blob: ed242435077314fb03d891b582fdd1aa16f85245 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright © 2018-2020 Intel Corporation
*/
#include <linux/clk.h>
#include <linux/module.h>
#include <linux/of_graph.h>
#include <linux/of_platform.h>
#include <linux/of_reserved_mem.h>
#include <linux/mfd/syscon.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <linux/regmap.h>
#include <drm/drm_atomic_helper.h>
#include <drm/drm_drv.h>
#include <drm/drm_fb_helper.h>
#include <drm/drm_gem_cma_helper.h>
#include <drm/drm_gem_framebuffer_helper.h>
#include <drm/drm_probe_helper.h>
#include <drm/drm_vblank.h>
#include "kmb_drv.h"
#include "kmb_dsi.h"
#include "kmb_regs.h"
static int kmb_display_clk_enable(struct kmb_drm_private *kmb)
{
int ret = 0;
ret = clk_prepare_enable(kmb->kmb_clk.clk_lcd);
if (ret) {
drm_err(&kmb->drm, "Failed to enable LCD clock: %d\n", ret);
return ret;
}
DRM_INFO("SUCCESS : enabled LCD clocks\n");
return 0;
}
static int kmb_initialize_clocks(struct kmb_drm_private *kmb, struct device *dev)
{
int ret = 0;
struct regmap *msscam;
kmb->kmb_clk.clk_lcd = devm_clk_get(dev, "clk_lcd");
if (IS_ERR(kmb->kmb_clk.clk_lcd)) {
drm_err(&kmb->drm, "clk_get() failed clk_lcd\n");
return PTR_ERR(kmb->kmb_clk.clk_lcd);
}
kmb->kmb_clk.clk_pll0 = devm_clk_get(dev, "clk_pll0");
if (IS_ERR(kmb->kmb_clk.clk_pll0)) {
drm_err(&kmb->drm, "clk_get() failed clk_pll0 ");
return PTR_ERR(kmb->kmb_clk.clk_pll0);
}
kmb->sys_clk_mhz = clk_get_rate(kmb->kmb_clk.clk_pll0) / 1000000;
drm_info(&kmb->drm, "system clk = %d Mhz", kmb->sys_clk_mhz);
ret = kmb_dsi_clk_init(kmb->kmb_dsi);
/* Set LCD clock to 200 Mhz */
clk_set_rate(kmb->kmb_clk.clk_lcd, KMB_LCD_DEFAULT_CLK);
if (clk_get_rate(kmb->kmb_clk.clk_lcd) != KMB_LCD_DEFAULT_CLK) {
drm_err(&kmb->drm, "failed to set to clk_lcd to %d\n",
KMB_LCD_DEFAULT_CLK);
return -1;
}
drm_dbg(&kmb->drm, "clk_lcd = %ld\n", clk_get_rate(kmb->kmb_clk.clk_lcd));
ret = kmb_display_clk_enable(kmb);
if (ret)
return ret;
msscam = syscon_regmap_lookup_by_compatible("intel,keembay-msscam");
if (IS_ERR(msscam)) {
drm_err(&kmb->drm, "failed to get msscam syscon");
return -1;
}
/* Enable MSS_CAM_CLK_CTRL for MIPI TX and LCD */
regmap_update_bits(msscam, MSS_CAM_CLK_CTRL, 0x1fff, 0x1fff);
regmap_update_bits(msscam, MSS_CAM_RSTN_CTRL, 0xffffffff, 0xffffffff);
return 0;
}
static void kmb_display_clk_disable(struct kmb_drm_private *kmb)
{
clk_disable_unprepare(kmb->kmb_clk.clk_lcd);
}
static void __iomem *kmb_map_mmio(struct drm_device *drm,
struct platform_device *pdev,
char *name)
{
struct resource *res;
void __iomem *mem;
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, name);
if (!res) {
drm_err(drm, "failed to get resource for %s", name);
return ERR_PTR(-ENOMEM);
}
mem = devm_ioremap_resource(drm->dev, res);
if (IS_ERR(mem))
drm_err(drm, "failed to ioremap %s registers", name);
return mem;
}
static int kmb_hw_init(struct drm_device *drm, unsigned long flags)
{
struct kmb_drm_private *kmb = to_kmb(drm);
struct platform_device *pdev = to_platform_device(drm->dev);
int irq_lcd;
int ret = 0;
/* Map LCD MMIO registers */
kmb->lcd_mmio = kmb_map_mmio(drm, pdev, "lcd");
if (IS_ERR(kmb->lcd_mmio)) {
drm_err(&kmb->drm, "failed to map LCD registers\n");
return -ENOMEM;
}
/* Map MIPI MMIO registers */
ret = kmb_dsi_map_mmio(kmb->kmb_dsi);
if (ret)
return ret;
/* Enable display clocks */
kmb_initialize_clocks(kmb, &pdev->dev);
/* Register irqs here - section 17.3 in databook
* lists LCD at 79 and 82 for MIPI under MSS CPU -
* firmware has redirected 79 to A53 IRQ 33
*/
/* Allocate LCD interrupt resources */
irq_lcd = platform_get_irq(pdev, 0);
if (irq_lcd < 0) {
ret = irq_lcd;
drm_err(&kmb->drm, "irq_lcd not found");
goto setup_fail;
}
/* Get the optional framebuffer memory resource */
ret = of_reserved_mem_device_init(drm->dev);
if (ret && ret != -ENODEV)
return ret;
spin_lock_init(&kmb->irq_lock);
kmb->irq_lcd = irq_lcd;
return 0;
setup_fail:
of_reserved_mem_device_release(drm->dev);
return ret;
}
static const struct drm_mode_config_funcs kmb_mode_config_funcs = {
.fb_create = drm_gem_fb_create,
.atomic_check = drm_atomic_helper_check,
.atomic_commit = drm_atomic_helper_commit,
};
static int kmb_setup_mode_config(struct drm_device *drm)
{
int ret;
struct kmb_drm_private *kmb = to_kmb(drm);
ret = drmm_mode_config_init(drm);
if (ret)
return ret;
drm->mode_config.min_width = KMB_FB_MIN_WIDTH;
drm->mode_config.min_height = KMB_FB_MIN_HEIGHT;
drm->mode_config.max_width = KMB_FB_MAX_WIDTH;
drm->mode_config.max_height = KMB_FB_MAX_HEIGHT;
drm->mode_config.preferred_depth = 24;
drm->mode_config.funcs = &kmb_mode_config_funcs;
ret = kmb_setup_crtc(drm);
if (ret < 0) {
drm_err(drm, "failed to create crtc\n");
return ret;
}
ret = kmb_dsi_encoder_init(drm, kmb->kmb_dsi);
/* Set the CRTC's port so that the encoder component can find it */
kmb->crtc.port = of_graph_get_port_by_id(drm->dev->of_node, 0);
ret = drm_vblank_init(drm, drm->mode_config.num_crtc);
if (ret < 0) {
drm_err(drm, "failed to initialize vblank\n");
pm_runtime_disable(drm->dev);
return ret;
}
drm_mode_config_reset(drm);
return 0;
}
static irqreturn_t handle_lcd_irq(struct drm_device *dev)
{
unsigned long status, val, val1;
int plane_id, dma0_state, dma1_state;
struct kmb_drm_private *kmb = to_kmb(dev);
u32 ctrl = 0;
status = kmb_read_lcd(kmb, LCD_INT_STATUS);
spin_lock(&kmb->irq_lock);
if (status & LCD_INT_EOF) {
kmb_write_lcd(kmb, LCD_INT_CLEAR, LCD_INT_EOF);
/* When disabling/enabling LCD layers, the change takes effect
* immediately and does not wait for EOF (end of frame).
* When kmb_plane_atomic_disable is called, mark the plane as
* disabled but actually disable the plane when EOF irq is
* being handled.
*/
for (plane_id = LAYER_0;
plane_id < KMB_MAX_PLANES; plane_id++) {
if (kmb->plane_status[plane_id].disable) {
kmb_clr_bitmask_lcd(kmb,
LCD_LAYERn_DMA_CFG
(plane_id),
LCD_DMA_LAYER_ENABLE);
kmb_clr_bitmask_lcd(kmb, LCD_CONTROL,
kmb->plane_status[plane_id].ctrl);
ctrl = kmb_read_lcd(kmb, LCD_CONTROL);
if (!(ctrl & (LCD_CTRL_VL1_ENABLE |
LCD_CTRL_VL2_ENABLE |
LCD_CTRL_GL1_ENABLE |
LCD_CTRL_GL2_ENABLE))) {
/* If no LCD layers are using DMA,
* then disable DMA pipelined AXI read
* transactions.
*/
kmb_clr_bitmask_lcd(kmb, LCD_CONTROL,
LCD_CTRL_PIPELINE_DMA);
}
kmb->plane_status[plane_id].disable = false;
}
}
if (kmb->kmb_under_flow) {
/* DMA Recovery after underflow */
dma0_state = (kmb->layer_no == 0) ?
LCD_VIDEO0_DMA0_STATE : LCD_VIDEO1_DMA0_STATE;
dma1_state = (kmb->layer_no == 0) ?
LCD_VIDEO0_DMA1_STATE : LCD_VIDEO1_DMA1_STATE;
do {
kmb_write_lcd(kmb, LCD_FIFO_FLUSH, 1);
val = kmb_read_lcd(kmb, dma0_state)
& LCD_DMA_STATE_ACTIVE;
val1 = kmb_read_lcd(kmb, dma1_state)
& LCD_DMA_STATE_ACTIVE;
} while ((val || val1));
/* disable dma */
kmb_clr_bitmask_lcd(kmb,
LCD_LAYERn_DMA_CFG(kmb->layer_no),
LCD_DMA_LAYER_ENABLE);
kmb_write_lcd(kmb, LCD_FIFO_FLUSH, 1);
kmb->kmb_flush_done = 1;
kmb->kmb_under_flow = 0;
}
}
if (status & LCD_INT_LINE_CMP) {
/* clear line compare interrupt */
kmb_write_lcd(kmb, LCD_INT_CLEAR, LCD_INT_LINE_CMP);
}
if (status & LCD_INT_VERT_COMP) {
/* Read VSTATUS */
val = kmb_read_lcd(kmb, LCD_VSTATUS);
val = (val & LCD_VSTATUS_VERTICAL_STATUS_MASK);
switch (val) {
case LCD_VSTATUS_COMPARE_VSYNC:
/* Clear vertical compare interrupt */
kmb_write_lcd(kmb, LCD_INT_CLEAR, LCD_INT_VERT_COMP);
if (kmb->kmb_flush_done) {
kmb_set_bitmask_lcd(kmb,
LCD_LAYERn_DMA_CFG
(kmb->layer_no),
LCD_DMA_LAYER_ENABLE);
kmb->kmb_flush_done = 0;
}
drm_crtc_handle_vblank(&kmb->crtc);
break;
case LCD_VSTATUS_COMPARE_BACKPORCH:
case LCD_VSTATUS_COMPARE_ACTIVE:
case LCD_VSTATUS_COMPARE_FRONT_PORCH:
kmb_write_lcd(kmb, LCD_INT_CLEAR, LCD_INT_VERT_COMP);
break;
}
}
if (status & LCD_INT_DMA_ERR) {
val =
(status & LCD_INT_DMA_ERR &
kmb_read_lcd(kmb, LCD_INT_ENABLE));
/* LAYER0 - VL0 */
if (val & (LAYER0_DMA_FIFO_UNDERFLOW |
LAYER0_DMA_CB_FIFO_UNDERFLOW |
LAYER0_DMA_CR_FIFO_UNDERFLOW)) {
kmb->kmb_under_flow++;
drm_info(&kmb->drm,
"!LAYER0:VL0 DMA UNDERFLOW val = 0x%lx,under_flow=%d",
val, kmb->kmb_under_flow);
/* disable underflow interrupt */
kmb_clr_bitmask_lcd(kmb, LCD_INT_ENABLE,
LAYER0_DMA_FIFO_UNDERFLOW |
LAYER0_DMA_CB_FIFO_UNDERFLOW |
LAYER0_DMA_CR_FIFO_UNDERFLOW);
kmb_set_bitmask_lcd(kmb, LCD_INT_CLEAR,
LAYER0_DMA_CB_FIFO_UNDERFLOW |
LAYER0_DMA_FIFO_UNDERFLOW |
LAYER0_DMA_CR_FIFO_UNDERFLOW);
/* disable auto restart mode */
kmb_clr_bitmask_lcd(kmb, LCD_LAYERn_DMA_CFG(0),
LCD_DMA_LAYER_CONT_PING_PONG_UPDATE);
kmb->layer_no = 0;
}
if (val & LAYER0_DMA_FIFO_OVERFLOW)
drm_dbg(&kmb->drm,
"LAYER0:VL0 DMA OVERFLOW val = 0x%lx", val);
if (val & LAYER0_DMA_CB_FIFO_OVERFLOW)
drm_dbg(&kmb->drm,
"LAYER0:VL0 DMA CB OVERFLOW val = 0x%lx", val);
if (val & LAYER0_DMA_CR_FIFO_OVERFLOW)
drm_dbg(&kmb->drm,
"LAYER0:VL0 DMA CR OVERFLOW val = 0x%lx", val);
/* LAYER1 - VL1 */
if (val & (LAYER1_DMA_FIFO_UNDERFLOW |
LAYER1_DMA_CB_FIFO_UNDERFLOW |
LAYER1_DMA_CR_FIFO_UNDERFLOW)) {
kmb->kmb_under_flow++;
drm_info(&kmb->drm,
"!LAYER1:VL1 DMA UNDERFLOW val = 0x%lx, under_flow=%d",
val, kmb->kmb_under_flow);
/* disable underflow interrupt */
kmb_clr_bitmask_lcd(kmb, LCD_INT_ENABLE,
LAYER1_DMA_FIFO_UNDERFLOW |
LAYER1_DMA_CB_FIFO_UNDERFLOW |
LAYER1_DMA_CR_FIFO_UNDERFLOW);
kmb_set_bitmask_lcd(kmb, LCD_INT_CLEAR,
LAYER1_DMA_CB_FIFO_UNDERFLOW |
LAYER1_DMA_FIFO_UNDERFLOW |
LAYER1_DMA_CR_FIFO_UNDERFLOW);
/* disable auto restart mode */
kmb_clr_bitmask_lcd(kmb, LCD_LAYERn_DMA_CFG(1),
LCD_DMA_LAYER_CONT_PING_PONG_UPDATE);
kmb->layer_no = 1;
}
/* LAYER1 - VL1 */
if (val & LAYER1_DMA_FIFO_OVERFLOW)
drm_dbg(&kmb->drm,
"LAYER1:VL1 DMA OVERFLOW val = 0x%lx", val);
if (val & LAYER1_DMA_CB_FIFO_OVERFLOW)
drm_dbg(&kmb->drm,
"LAYER1:VL1 DMA CB OVERFLOW val = 0x%lx", val);
if (val & LAYER1_DMA_CR_FIFO_OVERFLOW)
drm_dbg(&kmb->drm,
"LAYER1:VL1 DMA CR OVERFLOW val = 0x%lx", val);
/* LAYER2 - GL0 */
if (val & LAYER2_DMA_FIFO_UNDERFLOW)
drm_dbg(&kmb->drm,
"LAYER2:GL0 DMA UNDERFLOW val = 0x%lx", val);
if (val & LAYER2_DMA_FIFO_OVERFLOW)
drm_dbg(&kmb->drm,
"LAYER2:GL0 DMA OVERFLOW val = 0x%lx", val);
/* LAYER3 - GL1 */
if (val & LAYER3_DMA_FIFO_UNDERFLOW)
drm_dbg(&kmb->drm,
"LAYER3:GL1 DMA UNDERFLOW val = 0x%lx", val);
if (val & LAYER3_DMA_FIFO_OVERFLOW)
drm_dbg(&kmb->drm,
"LAYER3:GL1 DMA OVERFLOW val = 0x%lx", val);
}
spin_unlock(&kmb->irq_lock);
if (status & LCD_INT_LAYER) {
/* Clear layer interrupts */
kmb_write_lcd(kmb, LCD_INT_CLEAR, LCD_INT_LAYER);
}
/* Clear all interrupts */
kmb_set_bitmask_lcd(kmb, LCD_INT_CLEAR, 1);
return IRQ_HANDLED;
}
/* IRQ handler */
static irqreturn_t kmb_isr(int irq, void *arg)
{
struct drm_device *dev = (struct drm_device *)arg;
handle_lcd_irq(dev);
return IRQ_HANDLED;
}
static void kmb_irq_reset(struct drm_device *drm)
{
kmb_write_lcd(to_kmb(drm), LCD_INT_CLEAR, 0xFFFF);
kmb_write_lcd(to_kmb(drm), LCD_INT_ENABLE, 0);
}
static int kmb_irq_install(struct drm_device *drm, unsigned int irq)
{
if (irq == IRQ_NOTCONNECTED)
return -ENOTCONN;
kmb_irq_reset(drm);
return request_irq(irq, kmb_isr, 0, drm->driver->name, drm);
}
static void kmb_irq_uninstall(struct drm_device *drm)
{
struct kmb_drm_private *kmb = to_kmb(drm);
kmb_irq_reset(drm);
free_irq(kmb->irq_lcd, drm);
}
DEFINE_DRM_GEM_CMA_FOPS(fops);
static const struct drm_driver kmb_driver = {
.driver_features = DRIVER_GEM |
DRIVER_MODESET | DRIVER_ATOMIC,
/* GEM Operations */
.fops = &fops,
DRM_GEM_CMA_DRIVER_OPS_VMAP,
.name = "kmb-drm",
.desc = "KEEMBAY DISPLAY DRIVER",
.date = DRIVER_DATE,
.major = DRIVER_MAJOR,
.minor = DRIVER_MINOR,
};
static int kmb_remove(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct drm_device *drm = dev_get_drvdata(dev);
struct kmb_drm_private *kmb = to_kmb(drm);
drm_dev_unregister(drm);
drm_kms_helper_poll_fini(drm);
of_node_put(kmb->crtc.port);
kmb->crtc.port = NULL;
pm_runtime_get_sync(drm->dev);
kmb_irq_uninstall(drm);
pm_runtime_put_sync(drm->dev);
pm_runtime_disable(drm->dev);
of_reserved_mem_device_release(drm->dev);
/* Release clks */
kmb_display_clk_disable(kmb);
dev_set_drvdata(dev, NULL);
/* Unregister DSI host */
kmb_dsi_host_unregister(kmb->kmb_dsi);
drm_atomic_helper_shutdown(drm);
return 0;
}
static int kmb_probe(struct platform_device *pdev)
{
struct device *dev = get_device(&pdev->dev);
struct kmb_drm_private *kmb;
int ret = 0;
struct device_node *dsi_in;
struct device_node *dsi_node;
struct platform_device *dsi_pdev;
/* The bridge (ADV 7535) will return -EPROBE_DEFER until it
* has a mipi_dsi_host to register its device to. So, we
* first register the DSI host during probe time, and then return
* -EPROBE_DEFER until the bridge is loaded. Probe will be called again
* and then the rest of the driver initialization can proceed
* afterwards and the bridge can be successfully attached.
*/
dsi_in = of_graph_get_endpoint_by_regs(dev->of_node, 0, 0);
if (!dsi_in) {
DRM_ERROR("Failed to get dsi_in node info from DT");
return -EINVAL;
}
dsi_node = of_graph_get_remote_port_parent(dsi_in);
if (!dsi_node) {
of_node_put(dsi_in);
DRM_ERROR("Failed to get dsi node from DT\n");
return -EINVAL;
}
dsi_pdev = of_find_device_by_node(dsi_node);
if (!dsi_pdev) {
of_node_put(dsi_in);
of_node_put(dsi_node);
DRM_ERROR("Failed to get dsi platform device\n");
return -EINVAL;
}
of_node_put(dsi_in);
of_node_put(dsi_node);
ret = kmb_dsi_host_bridge_init(get_device(&dsi_pdev->dev));
if (ret == -EPROBE_DEFER) {
return -EPROBE_DEFER;
} else if (ret) {
DRM_ERROR("probe failed to initialize DSI host bridge\n");
return ret;
}
/* Create DRM device */
kmb = devm_drm_dev_alloc(dev, &kmb_driver,
struct kmb_drm_private, drm);
if (IS_ERR(kmb))
return PTR_ERR(kmb);
dev_set_drvdata(dev, &kmb->drm);
/* Initialize MIPI DSI */
kmb->kmb_dsi = kmb_dsi_init(dsi_pdev);
if (IS_ERR(kmb->kmb_dsi)) {
drm_err(&kmb->drm, "failed to initialize DSI\n");
ret = PTR_ERR(kmb->kmb_dsi);
goto err_free1;
}
kmb->kmb_dsi->dev = &dsi_pdev->dev;
kmb->kmb_dsi->pdev = dsi_pdev;
ret = kmb_hw_init(&kmb->drm, 0);
if (ret)
goto err_free1;
ret = kmb_setup_mode_config(&kmb->drm);
if (ret)
goto err_free;
ret = kmb_irq_install(&kmb->drm, kmb->irq_lcd);
if (ret < 0) {
drm_err(&kmb->drm, "failed to install IRQ handler\n");
goto err_irq;
}
drm_kms_helper_poll_init(&kmb->drm);
/* Register graphics device with the kernel */
ret = drm_dev_register(&kmb->drm, 0);
if (ret)
goto err_register;
drm_fbdev_generic_setup(&kmb->drm, 0);
return 0;
err_register:
drm_kms_helper_poll_fini(&kmb->drm);
err_irq:
pm_runtime_disable(kmb->drm.dev);
err_free:
drm_crtc_cleanup(&kmb->crtc);
drm_mode_config_cleanup(&kmb->drm);
err_free1:
dev_set_drvdata(dev, NULL);
kmb_dsi_host_unregister(kmb->kmb_dsi);
return ret;
}
static const struct of_device_id kmb_of_match[] = {
{.compatible = "intel,keembay-display"},
{},
};
MODULE_DEVICE_TABLE(of, kmb_of_match);
static int __maybe_unused kmb_pm_suspend(struct device *dev)
{
struct drm_device *drm = dev_get_drvdata(dev);
struct kmb_drm_private *kmb = to_kmb(drm);
drm_kms_helper_poll_disable(drm);
kmb->state = drm_atomic_helper_suspend(drm);
if (IS_ERR(kmb->state)) {
drm_kms_helper_poll_enable(drm);
return PTR_ERR(kmb->state);
}
return 0;
}
static int __maybe_unused kmb_pm_resume(struct device *dev)
{
struct drm_device *drm = dev_get_drvdata(dev);
struct kmb_drm_private *kmb = drm ? to_kmb(drm) : NULL;
if (!kmb)
return 0;
drm_atomic_helper_resume(drm, kmb->state);
drm_kms_helper_poll_enable(drm);
return 0;
}
static SIMPLE_DEV_PM_OPS(kmb_pm_ops, kmb_pm_suspend, kmb_pm_resume);
static struct platform_driver kmb_platform_driver = {
.probe = kmb_probe,
.remove = kmb_remove,
.driver = {
.name = "kmb-drm",
.pm = &kmb_pm_ops,
.of_match_table = kmb_of_match,
},
};
module_platform_driver(kmb_platform_driver);
MODULE_AUTHOR("Intel Corporation");
MODULE_DESCRIPTION("Keembay Display driver");
MODULE_LICENSE("GPL v2");