |
| if (of_device_is_compatible(node, "fsl,bman")) |
| setup_qbman_paace(ppaace, BMAN_PAACE); |
| mb(); |
| pamu_enable_liodn(liodn); |
| } |
| } |
| } |
| |
| static irqreturn_t pamu_av_isr(int irq, void *arg) |
| { |
| struct pamu_isr_data *data = arg; |
| phys_addr_t phys; |
| unsigned int i, j, ret; |
| |
| pr_emerg("access violation interrupt\n"); |
| |
| for (i = 0; i < data->count; i++) { |
| void __iomem *p = data->pamu_reg_base + i * PAMU_OFFSET; |
| u32 pics = in_be32(p + PAMU_PICS); |
| |
| if (pics & PAMU_ACCESS_VIOLATION_STAT) { |
| u32 avs1 = in_be32(p + PAMU_AVS1); |
| struct paace *paace; |
| |
| pr_emerg("POES1=%08x\n", in_be32(p + PAMU_POES1)); |
| pr_emerg("POES2=%08x\n", in_be32(p + PAMU_POES2)); |
| pr_emerg("AVS1=%08x\n", avs1); |
| pr_emerg("AVS2=%08x\n", in_be32(p + PAMU_AVS2)); |
| pr_emerg("AVA=%016llx\n", |
| make64(in_be32(p + PAMU_AVAH), |
| in_be32(p + PAMU_AVAL))); |
| pr_emerg("UDAD=%08x\n", in_be32(p + PAMU_UDAD)); |
| pr_emerg("POEA=%016llx\n", |
| make64(in_be32(p + PAMU_POEAH), |
| in_be32(p + PAMU_POEAL))); |
| |
| phys = make64(in_be32(p + PAMU_POEAH), |
| in_be32(p + PAMU_POEAL)); |
| |
| /* Assume that POEA points to a PAACE */ |
| if (phys) { |
| u32 *paace = phys_to_virt(phys); |
| |
| /* Only the first four words are relevant */ |
| for (j = 0; j < 4; j++) |
| pr_emerg("PAACE[%u]=%08x\n", |
| j, in_be32(paace + j)); |
| } |
| |
| /* clear access violation condition */ |
| out_be32(p + PAMU_AVS1, avs1 & PAMU_AV_MASK); |
| paace = pamu_get_ppaace(avs1 >> PAMU_AVS1_LIODN_SHIFT); |
| BUG_ON(!paace); |
| /* check if we got a violation for a disabled LIODN */ |
| if (!get_bf(paace->addr_bitfields, PAACE_AF_V)) { |
| /* |
| * As per hardware erratum A-003638, access |
| * violation can be reported for a disabled |
| * LIODN. If we hit that condition, disable |
| * access violation reporting. |
| */ |
| pics &= ~PAMU_ACCESS_VIOLATION_ENABLE; |
| } else { |
| /* Disable the LIODN */ |
| ret = pamu_disable_liodn(avs1 >> PAMU_AVS1_LIODN_SHIFT); |
| BUG_ON(ret); |
| pr_emerg("Disabling liodn %x\n", |
| avs1 >> PAMU_AVS1_LIODN_SHIFT); |
| } |
| out_be32((p + PAMU_PICS), pics); |
| } |
| } |
| |
| return IRQ_HANDLED; |
| } |
| |
| #define LAWAR_EN 0x80000000 |
| #define LAWAR_TARGET_MASK 0x0FF00000 |
| #define LAWAR_TARGET_SHIFT 20 |
| #define LAWAR_SIZE_MASK 0x0000003F |
| #define LAWAR_CSDID_MASK 0x000FF000 |
| #define LAWAR_CSDID_SHIFT 12 |
| |
| #define LAW_SIZE_4K 0xb |
| |
| struct ccsr_law { |
| u32 lawbarh; /* LAWn base address high */ |
| u32 lawbarl; /* LAWn base address low */ |
| u32 lawar; /* LAWn attributes */ |
| u32 reserved; |
| }; |
| |
| /* |
| * Create a coherence subdomain for a given memory block. |
| */ |
| static int create_csd(phys_addr_t phys, size_t size, u32 csd_port_id) |
| { |
| struct device_node *np; |
| const __be32 *iprop; |
| void __iomem *lac = NULL; /* Local Access Control registers */ |
| struct ccsr_law __iomem *law; |
| void __iomem *ccm = NULL; |
| u32 __iomem *csdids; |
| unsigned int i, num_laws, num_csds; |
| u32 law_target = 0; |
| u32 csd_id = 0; |
| int ret = 0; |
| |
| np = of_find_compatible_node(NULL, NULL, "fsl,corenet-law"); |
| if (!np) |
| return -ENODEV; |
| |
| iprop = of_get_property(np, "fsl,num-laws", NULL); |
| if (!iprop) { |
| ret = -ENODEV; |
| goto error; |
| } |
| |
| num_laws = be32_to_cpup(iprop); |
| if (!num_laws) { |
| ret = -ENODEV; |
| goto error; |
| } |
| |
| lac = of_iomap(np, 0); |
| if (!lac) { |
| ret = -ENODEV; |
| goto error; |
| } |
| |
| /* LAW registers are at offset 0xC00 */ |
| law = lac + 0xC00; |
| |
| of_node_put(np); |
| |
| np = of_find_compatible_node(NULL, NULL, "fsl,corenet-cf"); |
| if (!np) { |
| ret = -ENODEV; |
| goto error; |
| } |
| |
| iprop = of_get_property(np, "fsl,ccf-num-csdids", NULL); |
| if (!iprop) { |
| ret = -ENODEV; |
| goto error; |
| } |
| |
| num_csds = be32_to_cpup(iprop); |
| if (!num_csds) { |
| ret = -ENODEV; |
| goto error; |
| } |
| |
| ccm = of_iomap(np, 0); |
| if (!ccm) { |
| ret = -ENOMEM; |
| goto error; |
| } |
| |
| /* The undocumented CSDID registers are at offset 0x600 */ |
| csdids = ccm + 0x600; |
| |
| of_node_put(np); |
| np = NULL; |
| |
| /* Find an unused coherence subdomain ID */ |
| for (csd_id = 0; csd_id < num_csds; csd_id++) { |
| if (!csdids[csd_id]) |
| break; |
| } |
| |
| /* Store the Port ID in the (undocumented) proper CIDMRxx register */ |
| csdids[csd_id] = csd_port_id; |
| |
| /* Find the DDR LAW that maps to our buffer. */ |
| for (i = 0; i < num_laws; i++) { |
| if (law[i].lawar & LAWAR_EN) { |
| phys_addr_t law_start, law_end; |
| |
| law_start = make64(law[i].lawbarh, law[i].lawbarl); |
| law_end = law_start + |
| (2ULL << (law[i].lawar & LAWAR_SIZE_MASK)); |
| |
| if (law_start <= phys && phys < law_end) { |
| law_target = law[i].lawar & LAWAR_TARGET_MASK; |
| break; |
| } |
| } |
| } |
| |
| if (i == 0 || i == num_laws) { |
| /* This should never happen */ |
| ret = -ENOENT; |
| goto error; |
| } |
| |
| /* Find a free LAW entry */ |
| while (law[--i].lawar & LAWAR_EN) { |
| if (i == 0) { |
| /* No higher priority LAW slots available */ |
| ret = -ENOENT; |
| goto error; |
| } |
| } |
| |
| law[i].lawbarh = upper_32_bits(phys); |
| law[i].lawbarl = lower_32_bits(phys); |
| wmb(); |
| law[i].lawar = LAWAR_EN | law_target | (csd_id << LAWAR_CSDID_SHIFT) | |
| (LAW_SIZE_4K + get_order(size)); |
| wmb(); |
| |
| error: |
| if (ccm) |
| iounmap(ccm); |
| |
| if (lac) |
| iounmap(lac); |
| |
| if (np) |
| of_node_put(np); |
| |
| return ret; |
| } |
| |
| /* |
| * Table of SVRs and the corresponding PORT_ID values. Port ID corresponds to a |
| * bit map of snoopers for a given range of memory mapped by a LAW. |
| * |
| * All future CoreNet-enabled SOCs will have this erratum(A-004510) fixed, so this |
| * table should never need to be updated. SVRs are guaranteed to be unique, so |
| * there is no worry that a future SOC will inadvertently have one of these |
| * values. |
| */ |
| static const struct { |
| u32 svr; |
| u32 port_id; |
| } port_id_map[] = { |
| {(SVR_P2040 << 8) | 0x10, 0xFF000000}, /* P2040 1.0 */ |
| {(SVR_P2040 << 8) | 0x11, 0xFF000000}, /* P2040 1.1 */ |
| {(SVR_P2041 << 8) | 0x10, 0xFF000000}, /* P2041 1.0 */ |
| {(SVR_P2041 << 8) | 0x11, 0xFF000000}, /* P2041 1.1 */ |
| {(SVR_P3041 << 8) | 0x10, 0xFF000000}, /* P3041 1.0 */ |
| {(SVR_P3041 << 8) | 0x11, 0xFF000000}, /* P3041 1.1 */ |
| {(SVR_P4040 << 8) | 0x20, 0xFFF80000}, /* P4040 2.0 */ |
| {(SVR_P4080 << 8) | 0x20, 0xFFF80000}, /* P4080 2.0 */ |
| {(SVR_P5010 << 8) | 0x10, 0xFC000000}, /* P5010 1.0 */ |
| {(SVR_P5010 << 8) | 0x20, 0xFC000000}, /* P5010 2.0 */ |
| {(SVR_P5020 << 8) | 0x10, 0xFC000000}, /* P5020 1.0 */ |
| {(SVR_P5021 << 8) | 0x10, 0xFF800000}, /* P5021 1.0 */ |
| {(SVR_P5040 << 8) | 0x10, 0xFF800000}, /* P5040 1.0 */ |
| }; |
| |
| #define SVR_SECURITY 0x80000 /* The Security (E) bit */ |
| |
| static int fsl_pamu_probe(struct platform_device *pdev) |
| { |
| struct device *dev = &pdev->dev; |
| void __iomem *pamu_regs = NULL; |
| struct ccsr_guts __iomem *guts_regs = NULL; |
| u32 pamubypenr, pamu_counter; |
| unsigned long pamu_reg_off; |
| unsigned long pamu_reg_base; |
| struct pamu_isr_data *data = NULL; |
| struct device_node *guts_node; |
| u64 size; |
| struct page *p; |
| int ret = 0; |
| int irq; |
| phys_addr_t ppaact_phys; |
| phys_addr_t spaact_phys; |
| struct ome *omt; |
| phys_addr_t omt_phys; |
| size_t mem_size = 0; |
| unsigned int order = 0; |
| u32 csd_port_id = 0; |
| unsigned i; |
| /* |
| * enumerate all PAMUs and allocate and setup PAMU tables |
| * for each of them, |
| * NOTE : All PAMUs share the same LIODN tables. |
| */ |
| |
| if (WARN_ON(probed)) |
| return -EBUSY; |
| |
| pamu_regs = of_iomap(dev->of_node, 0); |
| if (!pamu_regs) { |
| dev_err(dev, "ioremap of PAMU node failed\n"); |
| return -ENOMEM; |
| } |
| of_get_address(dev->of_node, 0, &size, NULL); |
| |
| irq = irq_of_parse_and_map(dev->of_node, 0); |
| if (irq == NO_IRQ) { |
| dev_warn(dev, "no interrupts listed in PAMU node\n"); |
| goto error; |
| } |
| |
| data = kzalloc(sizeof(*data), GFP_KERNEL); |
| if (!data) { |
| ret = -ENOMEM; |
| goto error; |
| } |
| data->pamu_reg_base = pamu_regs; |
| data->count = size / PAMU_OFFSET; |
| |
| /* The ISR needs access to the regs, so we won't iounmap them */ |
| ret = request_irq(irq, pamu_av_isr, 0, "pamu", data); |
| if (ret < 0) { |
| dev_err(dev, "error %i installing ISR for irq %i\n", ret, irq); |
| goto error; |
| } |
| |
| guts_node = of_find_matching_node(NULL, guts_device_ids); |
| if (!guts_node) { |
| dev_err(dev, "could not find GUTS node %pOF\n", dev->of_node); |
| ret = -ENODEV; |
| goto error; |
| } |
| |
| guts_regs = of_iomap(guts_node, 0); |
| of_node_put(guts_node); |
| if (!guts_regs) { |
| dev_err(dev, "ioremap of GUTS node failed\n"); |
| ret = -ENODEV; |
| goto error; |
| } |
| |
| /* read in the PAMU capability registers */ |
| get_pamu_cap_values((unsigned long)pamu_regs); |
| /* |
| * To simplify the allocation of a coherency domain, we allocate the |
| * PAACT and the OMT in the same memory buffer. Unfortunately, this |
| * wastes more memory compared to allocating the buffers separately. |
| */ |
| /* Determine how much memory we need */ |
| mem_size = (PAGE_SIZE << get_order(PAACT_SIZE)) + |
| (PAGE_SIZE << get_order(SPAACT_SIZE)) + |
| (PAGE_SIZE << get_order(OMT_SIZE)); |
| order = get_order(mem_size); |
| |
| p = alloc_pages(GFP_KERNEL | __GFP_ZERO, order); |
| if (!p) { |
| dev_err(dev, "unable to allocate PAACT/SPAACT/OMT block\n"); |
| ret = -ENOMEM; |
| goto error; |
| } |
| |
| ppaact = page_address(p); |
| ppaact_phys = page_to_phys(p); |
| |
| /* Make sure the memory is naturally aligned */ |
| if (ppaact_phys & ((PAGE_SIZE << order) - 1)) { |
| dev_err(dev, "PAACT/OMT block is unaligned\n"); |
| ret = -ENOMEM; |
| goto error; |
| } |
| |
| spaact = (void *)ppaact + (PAGE_SIZE << get_order(PAACT_SIZE)); |
| omt = (void *)spaact + (PAGE_SIZE << get_order(SPAACT_SIZE)); |
| |
| dev_dbg(dev, "ppaact virt=%p phys=%pa\n", ppaact, &ppaact_phys); |
| |
| /* Check to see if we need to implement the work-around on this SOC */ |
| |
| /* Determine the Port ID for our coherence subdomain */ |
| for (i = 0; i < ARRAY_SIZE(port_id_map); i++) { |
| if (port_id_map[i].svr == (mfspr(SPRN_SVR) & ~SVR_SECURITY)) { |
| csd_port_id = port_id_map[i].port_id; |
| dev_dbg(dev, "found matching SVR %08x\n", |
| port_id_map[i].svr); |
| break; |
| } |
| } |
| |
| if (csd_port_id) { |
| dev_dbg(dev, "creating coherency subdomain at address %pa, size %zu, port id 0x%08x", |
| &ppaact_phys, mem_size, csd_port_id); |
| |
| ret = create_csd(ppaact_phys, mem_size, csd_port_id); |
| if (ret) { |
| dev_err(dev, "could not create coherence subdomain\n"); |
| return ret; |
| } |
| } |
| |
| spaact_phys = virt_to_phys(spaact); |
| omt_phys = virt_to_phys(omt); |
| |
| pamubypenr = in_be32(&guts_regs->pamubypenr); |
| |
| for (pamu_reg_off = 0, pamu_counter = 0x80000000; pamu_reg_off < size; |
| pamu_reg_off += PAMU_OFFSET, pamu_counter >>= 1) { |
| |
| pamu_reg_base = (unsigned long)pamu_regs + pamu_reg_off; |
| setup_one_pamu(pamu_reg_base, pamu_reg_off, ppaact_phys, |
| spaact_phys, omt_phys); |
| /* Disable PAMU bypass for this PAMU */ |
| pamubypenr &= ~pamu_counter; |
| } |
| |
| setup_omt(omt); |
| |
| /* Enable all relevant PAMU(s) */ |
| out_be32(&guts_regs->pamubypenr, pamubypenr); |
| |
| iounmap(guts_regs); |
| |
| /* Enable DMA for the LIODNs in the device tree */ |
| |
| setup_liodns(); |
| |
| probed = true; |
| |
| return 0; |
| |
| error: |
| if (irq != NO_IRQ) |
| free_irq(irq, data); |
| |
| kfree_sensitive(data); |
| |
| if (pamu_regs) |
| iounmap(pamu_regs); |
| |
| if (guts_regs) |
| iounmap(guts_regs); |
| |
| if (ppaact) |
| free_pages((unsigned long)ppaact, order); |
| |
| ppaact = NULL; |
| |
| return ret; |
| } |
| |
| static struct platform_driver fsl_of_pamu_driver = { |
| .driver = { |
| .name = "fsl-of-pamu", |
| }, |
| .probe = fsl_pamu_probe, |
| }; |
| |
| static __init int fsl_pamu_init(void) |
| { |
| struct platform_device *pdev = NULL; |
| struct device_node *np; |
| int ret; |
| |
| /* |
| * The normal OF process calls the probe function at some |
| * indeterminate later time, after most drivers have loaded. This is |
| * too late for us, because PAMU clients (like the Qman driver) |
| * depend on PAMU being initialized early. |
| * |
| * So instead, we "manually" call our probe function by creating the |
| * platform devices ourselves. |
| */ |
| |
| /* |
| * We assume that there is only one PAMU node in the device tree. A |
| * single PAMU node represents all of the PAMU devices in the SOC |
| * already. Everything else already makes that assumption, and the |
| * binding for the PAMU nodes doesn't allow for any parent-child |
| * relationships anyway. In other words, support for more than one |
| * PAMU node would require significant changes to a lot of code. |
| */ |
| |
| np = of_find_compatible_node(NULL, NULL, "fsl,pamu"); |
| if (!np) { |
| pr_err("could not find a PAMU node\n"); |
| return -ENODEV; |
| } |
| |
| ret = platform_driver_register(&fsl_of_pamu_driver); |
| if (ret) { |
| pr_err("could not register driver (err=%i)\n", ret); |
| goto error_driver_register; |
| } |
| |
| pdev = platform_device_alloc("fsl-of-pamu", 0); |
| if (!pdev) { |
| pr_err("could not allocate device %pOF\n", np); |
| ret = -ENOMEM; |
| goto error_device_alloc; |
| } |
| pdev->dev.of_node = of_node_get(np); |
| |
| ret = pamu_domain_init(); |
| if (ret) |
| goto error_device_add; |
| |
| ret = platform_device_add(pdev); |
| if (ret) { |
| pr_err("could not add device %pOF (err=%i)\n", np, ret); |
| goto error_device_add; |
| } |
| |
| return 0; |
| |
| error_device_add: |
| of_node_put(pdev->dev.of_node); |
| pdev->dev.of_node = NULL; |
| |
| platform_device_put(pdev); |
| |
| error_device_alloc: |
| platform_driver_unregister(&fsl_of_pamu_driver); |
| |
| error_driver_register: |
| of_node_put(np); |
| |
| return ret; |
| } |
| arch_initcall(fsl_pamu_init); |