blob: a56f6b1ef78db16fafe48d2500ae01f6aa4d5ae0 [file] [log] [blame]
/*
* Copyright © 2012 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
* Authors:
* Eugeni Dodonov <eugeni.dodonov@intel.com>
*
*/
#include <linux/cpufreq.h>
#include "i915_drv.h"
#include "intel_drv.h"
#include "../../../platform/x86/intel_ips.h"
#include <linux/module.h>
#include <linux/vgaarb.h>
#include <drm/i915_powerwell.h>
#include <linux/pm_runtime.h>
/**
* RC6 is a special power stage which allows the GPU to enter an very
* low-voltage mode when idle, using down to 0V while at this stage. This
* stage is entered automatically when the GPU is idle when RC6 support is
* enabled, and as soon as new workload arises GPU wakes up automatically as well.
*
* There are different RC6 modes available in Intel GPU, which differentiate
* among each other with the latency required to enter and leave RC6 and
* voltage consumed by the GPU in different states.
*
* The combination of the following flags define which states GPU is allowed
* to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
* RC6pp is deepest RC6. Their support by hardware varies according to the
* GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
* which brings the most power savings; deeper states save more power, but
* require higher latency to switch to and wake up.
*/
#define INTEL_RC6_ENABLE (1<<0)
#define INTEL_RC6p_ENABLE (1<<1)
#define INTEL_RC6pp_ENABLE (1<<2)
/* FBC, or Frame Buffer Compression, is a technique employed to compress the
* framebuffer contents in-memory, aiming at reducing the required bandwidth
* during in-memory transfers and, therefore, reduce the power packet.
*
* The benefits of FBC are mostly visible with solid backgrounds and
* variation-less patterns.
*
* FBC-related functionality can be enabled by the means of the
* i915.i915_enable_fbc parameter
*/
static void i8xx_disable_fbc(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
u32 fbc_ctl;
/* Disable compression */
fbc_ctl = I915_READ(FBC_CONTROL);
if ((fbc_ctl & FBC_CTL_EN) == 0)
return;
fbc_ctl &= ~FBC_CTL_EN;
I915_WRITE(FBC_CONTROL, fbc_ctl);
/* Wait for compressing bit to clear */
if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10)) {
DRM_DEBUG_KMS("FBC idle timed out\n");
return;
}
DRM_DEBUG_KMS("disabled FBC\n");
}
static void i8xx_enable_fbc(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_framebuffer *fb = crtc->primary->fb;
struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
struct drm_i915_gem_object *obj = intel_fb->obj;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
int cfb_pitch;
int i;
u32 fbc_ctl;
cfb_pitch = dev_priv->fbc.size / FBC_LL_SIZE;
if (fb->pitches[0] < cfb_pitch)
cfb_pitch = fb->pitches[0];
/* FBC_CTL wants 32B or 64B units */
if (IS_GEN2(dev))
cfb_pitch = (cfb_pitch / 32) - 1;
else
cfb_pitch = (cfb_pitch / 64) - 1;
/* Clear old tags */
for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
I915_WRITE(FBC_TAG + (i * 4), 0);
if (IS_GEN4(dev)) {
u32 fbc_ctl2;
/* Set it up... */
fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | FBC_CTL_CPU_FENCE;
fbc_ctl2 |= FBC_CTL_PLANE(intel_crtc->plane);
I915_WRITE(FBC_CONTROL2, fbc_ctl2);
I915_WRITE(FBC_FENCE_OFF, crtc->y);
}
/* enable it... */
fbc_ctl = I915_READ(FBC_CONTROL);
fbc_ctl &= 0x3fff << FBC_CTL_INTERVAL_SHIFT;
fbc_ctl |= FBC_CTL_EN | FBC_CTL_PERIODIC;
if (IS_I945GM(dev))
fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
fbc_ctl |= (cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
fbc_ctl |= obj->fence_reg;
I915_WRITE(FBC_CONTROL, fbc_ctl);
DRM_DEBUG_KMS("enabled FBC, pitch %d, yoff %d, plane %c\n",
cfb_pitch, crtc->y, plane_name(intel_crtc->plane));
}
static bool i8xx_fbc_enabled(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
}
static void g4x_enable_fbc(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_framebuffer *fb = crtc->primary->fb;
struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
struct drm_i915_gem_object *obj = intel_fb->obj;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
u32 dpfc_ctl;
dpfc_ctl = DPFC_CTL_PLANE(intel_crtc->plane) | DPFC_SR_EN;
if (drm_format_plane_cpp(fb->pixel_format, 0) == 2)
dpfc_ctl |= DPFC_CTL_LIMIT_2X;
else
dpfc_ctl |= DPFC_CTL_LIMIT_1X;
dpfc_ctl |= DPFC_CTL_FENCE_EN | obj->fence_reg;
I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
/* enable it... */
I915_WRITE(DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
}
static void g4x_disable_fbc(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
u32 dpfc_ctl;
/* Disable compression */
dpfc_ctl = I915_READ(DPFC_CONTROL);
if (dpfc_ctl & DPFC_CTL_EN) {
dpfc_ctl &= ~DPFC_CTL_EN;
I915_WRITE(DPFC_CONTROL, dpfc_ctl);
DRM_DEBUG_KMS("disabled FBC\n");
}
}
static bool g4x_fbc_enabled(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
}
static void sandybridge_blit_fbc_update(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
u32 blt_ecoskpd;
/* Make sure blitter notifies FBC of writes */
/* Blitter is part of Media powerwell on VLV. No impact of
* his param in other platforms for now */
gen6_gt_force_wake_get(dev_priv, FORCEWAKE_MEDIA);
blt_ecoskpd = I915_READ(GEN6_BLITTER_ECOSKPD);
blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY <<
GEN6_BLITTER_LOCK_SHIFT;
I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY;
I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
blt_ecoskpd &= ~(GEN6_BLITTER_FBC_NOTIFY <<
GEN6_BLITTER_LOCK_SHIFT);
I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
POSTING_READ(GEN6_BLITTER_ECOSKPD);
gen6_gt_force_wake_put(dev_priv, FORCEWAKE_MEDIA);
}
static void ironlake_enable_fbc(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_framebuffer *fb = crtc->primary->fb;
struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
struct drm_i915_gem_object *obj = intel_fb->obj;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
u32 dpfc_ctl;
dpfc_ctl = DPFC_CTL_PLANE(intel_crtc->plane);
if (drm_format_plane_cpp(fb->pixel_format, 0) == 2)
dpfc_ctl |= DPFC_CTL_LIMIT_2X;
else
dpfc_ctl |= DPFC_CTL_LIMIT_1X;
dpfc_ctl |= DPFC_CTL_FENCE_EN;
if (IS_GEN5(dev))
dpfc_ctl |= obj->fence_reg;
I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
I915_WRITE(ILK_FBC_RT_BASE, i915_gem_obj_ggtt_offset(obj) | ILK_FBC_RT_VALID);
/* enable it... */
I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
if (IS_GEN6(dev)) {
I915_WRITE(SNB_DPFC_CTL_SA,
SNB_CPU_FENCE_ENABLE | obj->fence_reg);
I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
sandybridge_blit_fbc_update(dev);
}
DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
}
static void ironlake_disable_fbc(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
u32 dpfc_ctl;
/* Disable compression */
dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
if (dpfc_ctl & DPFC_CTL_EN) {
dpfc_ctl &= ~DPFC_CTL_EN;
I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
DRM_DEBUG_KMS("disabled FBC\n");
}
}
static bool ironlake_fbc_enabled(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
}
static void gen7_enable_fbc(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_framebuffer *fb = crtc->primary->fb;
struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
struct drm_i915_gem_object *obj = intel_fb->obj;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
u32 dpfc_ctl;
dpfc_ctl = IVB_DPFC_CTL_PLANE(intel_crtc->plane);
if (drm_format_plane_cpp(fb->pixel_format, 0) == 2)
dpfc_ctl |= DPFC_CTL_LIMIT_2X;
else
dpfc_ctl |= DPFC_CTL_LIMIT_1X;
dpfc_ctl |= IVB_DPFC_CTL_FENCE_EN;
I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
if (IS_IVYBRIDGE(dev)) {
/* WaFbcAsynchFlipDisableFbcQueue:ivb */
I915_WRITE(ILK_DISPLAY_CHICKEN1,
I915_READ(ILK_DISPLAY_CHICKEN1) |
ILK_FBCQ_DIS);
} else {
/* WaFbcAsynchFlipDisableFbcQueue:hsw,bdw */
I915_WRITE(CHICKEN_PIPESL_1(intel_crtc->pipe),
I915_READ(CHICKEN_PIPESL_1(intel_crtc->pipe)) |
HSW_FBCQ_DIS);
}
I915_WRITE(SNB_DPFC_CTL_SA,
SNB_CPU_FENCE_ENABLE | obj->fence_reg);
I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
sandybridge_blit_fbc_update(dev);
DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
}
bool intel_fbc_enabled(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
if (!dev_priv->display.fbc_enabled)
return false;
return dev_priv->display.fbc_enabled(dev);
}
static void intel_fbc_work_fn(struct work_struct *__work)
{
struct intel_fbc_work *work =
container_of(to_delayed_work(__work),
struct intel_fbc_work, work);
struct drm_device *dev = work->crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
mutex_lock(&dev->struct_mutex);
if (work == dev_priv->fbc.fbc_work) {
/* Double check that we haven't switched fb without cancelling
* the prior work.
*/
if (work->crtc->primary->fb == work->fb) {
dev_priv->display.enable_fbc(work->crtc);
dev_priv->fbc.plane = to_intel_crtc(work->crtc)->plane;
dev_priv->fbc.fb_id = work->crtc->primary->fb->base.id;
dev_priv->fbc.y = work->crtc->y;
}
dev_priv->fbc.fbc_work = NULL;
}
mutex_unlock(&dev->struct_mutex);
kfree(work);
}
static void intel_cancel_fbc_work(struct drm_i915_private *dev_priv)
{
if (dev_priv->fbc.fbc_work == NULL)
return;
DRM_DEBUG_KMS("cancelling pending FBC enable\n");
/* Synchronisation is provided by struct_mutex and checking of
* dev_priv->fbc.fbc_work, so we can perform the cancellation
* entirely asynchronously.
*/
if (cancel_delayed_work(&dev_priv->fbc.fbc_work->work))
/* tasklet was killed before being run, clean up */
kfree(dev_priv->fbc.fbc_work);
/* Mark the work as no longer wanted so that if it does
* wake-up (because the work was already running and waiting
* for our mutex), it will discover that is no longer
* necessary to run.
*/
dev_priv->fbc.fbc_work = NULL;
}
static void intel_enable_fbc(struct drm_crtc *crtc)
{
struct intel_fbc_work *work;
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
if (!dev_priv->display.enable_fbc)
return;
intel_cancel_fbc_work(dev_priv);
work = kzalloc(sizeof(*work), GFP_KERNEL);
if (work == NULL) {
DRM_ERROR("Failed to allocate FBC work structure\n");
dev_priv->display.enable_fbc(crtc);
return;
}
work->crtc = crtc;
work->fb = crtc->primary->fb;
INIT_DELAYED_WORK(&work->work, intel_fbc_work_fn);
dev_priv->fbc.fbc_work = work;
/* Delay the actual enabling to let pageflipping cease and the
* display to settle before starting the compression. Note that
* this delay also serves a second purpose: it allows for a
* vblank to pass after disabling the FBC before we attempt
* to modify the control registers.
*
* A more complicated solution would involve tracking vblanks
* following the termination of the page-flipping sequence
* and indeed performing the enable as a co-routine and not
* waiting synchronously upon the vblank.
*
* WaFbcWaitForVBlankBeforeEnable:ilk,snb
*/
schedule_delayed_work(&work->work, msecs_to_jiffies(50));
}
void intel_disable_fbc(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
intel_cancel_fbc_work(dev_priv);
if (!dev_priv->display.disable_fbc)
return;
dev_priv->display.disable_fbc(dev);
dev_priv->fbc.plane = -1;
}
static bool set_no_fbc_reason(struct drm_i915_private *dev_priv,
enum no_fbc_reason reason)
{
if (dev_priv->fbc.no_fbc_reason == reason)
return false;
dev_priv->fbc.no_fbc_reason = reason;
return true;
}
/**
* intel_update_fbc - enable/disable FBC as needed
* @dev: the drm_device
*
* Set up the framebuffer compression hardware at mode set time. We
* enable it if possible:
* - plane A only (on pre-965)
* - no pixel mulitply/line duplication
* - no alpha buffer discard
* - no dual wide
* - framebuffer <= max_hdisplay in width, max_vdisplay in height
*
* We can't assume that any compression will take place (worst case),
* so the compressed buffer has to be the same size as the uncompressed
* one. It also must reside (along with the line length buffer) in
* stolen memory.
*
* We need to enable/disable FBC on a global basis.
*/
void intel_update_fbc(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_crtc *crtc = NULL, *tmp_crtc;
struct intel_crtc *intel_crtc;
struct drm_framebuffer *fb;
struct intel_framebuffer *intel_fb;
struct drm_i915_gem_object *obj;
const struct drm_display_mode *adjusted_mode;
unsigned int max_width, max_height;
if (!HAS_FBC(dev)) {
set_no_fbc_reason(dev_priv, FBC_UNSUPPORTED);
return;
}
if (!i915.powersave) {
if (set_no_fbc_reason(dev_priv, FBC_MODULE_PARAM))
DRM_DEBUG_KMS("fbc disabled per module param\n");
return;
}
/*
* If FBC is already on, we just have to verify that we can
* keep it that way...
* Need to disable if:
* - more than one pipe is active
* - changing FBC params (stride, fence, mode)
* - new fb is too large to fit in compressed buffer
* - going to an unsupported config (interlace, pixel multiply, etc.)
*/
list_for_each_entry(tmp_crtc, &dev->mode_config.crtc_list, head) {
if (intel_crtc_active(tmp_crtc) &&
to_intel_crtc(tmp_crtc)->primary_enabled) {
if (crtc) {
if (set_no_fbc_reason(dev_priv, FBC_MULTIPLE_PIPES))
DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
goto out_disable;
}
crtc = tmp_crtc;
}
}
if (!crtc || crtc->primary->fb == NULL) {
if (set_no_fbc_reason(dev_priv, FBC_NO_OUTPUT))
DRM_DEBUG_KMS("no output, disabling\n");
goto out_disable;
}
intel_crtc = to_intel_crtc(crtc);
fb = crtc->primary->fb;
intel_fb = to_intel_framebuffer(fb);
obj = intel_fb->obj;
adjusted_mode = &intel_crtc->config.adjusted_mode;
if (i915.enable_fbc < 0 &&
INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev)) {
if (set_no_fbc_reason(dev_priv, FBC_CHIP_DEFAULT))
DRM_DEBUG_KMS("disabled per chip default\n");
goto out_disable;
}
if (!i915.enable_fbc) {
if (set_no_fbc_reason(dev_priv, FBC_MODULE_PARAM))
DRM_DEBUG_KMS("fbc disabled per module param\n");
goto out_disable;
}
if ((adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) ||
(adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN)) {
if (set_no_fbc_reason(dev_priv, FBC_UNSUPPORTED_MODE))
DRM_DEBUG_KMS("mode incompatible with compression, "
"disabling\n");
goto out_disable;
}
if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
max_width = 4096;
max_height = 2048;
} else {
max_width = 2048;
max_height = 1536;
}
if (intel_crtc->config.pipe_src_w > max_width ||
intel_crtc->config.pipe_src_h > max_height) {
if (set_no_fbc_reason(dev_priv, FBC_MODE_TOO_LARGE))
DRM_DEBUG_KMS("mode too large for compression, disabling\n");
goto out_disable;
}
if ((INTEL_INFO(dev)->gen < 4 || HAS_DDI(dev)) &&
intel_crtc->plane != PLANE_A) {
if (set_no_fbc_reason(dev_priv, FBC_BAD_PLANE))
DRM_DEBUG_KMS("plane not A, disabling compression\n");
goto out_disable;
}
/* The use of a CPU fence is mandatory in order to detect writes
* by the CPU to the scanout and trigger updates to the FBC.
*/
if (obj->tiling_mode != I915_TILING_X ||
obj->fence_reg == I915_FENCE_REG_NONE) {
if (set_no_fbc_reason(dev_priv, FBC_NOT_TILED))
DRM_DEBUG_KMS("framebuffer not tiled or fenced, disabling compression\n");
goto out_disable;
}
/* If the kernel debugger is active, always disable compression */
if (in_dbg_master())
goto out_disable;
if (i915_gem_stolen_setup_compression(dev, intel_fb->obj->base.size)) {
if (set_no_fbc_reason(dev_priv, FBC_STOLEN_TOO_SMALL))
DRM_DEBUG_KMS("framebuffer too large, disabling compression\n");
goto out_disable;
}
/* If the scanout has not changed, don't modify the FBC settings.
* Note that we make the fundamental assumption that the fb->obj
* cannot be unpinned (and have its GTT offset and fence revoked)
* without first being decoupled from the scanout and FBC disabled.
*/
if (dev_priv->fbc.plane == intel_crtc->plane &&
dev_priv->fbc.fb_id == fb->base.id &&
dev_priv->fbc.y == crtc->y)
return;
if (intel_fbc_enabled(dev)) {
/* We update FBC along two paths, after changing fb/crtc
* configuration (modeswitching) and after page-flipping
* finishes. For the latter, we know that not only did
* we disable the FBC at the start of the page-flip
* sequence, but also more than one vblank has passed.
*
* For the former case of modeswitching, it is possible
* to switch between two FBC valid configurations
* instantaneously so we do need to disable the FBC
* before we can modify its control registers. We also
* have to wait for the next vblank for that to take
* effect. However, since we delay enabling FBC we can
* assume that a vblank has passed since disabling and
* that we can safely alter the registers in the deferred
* callback.
*
* In the scenario that we go from a valid to invalid
* and then back to valid FBC configuration we have
* no strict enforcement that a vblank occurred since
* disabling the FBC. However, along all current pipe
* disabling paths we do need to wait for a vblank at
* some point. And we wait before enabling FBC anyway.
*/
DRM_DEBUG_KMS("disabling active FBC for update\n");
intel_disable_fbc(dev);
}
intel_enable_fbc(crtc);
dev_priv->fbc.no_fbc_reason = FBC_OK;
return;
out_disable:
/* Multiple disables should be harmless */
if (intel_fbc_enabled(dev)) {
DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
intel_disable_fbc(dev);
}
i915_gem_stolen_cleanup_compression(dev);
}
static void i915_pineview_get_mem_freq(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
u32 tmp;
tmp = I915_READ(CLKCFG);
switch (tmp & CLKCFG_FSB_MASK) {
case CLKCFG_FSB_533:
dev_priv->fsb_freq = 533; /* 133*4 */
break;
case CLKCFG_FSB_800:
dev_priv->fsb_freq = 800; /* 200*4 */
break;
case CLKCFG_FSB_667:
dev_priv->fsb_freq = 667; /* 167*4 */
break;
case CLKCFG_FSB_400:
dev_priv->fsb_freq = 400; /* 100*4 */
break;
}
switch (tmp & CLKCFG_MEM_MASK) {
case CLKCFG_MEM_533:
dev_priv->mem_freq = 533;
break;
case CLKCFG_MEM_667:
dev_priv->mem_freq = 667;
break;
case CLKCFG_MEM_800:
dev_priv->mem_freq = 800;
break;
}
/* detect pineview DDR3 setting */
tmp = I915_READ(CSHRDDR3CTL);
dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
}
static void i915_ironlake_get_mem_freq(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
u16 ddrpll, csipll;
ddrpll = I915_READ16(DDRMPLL1);
csipll = I915_READ16(CSIPLL0);
switch (ddrpll & 0xff) {
case 0xc:
dev_priv->mem_freq = 800;
break;
case 0x10:
dev_priv->mem_freq = 1066;
break;
case 0x14:
dev_priv->mem_freq = 1333;
break;
case 0x18:
dev_priv->mem_freq = 1600;
break;
default:
DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
ddrpll & 0xff);
dev_priv->mem_freq = 0;
break;
}
dev_priv->ips.r_t = dev_priv->mem_freq;
switch (csipll & 0x3ff) {
case 0x00c:
dev_priv->fsb_freq = 3200;
break;
case 0x00e:
dev_priv->fsb_freq = 3733;
break;
case 0x010:
dev_priv->fsb_freq = 4266;
break;
case 0x012:
dev_priv->fsb_freq = 4800;
break;
case 0x014:
dev_priv->fsb_freq = 5333;
break;
case 0x016:
dev_priv->fsb_freq = 5866;
break;
case 0x018:
dev_priv->fsb_freq = 6400;
break;
default:
DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
csipll & 0x3ff);
dev_priv->fsb_freq = 0;
break;
}
if (dev_priv->fsb_freq == 3200) {
dev_priv->ips.c_m = 0;
} else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
dev_priv->ips.c_m = 1;
} else {
dev_priv->ips.c_m = 2;
}
}
static const struct cxsr_latency cxsr_latency_table[] = {
{1, 0, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */
{1, 0, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */
{1, 0, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */
{1, 1, 800, 667, 6420, 36420, 6873, 36873}, /* DDR3-667 SC */
{1, 1, 800, 800, 5902, 35902, 6318, 36318}, /* DDR3-800 SC */
{1, 0, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */
{1, 0, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */
{1, 0, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */
{1, 1, 667, 667, 6438, 36438, 6911, 36911}, /* DDR3-667 SC */
{1, 1, 667, 800, 5941, 35941, 6377, 36377}, /* DDR3-800 SC */
{1, 0, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */
{1, 0, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */
{1, 0, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */
{1, 1, 400, 667, 6509, 36509, 7062, 37062}, /* DDR3-667 SC */
{1, 1, 400, 800, 5985, 35985, 6501, 36501}, /* DDR3-800 SC */
{0, 0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */
{0, 0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */
{0, 0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */
{0, 1, 800, 667, 6476, 36476, 6955, 36955}, /* DDR3-667 SC */
{0, 1, 800, 800, 5958, 35958, 6400, 36400}, /* DDR3-800 SC */
{0, 0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */
{0, 0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */
{0, 0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */
{0, 1, 667, 667, 6494, 36494, 6993, 36993}, /* DDR3-667 SC */
{0, 1, 667, 800, 5998, 35998, 6460, 36460}, /* DDR3-800 SC */
{0, 0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */
{0, 0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */
{0, 0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */
{0, 1, 400, 667, 6566, 36566, 7145, 37145}, /* DDR3-667 SC */
{0, 1, 400, 800, 6042, 36042, 6584, 36584}, /* DDR3-800 SC */
};
static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
int is_ddr3,
int fsb,
int mem)
{
const struct cxsr_latency *latency;
int i;
if (fsb == 0 || mem == 0)
return NULL;
for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
latency = &cxsr_latency_table[i];
if (is_desktop == latency->is_desktop &&
is_ddr3 == latency->is_ddr3 &&
fsb == latency->fsb_freq && mem == latency->mem_freq)
return latency;
}
DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
return NULL;
}
static void pineview_disable_cxsr(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
/* deactivate cxsr */
I915_WRITE(DSPFW3, I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN);
}
/*
* Latency for FIFO fetches is dependent on several factors:
* - memory configuration (speed, channels)
* - chipset
* - current MCH state
* It can be fairly high in some situations, so here we assume a fairly
* pessimal value. It's a tradeoff between extra memory fetches (if we
* set this value too high, the FIFO will fetch frequently to stay full)
* and power consumption (set it too low to save power and we might see
* FIFO underruns and display "flicker").
*
* A value of 5us seems to be a good balance; safe for very low end
* platforms but not overly aggressive on lower latency configs.
*/
static const int latency_ns = 5000;
static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
{
struct drm_i915_private *dev_priv = dev->dev_private;
uint32_t dsparb = I915_READ(DSPARB);
int size;
size = dsparb & 0x7f;
if (plane)
size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
plane ? "B" : "A", size);
return size;
}
static int i830_get_fifo_size(struct drm_device *dev, int plane)
{
struct drm_i915_private *dev_priv = dev->dev_private;
uint32_t dsparb = I915_READ(DSPARB);
int size;
size = dsparb & 0x1ff;
if (plane)
size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
size >>= 1; /* Convert to cachelines */
DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
plane ? "B" : "A", size);
return size;
}
static int i845_get_fifo_size(struct drm_device *dev, int plane)
{
struct drm_i915_private *dev_priv = dev->dev_private;
uint32_t dsparb = I915_READ(DSPARB);
int size;
size = dsparb & 0x7f;
size >>= 2; /* Convert to cachelines */
DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
plane ? "B" : "A",
size);
return size;
}
/* Pineview has different values for various configs */
static const struct intel_watermark_params pineview_display_wm = {
PINEVIEW_DISPLAY_FIFO,
PINEVIEW_MAX_WM,
PINEVIEW_DFT_WM,
PINEVIEW_GUARD_WM,
PINEVIEW_FIFO_LINE_SIZE
};
static const struct intel_watermark_params pineview_display_hplloff_wm = {
PINEVIEW_DISPLAY_FIFO,
PINEVIEW_MAX_WM,
PINEVIEW_DFT_HPLLOFF_WM,
PINEVIEW_GUARD_WM,
PINEVIEW_FIFO_LINE_SIZE
};
static const struct intel_watermark_params pineview_cursor_wm = {
PINEVIEW_CURSOR_FIFO,
PINEVIEW_CURSOR_MAX_WM,
PINEVIEW_CURSOR_DFT_WM,
PINEVIEW_CURSOR_GUARD_WM,
PINEVIEW_FIFO_LINE_SIZE,
};
static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
PINEVIEW_CURSOR_FIFO,
PINEVIEW_CURSOR_MAX_WM,
PINEVIEW_CURSOR_DFT_WM,
PINEVIEW_CURSOR_GUARD_WM,
PINEVIEW_FIFO_LINE_SIZE
};
static const struct intel_watermark_params g4x_wm_info = {
G4X_FIFO_SIZE,
G4X_MAX_WM,
G4X_MAX_WM,
2,
G4X_FIFO_LINE_SIZE,
};
static const struct intel_watermark_params g4x_cursor_wm_info = {
I965_CURSOR_FIFO,
I965_CURSOR_MAX_WM,
I965_CURSOR_DFT_WM,
2,
G4X_FIFO_LINE_SIZE,
};
static const struct intel_watermark_params valleyview_wm_info = {
VALLEYVIEW_FIFO_SIZE,
VALLEYVIEW_MAX_WM,
VALLEYVIEW_MAX_WM,
2,
G4X_FIFO_LINE_SIZE,
};
static const struct intel_watermark_params valleyview_cursor_wm_info = {
I965_CURSOR_FIFO,
VALLEYVIEW_CURSOR_MAX_WM,
I965_CURSOR_DFT_WM,
2,
G4X_FIFO_LINE_SIZE,
};
static const struct intel_watermark_params i965_cursor_wm_info = {
I965_CURSOR_FIFO,
I965_CURSOR_MAX_WM,
I965_CURSOR_DFT_WM,
2,
I915_FIFO_LINE_SIZE,
};
static const struct intel_watermark_params i945_wm_info = {
I945_FIFO_SIZE,
I915_MAX_WM,
1,
2,
I915_FIFO_LINE_SIZE
};
static const struct intel_watermark_params i915_wm_info = {
I915_FIFO_SIZE,
I915_MAX_WM,
1,
2,
I915_FIFO_LINE_SIZE
};
static const struct intel_watermark_params i830_wm_info = {
I855GM_FIFO_SIZE,
I915_MAX_WM,
1,
2,
I830_FIFO_LINE_SIZE
};
static const struct intel_watermark_params i845_wm_info = {
I830_FIFO_SIZE,
I915_MAX_WM,
1,
2,
I830_FIFO_LINE_SIZE
};
/**
* intel_calculate_wm - calculate watermark level
* @clock_in_khz: pixel clock
* @wm: chip FIFO params
* @pixel_size: display pixel size
* @latency_ns: memory latency for the platform
*
* Calculate the watermark level (the level at which the display plane will
* start fetching from memory again). Each chip has a different display
* FIFO size and allocation, so the caller needs to figure that out and pass
* in the correct intel_watermark_params structure.
*
* As the pixel clock runs, the FIFO will be drained at a rate that depends
* on the pixel size. When it reaches the watermark level, it'll start
* fetching FIFO line sized based chunks from memory until the FIFO fills
* past the watermark point. If the FIFO drains completely, a FIFO underrun
* will occur, and a display engine hang could result.
*/
static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
const struct intel_watermark_params *wm,
int fifo_size,
int pixel_size,
unsigned long latency_ns)
{
long entries_required, wm_size;
/*
* Note: we need to make sure we don't overflow for various clock &
* latency values.
* clocks go from a few thousand to several hundred thousand.
* latency is usually a few thousand
*/
entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
1000;
entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
wm_size = fifo_size - (entries_required + wm->guard_size);
DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
/* Don't promote wm_size to unsigned... */
if (wm_size > (long)wm->max_wm)
wm_size = wm->max_wm;
if (wm_size <= 0)
wm_size = wm->default_wm;
return wm_size;
}
static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
{
struct drm_crtc *crtc, *enabled = NULL;
list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
if (intel_crtc_active(crtc)) {
if (enabled)
return NULL;
enabled = crtc;
}
}
return enabled;
}
static void pineview_update_wm(struct drm_crtc *unused_crtc)
{
struct drm_device *dev = unused_crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_crtc *crtc;
const struct cxsr_latency *latency;
u32 reg;
unsigned long wm;
latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
dev_priv->fsb_freq, dev_priv->mem_freq);
if (!latency) {
DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
pineview_disable_cxsr(dev);
return;
}
crtc = single_enabled_crtc(dev);
if (crtc) {
const struct drm_display_mode *adjusted_mode;
int pixel_size = crtc->primary->fb->bits_per_pixel / 8;
int clock;
adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
clock = adjusted_mode->crtc_clock;
/* Display SR */
wm = intel_calculate_wm(clock, &pineview_display_wm,
pineview_display_wm.fifo_size,
pixel_size, latency->display_sr);
reg = I915_READ(DSPFW1);
reg &= ~DSPFW_SR_MASK;
reg |= wm << DSPFW_SR_SHIFT;
I915_WRITE(DSPFW1, reg);
DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
/* cursor SR */
wm = intel_calculate_wm(clock, &pineview_cursor_wm,
pineview_display_wm.fifo_size,
pixel_size, latency->cursor_sr);
reg = I915_READ(DSPFW3);
reg &= ~DSPFW_CURSOR_SR_MASK;
reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
I915_WRITE(DSPFW3, reg);
/* Display HPLL off SR */
wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
pineview_display_hplloff_wm.fifo_size,
pixel_size, latency->display_hpll_disable);
reg = I915_READ(DSPFW3);
reg &= ~DSPFW_HPLL_SR_MASK;
reg |= wm & DSPFW_HPLL_SR_MASK;
I915_WRITE(DSPFW3, reg);
/* cursor HPLL off SR */
wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
pineview_display_hplloff_wm.fifo_size,
pixel_size, latency->cursor_hpll_disable);
reg = I915_READ(DSPFW3);
reg &= ~DSPFW_HPLL_CURSOR_MASK;
reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
I915_WRITE(DSPFW3, reg);
DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
/* activate cxsr */
I915_WRITE(DSPFW3,
I915_READ(DSPFW3) | PINEVIEW_SELF_REFRESH_EN);
DRM_DEBUG_KMS("Self-refresh is enabled\n");
} else {
pineview_disable_cxsr(dev);
DRM_DEBUG_KMS("Self-refresh is disabled\n");
}
}
static bool g4x_compute_wm0(struct drm_device *dev,
int plane,
const struct intel_watermark_params *display,
int display_latency_ns,
const struct intel_watermark_params *cursor,
int cursor_latency_ns,
int *plane_wm,
int *cursor_wm)
{
struct drm_crtc *crtc;
const struct drm_display_mode *adjusted_mode;
int htotal, hdisplay, clock, pixel_size;
int line_time_us, line_count;
int entries, tlb_miss;
crtc = intel_get_crtc_for_plane(dev, plane);
if (!intel_crtc_active(crtc)) {
*cursor_wm = cursor->guard_size;
*plane_wm = display->guard_size;
return false;
}
adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
clock = adjusted_mode->crtc_clock;
htotal = adjusted_mode->crtc_htotal;
hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
pixel_size = crtc->primary->fb->bits_per_pixel / 8;
/* Use the small buffer method to calculate plane watermark */
entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
if (tlb_miss > 0)
entries += tlb_miss;
entries = DIV_ROUND_UP(entries, display->cacheline_size);
*plane_wm = entries + display->guard_size;
if (*plane_wm > (int)display->max_wm)
*plane_wm = display->max_wm;
/* Use the large buffer method to calculate cursor watermark */
line_time_us = max(htotal * 1000 / clock, 1);
line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
entries = line_count * to_intel_crtc(crtc)->cursor_width * pixel_size;
tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
if (tlb_miss > 0)
entries += tlb_miss;
entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
*cursor_wm = entries + cursor->guard_size;
if (*cursor_wm > (int)cursor->max_wm)
*cursor_wm = (int)cursor->max_wm;
return true;
}
/*
* Check the wm result.
*
* If any calculated watermark values is larger than the maximum value that
* can be programmed into the associated watermark register, that watermark
* must be disabled.
*/
static bool g4x_check_srwm(struct drm_device *dev,
int display_wm, int cursor_wm,
const struct intel_watermark_params *display,
const struct intel_watermark_params *cursor)
{
DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
display_wm, cursor_wm);
if (display_wm > display->max_wm) {
DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
display_wm, display->max_wm);
return false;
}
if (cursor_wm > cursor->max_wm) {
DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
cursor_wm, cursor->max_wm);
return false;
}
if (!(display_wm || cursor_wm)) {
DRM_DEBUG_KMS("SR latency is 0, disabling\n");
return false;
}
return true;
}
static bool g4x_compute_srwm(struct drm_device *dev,
int plane,
int latency_ns,
const struct intel_watermark_params *display,
const struct intel_watermark_params *cursor,
int *display_wm, int *cursor_wm)
{
struct drm_crtc *crtc;
const struct drm_display_mode *adjusted_mode;
int hdisplay, htotal, pixel_size, clock;
unsigned long line_time_us;
int line_count, line_size;
int small, large;
int entries;
if (!latency_ns) {
*display_wm = *cursor_wm = 0;
return false;
}
crtc = intel_get_crtc_for_plane(dev, plane);
adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
clock = adjusted_mode->crtc_clock;
htotal = adjusted_mode->crtc_htotal;
hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
pixel_size = crtc->primary->fb->bits_per_pixel / 8;
line_time_us = max(htotal * 1000 / clock, 1);
line_count = (latency_ns / line_time_us + 1000) / 1000;
line_size = hdisplay * pixel_size;
/* Use the minimum of the small and large buffer method for primary */
small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
large = line_count * line_size;
entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
*display_wm = entries + display->guard_size;
/* calculate the self-refresh watermark for display cursor */
entries = line_count * pixel_size * to_intel_crtc(crtc)->cursor_width;
entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
*cursor_wm = entries + cursor->guard_size;
return g4x_check_srwm(dev,
*display_wm, *cursor_wm,
display, cursor);
}
static bool vlv_compute_drain_latency(struct drm_device *dev,
int plane,
int *plane_prec_mult,
int *plane_dl,
int *cursor_prec_mult,
int *cursor_dl)
{
struct drm_crtc *crtc;
int clock, pixel_size;
int entries;
crtc = intel_get_crtc_for_plane(dev, plane);
if (!intel_crtc_active(crtc))
return false;
clock = to_intel_crtc(crtc)->config.adjusted_mode.crtc_clock;
pixel_size = crtc->primary->fb->bits_per_pixel / 8; /* BPP */
entries = (clock / 1000) * pixel_size;
*plane_prec_mult = (entries > 256) ?
DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
*plane_dl = (64 * (*plane_prec_mult) * 4) / ((clock / 1000) *
pixel_size);
entries = (clock / 1000) * 4; /* BPP is always 4 for cursor */
*cursor_prec_mult = (entries > 256) ?
DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
*cursor_dl = (64 * (*cursor_prec_mult) * 4) / ((clock / 1000) * 4);
return true;
}
/*
* Update drain latency registers of memory arbiter
*
* Valleyview SoC has a new memory arbiter and needs drain latency registers
* to be programmed. Each plane has a drain latency multiplier and a drain
* latency value.
*/
static void vlv_update_drain_latency(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
int planea_prec, planea_dl, planeb_prec, planeb_dl;
int cursora_prec, cursora_dl, cursorb_prec, cursorb_dl;
int plane_prec_mult, cursor_prec_mult; /* Precision multiplier is
either 16 or 32 */
/* For plane A, Cursor A */
if (vlv_compute_drain_latency(dev, 0, &plane_prec_mult, &planea_dl,
&cursor_prec_mult, &cursora_dl)) {
cursora_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
DDL_CURSORA_PRECISION_32 : DDL_CURSORA_PRECISION_16;
planea_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
DDL_PLANEA_PRECISION_32 : DDL_PLANEA_PRECISION_16;
I915_WRITE(VLV_DDL1, cursora_prec |
(cursora_dl << DDL_CURSORA_SHIFT) |
planea_prec | planea_dl);
}
/* For plane B, Cursor B */
if (vlv_compute_drain_latency(dev, 1, &plane_prec_mult, &planeb_dl,
&cursor_prec_mult, &cursorb_dl)) {
cursorb_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
DDL_CURSORB_PRECISION_32 : DDL_CURSORB_PRECISION_16;
planeb_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
DDL_PLANEB_PRECISION_32 : DDL_PLANEB_PRECISION_16;
I915_WRITE(VLV_DDL2, cursorb_prec |
(cursorb_dl << DDL_CURSORB_SHIFT) |
planeb_prec | planeb_dl);
}
}
#define single_plane_enabled(mask) is_power_of_2(mask)
static void valleyview_update_wm(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
static const int sr_latency_ns = 12000;
struct drm_i915_private *dev_priv = dev->dev_private;
int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
int plane_sr, cursor_sr;
int ignore_plane_sr, ignore_cursor_sr;
unsigned int enabled = 0;
vlv_update_drain_latency(dev);
if (g4x_compute_wm0(dev, PIPE_A,
&valleyview_wm_info, latency_ns,
&valleyview_cursor_wm_info, latency_ns,
&planea_wm, &cursora_wm))
enabled |= 1 << PIPE_A;
if (g4x_compute_wm0(dev, PIPE_B,
&valleyview_wm_info, latency_ns,
&valleyview_cursor_wm_info, latency_ns,
&planeb_wm, &cursorb_wm))
enabled |= 1 << PIPE_B;
if (single_plane_enabled(enabled) &&
g4x_compute_srwm(dev, ffs(enabled) - 1,
sr_latency_ns,
&valleyview_wm_info,
&valleyview_cursor_wm_info,
&plane_sr, &ignore_cursor_sr) &&
g4x_compute_srwm(dev, ffs(enabled) - 1,
2*sr_latency_ns,
&valleyview_wm_info,
&valleyview_cursor_wm_info,
&ignore_plane_sr, &cursor_sr)) {
I915_WRITE(FW_BLC_SELF_VLV, FW_CSPWRDWNEN);
} else {
I915_WRITE(FW_BLC_SELF_VLV,
I915_READ(FW_BLC_SELF_VLV) & ~FW_CSPWRDWNEN);
plane_sr = cursor_sr = 0;
}
DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
planea_wm, cursora_wm,
planeb_wm, cursorb_wm,
plane_sr, cursor_sr);
I915_WRITE(DSPFW1,
(plane_sr << DSPFW_SR_SHIFT) |
(cursorb_wm << DSPFW_CURSORB_SHIFT) |
(planeb_wm << DSPFW_PLANEB_SHIFT) |
planea_wm);
I915_WRITE(DSPFW2,
(I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
(cursora_wm << DSPFW_CURSORA_SHIFT));
I915_WRITE(DSPFW3,
(I915_READ(DSPFW3) & ~DSPFW_CURSOR_SR_MASK) |
(cursor_sr << DSPFW_CURSOR_SR_SHIFT));
}
static void g4x_update_wm(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
static const int sr_latency_ns = 12000;
struct drm_i915_private *dev_priv = dev->dev_private;
int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
int plane_sr, cursor_sr;
unsigned int enabled = 0;
if (g4x_compute_wm0(dev, PIPE_A,
&g4x_wm_info, latency_ns,
&g4x_cursor_wm_info, latency_ns,
&planea_wm, &cursora_wm))
enabled |= 1 << PIPE_A;
if (g4x_compute_wm0(dev, PIPE_B,
&g4x_wm_info, latency_ns,
&g4x_cursor_wm_info, latency_ns,
&planeb_wm, &cursorb_wm))
enabled |= 1 << PIPE_B;
if (single_plane_enabled(enabled) &&
g4x_compute_srwm(dev, ffs(enabled) - 1,
sr_latency_ns,
&g4x_wm_info,
&g4x_cursor_wm_info,
&plane_sr, &cursor_sr)) {
I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
} else {
I915_WRITE(FW_BLC_SELF,
I915_READ(FW_BLC_SELF) & ~FW_BLC_SELF_EN);
plane_sr = cursor_sr = 0;
}
DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
planea_wm, cursora_wm,
planeb_wm, cursorb_wm,
plane_sr, cursor_sr);
I915_WRITE(DSPFW1,
(plane_sr << DSPFW_SR_SHIFT) |
(cursorb_wm << DSPFW_CURSORB_SHIFT) |
(planeb_wm << DSPFW_PLANEB_SHIFT) |
planea_wm);
I915_WRITE(DSPFW2,
(I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
(cursora_wm << DSPFW_CURSORA_SHIFT));
/* HPLL off in SR has some issues on G4x... disable it */
I915_WRITE(DSPFW3,
(I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
(cursor_sr << DSPFW_CURSOR_SR_SHIFT));
}
static void i965_update_wm(struct drm_crtc *unused_crtc)
{
struct drm_device *dev = unused_crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_crtc *crtc;
int srwm = 1;
int cursor_sr = 16;
/* Calc sr entries for one plane configs */
crtc = single_enabled_crtc(dev);
if (crtc) {
/* self-refresh has much higher latency */
static const int sr_latency_ns = 12000;
const struct drm_display_mode *adjusted_mode =
&to_intel_crtc(crtc)->config.adjusted_mode;
int clock = adjusted_mode->crtc_clock;
int htotal = adjusted_mode->crtc_htotal;
int hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
int pixel_size = crtc->primary->fb->bits_per_pixel / 8;
unsigned long line_time_us;
int entries;
line_time_us = max(htotal * 1000 / clock, 1);
/* Use ns/us then divide to preserve precision */
entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
pixel_size * hdisplay;
entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
srwm = I965_FIFO_SIZE - entries;
if (srwm < 0)
srwm = 1;
srwm &= 0x1ff;
DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
entries, srwm);
entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
pixel_size * to_intel_crtc(crtc)->cursor_width;
entries = DIV_ROUND_UP(entries,
i965_cursor_wm_info.cacheline_size);
cursor_sr = i965_cursor_wm_info.fifo_size -
(entries + i965_cursor_wm_info.guard_size);
if (cursor_sr > i965_cursor_wm_info.max_wm)
cursor_sr = i965_cursor_wm_info.max_wm;
DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
"cursor %d\n", srwm, cursor_sr);
if (IS_CRESTLINE(dev))
I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
} else {
/* Turn off self refresh if both pipes are enabled */
if (IS_CRESTLINE(dev))
I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
& ~FW_BLC_SELF_EN);
}
DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
srwm);
/* 965 has limitations... */
I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) |
(8 << 16) | (8 << 8) | (8 << 0));
I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
/* update cursor SR watermark */
I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
}
static void i9xx_update_wm(struct drm_crtc *unused_crtc)
{
struct drm_device *dev = unused_crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
const struct intel_watermark_params *wm_info;
uint32_t fwater_lo;
uint32_t fwater_hi;
int cwm, srwm = 1;
int fifo_size;
int planea_wm, planeb_wm;
struct drm_crtc *crtc, *enabled = NULL;
if (IS_I945GM(dev))
wm_info = &i945_wm_info;
else if (!IS_GEN2(dev))
wm_info = &i915_wm_info;
else
wm_info = &i830_wm_info;
fifo_size = dev_priv->display.get_fifo_size(dev, 0);
crtc = intel_get_crtc_for_plane(dev, 0);
if (intel_crtc_active(crtc)) {
const struct drm_display_mode *adjusted_mode;
int cpp = crtc->primary->fb->bits_per_pixel / 8;
if (IS_GEN2(dev))
cpp = 4;
adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
wm_info, fifo_size, cpp,
latency_ns);
enabled = crtc;
} else
planea_wm = fifo_size - wm_info->guard_size;
fifo_size = dev_priv->display.get_fifo_size(dev, 1);
crtc = intel_get_crtc_for_plane(dev, 1);
if (intel_crtc_active(crtc)) {
const struct drm_display_mode *adjusted_mode;
int cpp = crtc->primary->fb->bits_per_pixel / 8;
if (IS_GEN2(dev))
cpp = 4;
adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
wm_info, fifo_size, cpp,
latency_ns);
if (enabled == NULL)
enabled = crtc;
else
enabled = NULL;
} else
planeb_wm = fifo_size - wm_info->guard_size;
DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
if (IS_I915GM(dev) && enabled) {
struct intel_framebuffer *fb;
fb = to_intel_framebuffer(enabled->primary->fb);
/* self-refresh seems busted with untiled */
if (fb->obj->tiling_mode == I915_TILING_NONE)
enabled = NULL;
}
/*
* Overlay gets an aggressive default since video jitter is bad.
*/
cwm = 2;
/* Play safe and disable self-refresh before adjusting watermarks. */
if (IS_I945G(dev) || IS_I945GM(dev))
I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | 0);
else if (IS_I915GM(dev))
I915_WRITE(INSTPM, _MASKED_BIT_DISABLE(INSTPM_SELF_EN));
/* Calc sr entries for one plane configs */
if (HAS_FW_BLC(dev) && enabled) {
/* self-refresh has much higher latency */
static const int sr_latency_ns = 6000;
const struct drm_display_mode *adjusted_mode =
&to_intel_crtc(enabled)->config.adjusted_mode;
int clock = adjusted_mode->crtc_clock;
int htotal = adjusted_mode->crtc_htotal;
int hdisplay = to_intel_crtc(enabled)->config.pipe_src_w;
int pixel_size = enabled->primary->fb->bits_per_pixel / 8;
unsigned long line_time_us;
int entries;
line_time_us = max(htotal * 1000 / clock, 1);
/* Use ns/us then divide to preserve precision */
entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
pixel_size * hdisplay;
entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
srwm = wm_info->fifo_size - entries;
if (srwm < 0)
srwm = 1;
if (IS_I945G(dev) || IS_I945GM(dev))
I915_WRITE(FW_BLC_SELF,
FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
else if (IS_I915GM(dev))
I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
}
DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
planea_wm, planeb_wm, cwm, srwm);
fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
fwater_hi = (cwm & 0x1f);
/* Set request length to 8 cachelines per fetch */
fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
fwater_hi = fwater_hi | (1 << 8);
I915_WRITE(FW_BLC, fwater_lo);
I915_WRITE(FW_BLC2, fwater_hi);
if (HAS_FW_BLC(dev)) {
if (enabled) {
if (IS_I945G(dev) || IS_I945GM(dev))
I915_WRITE(FW_BLC_SELF,
FW_BLC_SELF_EN_MASK | FW_BLC_SELF_EN);
else if (IS_I915GM(dev))
I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_SELF_EN));
DRM_DEBUG_KMS("memory self refresh enabled\n");
} else
DRM_DEBUG_KMS("memory self refresh disabled\n");
}
}
static void i845_update_wm(struct drm_crtc *unused_crtc)
{
struct drm_device *dev = unused_crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_crtc *crtc;
const struct drm_display_mode *adjusted_mode;
uint32_t fwater_lo;
int planea_wm;
crtc = single_enabled_crtc(dev);
if (crtc == NULL)
return;
adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
&i845_wm_info,
dev_priv->display.get_fifo_size(dev, 0),
4, latency_ns);
fwater_lo = I915_READ(FW_BLC) & ~0xfff;
fwater_lo |= (3<<8) | planea_wm;
DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
I915_WRITE(FW_BLC, fwater_lo);
}
static uint32_t ilk_pipe_pixel_rate(struct drm_device *dev,
struct drm_crtc *crtc)
{
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
uint32_t pixel_rate;
pixel_rate = intel_crtc->config.adjusted_mode.crtc_clock;
/* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
* adjust the pixel_rate here. */
if (intel_crtc->config.pch_pfit.enabled) {
uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
uint32_t pfit_size = intel_crtc->config.pch_pfit.size;
pipe_w = intel_crtc->config.pipe_src_w;
pipe_h = intel_crtc->config.pipe_src_h;
pfit_w = (pfit_size >> 16) & 0xFFFF;
pfit_h = pfit_size & 0xFFFF;
if (pipe_w < pfit_w)
pipe_w = pfit_w;
if (pipe_h < pfit_h)
pipe_h = pfit_h;
pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
pfit_w * pfit_h);
}
return pixel_rate;
}
/* latency must be in 0.1us units. */
static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
uint32_t latency)
{
uint64_t ret;
if (WARN(latency == 0, "Latency value missing\n"))
return UINT_MAX;
ret = (uint64_t) pixel_rate * bytes_per_pixel * latency;
ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;
return ret;
}
/* latency must be in 0.1us units. */
static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
uint32_t horiz_pixels, uint8_t bytes_per_pixel,
uint32_t latency)
{
uint32_t ret;
if (WARN(latency == 0, "Latency value missing\n"))
return UINT_MAX;
ret = (latency * pixel_rate) / (pipe_htotal * 10000);
ret = (ret + 1) * horiz_pixels * bytes_per_pixel;
ret = DIV_ROUND_UP(ret, 64) + 2;
return ret;
}
static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
uint8_t bytes_per_pixel)
{
return DIV_ROUND_UP(pri_val * 64, horiz_pixels * bytes_per_pixel) + 2;
}
struct ilk_pipe_wm_parameters {
bool active;
uint32_t pipe_htotal;
uint32_t pixel_rate;
struct intel_plane_wm_parameters pri;
struct intel_plane_wm_parameters spr;
struct intel_plane_wm_parameters cur;
};
struct ilk_wm_maximums {
uint16_t pri;
uint16_t spr;
uint16_t cur;
uint16_t fbc;
};
/* used in computing the new watermarks state */
struct intel_wm_config {
unsigned int num_pipes_active;
bool sprites_enabled;
bool sprites_scaled;
};
/*
* For both WM_PIPE and WM_LP.
* mem_value must be in 0.1us units.
*/
static uint32_t ilk_compute_pri_wm(const struct ilk_pipe_wm_parameters *params,
uint32_t mem_value,
bool is_lp)
{
uint32_t method1, method2;
if (!params->active || !params->pri.enabled)
return 0;
method1 = ilk_wm_method1(params->pixel_rate,
params->pri.bytes_per_pixel,
mem_value);
if (!is_lp)
return method1;
method2 = ilk_wm_method2(params->pixel_rate,
params->pipe_htotal,
params->pri.horiz_pixels,
params->pri.bytes_per_pixel,
mem_value);
return min(method1, method2);
}
/*
* For both WM_PIPE and WM_LP.
* mem_value must be in 0.1us units.
*/
static uint32_t ilk_compute_spr_wm(const struct ilk_pipe_wm_parameters *params,
uint32_t mem_value)
{
uint32_t method1, method2;
if (!params->active || !params->spr.enabled)
return 0;
method1 = ilk_wm_method1(params->pixel_rate,
params->spr.bytes_per_pixel,
mem_value);
method2 = ilk_wm_method2(params->pixel_rate,
params->pipe_htotal,
params->spr.horiz_pixels,
params->spr.bytes_per_pixel,
mem_value);
return min(method1, method2);
}
/*
* For both WM_PIPE and WM_LP.
* mem_value must be in 0.1us units.
*/
static uint32_t ilk_compute_cur_wm(const struct ilk_pipe_wm_parameters *params,
uint32_t mem_value)
{
if (!params->active || !params->cur.enabled)
return 0;
return ilk_wm_method2(params->pixel_rate,
params->pipe_htotal,
params->cur.horiz_pixels,
params->cur.bytes_per_pixel,
mem_value);
}
/* Only for WM_LP. */
static uint32_t ilk_compute_fbc_wm(const struct ilk_pipe_wm_parameters *params,
uint32_t pri_val)
{
if (!params->active || !params->pri.enabled)
return 0;
return ilk_wm_fbc(pri_val,
params->pri.horiz_pixels,
params->pri.bytes_per_pixel);
}
static unsigned int ilk_display_fifo_size(const struct drm_device *dev)
{
if (INTEL_INFO(dev)->gen >= 8)
return 3072;
else if (INTEL_INFO(dev)->gen >= 7)
return 768;
else
return 512;
}
static unsigned int ilk_plane_wm_reg_max(const struct drm_device *dev,
int level, bool is_sprite)
{
if (INTEL_INFO(dev)->gen >= 8)
/* BDW primary/sprite plane watermarks */
return level == 0 ? 255 : 2047;
else if (INTEL_INFO(dev)->gen >= 7)
/* IVB/HSW primary/sprite plane watermarks */
return level == 0 ? 127 : 1023;
else if (!is_sprite)
/* ILK/SNB primary plane watermarks */
return level == 0 ? 127 : 511;
else
/* ILK/SNB sprite plane watermarks */
return level == 0 ? 63 : 255;
}
static unsigned int ilk_cursor_wm_reg_max(const struct drm_device *dev,
int level)
{
if (INTEL_INFO(dev)->gen >= 7)
return level == 0 ? 63 : 255;
else
return level == 0 ? 31 : 63;
}
static unsigned int ilk_fbc_wm_reg_max(const struct drm_device *dev)
{
if (INTEL_INFO(dev)->gen >= 8)
return 31;
else
return 15;
}
/* Calculate the maximum primary/sprite plane watermark */
static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
int level,
const struct intel_wm_config *config,
enum intel_ddb_partitioning ddb_partitioning,
bool is_sprite)
{
unsigned int fifo_size = ilk_display_fifo_size(dev);
/* if sprites aren't enabled, sprites get nothing */
if (is_sprite && !config->sprites_enabled)
return 0;
/* HSW allows LP1+ watermarks even with multiple pipes */
if (level == 0 || config->num_pipes_active > 1) {
fifo_size /= INTEL_INFO(dev)->num_pipes;
/*
* For some reason the non self refresh
* FIFO size is only half of the self
* refresh FIFO size on ILK/SNB.
*/
if (INTEL_INFO(dev)->gen <= 6)
fifo_size /= 2;
}
if (config->sprites_enabled) {
/* level 0 is always calculated with 1:1 split */
if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
if (is_sprite)
fifo_size *= 5;
fifo_size /= 6;
} else {
fifo_size /= 2;
}
}
/* clamp to max that the registers can hold */
return min(fifo_size, ilk_plane_wm_reg_max(dev, level, is_sprite));
}
/* Calculate the maximum cursor plane watermark */
static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
int level,
const struct intel_wm_config *config)
{
/* HSW LP1+ watermarks w/ multiple pipes */
if (level > 0 && config->num_pipes_active > 1)
return 64;
/* otherwise just report max that registers can hold */
return ilk_cursor_wm_reg_max(dev, level);
}
static void ilk_compute_wm_maximums(const struct drm_device *dev,
int level,
const struct intel_wm_config *config,
enum intel_ddb_partitioning ddb_partitioning,
struct ilk_wm_maximums *max)
{
max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
max->cur = ilk_cursor_wm_max(dev, level, config);
max->fbc = ilk_fbc_wm_reg_max(dev);
}
static bool ilk_validate_wm_level(int level,
const struct ilk_wm_maximums *max,
struct intel_wm_level *result)
{
bool ret;
/* already determined to be invalid? */
if (!result->enable)
return false;
result->enable = result->pri_val <= max->pri &&
result->spr_val <= max->spr &&
result->cur_val <= max->cur;
ret = result->enable;
/*
* HACK until we can pre-compute everything,
* and thus fail gracefully if LP0 watermarks
* are exceeded...
*/
if (level == 0 && !result->enable) {
if (result->pri_val > max->pri)
DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
level, result->pri_val, max->pri);
if (result->spr_val > max->spr)
DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
level, result->spr_val, max->spr);
if (result->cur_val > max->cur)
DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
level, result->cur_val, max->cur);
result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
result->enable = true;
}
return ret;
}
static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
int level,
const struct ilk_pipe_wm_parameters *p,
struct intel_wm_level *result)
{
uint16_t pri_latency = dev_priv->wm.pri_latency[level];
uint16_t spr_latency = dev_priv->wm.spr_latency[level];
uint16_t cur_latency = dev_priv->wm.cur_latency[level];
/* WM1+ latency values stored in 0.5us units */
if (level > 0) {
pri_latency *= 5;
spr_latency *= 5;
cur_latency *= 5;
}
result->pri_val = ilk_compute_pri_wm(p, pri_latency, level);
result->spr_val = ilk_compute_spr_wm(p, spr_latency);
result->cur_val = ilk_compute_cur_wm(p, cur_latency);
result->fbc_val = ilk_compute_fbc_wm(p, result->pri_val);
result->enable = true;
}
static uint32_t
hsw_compute_linetime_wm(struct drm_device *dev, struct drm_crtc *crtc)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
struct drm_display_mode *mode = &intel_crtc->config.adjusted_mode;
u32 linetime, ips_linetime;
if (!intel_crtc_active(crtc))
return 0;
/* The WM are computed with base on how long it takes to fill a single
* row at the given clock rate, multiplied by 8.
* */
linetime = DIV_ROUND_CLOSEST(mode->crtc_htotal * 1000 * 8,
mode->crtc_clock);
ips_linetime = DIV_ROUND_CLOSEST(mode->crtc_htotal * 1000 * 8,
intel_ddi_get_cdclk_freq(dev_priv));
return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
PIPE_WM_LINETIME_TIME(linetime);
}
static void intel_read_wm_latency(struct drm_device *dev, uint16_t wm[5])
{
struct drm_i915_private *dev_priv = dev->dev_private;
if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
uint64_t sskpd = I915_READ64(MCH_SSKPD);
wm[0] = (sskpd >> 56) & 0xFF;
if (wm[0] == 0)
wm[0] = sskpd & 0xF;
wm[1] = (sskpd >> 4) & 0xFF;
wm[2] = (sskpd >> 12) & 0xFF;
wm[3] = (sskpd >> 20) & 0x1FF;
wm[4] = (sskpd >> 32) & 0x1FF;
} else if (INTEL_INFO(dev)->gen >= 6) {
uint32_t sskpd = I915_READ(MCH_SSKPD);
wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
} else if (INTEL_INFO(dev)->gen >= 5) {
uint32_t mltr = I915_READ(MLTR_ILK);
/* ILK primary LP0 latency is 700 ns */
wm[0] = 7;
wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
}
}
static void intel_fixup_spr_wm_latency(struct drm_device *dev, uint16_t wm[5])
{
/* ILK sprite LP0 latency is 1300 ns */
if (INTEL_INFO(dev)->gen == 5)
wm[0] = 13;
}
static void intel_fixup_cur_wm_latency(struct drm_device *dev, uint16_t wm[5])
{
/* ILK cursor LP0 latency is 1300 ns */
if (INTEL_INFO(dev)->gen == 5)
wm[0] = 13;
/* WaDoubleCursorLP3Latency:ivb */
if (IS_IVYBRIDGE(dev))
wm[3] *= 2;
}
static int ilk_wm_max_level(const struct drm_device *dev)
{
/* how many WM levels are we expecting */
if (IS_HASWELL(dev) || IS_BROADWELL(dev))
return 4;
else if (INTEL_INFO(dev)->gen >= 6)
return 3;
else
return 2;
}
static void intel_print_wm_latency(struct drm_device *dev,
const char *name,
const uint16_t wm[5])
{
int level, max_level = ilk_wm_max_level(dev);
for (level = 0; level <= max_level; level++) {
unsigned int latency = wm[level];
if (latency == 0) {
DRM_ERROR("%s WM%d latency not provided\n",
name, level);
continue;
}
/* WM1+ latency values in 0.5us units */
if (level > 0)
latency *= 5;
DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
name, level, wm[level],
latency / 10, latency % 10);
}
}
static void ilk_setup_wm_latency(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
intel_read_wm_latency(dev, dev_priv->wm.pri_latency);
memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
sizeof(dev_priv->wm.pri_latency));
memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
sizeof(dev_priv->wm.pri_latency));
intel_fixup_spr_wm_latency(dev, dev_priv->wm.spr_latency);
intel_fixup_cur_wm_latency(dev, dev_priv->wm.cur_latency);
intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
}
static void ilk_compute_wm_parameters(struct drm_crtc *crtc,
struct ilk_pipe_wm_parameters *p)
{
struct drm_device *dev = crtc->dev;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
enum pipe pipe = intel_crtc->pipe;
struct drm_plane *plane;
if (!intel_crtc_active(crtc))
return;
p->active = true;
p->pipe_htotal = intel_crtc->config.adjusted_mode.crtc_htotal;
p->pixel_rate = ilk_pipe_pixel_rate(dev, crtc);
p->pri.bytes_per_pixel = crtc->primary->fb->bits_per_pixel / 8;
p->cur.bytes_per_pixel = 4;
p->pri.horiz_pixels = intel_crtc->config.pipe_src_w;
p->cur.horiz_pixels = intel_crtc->cursor_width;
/* TODO: for now, assume primary and cursor planes are always enabled. */
p->pri.enabled = true;
p->cur.enabled = true;
drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
struct intel_plane *intel_plane = to_intel_plane(plane);
if (intel_plane->pipe == pipe) {
p->spr = intel_plane->wm;
break;
}
}
}
static void ilk_compute_wm_config(struct drm_device *dev,
struct intel_wm_config *config)
{
struct intel_crtc *intel_crtc;
/* Compute the currently _active_ config */
list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list, base.head) {
const struct intel_pipe_wm *wm = &intel_crtc->wm.active;
if (!wm->pipe_enabled)
continue;
config->sprites_enabled |= wm->sprites_enabled;
config->sprites_scaled |= wm->sprites_scaled;
config->num_pipes_active++;
}
}
/* Compute new watermarks for the pipe */
static bool intel_compute_pipe_wm(struct drm_crtc *crtc,
const struct ilk_pipe_wm_parameters *params,
struct intel_pipe_wm *pipe_wm)
{
struct drm_device *dev = crtc->dev;
const struct drm_i915_private *dev_priv = dev->dev_private;
int level, max_level = ilk_wm_max_level(dev);
/* LP0 watermark maximums depend on this pipe alone */
struct intel_wm_config config = {
.num_pipes_active = 1,
.sprites_enabled = params->spr.enabled,
.sprites_scaled = params->spr.scaled,
};
struct ilk_wm_maximums max;
/* LP0 watermarks always use 1/2 DDB partitioning */
ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);
pipe_wm->pipe_enabled = params->active;
pipe_wm->sprites_enabled = params->spr.enabled;
pipe_wm->sprites_scaled = params->spr.scaled;
/* ILK/SNB: LP2+ watermarks only w/o sprites */
if (INTEL_INFO(dev)->gen <= 6 && params->spr.enabled)
max_level = 1;
/* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
if (params->spr.scaled)
max_level = 0;
for (level = 0; level <= max_level; level++)
ilk_compute_wm_level(dev_priv, level, params,
&pipe_wm->wm[level]);
if (IS_HASWELL(dev) || IS_BROADWELL(dev))
pipe_wm->linetime = hsw_compute_linetime_wm(dev, crtc);
/* At least LP0 must be valid */
return ilk_validate_wm_level(0, &max, &pipe_wm->wm[0]);
}
/*
* Merge the watermarks from all active pipes for a specific level.
*/
static void ilk_merge_wm_level(struct drm_device *dev,
int level,
struct intel_wm_level *ret_wm)
{
const struct intel_crtc *intel_crtc;
list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list, base.head) {
const struct intel_pipe_wm *active = &intel_crtc->wm.active;
const struct intel_wm_level *wm = &active->wm[level];
if (!active->pipe_enabled)
continue;
if (!wm->enable)
return;
ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
}
ret_wm->enable = true;
}
/*
* Merge all low power watermarks for all active pipes.
*/
static void ilk_wm_merge(struct drm_device *dev,
const struct intel_wm_config *config,
const struct ilk_wm_maximums *max,
struct intel_pipe_wm *merged)
{
int level, max_level = ilk_wm_max_level(dev);
/* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
if ((INTEL_INFO(dev)->gen <= 6 || IS_IVYBRIDGE(dev)) &&
config->num_pipes_active > 1)
return;
/* ILK: FBC WM must be disabled always */
merged->fbc_wm_enabled = INTEL_INFO(dev)->gen >= 6;
/* merge each WM1+ level */
for (level = 1; level <= max_level; level++) {
struct intel_wm_level *wm = &merged->wm[level];
ilk_merge_wm_level(dev, level, wm);
if (!ilk_validate_wm_level(level, max, wm))
break;
/*
* The spec says it is preferred to disable
* FBC WMs instead of disabling a WM level.
*/
if (wm->fbc_val > max->fbc) {
merged->fbc_wm_enabled = false;
wm->fbc_val = 0;
}
}
/* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
/*
* FIXME this is racy. FBC might get enabled later.
* What we should check here is whether FBC can be
* enabled sometime later.
*/
if (IS_GEN5(dev) && !merged->fbc_wm_enabled && intel_fbc_enabled(dev)) {
for (level = 2; level <= max_level; level++) {
struct intel_wm_level *wm = &merged->wm[level];
wm->enable = false;
}
}
}
static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
{
/* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
}
/* The value we need to program into the WM_LPx latency field */
static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
{
struct drm_i915_private *dev_priv = dev->dev_private;
if (IS_HASWELL(dev) || IS_BROADWELL(dev))
return 2 * level;
else
return dev_priv->wm.pri_latency[level];
}
static void ilk_compute_wm_results(struct drm_device *dev,
const struct intel_pipe_wm *merged,
enum intel_ddb_partitioning partitioning,
struct ilk_wm_values *results)
{
struct intel_crtc *intel_crtc;
int level, wm_lp;
results->enable_fbc_wm = merged->fbc_wm_enabled;
results->partitioning = partitioning;
/* LP1+ register values */
for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
const struct intel_wm_level *r;
level = ilk_wm_lp_to_level(wm_lp, merged);
r = &merged->wm[level];
if (!r->enable)
break;
results->wm_lp[wm_lp - 1] = WM3_LP_EN |
(ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
(r->pri_val << WM1_LP_SR_SHIFT) |
r->cur_val;
if (INTEL_INFO(dev)->gen >= 8)
results->wm_lp[wm_lp - 1] |=
r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
else
results->wm_lp[wm_lp - 1] |=
r->fbc_val << WM1_LP_FBC_SHIFT;
if (INTEL_INFO(dev)->gen <= 6 && r->spr_val) {
WARN_ON(wm_lp != 1);
results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
} else
results->wm_lp_spr[wm_lp - 1] = r->spr_val;
}
/* LP0 register values */
list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list, base.head) {
enum pipe pipe = intel_crtc->pipe;
const struct intel_wm_level *r =
&intel_crtc->wm.active.wm[0];
if (WARN_ON(!r->enable))
continue;
results->wm_linetime[pipe] = intel_crtc->wm.active.linetime;
results->wm_pipe[pipe] =
(r->pri_val << WM0_PIPE_PLANE_SHIFT) |
(r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
r->cur_val;
}
}
/* Find the result with the highest level enabled. Check for enable_fbc_wm in
* case both are at the same level. Prefer r1 in case they're the same. */
static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
struct intel_pipe_wm *r1,
struct intel_pipe_wm *r2)
{
int level, max_level = ilk_wm_max_level(dev);
int level1 = 0, level2 = 0;
for (level = 1; level <= max_level; level++) {
if (r1->wm[level].enable)
level1 = level;
if (r2->wm[level].enable)
level2 = level;
}
if (level1 == level2) {
if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
return r2;
else
return r1;
} else if (level1 > level2) {
return r1;
} else {
return r2;
}
}
/* dirty bits used to track which watermarks need changes */
#define WM_DIRTY_PIPE(pipe) (1 << (pipe))
#define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
#define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
#define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
#define WM_DIRTY_FBC (1 << 24)
#define WM_DIRTY_DDB (1 << 25)
static unsigned int ilk_compute_wm_dirty(struct drm_device *dev,
const struct ilk_wm_values *old,
const struct ilk_wm_values *new)
{
unsigned int dirty = 0;
enum pipe pipe;
int wm_lp;
for_each_pipe(pipe) {
if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
dirty |= WM_DIRTY_LINETIME(pipe);
/* Must disable LP1+ watermarks too */
dirty |= WM_DIRTY_LP_ALL;
}
if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
dirty |= WM_DIRTY_PIPE(pipe);
/* Must disable LP1+ watermarks too */
dirty |= WM_DIRTY_LP_ALL;
}
}
if (old->enable_fbc_wm != new->enable_fbc_wm) {
dirty |= WM_DIRTY_FBC;
/* Must disable LP1+ watermarks too */
dirty |= WM_DIRTY_LP_ALL;
}
if (old->partitioning != new->partitioning) {
dirty |= WM_DIRTY_DDB;
/* Must disable LP1+ watermarks too */
dirty |= WM_DIRTY_LP_ALL;
}
/* LP1+ watermarks already deemed dirty, no need to continue */
if (dirty & WM_DIRTY_LP_ALL)
return dirty;
/* Find the lowest numbered LP1+ watermark in need of an update... */
for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
break;
}
/* ...and mark it and all higher numbered LP1+ watermarks as dirty */
for (; wm_lp <= 3; wm_lp++)
dirty |= WM_DIRTY_LP(wm_lp);
return dirty;
}
static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
unsigned int dirty)
{
struct ilk_wm_values *previous = &dev_priv->wm.hw;
bool changed = false;
if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
previous->wm_lp[2] &= ~WM1_LP_SR_EN;
I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
changed = true;
}
if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
previous->wm_lp[1] &= ~WM1_LP_SR_EN;
I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
changed = true;
}
if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
previous->wm_lp[0] &= ~WM1_LP_SR_EN;
I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
changed = true;
}
/*
* Don't touch WM1S_LP_EN here.
* Doing so could cause underruns.
*/
return changed;
}
/*
* The spec says we shouldn't write when we don't need, because every write
* causes WMs to be re-evaluated, expending some power.
*/
static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
struct ilk_wm_values *results)
{
struct drm_device *dev = dev_priv->dev;
struct ilk_wm_values *previous = &dev_priv->wm.hw;
unsigned int dirty;
uint32_t val;
dirty = ilk_compute_wm_dirty(dev, previous, results);
if (!dirty)
return;
_ilk_disable_lp_wm(dev_priv, dirty);
if (dirty & WM_DIRTY_PIPE(PIPE_A))
I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
if (dirty & WM_DIRTY_PIPE(PIPE_B))
I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
if (dirty & WM_DIRTY_PIPE(PIPE_C))
I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);
if (dirty & WM_DIRTY_LINETIME(PIPE_A))
I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
if (dirty & WM_DIRTY_LINETIME(PIPE_B))
I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
if (dirty & WM_DIRTY_LINETIME(PIPE_C))
I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);
if (dirty & WM_DIRTY_DDB) {
if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
val = I915_READ(WM_MISC);
if (results->partitioning == INTEL_DDB_PART_1_2)
val &= ~WM_MISC_DATA_PARTITION_5_6;
else
val |= WM_MISC_DATA_PARTITION_5_6;
I915_WRITE(WM_MISC, val);
} else {
val = I915_READ(DISP_ARB_CTL2);
if (results->partitioning == INTEL_DDB_PART_1_2)
val &= ~DISP_DATA_PARTITION_5_6;
else
val |= DISP_DATA_PARTITION_5_6;
I915_WRITE(DISP_ARB_CTL2, val);
}
}
if (dirty & WM_DIRTY_FBC) {
val = I915_READ(DISP_ARB_CTL);
if (results->enable_fbc_wm)
val &= ~DISP_FBC_WM_DIS;
else
val |= DISP_FBC_WM_DIS;
I915_WRITE(DISP_ARB_CTL, val);
}
if (dirty & WM_DIRTY_LP(1) &&
previous->wm_lp_spr[0] != results->wm_lp_spr[0])
I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);
if (INTEL_INFO(dev)->gen >= 7) {
if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
}
if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
dev_priv->wm.hw = *results;
}
static bool ilk_disable_lp_wm(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
}
static void ilk_update_wm(struct drm_crtc *crtc)
{
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct ilk_wm_maximums max;
struct ilk_pipe_wm_parameters params = {};
struct ilk_wm_values results = {};
enum intel_ddb_partitioning partitioning;
struct intel_pipe_wm pipe_wm = {};
struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
struct intel_wm_config config = {};
ilk_compute_wm_parameters(crtc, &params);
intel_compute_pipe_wm(crtc, &params, &pipe_wm);
if (!memcmp(&intel_crtc->wm.active, &pipe_wm, sizeof(pipe_wm)))
return;
intel_crtc->wm.active = pipe_wm;
ilk_compute_wm_config(dev, &config);
ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
/* 5/6 split only in single pipe config on IVB+ */
if (INTEL_INFO(dev)->gen >= 7 &&
config.num_pipes_active == 1 && config.sprites_enabled) {
ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
} else {
best_lp_wm = &lp_wm_1_2;
}
partitioning = (best_lp_wm == &lp_wm_1_2) ?
INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
ilk_write_wm_values(dev_priv, &results);
}
static void ilk_update_sprite_wm(struct drm_plane *plane,
struct drm_crtc *crtc,
uint32_t sprite_width, int pixel_size,
bool enabled, bool scaled)
{
struct drm_device *dev = plane->dev;
struct intel_plane *intel_plane = to_intel_plane(plane);
intel_plane->wm.enabled = enabled;
intel_plane->wm.scaled = scaled;
intel_plane->wm.horiz_pixels = sprite_width;
intel_plane->wm.bytes_per_pixel = pixel_size;
/*
* IVB workaround: must disable low power watermarks for at least
* one frame before enabling scaling. LP watermarks can be re-enabled
* when scaling is disabled.
*
* WaCxSRDisabledForSpriteScaling:ivb
*/
if (IS_IVYBRIDGE(dev) && scaled && ilk_disable_lp_wm(dev))
intel_wait_for_vblank(dev, intel_plane->pipe);
ilk_update_wm(crtc);
}
static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct ilk_wm_values *hw = &dev_priv->wm.hw;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
struct intel_pipe_wm *active = &intel_crtc->wm.active;
enum pipe pipe = intel_crtc->pipe;
static const unsigned int wm0_pipe_reg[] = {
[PIPE_A] = WM0_PIPEA_ILK,
[PIPE_B] = WM0_PIPEB_ILK,
[PIPE_C] = WM0_PIPEC_IVB,
};
hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
if (IS_HASWELL(dev) || IS_BROADWELL(dev))
hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
active->pipe_enabled = intel_crtc_active(crtc);
if (active->pipe_enabled) {
u32 tmp = hw->wm_pipe[pipe];
/*
* For active pipes LP0 watermark is marked as
* enabled, and LP1+ watermaks as disabled since
* we can't really reverse compute them in case
* multiple pipes are active.
*/
active->wm[0].enable = true;
active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
active->linetime = hw->wm_linetime[pipe];
} else {
int level, max_level = ilk_wm_max_level(dev);
/*
* For inactive pipes, all watermark levels
* should be marked as enabled but zeroed,
* which is what we'd compute them to.
*/
for (level = 0; level <= max_level; level++)
active->wm[level].enable = true;
}
}
void ilk_wm_get_hw_state(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct ilk_wm_values *hw = &dev_priv->wm.hw;
struct drm_crtc *crtc;
list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
ilk_pipe_wm_get_hw_state(crtc);
hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
hw->wm_lp[2] = I915_READ(WM3_LP_ILK);
hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
if (INTEL_INFO(dev)->gen >= 7) {
hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
}
if (IS_HASWELL(dev) || IS_BROADWELL(dev))
hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
else if (IS_IVYBRIDGE(dev))
hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
hw->enable_fbc_wm =
!(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
}
/**
* intel_update_watermarks - update FIFO watermark values based on current modes
*
* Calculate watermark values for the various WM regs based on current mode
* and plane configuration.
*
* There are several cases to deal with here:
* - normal (i.e. non-self-refresh)
* - self-refresh (SR) mode
* - lines are large relative to FIFO size (buffer can hold up to 2)
* - lines are small relative to FIFO size (buffer can hold more than 2
* lines), so need to account for TLB latency
*
* The normal calculation is:
* watermark = dotclock * bytes per pixel * latency
* where latency is platform & configuration dependent (we assume pessimal
* values here).
*
* The SR calculation is:
* watermark = (trunc(latency/line time)+1) * surface width *
* bytes per pixel
* where
* line time = htotal / dotclock
* surface width = hdisplay for normal plane and 64 for cursor
* and latency is assumed to be high, as above.
*
* The final value programmed to the register should always be rounded up,
* and include an extra 2 entries to account for clock crossings.
*
* We don't use the sprite, so we can ignore that. And on Crestline we have
* to set the non-SR watermarks to 8.
*/
void intel_update_watermarks(struct drm_crtc *crtc)
{
struct drm_i915_private *dev_priv = crtc->dev->dev_private;
if (dev_priv->display.update_wm)
dev_priv->display.update_wm(crtc);
}
void intel_update_sprite_watermarks(struct drm_plane *plane,
struct drm_crtc *crtc,
uint32_t sprite_width, int pixel_size,
bool enabled, bool scaled)
{
struct drm_i915_private *dev_priv = plane->dev->dev_private;
if (dev_priv->display.update_sprite_wm)
dev_priv->display.update_sprite_wm(plane, crtc, sprite_width,
pixel_size, enabled, scaled);
}
static struct drm_i915_gem_object *
intel_alloc_context_page(struct drm_device *dev)
{
struct drm_i915_gem_object *ctx;
int ret;
WARN_ON(!mutex_is_locked(&dev->struct_mutex));
ctx = i915_gem_alloc_object(dev, 4096);
if (!ctx) {
DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
return NULL;
}
ret = i915_gem_obj_ggtt_pin(ctx, 4096, 0);
if (ret) {
DRM_ERROR("failed to pin power context: %d\n", ret);
goto err_unref;
}
ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
if (ret) {
DRM_ERROR("failed to set-domain on power context: %d\n", ret);
goto err_unpin;
}
return ctx;
err_unpin:
i915_gem_object_ggtt_unpin(ctx);
err_unref:
drm_gem_object_unreference(&ctx->base);
return NULL;
}
/**
* Lock protecting IPS related data structures
*/
DEFINE_SPINLOCK(mchdev_lock);
/* Global for IPS driver to get at the current i915 device. Protected by
* mchdev_lock. */
static struct drm_i915_private *i915_mch_dev;
bool ironlake_set_drps(struct drm_device *dev, u8 val)
{
struct drm_i915_private *dev_priv = dev->dev_private;
u16 rgvswctl;
assert_spin_locked(&mchdev_lock);
rgvswctl = I915_READ16(MEMSWCTL);
if (rgvswctl & MEMCTL_CMD_STS) {
DRM_DEBUG("gpu busy, RCS change rejected\n");
return false; /* still busy with another command */
}
rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
(val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
I915_WRITE16(MEMSWCTL, rgvswctl);
POSTING_READ16(MEMSWCTL);
rgvswctl |= MEMCTL_CMD_STS;
I915_WRITE16(MEMSWCTL, rgvswctl);
return true;
}
static void ironlake_enable_drps(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
u32 rgvmodectl = I915_READ(MEMMODECTL);
u8 fmax, fmin, fstart, vstart;
spin_lock_irq(&mchdev_lock);
/* Enable temp reporting */
I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
/* 100ms RC evaluation intervals */
I915_WRITE(RCUPEI, 100000);
I915_WRITE(RCDNEI, 100000);
/* Set max/min thresholds to 90ms and 80ms respectively */
I915_WRITE(RCBMAXAVG, 90000);
I915_WRITE(RCBMINAVG, 80000);
I915_WRITE(MEMIHYST, 1);
/* Set up min, max, and cur for interrupt handling */
fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
MEMMODE_FSTART_SHIFT;
vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
PXVFREQ_PX_SHIFT;
dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
dev_priv->ips.fstart = fstart;
dev_priv->ips.max_delay = fstart;
dev_priv->ips.min_delay = fmin;
dev_priv->ips.cur_delay = fstart;
DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
fmax, fmin, fstart);
I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
/*
* Interrupts will be enabled in ironlake_irq_postinstall
*/
I915_WRITE(VIDSTART, vstart);
POSTING_READ(VIDSTART);
rgvmodectl |= MEMMODE_SWMODE_EN;
I915_WRITE(MEMMODECTL, rgvmodectl);
if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
DRM_ERROR("stuck trying to change perf mode\n");
mdelay(1);
ironlake_set_drps(dev, fstart);
dev_priv->ips.last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
I915_READ(0x112e0);
dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
dev_priv->ips.last_count2 = I915_READ(0x112f4);
getrawmonotonic(&dev_priv->ips.last_time2);
spin_unlock_irq(&mchdev_lock);
}
static void ironlake_disable_drps(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
u16 rgvswctl;
spin_lock_irq(&mchdev_lock);
rgvswctl = I915_READ16(MEMSWCTL);
/* Ack interrupts, disable EFC interrupt */
I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
I915_WRITE(DEIIR, DE_PCU_EVENT);
I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
/* Go back to the starting frequency */
ironlake_set_drps(dev, dev_priv->ips.fstart);
mdelay(1);
rgvswctl |= MEMCTL_CMD_STS;
I915_WRITE(MEMSWCTL, rgvswctl);
mdelay(1);
spin_unlock_irq(&mchdev_lock);
}
/* There's a funny hw issue where the hw returns all 0 when reading from
* GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
* ourselves, instead of doing a rmw cycle (which might result in us clearing
* all limits and the gpu stuck at whatever frequency it is at atm).
*/
static u32 gen6_rps_limits(struct drm_i915_private *dev_priv, u8 val)
{
u32 limits;
/* Only set the down limit when we've reached the lowest level to avoid
* getting more interrupts, otherwise leave this clear. This prevents a
* race in the hw when coming out of rc6: There's a tiny window where
* the hw runs at the minimal clock before selecting the desired
* frequency, if the down threshold expires in that window we will not
* receive a down interrupt. */
limits = dev_priv->rps.max_freq_softlimit << 24;
if (val <= dev_priv->rps.min_freq_softlimit)
limits |= dev_priv->rps.min_freq_softlimit << 16;
return limits;
}
static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
{
int new_power;
new_power = dev_priv->rps.power;
switch (dev_priv->rps.power) {
case LOW_POWER:
if (val > dev_priv->rps.efficient_freq + 1 && val > dev_priv->rps.cur_freq)
new_power = BETWEEN;
break;
case BETWEEN:
if (val <= dev_priv->rps.efficient_freq && val < dev_priv->rps.cur_freq)
new_power = LOW_POWER;
else if (val >= dev_priv->rps.rp0_freq && val > dev_priv->rps.cur_freq)
new_power = HIGH_POWER;
break;
case HIGH_POWER:
if (val < (dev_priv->rps.rp1_freq + dev_priv->rps.rp0_freq) >> 1 && val < dev_priv->rps.cur_freq)
new_power = BETWEEN;
break;
}
/* Max/min bins are special */
if (val == dev_priv->rps.min_freq_softlimit)
new_power = LOW_POWER;
if (val == dev_priv->rps.max_freq_softlimit)
new_power = HIGH_POWER;
if (new_power == dev_priv->rps.power)
return;
/* Note the units here are not exactly 1us, but 1280ns. */
switch (new_power) {
case LOW_POWER:
/* Upclock if more than 95% busy over 16ms */
I915_WRITE(GEN6_RP_UP_EI, 12500);
I915_WRITE(GEN6_RP_UP_THRESHOLD, 11800);
/* Downclock if less than 85% busy over 32ms */
I915_WRITE(GEN6_RP_DOWN_EI, 25000);
I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 21250);
I915_WRITE(GEN6_RP_CONTROL,
GEN6_RP_MEDIA_TURBO |
GEN6_RP_MEDIA_HW_NORMAL_MODE |
GEN6_RP_MEDIA_IS_GFX |
GEN6_RP_ENABLE |
GEN6_RP_UP_BUSY_AVG |
GEN6_RP_DOWN_IDLE_AVG);
break;
case BETWEEN:
/* Upclock if more than 90% busy over 13ms */
I915_WRITE(GEN6_RP_UP_EI, 10250);
I915_WRITE(GEN6_RP_UP_THRESHOLD, 9225);
/* Downclock if less than 75% busy over 32ms */
I915_WRITE(GEN6_RP_DOWN_EI, 25000);
I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 18750);
I915_WRITE(GEN6_RP_CONTROL,
GEN6_RP_MEDIA_TURBO |
GEN6_RP_MEDIA_HW_NORMAL_MODE |
GEN6_RP_MEDIA_IS_GFX |
GEN6_RP_ENABLE |
GEN6_RP_UP_BUSY_AVG |
GEN6_RP_DOWN_IDLE_AVG);
break;
case HIGH_POWER:
/* Upclock if more than 85% busy over 10ms */
I915_WRITE(GEN6_RP_UP_EI, 8000);
I915_WRITE(GEN6_RP_UP_THRESHOLD, 6800);
/* Downclock if less than 60% busy over 32ms */
I915_WRITE(GEN6_RP_DOWN_EI, 25000);
I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 15000);
I915_WRITE(GEN6_RP_CONTROL,
GEN6_RP_MEDIA_TURBO |
GEN6_RP_MEDIA_HW_NORMAL_MODE |
GEN6_RP_MEDIA_IS_GFX |
GEN6_RP_ENABLE |
GEN6_RP_UP_BUSY_AVG |
GEN6_RP_DOWN_IDLE_AVG);
break;
}
dev_priv->rps.power = new_power;
dev_priv->rps.last_adj = 0;
}
static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
{
u32 mask = 0;
if (val > dev_priv->rps.min_freq_softlimit)
mask |= GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
if (val < dev_priv->rps.max_freq_softlimit)
mask |= GEN6_PM_RP_UP_THRESHOLD;
/* IVB and SNB hard hangs on looping batchbuffer
* if GEN6_PM_UP_EI_EXPIRED is masked.
*/
if (INTEL_INFO(dev_priv->dev)->gen <= 7 && !IS_HASWELL(dev_priv->dev))
mask |= GEN6_PM_RP_UP_EI_EXPIRED;
return ~mask;
}
/* gen6_set_rps is called to update the frequency request, but should also be
* called when the range (min_delay and max_delay) is modified so that we can
* update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
void gen6_set_rps(struct drm_device *dev, u8 val)
{
struct drm_i915_private *dev_priv = dev->dev_private;
WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
WARN_ON(val > dev_priv->rps.max_freq_softlimit);
WARN_ON(val < dev_priv->rps.min_freq_softlimit);
/* min/max delay may still have been modified so be sure to
* write the limits value.
*/
if (val != dev_priv->rps.cur_freq) {
gen6_set_rps_thresholds(dev_priv, val);
if (IS_HASWELL(dev) || IS_BROADWELL(dev))
I915_WRITE(GEN6_RPNSWREQ,
HSW_FREQUENCY(val));
else
I915_WRITE(GEN6_RPNSWREQ,
GEN6_FREQUENCY(val) |
GEN6_OFFSET(0) |
GEN6_AGGRESSIVE_TURBO);
}
/* Make sure we continue to get interrupts
* until we hit the minimum or maximum frequencies.
*/
I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, gen6_rps_limits(dev_priv, val));
I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
POSTING_READ(GEN6_RPNSWREQ);
dev_priv->rps.cur_freq = val;
trace_intel_gpu_freq_change(val * 50);
}
/* vlv_set_rps_idle: Set the frequency to Rpn if Gfx clocks are down
*
* * If Gfx is Idle, then
* 1. Mask Turbo interrupts
* 2. Bring up Gfx clock
* 3. Change the freq to Rpn and wait till P-Unit updates freq
* 4. Clear the Force GFX CLK ON bit so that Gfx can down
* 5. Unmask Turbo interrupts
*/
static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
{
/*
* When we are idle. Drop to min voltage state.
*/
if (dev_priv->rps.cur_freq <= dev_priv->rps.min_freq_softlimit)
return;
/* Mask turbo interrupt so that they will not come in between */
I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
/* Bring up the Gfx clock */
I915_WRITE(VLV_GTLC_SURVIVABILITY_REG,
I915_READ(VLV_GTLC_SURVIVABILITY_REG) |
VLV_GFX_CLK_FORCE_ON_BIT);
if (wait_for(((VLV_GFX_CLK_STATUS_BIT &
I915_READ(VLV_GTLC_SURVIVABILITY_REG)) != 0), 5)) {
DRM_ERROR("GFX_CLK_ON request timed out\n");
return;
}
dev_priv->rps.cur_freq = dev_priv->rps.min_freq_softlimit;
vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ,
dev_priv->rps.min_freq_softlimit);
if (wait_for(((vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS))
& GENFREQSTATUS) == 0, 5))
DRM_ERROR("timed out waiting for Punit\n");
/* Release the Gfx clock */
I915_WRITE(VLV_GTLC_SURVIVABILITY_REG,
I915_READ(VLV_GTLC_SURVIVABILITY_REG) &
~VLV_GFX_CLK_FORCE_ON_BIT);
I915_WRITE(GEN6_PMINTRMSK,
gen6_rps_pm_mask(dev_priv, dev_priv->rps.cur_freq));
}
void gen6_rps_idle(struct drm_i915_private *dev_priv)
{
struct drm_device *dev = dev_priv->dev;
mutex_lock(&dev_priv->rps.hw_lock);
if (dev_priv->rps.enabled) {
if (IS_VALLEYVIEW(dev))
vlv_set_rps_idle(dev_priv);
else
gen6_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
dev_priv->rps.last_adj = 0;
}
mutex_unlock(&dev_priv->rps.hw_lock);
}
void gen6_rps_boost(struct drm_i915_private *dev_priv)
{
struct drm_device *dev = dev_priv->dev;
mutex_lock(&dev_priv->rps.hw_lock);
if (dev_priv->rps.enabled) {
if (IS_VALLEYVIEW(dev))
valleyview_set_rps(dev_priv->dev, dev_priv->rps.max_freq_softlimit);
else
gen6_set_rps(dev_priv->dev, dev_priv->rps.max_freq_softlimit);
dev_priv->rps.last_adj = 0;
}
mutex_unlock(&dev_priv->rps.hw_lock);
}
void valleyview_set_rps(struct drm_device *dev, u8 val)
{
struct drm_i915_private *dev_priv = dev->dev_private;
WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
WARN_ON(val > dev_priv->rps.max_freq_softlimit);
WARN_ON(val < dev_priv->rps.min_freq_softlimit);
DRM_DEBUG_DRIVER("GPU freq request from %d MHz (%u) to %d MHz (%u)\n",
vlv_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
dev_priv->rps.cur_freq,
vlv_gpu_freq(dev_priv, val), val);
if (val != dev_priv->rps.cur_freq)
vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
dev_priv->rps.cur_freq = val;
trace_intel_gpu_freq_change(vlv_gpu_freq(dev_priv, val));
}
static void gen6_disable_rps_interrupts(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
I915_WRITE(GEN6_PMIER, I915_READ(GEN6_PMIER) &
~dev_priv->pm_rps_events);
/* Complete PM interrupt masking here doesn't race with the rps work
* item again unmasking PM interrupts because that is using a different
* register (PMIMR) to mask PM interrupts. The only risk is in leaving
* stale bits in PMIIR and PMIMR which gen6_enable_rps will clean up. */
spin_lock_irq(&dev_priv->irq_lock);
dev_priv->rps.pm_iir = 0;
spin_unlock_irq(&dev_priv->irq_lock);
I915_WRITE(GEN6_PMIIR, dev_priv->pm_rps_events);
}
static void gen6_disable_rps(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
I915_WRITE(GEN6_RC_CONTROL, 0);
I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
gen6_disable_rps_interrupts(dev);
}
static void valleyview_disable_rps(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
I915_WRITE(GEN6_RC_CONTROL, 0);
gen6_disable_rps_interrupts(dev);
}
static void intel_print_rc6_info(struct drm_device *dev, u32 mode)
{
if (IS_VALLEYVIEW(dev)) {
if (mode & (GEN7_RC_CTL_TO_MODE | GEN6_RC_CTL_EI_MODE(1)))
mode = GEN6_RC_CTL_RC6_ENABLE;
else
mode = 0;
}
DRM_INFO("Enabling RC6 states: RC6 %s, RC6p %s, RC6pp %s\n",
(mode & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off",
(mode & GEN6_RC_CTL_RC6p_ENABLE) ? "on" : "off",
(mode & GEN6_RC_CTL_RC6pp_ENABLE) ? "on" : "off");
}
int intel_enable_rc6(const struct drm_device *dev)
{
/* No RC6 before Ironlake */
if (INTEL_INFO(dev)->gen < 5)
return 0;
/* Respect the kernel parameter if it is set */
if (i915.enable_rc6 >= 0)
return i915.enable_rc6;
/* Disable RC6 on Ironlake */
if (INTEL_INFO(dev)->gen == 5)
return 0;
if (IS_IVYBRIDGE(dev))
return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
return INTEL_RC6_ENABLE;
}
static void gen6_enable_rps_interrupts(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
spin_lock_irq(&dev_priv->irq_lock);
WARN_ON(dev_priv->rps.pm_iir);
snb_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
I915_WRITE(GEN6_PMIIR, dev_priv->pm_rps_events);
spin_unlock_irq(&dev_priv->irq_lock);
}
static void parse_rp_state_cap(struct drm_i915_private *dev_priv, u32 rp_state_cap)
{
/* All of these values are in units of 50MHz */
dev_priv->rps.cur_freq = 0;
/* static values from HW: RP0 < RPe < RP1 < RPn (min_freq) */
dev_priv->rps.rp1_freq = (rp_state_cap >> 8) & 0xff;
dev_priv->rps.rp0_freq = (rp_state_cap >> 0) & 0xff;
dev_priv->rps.min_freq = (rp_state_cap >> 16) & 0xff;
/* XXX: only BYT has a special efficient freq */
dev_priv->rps.efficient_freq = dev_priv->rps.rp1_freq;
/* hw_max = RP0 until we check for overclocking */
dev_priv->rps.max_freq = dev_priv->rps.rp0_freq;
/* Preserve min/max settings in case of re-init */
if (dev_priv->rps.max_freq_softlimit == 0)
dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
if (dev_priv->rps.min_freq_softlimit == 0)
dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
}
static void gen8_enable_rps(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_ring_buffer *ring;
uint32_t rc6_mask = 0, rp_state_cap;
int unused;
/* 1a: Software RC state - RC0 */
I915_WRITE(GEN6_RC_STATE, 0);
/* 1c & 1d: Get forcewake during program sequence. Although the driver
* hasn't enabled a state yet where we need forcewake, BIOS may have.*/
gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
/* 2a: Disable RC states. */
I915_WRITE(GEN6_RC_CONTROL, 0);
rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
parse_rp_state_cap(dev_priv, rp_state_cap);
/* 2b: Program RC6 thresholds.*/
I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
for_each_ring(ring, dev_priv, unused)
I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
I915_WRITE(GEN6_RC_SLEEP, 0);
I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
/* 3: Enable RC6 */
if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
intel_print_rc6_info(dev, rc6_mask);
I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
GEN6_RC_CTL_EI_MODE(1) |
rc6_mask);
/* 4 Program defaults and thresholds for RPS*/
I915_WRITE(GEN6_RPNSWREQ,
HSW_FREQUENCY(dev_priv->rps.rp1_freq));
I915_WRITE(GEN6_RC_VIDEO_FREQ,
HSW_FREQUENCY(dev_priv->rps.rp1_freq));
/* NB: Docs say 1s, and 1000000 - which aren't equivalent */
I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */
/* Docs recommend 900MHz, and 300 MHz respectively */
I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
dev_priv->rps.max_freq_softlimit << 24 |
dev_priv->rps.min_freq_softlimit << 16);
I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */
I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
/* 5: Enable RPS */
I915_WRITE(GEN6_RP_CONTROL,
GEN6_RP_MEDIA_TURBO |
GEN6_RP_MEDIA_HW_NORMAL_MODE |
GEN6_RP_MEDIA_IS_GFX |
GEN6_RP_ENABLE |
GEN6_RP_UP_BUSY_AVG |
GEN6_RP_DOWN_IDLE_AVG);
/* 6: Ring frequency + overclocking (our driver does this later */
gen6_set_rps(dev, (I915_READ(GEN6_GT_PERF_STATUS) & 0xff00) >> 8);
gen6_enable_rps_interrupts(dev);
gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
}
static void gen6_enable_rps(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_ring_buffer *ring;
u32 rp_state_cap;
u32 gt_perf_status;
u32 rc6vids, pcu_mbox = 0, rc6_mask = 0;
u32 gtfifodbg;
int rc6_mode;
int i, ret;
WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
/* Here begins a magic sequence of register writes to enable
* auto-downclocking.
*
* Perhaps there might be some value in exposing these to
* userspace...
*/
I915_WRITE(GEN6_RC_STATE, 0);
/* Clear the DBG now so we don't confuse earlier errors */
if ((gtfifodbg = I915_READ(GTFIFODBG))) {
DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
I915_WRITE(GTFIFODBG, gtfifodbg);
}
gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
parse_rp_state_cap(dev_priv, rp_state_cap);
/* disable the counters and set deterministic thresholds */
I915_WRITE(GEN6_RC_CONTROL, 0);
I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
for_each_ring(ring, dev_priv, i)
I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
I915_WRITE(GEN6_RC_SLEEP, 0);
I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
if (IS_IVYBRIDGE(dev))
I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
else
I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
/* Check if we are enabling RC6 */
rc6_mode = intel_enable_rc6(dev_priv->dev);
if (rc6_mode & INTEL_RC6_ENABLE)
rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
/* We don't use those on Haswell */
if (!IS_HASWELL(dev)) {
if (rc6_mode & INTEL_RC6p_ENABLE)
rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
if (rc6_mode & INTEL_RC6pp_ENABLE)
rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
}
intel_print_rc6_info(dev, rc6_mask);
I915_WRITE(GEN6_RC_CONTROL,
rc6_mask |
GEN6_RC_CTL_EI_MODE(1) |
GEN6_RC_CTL_HW_ENABLE);
/* Power down if completely idle for over 50ms */
I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
if (ret)
DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
if (!ret && (pcu_mbox & (1<<31))) { /* OC supported */
DRM_DEBUG_DRIVER("Overclocking supported. Max: %dMHz, Overclock max: %dMHz\n",
(dev_priv->rps.max_freq_softlimit & 0xff) * 50,
(pcu_mbox & 0xff) * 50);
dev_priv->rps.max_freq = pcu_mbox & 0xff;
}
dev_priv->rps.power = HIGH_POWER; /* force a reset */
gen6_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
gen6_enable_rps_interrupts(dev);
rc6vids = 0;
ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
if (IS_GEN6(dev) && ret) {
DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
} else if (IS_GEN6(dev) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
rc6vids &= 0xffff00;
rc6vids |= GEN6_ENCODE_RC6_VID(450);
ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
if (ret)
DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
}
gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
}
void gen6_update_ring_freq(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
int min_freq = 15;
unsigned int gpu_freq;
unsigned int max_ia_freq, min_ring_freq;
int scaling_factor = 180;
struct cpufreq_policy *policy;
WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
policy = cpufreq_cpu_get(0);
if (policy) {
max_ia_freq = policy->cpuinfo.max_freq;
cpufreq_cpu_put(policy);
} else {
/*
* Default to measured freq if none found, PCU will ensure we
* don't go over
*/
max_ia_freq = tsc_khz;
}
/* Convert from kHz to MHz */
max_ia_freq /= 1000;
min_ring_freq = I915_READ(DCLK) & 0xf;
/* convert DDR frequency from units of 266.6MHz to bandwidth */
min_ring_freq = mult_frac(min_ring_freq, 8, 3);
/*
* For each potential GPU frequency, load a ring frequency we'd like
* to use for memory access. We do this by specifying the IA frequency
* the PCU should use as a reference to determine the ring frequency.
*/
for (gpu_freq = dev_priv->rps.max_freq_softlimit; gpu_freq >= dev_priv->rps.min_freq_softlimit;
gpu_freq--) {
int diff = dev_priv->rps.max_freq_softlimit - gpu_freq;
unsigned int ia_freq = 0, ring_freq = 0;
if (INTEL_INFO(dev)->gen >= 8) {
/* max(2 * GT, DDR). NB: GT is 50MHz units */
ring_freq = max(min_ring_freq, gpu_freq);
} else if (IS_HASWELL(dev)) {
ring_freq = mult_frac(gpu_freq, 5, 4);
ring_freq = max(min_ring_freq, ring_freq);
/* leave ia_freq as the default, chosen by cpufreq */
} else {
/* On older processors, there is no separate ring
* clock domain, so in order to boost the bandwidth
* of the ring, we need to upclock the CPU (ia_freq).
*
* For GPU frequencies less than 750MHz,
* just use the lowest ring freq.
*/
if (gpu_freq < min_freq)
ia_freq = 800;
else
ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
}
sandybridge_pcode_write(dev_priv,
GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
gpu_freq);
}
}
int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
{
u32 val, rp0;
val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
/* Clamp to max */
rp0 = min_t(u32, rp0, 0xea);
return rp0;
}
static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
{
u32 val, rpe;
val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
return rpe;
}
int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
{
return vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
}
/* Check that the pctx buffer wasn't move under us. */
static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
{
unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
WARN_ON(pctx_addr != dev_priv->mm.stolen_base +
dev_priv->vlv_pctx->stolen->start);
}
static void valleyview_setup_pctx(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_i915_gem_object *pctx;
unsigned long pctx_paddr;
u32 pcbr;
int pctx_size = 24*1024;
WARN_ON(!mutex_is_locked(&dev->struct_mutex));
pcbr = I915_READ(VLV_PCBR);
if (pcbr) {
/* BIOS set it up already, grab the pre-alloc'd space */
int pcbr_offset;
pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv->dev,
pcbr_offset,
I915_GTT_OFFSET_NONE,
pctx_size);
goto out;
}
/*
* From the Gunit register HAS:
* The Gfx driver is expected to program this register and ensure
* proper allocation within Gfx stolen memory. For example, this
* register should be programmed such than the PCBR range does not
* overlap with other ranges, such as the frame buffer, protected
* memory, or any other relevant ranges.
*/
pctx = i915_gem_object_create_stolen(dev, pctx_size);
if (!pctx) {
DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
return;
}
pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
I915_WRITE(VLV_PCBR, pctx_paddr);
out:
dev_priv->vlv_pctx = pctx;
}
static void valleyview_cleanup_pctx(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
if (WARN_ON(!dev_priv->vlv_pctx))
return;
drm_gem_object_unreference(&dev_priv->vlv_pctx->base);
dev_priv->vlv_pctx = NULL;
}
static void valleyview_enable_rps(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_ring_buffer *ring;
u32 gtfifodbg, val, rc6_mode = 0;
int i;
WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
valleyview_check_pctx(dev_priv);
if ((gtfifodbg = I915_READ(GTFIFODBG))) {
DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
gtfifodbg);
I915_WRITE(GTFIFODBG, gtfifodbg);
}
/* If VLV, Forcewake all wells, else re-direct to regular path */
gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
I915_WRITE(GEN6_RP_UP_EI, 66000);
I915_WRITE(GEN6_RP_DOWN_EI, 350000);
I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
I915_WRITE(GEN6_RP_CONTROL,
GEN6_RP_MEDIA_TURBO |
GEN6_RP_MEDIA_HW_NORMAL_MODE |
GEN6_RP_MEDIA_IS_GFX |
GEN6_RP_ENABLE |
GEN6_RP_UP_BUSY_AVG |
GEN6_RP_DOWN_IDLE_CONT);
I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
for_each_ring(ring, dev_priv, i)
I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
/* allows RC6 residency counter to work */
I915_WRITE(VLV_COUNTER_CONTROL,
_MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
VLV_MEDIA_RC6_COUNT_EN |
VLV_RENDER_RC6_COUNT_EN));
if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
intel_print_rc6_info(dev, rc6_mode);
I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
DRM_DEBUG_DRIVER("GPLL enabled? %s\n", val & 0x10 ? "yes" : "no");
DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
dev_priv->rps.cur_freq = (val >> 8) & 0xff;
DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
vlv_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
dev_priv->rps.cur_freq);
dev_priv->rps.max_freq = valleyview_rps_max_freq(dev_priv);
dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
vlv_gpu_freq(dev_priv, dev_priv->rps.max_freq),
dev_priv->rps.max_freq);
dev_priv->rps.efficient_freq = valleyview_rps_rpe_freq(dev_priv);
DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
vlv_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
dev_priv->rps.efficient_freq);
dev_priv->rps.min_freq = valleyview_rps_min_freq(dev_priv);
DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
vlv_gpu_freq(dev_priv, dev_priv->rps.min_freq),
dev_priv->rps.min_freq);
/* Preserve min/max settings in case of re-init */
if (dev_priv->rps.max_freq_softlimit == 0)
dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
if (dev_priv->rps.min_freq_softlimit == 0)
dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
vlv_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
dev_priv->rps.efficient_freq);
valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);
gen6_enable_rps_interrupts(dev);
gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
}
void ironlake_teardown_rc6(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
if (dev_priv->ips.renderctx) {
i915_gem_object_ggtt_unpin(dev_priv->ips.renderctx);
drm_gem_object_unreference(&dev_priv->ips.renderctx->base);
dev_priv->ips.renderctx = NULL;
}
if (dev_priv->ips.pwrctx) {
i915_gem_object_ggtt_unpin(dev_priv->ips.pwrctx);
drm_gem_object_unreference(&dev_priv->ips.pwrctx->base);
dev_priv->ips.pwrctx = NULL;
}
}
static void ironlake_disable_rc6(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
if (I915_READ(PWRCTXA)) {
/* Wake the GPU, prevent RC6, then restore RSTDBYCTL */
I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) | RCX_SW_EXIT);
wait_for(((I915_READ(RSTDBYCTL) & RSX_STATUS_MASK) == RSX_STATUS_ON),
50);
I915_WRITE(PWRCTXA, 0);
POSTING_READ(PWRCTXA);
I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
POSTING_READ(RSTDBYCTL);
}
}
static int ironlake_setup_rc6(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
if (dev_priv->ips.renderctx == NULL)
dev_priv->ips.renderctx = intel_alloc_context_page(dev);
if (!dev_priv->ips.renderctx)
return -ENOMEM;
if (dev_priv->ips.pwrctx == NULL)
dev_priv->ips.pwrctx = intel_alloc_context_page(dev);
if (!dev_priv->ips.pwrctx) {
ironlake_teardown_rc6(dev);
return -ENOMEM;
}
return 0;
}
static void ironlake_enable_rc6(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
bool was_interruptible;
int ret;
/* rc6 disabled by default due to repeated reports of hanging during
* boot and resume.
*/
if (!intel_enable_rc6(dev))
return;
WARN_ON(!mutex_is_locked(&dev->struct_mutex));
ret = ironlake_setup_rc6(dev);
if (ret)
return;
was_interruptible = dev_priv->mm.interruptible;
dev_priv->mm.interruptible = false;
/*
* GPU can automatically power down the render unit if given a page
* to save state.
*/
ret = intel_ring_begin(ring, 6);
if (ret) {
ironlake_teardown_rc6(dev);
dev_priv->mm.interruptible = was_interruptible;
return;
}
intel_ring_emit(ring, MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN);
intel_ring_emit(ring, MI_SET_CONTEXT);
intel_ring_emit(ring, i915_gem_obj_ggtt_offset(dev_priv->ips.renderctx) |
MI_MM_SPACE_GTT |
MI_SAVE_EXT_STATE_EN |
MI_RESTORE_EXT_STATE_EN |
MI_RESTORE_INHIBIT);
intel_ring_emit(ring, MI_SUSPEND_FLUSH);
intel_ring_emit(ring, MI_NOOP);
intel_ring_emit(ring, MI_FLUSH);
intel_ring_advance(ring);
/*
* Wait for the command parser to advance past MI_SET_CONTEXT. The HW
* does an implicit flush, combined with MI_FLUSH above, it should be
* safe to assume that renderctx is valid
*/
ret = intel_ring_idle(ring);
dev_priv->mm.interruptible = was_interruptible;
if (ret) {
DRM_ERROR("failed to enable ironlake power savings\n");
ironlake_teardown_rc6(dev);
return;
}
I915_WRITE(PWRCTXA, i915_gem_obj_ggtt_offset(dev_priv->ips.pwrctx) | PWRCTX_EN);
I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
intel_print_rc6_info(dev, GEN6_RC_CTL_RC6_ENABLE);
}
static unsigned long intel_pxfreq(u32 vidfreq)
{
unsigned long freq;
int div = (vidfreq & 0x3f0000) >> 16;
int post = (vidfreq & 0x3000) >> 12;
int pre = (vidfreq & 0x7);
if (!pre)
return 0;
freq = ((div * 133333) / ((1<<post) * pre));
return freq;
}
static const struct cparams {
u16 i;
u16 t;
u16 m;
u16 c;
} cparams[] = {
{ 1, 1333, 301, 28664 },
{ 1, 1066, 294, 24460 },
{ 1, 800, 294, 25192 },
{ 0, 1333, 276, 27605 },
{ 0, 1066, 276, 27605 },
{ 0, 800, 231, 23784 },
};
static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
{
u64 total_count, diff, ret;
u32 count1, count2, count3, m = 0, c = 0;
unsigned long now = jiffies_to_msecs(jiffies), diff1;
int i;
assert_spin_locked(&mchdev_lock);
diff1 = now - dev_priv->ips.last_time1;
/* Prevent division-by-zero if we are asking too fast.
* Also, we don't get interesting results if we are polling
* faster than once in 10ms, so just return the saved value
* in such cases.
*/
if (diff1 <= 10)
return dev_priv->ips.chipset_power;
count1 = I915_READ(DMIEC);
count2 = I915_READ(DDREC);
count3 = I915_READ(CSIEC);
total_count = count1 + count2 + count3;
/* FIXME: handle per-counter overflow */
if (total_count < dev_priv->ips.last_count1) {
diff = ~0UL - dev_priv->ips.last_count1;
diff += total_count;
} else {
diff = total_count - dev_priv->ips.last_count1;
}
for (i = 0; i < ARRAY_SIZE(cparams); i++) {
if (cparams[i].i == dev_priv->ips.c_m &&
cparams[i].t == dev_priv->ips.r_t) {
m = cparams[i].m;
c = cparams[i].c;
break;
}
}
diff = div_u64(diff, diff1);
ret = ((m * diff) + c);
ret = div_u64(ret, 10);
dev_priv->ips.last_count1 = total_count;
dev_priv->ips.last_time1 = now;
dev_priv->ips.chipset_power = ret;
return ret;
}
unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
{
struct drm_device *dev = dev_priv->dev;
unsigned long val;
if (INTEL_INFO(dev)->gen != 5)
return 0;
spin_lock_irq(&mchdev_lock);
val = __i915_chipset_val(dev_priv);
spin_unlock_irq(&mchdev_lock);
return val;
}
unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
{
unsigned long m, x, b;
u32 tsfs;
tsfs = I915_READ(TSFS);
m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
x = I915_READ8(TR1);
b = tsfs & TSFS_INTR_MASK;
return ((m * x) / 127) - b;
}
static u16 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
{
struct drm_device *dev = dev_priv->dev;
static const struct v_table {
u16 vd; /* in .1 mil */
u16 vm; /* in .1 mil */
} v_table[] = {
{ 0, 0, },
{ 375, 0, },
{ 500, 0, },
{ 625, 0, },
{ 750, 0, },
{ 875, 0, },
{ 1000, 0, },
{ 1125, 0, },
{ 4125, 3000, },
{ 4125, 3000, },
{ 4125, 3000, },
{ 4125, 3000, },
{ 4125, 3000, },
{ 4125, 3000, },
{ 4125, 3000, },
{ 4125, 3000, },
{ 4125, 3000, },
{ 4125, 3000, },
{ 4125, 3000, },
{ 4125, 3000, },
{ 4125, 3000, },
{ 4125, 3000, },
{ 4125, 3000, },
{ 4125, 3000, },
{ 4125, 3000, },
{ 4125, 3000, },
{ 4125, 3000, },
{ 4125, 3000, },
{ 4125, 3000, },
{ 4125, 3000, },
{ 4125, 3000, },
{ 4125, 3000, },
{ 4250, 3125, },
{ 4375, 3250, },
{ 4500, 3375, },
{ 4625, 3500, },
{ 4750, 3625, },
{ 4875, 3750, },
{ 5000, 3875, },
{ 5125, 4000, },
{ 5250, 4125, },
{ 5375, 4250, },
{ 5500, 4375, },
{ 5625, 4500, },
{ 5750, 4625, },
{ 5875, 4750, },
{ 6000, 4875, },
{ 6125, 5000, },
{ 6250, 5125, },
{ 6375, 5250, },
{ 6500, 5375, },
{ 6625, 5500, },
{ 6750, 5625, },
{ 6875, 5750, },
{ 7000, 5875, },
{ 7125, 6000, },
{ 7250, 6125, },
{ 7375, 6250, },
{ 7500, 6375, },
{ 7625, 6500, },
{ 7750, 6625, },
{ 7875, 6750, },
{ 8000, 6875, },
{ 8125, 7000, },
{ 8250, 7125, },
{ 8375, 7250, },
{ 8500, 7375, },
{ 8625, 7500, },
{ 8750, 7625, },
{ 8875, 7750, },
{ 9000, 7875, },
{ 9125, 8000, },
{ 9250, 8125, },
{ 9375, 8250, },
{ 9500, 8375, },
{ 9625, 8500, },
{ 9750, 8625, },
{ 9875, 8750, },
{ 10000, 8875, },
{ 10125, 9000, },
{ 10250, 9125, },
{ 10375, 9250, },
{ 10500, 9375, },
{ 10625, 9500, },
{ 10750, 9625, },
{ 10875, 9750, },
{ 11000, 9875, },
{ 11125, 10000, },
{ 11250, 10125, },
{ 11375, 10250, },
{ 11500, 10375, },
{ 11625, 10500, },
{ 11750, 10625, },
{ 11875, 10750, },
{ 12000, 10875, },
{ 12125, 11000, },
{ 12250, 11125, },
{ 12375, 11250, },
{ 12500, 11375, },
{ 12625, 11500, },
{ 12750, 11625, },
{ 12875, 11750, },
{ 13000, 11875, },
{ 13125, 12000, },
{ 13250, 12125, },
{ 13375, 12250, },
{ 13500, 12375, },
{ 13625, 12500, },
{ 13750, 12625, },
{ 13875, 12750, },
{ 14000, 12875, },
{ 14125, 13000, },
{ 14250, 13125, },
{ 14375, 13250, },
{ 14500, 13375, },
{ 14625, 13500, },
{ 14750, 13625, },
{ 14875, 13750, },
{ 15000, 13875, },
{ 15125, 14000, },
{ 15250, 14125, },
{ 15375, 14250, },
{ 15500, 14375, },
{ 15625, 14500, },
{ 15750, 14625, },
{ 15875, 14750, },
{ 16000, 14875, },
{ 16125, 15000, },
};
if (INTEL_INFO(dev)->is_mobile)
return v_table[pxvid].vm;
else
return v_table[pxvid].vd;
}
static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
{
struct timespec now, diff1;
u64 diff;
unsigned long diffms;
u32 count;
assert_spin_locked(&mchdev_lock);
getrawmonotonic(&now);
diff1 = timespec_sub(now, dev_priv->ips.last_time2);
/* Don't divide by 0 */
diffms = diff1.tv_sec * 1000 + diff1.tv_nsec / 1000000;
if (!diffms)
return;
count = I915_READ(GFXEC);
if (count < dev_priv->ips.last_count2) {
diff = ~0UL - dev_priv->ips.last_count2;
diff += count;
} else {
diff = count - dev_priv->ips.last_count2;
}
dev_priv->ips.last_count2 = count;
dev_priv->ips.last_time2 = now;
/* More magic constants... */
diff = diff * 1181;
diff = div_u64(diff, diffms * 10);
dev_priv->ips.gfx_power = diff;
}
void i915_update_gfx_val(struct drm_i915_private *dev_priv)
{
struct drm_device *dev = dev_priv->dev;
if (INTEL_INFO(dev)->gen != 5)
return;
spin_lock_irq(&mchdev_lock);
__i915_update_gfx_val(dev_priv);
spin_unlock_irq(&mchdev_lock);
}
static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
{
unsigned long t, corr, state1, corr2, state2;
u32 pxvid, ext_v;
assert_spin_locked(&mchdev_lock);
pxvid = I915_READ(PXVFREQ_BASE + (dev_priv->rps.cur_freq * 4));
pxvid = (pxvid >> 24) & 0x7f;
ext_v = pvid_to_extvid(dev_priv, pxvid);
state1 = ext_v;
t = i915_mch_val(dev_priv);
/* Revel in the empirically derived constants */
/* Correction factor in 1/100000 units */
if (t > 80)
corr = ((t * 2349) + 135940);
else if (t >= 50)
corr = ((t * 964) + 29317);
else /* < 50 */
corr = ((t * 301) + 1004);
corr = corr * ((150142 * state1) / 10000 - 78642);
corr /= 100000;
corr2 = (corr * dev_priv->ips.corr);
state2 = (corr2 * state1) / 10000;
state2 /= 100; /* convert to mW */
__i915_update_gfx_val(dev_priv);
return dev_priv->ips.gfx_power + state2;
}
unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
{
struct drm_device *dev = dev_priv->dev;
unsigned long val;
if (INTEL_INFO(dev)->gen != 5)
return 0;
spin_lock_irq(&mchdev_lock);
val = __i915_gfx_val(dev_priv);
spin_unlock_irq(&mchdev_lock);
return val;
}
/**
* i915_read_mch_val - return value for IPS use
*
* Calculate and return a value for the IPS driver to use when deciding whether
* we have thermal and power headroom to increase CPU or GPU power budget.
*/
unsigned long i915_read_mch_val(void)
{
struct drm_i915_private *dev_priv;
unsigned long chipset_val, graphics_val, ret = 0;
spin_lock_irq(&mchdev_lock);
if (!i915_mch_dev)
goto out_unlock;
dev_priv = i915_mch_dev;
chipset_val = __i915_chipset_val(dev_priv);
graphics_val = __i915_gfx_val(dev_priv);
ret = chipset_val + graphics_val;
out_unlock:
spin_unlock_irq(&mchdev_lock);
return ret;
}
EXPORT_SYMBOL_GPL(i915_read_mch_val);
/**
* i915_gpu_raise - raise GPU frequency limit
*
* Raise the limit; IPS indicates we have thermal headroom.
*/
bool i915_gpu_raise(void)
{
struct drm_i915_private *dev_priv;
bool ret = true;
spin_lock_irq(&mchdev_lock);
if (!i915_mch_dev) {
ret = false;
goto out_unlock;
}
dev_priv = i915_mch_dev;
if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
dev_priv->ips.max_delay--;
out_unlock:
spin_unlock_irq(&mchdev_lock);
return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_raise);
/**
* i915_gpu_lower - lower GPU frequency limit
*
* IPS indicates we're close to a thermal limit, so throttle back the GPU
* frequency maximum.
*/
bool i915_gpu_lower(void)
{
struct drm_i915_private *dev_priv;
bool ret = true;
spin_lock_irq(&mchdev_lock);
if (!i915_mch_dev) {
ret = false;
goto out_unlock;
}
dev_priv = i915_mch_dev;
if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
dev_priv->ips.max_delay++;
out_unlock:
spin_unlock_irq(&mchdev_lock);
return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_lower);
/**
* i915_gpu_busy - indicate GPU business to IPS
*
* Tell the IPS driver whether or not the GPU is busy.
*/
bool i915_gpu_busy(void)
{
struct drm_i915_private *dev_priv;
struct intel_ring_buffer *ring;
bool ret = false;
int i;
spin_lock_irq(&mchdev_lock);
if (!i915_mch_dev)
goto out_unlock;
dev_priv = i915_mch_dev;
for_each_ring(ring, dev_priv, i)
ret |= !list_empty(&ring->request_list);
out_unlock:
spin_unlock_irq(&mchdev_lock);
return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_busy);
/**
* i915_gpu_turbo_disable - disable graphics turbo
*
* Disable graphics turbo by resetting the max frequency and setting the
* current frequency to the default.
*/
bool i915_gpu_turbo_disable(void)
{
struct drm_i915_private *dev_priv;
bool ret = true;
spin_lock_irq(&mchdev_lock);
if (!i915_mch_dev) {
ret = false;
goto out_unlock;
}
dev_priv = i915_mch_dev;
dev_priv->ips.max_delay = dev_priv->ips.fstart;
if (!ironlake_set_drps(dev_priv->dev, dev_priv->ips.fstart))
ret = false;
out_unlock:
spin_unlock_irq(&mchdev_lock);
return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
/**
* Tells the intel_ips driver that the i915 driver is now loaded, if
* IPS got loaded first.
*
* This awkward dance is so that neither module has to depend on the
* other in order for IPS to do the appropriate communication of
* GPU turbo limits to i915.
*/
static void
ips_ping_for_i915_load(void)
{
void (*link)(void);
link = symbol_get(ips_link_to_i915_driver);
if (link) {
link();
symbol_put(ips_link_to_i915_driver);
}
}
void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
{
/* We only register the i915 ips part with intel-ips once everything is
* set up, to avoid intel-ips sneaking in and reading bogus values. */
spin_lock_irq(&mchdev_lock);
i915_mch_dev = dev_priv;
spin_unlock_irq(&mchdev_lock);
ips_ping_for_i915_load();
}
void intel_gpu_ips_teardown(void)
{
spin_lock_irq(&mchdev_lock);
i915_mch_dev = NULL;
spin_unlock_irq(&mchdev_lock);
}
static void intel_init_emon(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
u32 lcfuse;
u8 pxw[16];
int i;
/* Disable to program */
I915_WRITE(ECR, 0);
POSTING_READ(ECR);
/* Program energy weights for various events */
I915_WRITE(SDEW, 0x15040d00);
I915_WRITE(CSIEW0, 0x007f0000);
I915_WRITE(CSIEW1, 0x1e220004);
I915_WRITE(CSIEW2, 0x04000004);
for (i = 0; i < 5; i++)
I915_WRITE(PEW + (i * 4), 0);
for (i = 0; i < 3; i++)
I915_WRITE(DEW + (i * 4), 0);
/* Program P-state weights to account for frequency power adjustment */
for (i = 0; i < 16; i++) {
u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
unsigned long freq = intel_pxfreq(pxvidfreq);
unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
PXVFREQ_PX_SHIFT;
unsigned long val;
val = vid * vid;
val *= (freq / 1000);
val *= 255;
val /= (127*127*900);
if (val > 0xff)
DRM_ERROR("bad pxval: %ld\n", val);
pxw[i] = val;
}
/* Render standby states get 0 weight */
pxw[14] = 0;
pxw[15] = 0;
for (i = 0; i < 4; i++) {
u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
(pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
I915_WRITE(PXW + (i * 4), val);
}
/* Adjust magic regs to magic values (more experimental results) */
I915_WRITE(OGW0, 0);
I915_WRITE(OGW1, 0);
I915_WRITE(EG0, 0x00007f00);
I915_WRITE(EG1, 0x0000000e);
I915_WRITE(EG2, 0x000e0000);
I915_WRITE(EG3, 0x68000300);
I915_WRITE(EG4, 0x42000000);
I915_WRITE(EG5, 0x00140031);
I915_WRITE(EG6, 0);
I915_WRITE(EG7, 0);
for (i = 0; i < 8; i++)
I915_WRITE(PXWL + (i * 4), 0);
/* Enable PMON + select events */
I915_WRITE(ECR, 0x80000019);
lcfuse = I915_READ(LCFUSE02);
dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
}
void intel_init_gt_powersave(struct drm_device *dev)
{
if (IS_VALLEYVIEW(dev))
valleyview_setup_pctx(dev);
}
void intel_cleanup_gt_powersave(struct drm_device *dev)
{
if (IS_VALLEYVIEW(dev))
valleyview_cleanup_pctx(dev);
}
void intel_disable_gt_powersave(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
/* Interrupts should be disabled already to avoid re-arming. */
WARN_ON(dev->irq_enabled);
if (IS_IRONLAKE_M(dev)) {
ironlake_disable_drps(dev);
ironlake_disable_rc6(dev);
} else if (IS_GEN6(dev) || IS_GEN7(dev)) {
cancel_delayed_work_sync(&dev_priv->rps.delayed_resume_work);
cancel_work_sync(&dev_priv->rps.work);
mutex_lock(&dev_priv->rps.hw_lock);
if (IS_VALLEYVIEW(dev))
valleyview_disable_rps(dev);
else
gen6_disable_rps(dev);
dev_priv->rps.enabled = false;
mutex_unlock(&dev_priv->rps.hw_lock);
}
}
static void intel_gen6_powersave_work(struct work_struct *work)
{
struct drm_i915_private *dev_priv =
container_of(work, struct drm_i915_private,
rps.delayed_resume_work.work);
struct drm_device *dev = dev_priv->dev;
mutex_lock(&dev_priv->rps.hw_lock);
if (IS_VALLEYVIEW(dev)) {
valleyview_enable_rps(dev);
} else if (IS_BROADWELL(dev)) {
gen8_enable_rps(dev);
gen6_update_ring_freq(dev);
} else {
gen6_enable_rps(dev);
gen6_update_ring_freq(dev);
}
dev_priv->rps.enabled = true;
mutex_unlock(&dev_priv->rps.hw_lock);
intel_runtime_pm_put(dev_priv);
}
void intel_enable_gt_powersave(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
if (IS_IRONLAKE_M(dev)) {
mutex_lock(&dev->struct_mutex);
ironlake_enable_drps(dev);
ironlake_enable_rc6(dev);
intel_init_emon(dev);
mutex_unlock(&dev->struct_mutex);
} else if (IS_GEN6(dev) || IS_GEN7(dev)) {
/*
* PCU communication is slow and this doesn't need to be
* done at any specific time, so do this out of our fast path
* to make resume and init faster.
*
* We depend on the HW RC6 power context save/restore
* mechanism when entering D3 through runtime PM suspend. So
* disable RPM until RPS/RC6 is properly setup. We can only
* get here via the driver load/system resume/runtime resume
* paths, so the _noresume version is enough (and in case of
* runtime resume it's necessary).
*/
if (schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
round_jiffies_up_relative(HZ)))
intel_runtime_pm_get_noresume(dev_priv);
}
}
void intel_reset_gt_powersave(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
dev_priv->rps.enabled = false;
intel_enable_gt_powersave(dev);
}
static void ibx_init_clock_gating(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
/*
* On Ibex Peak and Cougar Point, we need to disable clock
* gating for the panel power sequencer or it will fail to
* start up when no ports are active.
*/
I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
}
static void g4x_disable_trickle_feed(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
int pipe;
for_each_pipe(pipe) {
I915_WRITE(DSPCNTR(pipe),
I915_READ(DSPCNTR(pipe)) |
DISPPLANE_TRICKLE_FEED_DISABLE);
intel_flush_primary_plane(dev_priv, pipe);
}
}
static void ilk_init_lp_watermarks(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);
/*
* Don't touch WM1S_LP_EN here.
* Doing so could cause underruns.
*/
}
static void ironlake_init_clock_gating(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
/*
* Required for FBC
* WaFbcDisableDpfcClockGating:ilk
*/
dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
I915_WRITE(PCH_3DCGDIS0,
MARIUNIT_CLOCK_GATE_DISABLE |
SVSMUNIT_CLOCK_GATE_DISABLE);
I915_WRITE(PCH_3DCGDIS1,
VFMUNIT_CLOCK_GATE_DISABLE);
/*
* According to the spec the following bits should be set in
* order to enable memory self-refresh
* The bit 22/21 of 0x42004
* The bit 5 of 0x42020
* The bit 15 of 0x45000
*/
I915_WRITE(ILK_DISPLAY_CHICKEN2,
(I915_READ(ILK_DISPLAY_CHICKEN2) |
ILK_DPARB_GATE | ILK_VSDPFD_FULL));
dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
I915_WRITE(DISP_ARB_CTL,
(I915_READ(DISP_ARB_CTL) |
DISP_FBC_WM_DIS));
ilk_init_lp_watermarks(dev);
/*
* Based on the document from hardware guys the following bits
* should be set unconditionally in order to enable FBC.
* The bit 22 of 0x42000
* The bit 22 of 0x42004
* The bit 7,8,9 of 0x42020.
*/
if (IS_IRONLAKE_M(dev)) {
/* WaFbcAsynchFlipDisableFbcQueue:ilk */
I915_WRITE(ILK_DISPLAY_CHICKEN1,
I915_READ(ILK_DISPLAY_CHICKEN1) |
ILK_FBCQ_DIS);
I915_WRITE(ILK_DISPLAY_CHICKEN2,
I915_READ(ILK_DISPLAY_CHICKEN2) |
ILK_DPARB_GATE);
}
I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
I915_WRITE(ILK_DISPLAY_CHICKEN2,
I915_READ(ILK_DISPLAY_CHICKEN2) |
ILK_ELPIN_409_SELECT);
I915_WRITE(_3D_CHICKEN2,
_3D_CHICKEN2_WM_READ_PIPELINED << 16 |
_3D_CHICKEN2_WM_READ_PIPELINED);
/* WaDisableRenderCachePipelinedFlush:ilk */
I915_WRITE(CACHE_MODE_0,
_MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
/* WaDisable_RenderCache_OperationalFlush:ilk */
I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
g4x_disable_trickle_feed(dev);
ibx_init_clock_gating(dev);
}
static void cpt_init_clock_gating(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
int pipe;
uint32_t val;
/*
* On Ibex Peak and Cougar Point, we need to disable clock
* gating for the panel power sequencer or it will fail to
* start up when no ports are active.
*/
I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
PCH_DPLUNIT_CLOCK_GATE_DISABLE |
PCH_CPUNIT_CLOCK_GATE_DISABLE);
I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
DPLS_EDP_PPS_FIX_DIS);
/* The below fixes the weird display corruption, a few pixels shifted
* downward, on (only) LVDS of some HP laptops with IVY.
*/
for_each_pipe(pipe) {
val = I915_READ(TRANS_CHICKEN2(pipe));
val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
if (dev_priv->vbt.fdi_rx_polarity_inverted)
val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
I915_WRITE(TRANS_CHICKEN2(pipe), val);
}
/* WADP0ClockGatingDisable */
for_each_pipe(pipe) {
I915_WRITE(TRANS_CHICKEN1(pipe),
TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
}
}
static void gen6_check_mch_setup(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
uint32_t tmp;
tmp = I915_READ(MCH_SSKPD);
if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL) {
DRM_INFO("Wrong MCH_SSKPD value: 0x%08x\n", tmp);
DRM_INFO("This can cause pipe underruns and display issues.\n");
DRM_INFO("Please upgrade your BIOS to fix this.\n");
}
}
static void gen6_init_clock_gating(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
I915_WRITE(ILK_DISPLAY_CHICKEN2,
I915_READ(ILK_DISPLAY_CHICKEN2) |
ILK_ELPIN_409_SELECT);
/* WaDisableHiZPlanesWhenMSAAEnabled:snb */
I915_WRITE(_3D_CHICKEN,
_MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
/* WaSetupGtModeTdRowDispatch:snb */
if (IS_SNB_GT1(dev))
I915_WRITE(GEN6_GT_MODE,
_MASKED_BIT_ENABLE(GEN6_TD_FOUR_ROW_DISPATCH_DISABLE));
/* WaDisable_RenderCache_OperationalFlush:snb */
I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
/*
* BSpec recoomends 8x4 when MSAA is used,
* however in practice 16x4 seems fastest.
*
* Note that PS/WM thread counts depend on the WIZ hashing
* disable bit, which we don't touch here, but it's good
* to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
*/
I915_WRITE(GEN6_GT_MODE,
GEN6_WIZ_HASHING_MASK | GEN6_WIZ_HASHING_16x4);
ilk_init_lp_watermarks(dev);
I915_WRITE(CACHE_MODE_0,
_MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
I915_WRITE(GEN6_UCGCTL1,
I915_READ(GEN6_UCGCTL1) |
GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
GEN6_CSUNIT_CLOCK_GATE_DISABLE);
/* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
* gating disable must be set. Failure to set it results in
* flickering pixels due to Z write ordering failures after
* some amount of runtime in the Mesa "fire" demo, and Unigine
* Sanctuary and Tropics, and apparently anything else with
* alpha test or pixel discard.
*
* According to the spec, bit 11 (RCCUNIT) must also be set,
* but we didn't debug actual testcases to find it out.
*
* WaDisableRCCUnitClockGating:snb
* WaDisableRCPBUnitClockGating:snb
*/
I915_WRITE(GEN6_UCGCTL2,
GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
/* WaStripsFansDisableFastClipPerformanceFix:snb */
I915_WRITE(_3D_CHICKEN3,
_MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
/*
* Bspec says:
* "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
* 3DSTATE_SF number of SF output attributes is more than 16."
*/
I915_WRITE(_3D_CHICKEN3,
_MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));
/*
* According to the spec the following bits should be
* set in order to enable memory self-refresh and fbc:
* The bit21 and bit22 of 0x42000
* The bit21 and bit22 of 0x42004
* The bit5 and bit7 of 0x42020
* The bit14 of 0x70180
* The bit14 of 0x71180
*
* WaFbcAsynchFlipDisableFbcQueue:snb
*/
I915_WRITE(ILK_DISPLAY_CHICKEN1,
I915_READ(ILK_DISPLAY_CHICKEN1) |
ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
I915_WRITE(ILK_DISPLAY_CHICKEN2,
I915_READ(ILK_DISPLAY_CHICKEN2) |
ILK_DPARB_GATE | ILK_VSDPFD_FULL);
I915_WRITE(ILK_DSPCLK_GATE_D,
I915_READ(ILK_DSPCLK_GATE_D) |
ILK_DPARBUNIT_CLOCK_GATE_ENABLE |
ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
g4x_disable_trickle_feed(dev);
cpt_init_clock_gating(dev);
gen6_check_mch_setup(dev);
}
static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
{
uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
/*
* WaVSThreadDispatchOverride:ivb,vlv
*
* This actually overrides the dispatch
* mode for all thread types.
*/
reg &= ~GEN7_FF_SCHED_MASK;
reg |= GEN7_FF_TS_SCHED_HW;
reg |= GEN7_FF_VS_SCHED_HW;
reg |= GEN7_FF_DS_SCHED_HW;
I915_WRITE(GEN7_FF_THREAD_MODE, reg);
}
static void lpt_init_clock_gating(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
/*
* TODO: this bit should only be enabled when really needed, then
* disabled when not needed anymore in order to save power.
*/
if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE)
I915_WRITE(SOUTH_DSPCLK_GATE_D,
I915_READ(SOUTH_DSPCLK_GATE_D) |
PCH_LP_PARTITION_LEVEL_DISABLE);
/* WADPOClockGatingDisable:hsw */
I915_WRITE(_TRANSA_CHICKEN1,
I915_READ(_TRANSA_CHICKEN1) |
TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
}
static void lpt_suspend_hw(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);
val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
}
}
static void gen8_init_clock_gating(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
enum pipe pipe;
I915_WRITE(WM3_LP_ILK, 0);
I915_WRITE(WM2_LP_ILK, 0);
I915_WRITE(WM1_LP_ILK, 0);
/* FIXME(BDW): Check all the w/a, some might only apply to
* pre-production hw. */
/* WaDisablePartialInstShootdown:bdw */
I915_WRITE(GEN8_ROW_CHICKEN,
_MASKED_BIT_ENABLE(PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE));
/* WaDisableThreadStallDopClockGating:bdw */
/* FIXME: Unclear whether we really need this on production bdw. */
I915_WRITE(GEN8_ROW_CHICKEN,
_MASKED_BIT_ENABLE(STALL_DOP_GATING_DISABLE));
/*
* This GEN8_CENTROID_PIXEL_OPT_DIS W/A is only needed for
* pre-production hardware
*/
I915_WRITE(HALF_SLICE_CHICKEN3,
_MASKED_BIT_ENABLE(GEN8_CENTROID_PIXEL_OPT_DIS));
I915_WRITE(HALF_SLICE_CHICKEN3,
_MASKED_BIT_ENABLE(GEN8_SAMPLER_POWER_BYPASS_DIS));
I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_BWGTLB_DISABLE));
I915_WRITE(_3D_CHICKEN3,
_3D_CHICKEN_SDE_LIMIT_FIFO_POLY_DEPTH(2));
I915_WRITE(COMMON_SLICE_CHICKEN2,
_MASKED_BIT_ENABLE(GEN8_CSC2_SBE_VUE_CACHE_CONSERVATIVE));
I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
_MASKED_BIT_ENABLE(GEN7_SINGLE_SUBSCAN_DISPATCH_ENABLE));
/* WaSwitchSolVfFArbitrationPriority:bdw */
I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
/* WaPsrDPAMaskVBlankInSRD:bdw */
I915_WRITE(CHICKEN_PAR1_1,
I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);
/* WaPsrDPRSUnmaskVBlankInSRD:bdw */
for_each_pipe(pipe) {
I915_WRITE(CHICKEN_PIPESL_1(pipe),
I915_READ(CHICKEN_PIPESL_1(pipe)) |
BDW_DPRS_MASK_VBLANK_SRD);
}
/* Use Force Non-Coherent whenever executing a 3D context. This is a
* workaround for for a possible hang in the unlikely event a TLB
* invalidation occurs during a PSD flush.
*/
I915_WRITE(HDC_CHICKEN0,
I915_READ(HDC_CHICKEN0) |
_MASKED_BIT_ENABLE(HDC_FORCE_NON_COHERENT));
/* WaVSRefCountFullforceMissDisable:bdw */
/* WaDSRefCountFullforceMissDisable:bdw */
I915_WRITE(GEN7_FF_THREAD_MODE,
I915_READ(GEN7_FF_THREAD_MODE) &
~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
/*
* BSpec recommends 8x4 when MSAA is used,
* however in practice 16x4 seems fastest.
*
* Note that PS/WM thread counts depend on the WIZ hashing
* disable bit, which we don't touch here, but it's good
* to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
*/
I915_WRITE(GEN7_GT_MODE,
GEN6_WIZ_HASHING_MASK | GEN6_WIZ_HASHING_16x4);
I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
_MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
/* WaDisableSDEUnitClockGating:bdw */
I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
/* Wa4x4STCOptimizationDisable:bdw */
I915_WRITE(CACHE_MODE_1,
_MASKED_BIT_ENABLE(GEN8_4x4_STC_OPTIMIZATION_DISABLE));
}
static void haswell_init_clock_gating(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
ilk_init_lp_watermarks(dev);
/* L3 caching of data atomics doesn't work -- disable it. */
I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
I915_WRITE(HSW_ROW_CHICKEN3,
_MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));
/* This is required by WaCatErrorRejectionIssue:hsw */
I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
/* WaVSRefCountFullforceMissDisable:hsw */
I915_WRITE(GEN7_FF_THREAD_MODE,
I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
/* WaDisable_RenderCache_OperationalFlush:hsw */
I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
/* enable HiZ Raw Stall Optimization */
I915_WRITE(CACHE_MODE_0_GEN7,
_MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
/* WaDisable4x2SubspanOptimization:hsw */
I915_WRITE(CACHE_MODE_1,
_MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
/*
* BSpec recommends 8x4 when MSAA is used,
* however in practice 16x4 seems fastest.
*
* Note that PS/WM thread counts depend on the WIZ hashing
* disable bit, which we don't touch here, but it's good
* to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
*/
I915_WRITE(GEN7_GT_MODE,
GEN6_WIZ_HASHING_MASK | GEN6_WIZ_HASHING_16x4);
/* WaSwitchSolVfFArbitrationPriority:hsw */
I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
/* WaRsPkgCStateDisplayPMReq:hsw */
I915_WRITE(CHICKEN_PAR1_1,
I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
lpt_init_clock_gating(dev);
}
static void ivybridge_init_clock_gating(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
uint32_t snpcr;
ilk_init_lp_watermarks(dev);
I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
/* WaDisableEarlyCull:ivb */
I915_WRITE(_3D_CHICKEN3,
_MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
/* WaDisableBackToBackFlipFix:ivb */
I915_WRITE(IVB_CHICKEN3,
CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
CHICKEN3_DGMG_DONE_FIX_DISABLE);
/* WaDisablePSDDualDispatchEnable:ivb */
if (IS_IVB_GT1(dev))
I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
_MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
/* WaDisable_RenderCache_OperationalFlush:ivb */
I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
/* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
/* WaApplyL3ControlAndL3ChickenMode:ivb */
I915_WRITE(GEN7_L3CNTLREG1,
GEN7_WA_FOR_GEN7_L3_CONTROL);
I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
GEN7_WA_L3_CHICKEN_MODE);
if (IS_IVB_GT1(dev))
I915_WRITE(GEN7_ROW_CHICKEN2,
_MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
else {
/* must write both registers */
I915_WRITE(GEN7_ROW_CHICKEN2,
_MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
_MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
}
/* WaForceL3Serialization:ivb */
I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
~L3SQ_URB_READ_CAM_MATCH_DISABLE);
/*
* According to the spec, bit 13 (RCZUNIT) must be set on IVB.
* This implements the WaDisableRCZUnitClockGating:ivb workaround.
*/
I915_WRITE(GEN6_UCGCTL2,
GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
/* This is required by WaCatErrorRejectionIssue:ivb */
I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
g4x_disable_trickle_feed(dev);
gen7_setup_fixed_func_scheduler(dev_priv);
if (0) { /* causes HiZ corruption on ivb:gt1 */
/* enable HiZ Raw Stall Optimization */
I915_WRITE(CACHE_MODE_0_GEN7,
_MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
}
/* WaDisable4x2SubspanOptimization:ivb */
I915_WRITE(CACHE_MODE_1,
_MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
/*
* BSpec recommends 8x4 when MSAA is used,
* however in practice 16x4 seems fastest.
*
* Note that PS/WM thread counts depend on the WIZ hashing
* disable bit, which we don't touch here, but it's good
* to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
*/
I915_WRITE(GEN7_GT_MODE,
GEN6_WIZ_HASHING_MASK | GEN6_WIZ_HASHING_16x4);
snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
snpcr &= ~GEN6_MBC_SNPCR_MASK;
snpcr |= GEN6_MBC_SNPCR_MED;
I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
if (!HAS_PCH_NOP(dev))
cpt_init_clock_gating(dev);
gen6_check_mch_setup(dev);
}
static void valleyview_init_clock_gating(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
u32 val;
mutex_lock(&dev_priv->rps.hw_lock);
val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
mutex_unlock(&dev_priv->rps.hw_lock);
switch ((val >> 6) & 3) {
case 0:
case 1:
dev_priv->mem_freq = 800;
break;
case 2:
dev_priv->mem_freq = 1066;
break;
case 3:
dev_priv->mem_freq = 1333;
break;
}
DRM_DEBUG_DRIVER("DDR speed: %d MHz", dev_priv->mem_freq);
dev_priv->vlv_cdclk_freq = valleyview_cur_cdclk(dev_priv);
DRM_DEBUG_DRIVER("Current CD clock rate: %d MHz",
dev_priv->vlv_cdclk_freq);
I915_WRITE(DSPCLK_GATE_D, VRHUNIT_CLOCK_GATE_DISABLE);
/* WaDisableEarlyCull:vlv */
I915_WRITE(_3D_CHICKEN3,
_MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
/* WaDisableBackToBackFlipFix:vlv */
I915_WRITE(IVB_CHICKEN3,
CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
CHICKEN3_DGMG_DONE_FIX_DISABLE);
/* WaPsdDispatchEnable:vlv */
/* WaDisablePSDDualDispatchEnable:vlv */
I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
_MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
/* WaDisable_RenderCache_OperationalFlush:vlv */
I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
/* WaForceL3Serialization:vlv */
I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
~L3SQ_URB_READ_CAM_MATCH_DISABLE);
/* WaDisableDopClockGating:vlv */
I915_WRITE(GEN7_ROW_CHICKEN2,
_MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
/* This is required by WaCatErrorRejectionIssue:vlv */
I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
gen7_setup_fixed_func_scheduler(dev_priv);
/*
* According to the spec, bit 13 (RCZUNIT) must be set on IVB.
* This implements the WaDisableRCZUnitClockGating:vlv workaround.
*/
I915_WRITE(GEN6_UCGCTL2,
GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
/* WaDisableL3Bank2xClockGate:vlv */
I915_WRITE(GEN7_UCGCTL4, GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
/*
* BSpec says this must be set, even though
* WaDisable4x2SubspanOptimization isn't listed for VLV.
*/
I915_WRITE(CACHE_MODE_1,
_MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
/*
* WaIncreaseL3CreditsForVLVB0:vlv
* This is the hardware default actually.
*/
I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);
/*
* WaDisableVLVClockGating_VBIIssue:vlv
* Disable clock gating on th GCFG unit to prevent a delay
* in the reporting of vblank events.
*/
I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
}
static void g4x_init_clock_gating(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
uint32_t dspclk_gate;
I915_WRITE(RENCLK_GATE_D1, 0);
I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
GS_UNIT_CLOCK_GATE_DISABLE |
CL_UNIT_CLOCK_GATE_DISABLE);
I915_WRITE(RAMCLK_GATE_D, 0);
dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
OVRUNIT_CLOCK_GATE_DISABLE |
OVCUNIT_CLOCK_GATE_DISABLE;
if (IS_GM45(dev))
dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
/* WaDisableRenderCachePipelinedFlush */
I915_WRITE(CACHE_MODE_0,
_MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
/* WaDisable_RenderCache_OperationalFlush:g4x */
I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
g4x_disable_trickle_feed(dev);
}
static void crestline_init_clock_gating(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
I915_WRITE(RENCLK_GATE_D2, 0);
I915_WRITE(DSPCLK_GATE_D, 0);
I915_WRITE(RAMCLK_GATE_D, 0);
I915_WRITE16(DEUC, 0);
I915_WRITE(MI_ARB_STATE,
_MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
/* WaDisable_RenderCache_OperationalFlush:gen4 */
I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
}
static void broadwater_init_clock_gating(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
I965_RCC_CLOCK_GATE_DISABLE |
I965_RCPB_CLOCK_GATE_DISABLE |
I965_ISC_CLOCK_GATE_DISABLE |
I965_FBC_CLOCK_GATE_DISABLE);
I915_WRITE(RENCLK_GATE_D2, 0);
I915_WRITE(MI_ARB_STATE,
_MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
/* WaDisable_RenderCache_OperationalFlush:gen4 */
I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
}
static void gen3_init_clock_gating(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
u32 dstate = I915_READ(D_STATE);
dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
DSTATE_DOT_CLOCK_GATING;
I915_WRITE(D_STATE, dstate);
if (IS_PINEVIEW(dev))
I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
/* IIR "flip pending" means done if this bit is set */
I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
}
static void i85x_init_clock_gating(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
}
static void i830_init_clock_gating(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
}
void intel_init_clock_gating(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
dev_priv->display.init_clock_gating(dev);
}
void intel_suspend_hw(struct drm_device *dev)
{
if (HAS_PCH_LPT(dev))
lpt_suspend_hw(dev);
}
#define for_each_power_well(i, power_well, domain_mask, power_domains) \
for (i = 0; \
i < (power_domains)->power_well_count && \
((power_well) = &(power_domains)->power_wells[i]); \
i++) \
if ((power_well)->domains & (domain_mask))
#define for_each_power_well_rev(i, power_well, domain_mask, power_domains) \
for (i = (power_domains)->power_well_count - 1; \
i >= 0 && ((power_well) = &(power_domains)->power_wells[i]);\
i--) \
if ((power_well)->domains & (domain_mask))
/**
* We should only use the power well if we explicitly asked the hardware to
* enable it, so check if it's enabled and also check if we've requested it to
* be enabled.
*/
static bool hsw_power_well_enabled(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well)
{
return I915_READ(HSW_PWR_WELL_DRIVER) ==
(HSW_PWR_WELL_ENABLE_REQUEST | HSW_PWR_WELL_STATE_ENABLED);
}
bool intel_display_power_enabled_sw(struct drm_i915_private *dev_priv,
enum intel_display_power_domain domain)
{
struct i915_power_domains *power_domains;
power_domains = &dev_priv->power_domains;
return power_domains->domain_use_count[domain];
}
bool intel_display_power_enabled(struct drm_i915_private *dev_priv,
enum intel_display_power_domain domain)
{
struct i915_power_domains *power_domains;
struct i915_power_well *power_well;
bool is_enabled;
int i;
if (dev_priv->pm.suspended)
return false;
power_domains = &dev_priv->power_domains;
is_enabled = true;
mutex_lock(&power_domains->lock);
for_each_power_well_rev(i, power_well, BIT(domain), power_domains) {
if (power_well->always_on)
continue;
if (!power_well->ops->is_enabled(dev_priv, power_well)) {
is_enabled = false;
break;
}
}
mutex_unlock(&power_domains->lock);
return is_enabled;
}
/*
* Starting with Haswell, we have a "Power Down Well" that can be turned off
* when not needed anymore. We have 4 registers that can request the power well
* to be enabled, and it will only be disabled if none of the registers is
* requesting it to be enabled.
*/
static void hsw_power_well_post_enable(struct drm_i915_private *dev_priv)
{
struct drm_device *dev = dev_priv->dev;
unsigned long irqflags;
/*
* After we re-enable the power well, if we touch VGA register 0x3d5
* we'll get unclaimed register interrupts. This stops after we write
* anything to the VGA MSR register. The vgacon module uses this
* register all the time, so if we unbind our driver and, as a
* consequence, bind vgacon, we'll get stuck in an infinite loop at
* console_unlock(). So make here we touch the VGA MSR register, making
* sure vgacon can keep working normally without triggering interrupts
* and error messages.
*/
vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
outb(inb(VGA_MSR_READ), VGA_MSR_WRITE);
vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
if (IS_BROADWELL(dev)) {
spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
I915_WRITE(GEN8_DE_PIPE_IMR(PIPE_B),
dev_priv->de_irq_mask[PIPE_B]);
I915_WRITE(GEN8_DE_PIPE_IER(PIPE_B),
~dev_priv->de_irq_mask[PIPE_B] |
GEN8_PIPE_VBLANK);
I915_WRITE(GEN8_DE_PIPE_IMR(PIPE_C),
dev_priv->de_irq_mask[PIPE_C]);
I915_WRITE(GEN8_DE_PIPE_IER(PIPE_C),
~dev_priv->de_irq_mask[PIPE_C] |
GEN8_PIPE_VBLANK);
POSTING_READ(GEN8_DE_PIPE_IER(PIPE_C));
spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
}
}
static void reset_vblank_counter(struct drm_device *dev, enum pipe pipe)
{
assert_spin_locked(&dev->vbl_lock);
dev->vblank[pipe].last = 0;
}
static void hsw_power_well_post_disable(struct drm_i915_private *dev_priv)
{
struct drm_device *dev = dev_priv->dev;
enum pipe pipe;
unsigned long irqflags;
/*
* After this, the registers on the pipes that are part of the power
* well will become zero, so we have to adjust our counters according to
* that.
*
* FIXME: Should we do this in general in drm_vblank_post_modeset?
*/
spin_lock_irqsave(&dev->vbl_lock, irqflags);
for_each_pipe(pipe)
if (pipe != PIPE_A)
reset_vblank_counter(dev, pipe);
spin_unlock_irqrestore(&dev->vbl_lock, irqflags);
}
static void hsw_set_power_well(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well, bool enable)
{
bool is_enabled, enable_requested;
uint32_t tmp;
tmp = I915_READ(HSW_PWR_WELL_DRIVER);
is_enabled = tmp & HSW_PWR_WELL_STATE_ENABLED;
enable_requested = tmp & HSW_PWR_WELL_ENABLE_REQUEST;
if (enable) {
if (!enable_requested)
I915_WRITE(HSW_PWR_WELL_DRIVER,
HSW_PWR_WELL_ENABLE_REQUEST);
if (!is_enabled) {
DRM_DEBUG_KMS("Enabling power well\n");
if (wait_for((I915_READ(HSW_PWR_WELL_DRIVER) &
HSW_PWR_WELL_STATE_ENABLED), 20))
DRM_ERROR("Timeout enabling power well\n");
}
hsw_power_well_post_enable(dev_priv);
} else {
if (enable_requested) {
I915_WRITE(HSW_PWR_WELL_DRIVER, 0);
POSTING_READ(HSW_PWR_WELL_DRIVER);
DRM_DEBUG_KMS("Requesting to disable the power well\n");
hsw_power_well_post_disable(dev_priv);
}
}
}
static void hsw_power_well_sync_hw(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well)
{
hsw_set_power_well(dev_priv, power_well, power_well->count > 0);
/*
* We're taking over the BIOS, so clear any requests made by it since
* the driver is in charge now.
*/
if (I915_READ(HSW_PWR_WELL_BIOS) & HSW_PWR_WELL_ENABLE_REQUEST)
I915_WRITE(HSW_PWR_WELL_BIOS, 0);
}
static void hsw_power_well_enable(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well)
{
hsw_set_power_well(dev_priv, power_well, true);
}
static void hsw_power_well_disable(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well)
{
hsw_set_power_well(dev_priv, power_well, false);
}
static void i9xx_always_on_power_well_noop(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well)
{
}
static bool i9xx_always_on_power_well_enabled(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well)
{
return true;
}
static void vlv_set_power_well(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well, bool enable)
{
enum punit_power_well power_well_id = power_well->data;
u32 mask;
u32 state;
u32 ctrl;
mask = PUNIT_PWRGT_MASK(power_well_id);
state = enable ? PUNIT_PWRGT_PWR_ON(power_well_id) :
PUNIT_PWRGT_PWR_GATE(power_well_id);
mutex_lock(&dev_priv->rps.hw_lock);
#define COND \
((vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_STATUS) & mask) == state)
if (COND)
goto out;
ctrl = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL);
ctrl &= ~mask;
ctrl |= state;
vlv_punit_write(dev_priv, PUNIT_REG_PWRGT_CTRL, ctrl);
if (wait_for(COND, 100))
DRM_ERROR("timout setting power well state %08x (%08x)\n",
state,
vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL));
#undef COND
out:
mutex_unlock(&dev_priv->rps.hw_lock);
}
static void vlv_power_well_sync_hw(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well)
{
vlv_set_power_well(dev_priv, power_well, power_well->count > 0);
}
static void vlv_power_well_enable(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well)
{
vlv_set_power_well(dev_priv, power_well, true);
}
static void vlv_power_well_disable(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well)
{
vlv_set_power_well(dev_priv, power_well, false);
}
static bool vlv_power_well_enabled(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well)
{
int power_well_id = power_well->data;
bool enabled = false;
u32 mask;
u32 state;
u32 ctrl;
mask = PUNIT_PWRGT_MASK(power_well_id);
ctrl = PUNIT_PWRGT_PWR_ON(power_well_id);
mutex_lock(&dev_priv->rps.hw_lock);
state = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_STATUS) & mask;
/*
* We only ever set the power-on and power-gate states, anything
* else is unexpected.
*/
WARN_ON(state != PUNIT_PWRGT_PWR_ON(power_well_id) &&
state != PUNIT_PWRGT_PWR_GATE(power_well_id));
if (state == ctrl)
enabled = true;
/*
* A transient state at this point would mean some unexpected party
* is poking at the power controls too.
*/
ctrl = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL) & mask;
WARN_ON(ctrl != state);
mutex_unlock(&dev_priv->rps.hw_lock);
return enabled;
}
static void vlv_display_power_well_enable(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well)
{
WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DISP2D);
vlv_set_power_well(dev_priv, power_well, true);
spin_lock_irq(&dev_priv->irq_lock);
valleyview_enable_display_irqs(dev_priv);
spin_unlock_irq(&dev_priv->irq_lock);
/*
* During driver initialization we need to defer enabling hotplug
* processing until fbdev is set up.
*/
if (dev_priv->enable_hotplug_processing)
intel_hpd_init(dev_priv->dev);
i915_redisable_vga_power_on(dev_priv->dev);
}
static void vlv_display_power_well_disable(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well)
{
struct drm_device *dev = dev_priv->dev;
enum pipe pipe;
WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DISP2D);
spin_lock_irq(&dev_priv->irq_lock);
for_each_pipe(pipe)
__intel_set_cpu_fifo_underrun_reporting(dev, pipe, false);
valleyview_disable_display_irqs(dev_priv);
spin_unlock_irq(&dev_priv->irq_lock);
spin_lock_irq(&dev->vbl_lock);
for_each_pipe(pipe)
reset_vblank_counter(dev, pipe);
spin_unlock_irq(&dev->vbl_lock);
vlv_set_power_well(dev_priv, power_well, false);
}
static void check_power_well_state(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well)
{
bool enabled = power_well->ops->is_enabled(dev_priv, power_well);
if (power_well->always_on || !i915.disable_power_well) {
if (!enabled)
goto mismatch;
return;
}
if (enabled != (power_well->count > 0))
goto mismatch;
return;
mismatch:
WARN(1, "state mismatch for '%s' (always_on %d hw state %d use-count %d disable_power_well %d\n",
power_well->name, power_well->always_on, enabled,
power_well->count, i915.disable_power_well);
}
void intel_display_power_get(struct drm_i915_private *dev_priv,
enum intel_display_power_domain domain)
{
struct i915_power_domains *power_domains;
struct i915_power_well *power_well;
int i;
intel_runtime_pm_get(dev_priv);
power_domains = &dev_priv->power_domains;
mutex_lock(&power_domains->lock);
for_each_power_well(i, power_well, BIT(domain), power_domains) {
if (!power_well->count++) {
DRM_DEBUG_KMS("enabling %s\n", power_well->name);
power_well->ops->enable(dev_priv, power_well);
}
check_power_well_state(dev_priv, power_well);
}
power_domains->domain_use_count[domain]++;
mutex_unlock(&power_domains->lock);
}
void intel_display_power_put(struct drm_i915_private *dev_priv,
enum intel_display_power_domain domain)
{
struct i915_power_domains *power_domains;
struct i915_power_well *power_well;
int i;
power_domains = &dev_priv->power_domains;
mutex_lock(&power_domains->lock);
WARN_ON(!power_domains->domain_use_count[domain]);
power_domains->domain_use_count[domain]--;
for_each_power_well_rev(i, power_well, BIT(domain), power_domains) {
WARN_ON(!power_well->count);
if (!--power_well->count && i915.disable_power_well) {
DRM_DEBUG_KMS("disabling %s\n", power_well->name);
power_well->ops->disable(dev_priv, power_well);
}
check_power_well_state(dev_priv, power_well);
}
mutex_unlock(&power_domains->lock);
intel_runtime_pm_put(dev_priv);
}
static struct i915_power_domains *hsw_pwr;
/* Display audio driver power well request */
void i915_request_power_well(void)
{
struct drm_i915_private *dev_priv;
if (WARN_ON(!hsw_pwr))
return;
dev_priv = container_of(hsw_pwr, struct drm_i915_private,
power_domains);
intel_display_power_get(dev_priv, POWER_DOMAIN_AUDIO);
}
EXPORT_SYMBOL_GPL(i915_request_power_well);
/* Display audio driver power well release */
void i915_release_power_well(void)
{
struct drm_i915_private *dev_priv;
if (WARN_ON(!hsw_pwr))
return;
dev_priv = container_of(hsw_pwr, struct drm_i915_private,
power_domains);
intel_display_power_put(dev_priv, POWER_DOMAIN_AUDIO);
}
EXPORT_SYMBOL_GPL(i915_release_power_well);
#define POWER_DOMAIN_MASK (BIT(POWER_DOMAIN_NUM) - 1)
#define HSW_ALWAYS_ON_POWER_DOMAINS ( \
BIT(POWER_DOMAIN_PIPE_A) | \
BIT(POWER_DOMAIN_TRANSCODER_EDP) | \
BIT(POWER_DOMAIN_PORT_DDI_A_2_LANES) | \
BIT(POWER_DOMAIN_PORT_DDI_A_4_LANES) | \
BIT(POWER_DOMAIN_PORT_DDI_B_2_LANES) | \
BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) | \
BIT(POWER_DOMAIN_PORT_DDI_C_2_LANES) | \
BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) | \
BIT(POWER_DOMAIN_PORT_DDI_D_2_LANES) | \
BIT(POWER_DOMAIN_PORT_DDI_D_4_LANES) | \
BIT(POWER_DOMAIN_PORT_CRT) | \
BIT(POWER_DOMAIN_INIT))
#define HSW_DISPLAY_POWER_DOMAINS ( \
(POWER_DOMAIN_MASK & ~HSW_ALWAYS_ON_POWER_DOMAINS) | \
BIT(POWER_DOMAIN_INIT))
#define BDW_ALWAYS_ON_POWER_DOMAINS ( \
HSW_ALWAYS_ON_POWER_DOMAINS | \
BIT(POWER_DOMAIN_PIPE_A_PANEL_FITTER))
#define BDW_DISPLAY_POWER_DOMAINS ( \
(POWER_DOMAIN_MASK & ~BDW_ALWAYS_ON_POWER_DOMAINS) | \
BIT(POWER_DOMAIN_INIT))
#define VLV_ALWAYS_ON_POWER_DOMAINS BIT(POWER_DOMAIN_INIT)
#define VLV_DISPLAY_POWER_DOMAINS POWER_DOMAIN_MASK
#define VLV_DPIO_CMN_BC_POWER_DOMAINS ( \
BIT(POWER_DOMAIN_PORT_DDI_B_2_LANES) | \
BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) | \
BIT(POWER_DOMAIN_PORT_DDI_C_2_LANES) | \
BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) | \
BIT(POWER_DOMAIN_PORT_CRT) | \
BIT(POWER_DOMAIN_INIT))
#define VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS ( \
BIT(POWER_DOMAIN_PORT_DDI_B_2_LANES) | \
BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) | \
BIT(POWER_DOMAIN_INIT))
#define VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS ( \
BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) | \
BIT(POWER_DOMAIN_INIT))
#define VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS ( \
BIT(POWER_DOMAIN_PORT_DDI_C_2_LANES) | \
BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) | \
BIT(POWER_DOMAIN_INIT))
#define VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS ( \
BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) | \
BIT(POWER_DOMAIN_INIT))
static const struct i915_power_well_ops i9xx_always_on_power_well_ops = {
.sync_hw = i9xx_always_on_power_well_noop,
.enable = i9xx_always_on_power_well_noop,
.disable = i9xx_always_on_power_well_noop,
.is_enabled = i9xx_always_on_power_well_enabled,
};
static struct i915_power_well i9xx_always_on_power_well[] = {
{
.name = "always-on",
.always_on = 1,
.domains = POWER_DOMAIN_MASK,
.ops = &i9xx_always_on_power_well_ops,
},
};
static const struct i915_power_well_ops hsw_power_well_ops = {
.sync_hw = hsw_power_well_sync_hw,
.enable = hsw_power_well_enable,
.disable = hsw_power_well_disable,
.is_enabled = hsw_power_well_enabled,
};
static struct i915_power_well hsw_power_wells[] = {
{
.name = "always-on",
.always_on = 1,
.domains = HSW_ALWAYS_ON_POWER_DOMAINS,
.ops = &i9xx_always_on_power_well_ops,
},
{
.name = "display",
.domains = HSW_DISPLAY_POWER_DOMAINS,
.ops = &hsw_power_well_ops,
},
};
static struct i915_power_well bdw_power_wells[] = {
{
.name = "always-on",
.always_on = 1,
.domains = BDW_ALWAYS_ON_POWER_DOMAINS,
.ops = &i9xx_always_on_power_well_ops,
},
{
.name = "display",
.domains = BDW_DISPLAY_POWER_DOMAINS,
.ops = &hsw_power_well_ops,
},
};
static const struct i915_power_well_ops vlv_display_power_well_ops = {
.sync_hw = vlv_power_well_sync_hw,
.enable = vlv_display_power_well_enable,
.disable = vlv_display_power_well_disable,
.is_enabled = vlv_power_well_enabled,
};
static const struct i915_power_well_ops vlv_dpio_power_well_ops = {
.sync_hw = vlv_power_well_sync_hw,
.enable = vlv_power_well_enable,
.disable = vlv_power_well_disable,
.is_enabled = vlv_power_well_enabled,
};
static struct i915_power_well vlv_power_wells[] = {
{
.name = "always-on",
.always_on = 1,
.domains = VLV_ALWAYS_ON_POWER_DOMAINS,
.ops = &i9xx_always_on_power_well_ops,
},
{
.name = "display",
.domains = VLV_DISPLAY_POWER_DOMAINS,
.data = PUNIT_POWER_WELL_DISP2D,
.ops = &vlv_display_power_well_ops,
},
{
.name = "dpio-common",
.domains = VLV_DPIO_CMN_BC_POWER_DOMAINS,
.data = PUNIT_POWER_WELL_DPIO_CMN_BC,
.ops = &vlv_dpio_power_well_ops,
},
{
.name = "dpio-tx-b-01",
.domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
.ops = &vlv_dpio_power_well_ops,
.data = PUNIT_POWER_WELL_DPIO_TX_B_LANES_01,
},
{
.name = "dpio-tx-b-23",
.domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
.ops = &vlv_dpio_power_well_ops,
.data = PUNIT_POWER_WELL_DPIO_TX_B_LANES_23,
},
{
.name = "dpio-tx-c-01",
.domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
.ops = &vlv_dpio_power_well_ops,
.data = PUNIT_POWER_WELL_DPIO_TX_C_LANES_01,
},
{
.name = "dpio-tx-c-23",
.domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
.ops = &vlv_dpio_power_well_ops,
.data = PUNIT_POWER_WELL_DPIO_TX_C_LANES_23,
},
};
#define set_power_wells(power_domains, __power_wells) ({ \
(power_domains)->power_wells = (__power_wells); \
(power_domains)->power_well_count = ARRAY_SIZE(__power_wells); \
})
int intel_power_domains_init(struct drm_i915_private *dev_priv)
{
struct i915_power_domains *power_domains = &dev_priv->power_domains;
mutex_init(&power_domains->lock);
/*
* The enabling order will be from lower to higher indexed wells,
* the disabling order is reversed.
*/
if (IS_HASWELL(dev_priv->dev)) {
set_power_wells(power_domains, hsw_power_wells);
hsw_pwr = power_domains;
} else if (IS_BROADWELL(dev_priv->dev)) {
set_power_wells(power_domains, bdw_power_wells);
hsw_pwr = power_domains;
} else if (IS_VALLEYVIEW(dev_priv->dev)) {
set_power_wells(power_domains, vlv_power_wells);
} else {
set_power_wells(power_domains, i9xx_always_on_power_well);
}
return 0;
}
void intel_power_domains_remove(struct drm_i915_private *dev_priv)
{
hsw_pwr = NULL;
}
static void intel_power_domains_resume(struct drm_i915_private *dev_priv)
{
struct i915_power_domains *power_domains = &dev_priv->power_domains;
struct i915_power_well *power_well;
int i;
mutex_lock(&power_domains->lock);
for_each_power_well(i, power_well, POWER_DOMAIN_MASK, power_domains)
power_well->ops->sync_hw(dev_priv, power_well);
mutex_unlock(&power_domains->lock);
}
void intel_power_domains_init_hw(struct drm_i915_private *dev_priv)
{
/* For now, we need the power well to be always enabled. */
intel_display_set_init_power(dev_priv, true);
intel_power_domains_resume(dev_priv);
}
void intel_aux_display_runtime_get(struct drm_i915_private *dev_priv)
{
intel_runtime_pm_get(dev_priv);
}
void intel_aux_display_runtime_put(struct drm_i915_private *dev_priv)
{
intel_runtime_pm_put(dev_priv);
}
void intel_runtime_pm_get(struct drm_i915_private *dev_priv)
{
struct drm_device *dev = dev_priv->dev;
struct device *device = &dev->pdev->dev;
if (!HAS_RUNTIME_PM(dev))
return;
pm_runtime_get_sync(device);
WARN(dev_priv->pm.suspended, "Device still suspended.\n");
}
void intel_runtime_pm_get_noresume(struct drm_i915_private *dev_priv)
{
struct drm_device *dev = dev_priv->dev;
struct device *device = &dev->pdev->dev;
if (!HAS_RUNTIME_PM(dev))
return;
WARN(dev_priv->pm.suspended, "Getting nosync-ref while suspended.\n");
pm_runtime_get_noresume(device);
}
void intel_runtime_pm_put(struct drm_i915_private *dev_priv)
{
struct drm_device *dev = dev_priv->dev;
struct device *device = &dev->pdev->dev;
if (!HAS_RUNTIME_PM(dev))
return;
pm_runtime_mark_last_busy(device);
pm_runtime_put_autosuspend(device);
}
void intel_init_runtime_pm(struct drm_i915_private *dev_priv)
{
struct drm_device *dev = dev_priv->dev;
struct device *device = &dev->pdev->dev;
if (!HAS_RUNTIME_PM(dev))
return;
pm_runtime_set_active(device);
pm_runtime_set_autosuspend_delay(device, 10000); /* 10s */
pm_runtime_mark_last_busy(device);
pm_runtime_use_autosuspend(device);
pm_runtime_put_autosuspend(device);
}
void intel_fini_runtime_pm(struct drm_i915_private *dev_priv)
{
struct drm_device *dev = dev_priv->dev;
struct device *device = &dev->pdev->dev;
if (!HAS_RUNTIME_PM(dev))
return;
/* Make sure we're not suspended first. */
pm_runtime_get_sync(device);
pm_runtime_disable(device);
}
/* Set up chip specific power management-related functions */
void intel_init_pm(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
if (HAS_FBC(dev)) {
if (INTEL_INFO(dev)->gen >= 7) {
dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
dev_priv->display.enable_fbc = gen7_enable_fbc;
dev_priv->display.disable_fbc = ironlake_disable_fbc;
} else if (INTEL_INFO(dev)->gen >= 5) {
dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
dev_priv->display.enable_fbc = ironlake_enable_fbc;
dev_priv->display.disable_fbc = ironlake_disable_fbc;
} else if (IS_GM45(dev)) {
dev_priv->display.fbc_enabled = g4x_fbc_enabled;
dev_priv->display.enable_fbc = g4x_enable_fbc;
dev_priv->display.disable_fbc = g4x_disable_fbc;
} else {
dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
dev_priv->display.enable_fbc = i8xx_enable_fbc;
dev_priv->display.disable_fbc = i8xx_disable_fbc;
/* This value was pulled out of someone's hat */
I915_WRITE(FBC_CONTROL, 500 << FBC_CTL_INTERVAL_SHIFT);
}
}
/* For cxsr */
if (IS_PINEVIEW(dev))
i915_pineview_get_mem_freq(dev);
else if (IS_GEN5(dev))
i915_ironlake_get_mem_freq(dev);
/* For FIFO watermark updates */
if (HAS_PCH_SPLIT(dev)) {
ilk_setup_wm_latency(dev);
if ((IS_GEN5(dev) && dev_priv->wm.pri_latency[1] &&
dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
(!IS_GEN5(dev) && dev_priv->wm.pri_latency[0] &&
dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
dev_priv->display.update_wm = ilk_update_wm;
dev_priv->display.update_sprite_wm = ilk_update_sprite_wm;
} else {
DRM_DEBUG_KMS("Failed to read display plane latency. "
"Disable CxSR\n");
}
if (IS_GEN5(dev))
dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
else if (IS_GEN6(dev))
dev_priv->display.init_clock_gating = gen6_init_clock_gating;
else if (IS_IVYBRIDGE(dev))
dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
else if (IS_HASWELL(dev))
dev_priv->display.init_clock_gating = haswell_init_clock_gating;
else if (INTEL_INFO(dev)->gen == 8)
dev_priv->display.init_clock_gating = gen8_init_clock_gating;
} else if (IS_VALLEYVIEW(dev)) {
dev_priv->display.update_wm = valleyview_update_wm;
dev_priv->display.init_clock_gating =
valleyview_init_clock_gating;
} else if (IS_PINEVIEW(dev)) {
if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
dev_priv->is_ddr3,
dev_priv->fsb_freq,
dev_priv->mem_freq)) {
DRM_INFO("failed to find known CxSR latency "
"(found ddr%s fsb freq %d, mem freq %d), "
"disabling CxSR\n",
(dev_priv->is_ddr3 == 1) ? "3" : "2",
dev_priv->fsb_freq, dev_priv->mem_freq);
/* Disable CxSR and never update its watermark again */
pineview_disable_cxsr(dev);
dev_priv->display.update_wm = NULL;
} else
dev_priv->display.update_wm = pineview_update_wm;
dev_priv->display.init_clock_gating = gen3_init_clock_gating;
} else if (IS_G4X(dev)) {
dev_priv->display.update_wm = g4x_update_wm;
dev_priv->display.init_clock_gating = g4x_init_clock_gating;
} else if (IS_GEN4(dev)) {
dev_priv->display.update_wm = i965_update_wm;
if (IS_CRESTLINE(dev))
dev_priv->display.init_clock_gating = crestline_init_clock_gating;
else if (IS_BROADWATER(dev))
dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
} else if (IS_GEN3(dev)) {
dev_priv->display.update_wm = i9xx_update_wm;
dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
dev_priv->display.init_clock_gating = gen3_init_clock_gating;
} else if (IS_GEN2(dev)) {
if (INTEL_INFO(dev)->num_pipes == 1) {
dev_priv->display.update_wm = i845_update_wm;
dev_priv->display.get_fifo_size = i845_get_fifo_size;
} else {
dev_priv->display.update_wm = i9xx_update_wm;
dev_priv->display.get_fifo_size = i830_get_fifo_size;
}
if (IS_I85X(dev) || IS_I865G(dev))
dev_priv->display.init_clock_gating = i85x_init_clock_gating;
else
dev_priv->display.init_clock_gating = i830_init_clock_gating;
} else {
DRM_ERROR("unexpected fall-through in intel_init_pm\n");
}
}
int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u8 mbox, u32 *val)
{
WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
return -EAGAIN;
}
I915_WRITE(GEN6_PCODE_DATA, *val);
I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
500)) {
DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
return -ETIMEDOUT;
}
*val = I915_READ(GEN6_PCODE_DATA);
I915_WRITE(GEN6_PCODE_DATA, 0);
return 0;
}
int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u8 mbox, u32 val)
{
WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
return -EAGAIN;
}
I915_WRITE(GEN6_PCODE_DATA, val);
I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
500)) {
DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
return -ETIMEDOUT;
}
I915_WRITE(GEN6_PCODE_DATA, 0);
return 0;
}
int vlv_gpu_freq(struct drm_i915_private *dev_priv, int val)
{
int div;
/* 4 x czclk */
switch (dev_priv->mem_freq) {
case 800:
div = 10;
break;
case 1066:
div = 12;
break;
case 1333:
div = 16;
break;
default:
return -1;
}
return DIV_ROUND_CLOSEST(dev_priv->mem_freq * (val + 6 - 0xbd), 4 * div);
}
int vlv_freq_opcode(struct drm_i915_private *dev_priv, int val)
{
int mul;
/* 4 x czclk */
switch (dev_priv->mem_freq) {
case 800:
mul = 10;
break;
case 1066:
mul = 12;
break;
case 1333:
mul = 16;
break;
default:
return -1;
}
return DIV_ROUND_CLOSEST(4 * mul * val, dev_priv->mem_freq) + 0xbd - 6;
}
void intel_pm_setup(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
mutex_init(&dev_priv->rps.hw_lock);
INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
intel_gen6_powersave_work);
dev_priv->pm.suspended = false;
dev_priv->pm.irqs_disabled = false;
}