blob: 5ce88dd8c95a059aa01313109cd9f871574c9d85 [file] [log] [blame]
/*
* turbostat -- show CPU frequency and C-state residency
* on modern Intel turbo-capable processors.
*
* Copyright (c) 2012 Intel Corporation.
* Len Brown <len.brown@intel.com>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
*/
#define _GNU_SOURCE
#include <stdio.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <sys/stat.h>
#include <sys/resource.h>
#include <fcntl.h>
#include <signal.h>
#include <sys/time.h>
#include <stdlib.h>
#include <dirent.h>
#include <string.h>
#include <ctype.h>
#include <sched.h>
#define MSR_NEHALEM_PLATFORM_INFO 0xCE
#define MSR_NEHALEM_TURBO_RATIO_LIMIT 0x1AD
#define MSR_IVT_TURBO_RATIO_LIMIT 0x1AE
#define MSR_APERF 0xE8
#define MSR_MPERF 0xE7
#define MSR_PKG_C2_RESIDENCY 0x60D /* SNB only */
#define MSR_PKG_C3_RESIDENCY 0x3F8
#define MSR_PKG_C6_RESIDENCY 0x3F9
#define MSR_PKG_C7_RESIDENCY 0x3FA /* SNB only */
#define MSR_CORE_C3_RESIDENCY 0x3FC
#define MSR_CORE_C6_RESIDENCY 0x3FD
#define MSR_CORE_C7_RESIDENCY 0x3FE /* SNB only */
char *proc_stat = "/proc/stat";
unsigned int interval_sec = 5; /* set with -i interval_sec */
unsigned int verbose; /* set with -v */
unsigned int summary_only; /* set with -s */
unsigned int skip_c0;
unsigned int skip_c1;
unsigned int do_nhm_cstates;
unsigned int do_snb_cstates;
unsigned int has_aperf;
unsigned int units = 1000000000; /* Ghz etc */
unsigned int genuine_intel;
unsigned int has_invariant_tsc;
unsigned int do_nehalem_platform_info;
unsigned int do_nehalem_turbo_ratio_limit;
unsigned int do_ivt_turbo_ratio_limit;
unsigned int extra_msr_offset;
double bclk;
unsigned int show_pkg;
unsigned int show_core;
unsigned int show_cpu;
unsigned int show_pkg_only;
unsigned int show_core_only;
char *output_buffer, *outp;
int aperf_mperf_unstable;
int backwards_count;
char *progname;
cpu_set_t *cpu_present_set, *cpu_affinity_set;
size_t cpu_present_setsize, cpu_affinity_setsize;
struct thread_data {
unsigned long long tsc;
unsigned long long aperf;
unsigned long long mperf;
unsigned long long c1; /* derived */
unsigned long long extra_msr;
unsigned int cpu_id;
unsigned int flags;
#define CPU_IS_FIRST_THREAD_IN_CORE 0x2
#define CPU_IS_FIRST_CORE_IN_PACKAGE 0x4
} *thread_even, *thread_odd;
struct core_data {
unsigned long long c3;
unsigned long long c6;
unsigned long long c7;
unsigned int core_id;
} *core_even, *core_odd;
struct pkg_data {
unsigned long long pc2;
unsigned long long pc3;
unsigned long long pc6;
unsigned long long pc7;
unsigned int package_id;
} *package_even, *package_odd;
#define ODD_COUNTERS thread_odd, core_odd, package_odd
#define EVEN_COUNTERS thread_even, core_even, package_even
#define GET_THREAD(thread_base, thread_no, core_no, pkg_no) \
(thread_base + (pkg_no) * topo.num_cores_per_pkg * \
topo.num_threads_per_core + \
(core_no) * topo.num_threads_per_core + (thread_no))
#define GET_CORE(core_base, core_no, pkg_no) \
(core_base + (pkg_no) * topo.num_cores_per_pkg + (core_no))
#define GET_PKG(pkg_base, pkg_no) (pkg_base + pkg_no)
struct system_summary {
struct thread_data threads;
struct core_data cores;
struct pkg_data packages;
} sum, average;
struct topo_params {
int num_packages;
int num_cpus;
int num_cores;
int max_cpu_num;
int num_cores_per_pkg;
int num_threads_per_core;
} topo;
struct timeval tv_even, tv_odd, tv_delta;
void setup_all_buffers(void);
int cpu_is_not_present(int cpu)
{
return !CPU_ISSET_S(cpu, cpu_present_setsize, cpu_present_set);
}
/*
* run func(thread, core, package) in topology order
* skip non-present cpus
*/
int for_all_cpus(int (func)(struct thread_data *, struct core_data *, struct pkg_data *),
struct thread_data *thread_base, struct core_data *core_base, struct pkg_data *pkg_base)
{
int retval, pkg_no, core_no, thread_no;
for (pkg_no = 0; pkg_no < topo.num_packages; ++pkg_no) {
for (core_no = 0; core_no < topo.num_cores_per_pkg; ++core_no) {
for (thread_no = 0; thread_no <
topo.num_threads_per_core; ++thread_no) {
struct thread_data *t;
struct core_data *c;
struct pkg_data *p;
t = GET_THREAD(thread_base, thread_no, core_no, pkg_no);
if (cpu_is_not_present(t->cpu_id))
continue;
c = GET_CORE(core_base, core_no, pkg_no);
p = GET_PKG(pkg_base, pkg_no);
retval = func(t, c, p);
if (retval)
return retval;
}
}
}
return 0;
}
int cpu_migrate(int cpu)
{
CPU_ZERO_S(cpu_affinity_setsize, cpu_affinity_set);
CPU_SET_S(cpu, cpu_affinity_setsize, cpu_affinity_set);
if (sched_setaffinity(0, cpu_affinity_setsize, cpu_affinity_set) == -1)
return -1;
else
return 0;
}
int get_msr(int cpu, off_t offset, unsigned long long *msr)
{
ssize_t retval;
char pathname[32];
int fd;
sprintf(pathname, "/dev/cpu/%d/msr", cpu);
fd = open(pathname, O_RDONLY);
if (fd < 0)
return -1;
retval = pread(fd, msr, sizeof *msr, offset);
close(fd);
if (retval != sizeof *msr)
return -1;
return 0;
}
void print_header(void)
{
if (show_pkg)
outp += sprintf(outp, "pk");
if (show_pkg)
outp += sprintf(outp, " ");
if (show_core)
outp += sprintf(outp, "cor");
if (show_cpu)
outp += sprintf(outp, " CPU");
if (show_pkg || show_core || show_cpu)
outp += sprintf(outp, " ");
if (do_nhm_cstates)
outp += sprintf(outp, " %%c0");
if (has_aperf)
outp += sprintf(outp, " GHz");
outp += sprintf(outp, " TSC");
if (extra_msr_offset)
outp += sprintf(outp, " MSR 0x%04X", extra_msr_offset);
if (do_nhm_cstates)
outp += sprintf(outp, " %%c1");
if (do_nhm_cstates)
outp += sprintf(outp, " %%c3");
if (do_nhm_cstates)
outp += sprintf(outp, " %%c6");
if (do_snb_cstates)
outp += sprintf(outp, " %%c7");
if (do_snb_cstates)
outp += sprintf(outp, " %%pc2");
if (do_nhm_cstates)
outp += sprintf(outp, " %%pc3");
if (do_nhm_cstates)
outp += sprintf(outp, " %%pc6");
if (do_snb_cstates)
outp += sprintf(outp, " %%pc7");
outp += sprintf(outp, "\n");
}
int dump_counters(struct thread_data *t, struct core_data *c,
struct pkg_data *p)
{
fprintf(stderr, "t %p, c %p, p %p\n", t, c, p);
if (t) {
fprintf(stderr, "CPU: %d flags 0x%x\n", t->cpu_id, t->flags);
fprintf(stderr, "TSC: %016llX\n", t->tsc);
fprintf(stderr, "aperf: %016llX\n", t->aperf);
fprintf(stderr, "mperf: %016llX\n", t->mperf);
fprintf(stderr, "c1: %016llX\n", t->c1);
fprintf(stderr, "msr0x%x: %016llX\n",
extra_msr_offset, t->extra_msr);
}
if (c) {
fprintf(stderr, "core: %d\n", c->core_id);
fprintf(stderr, "c3: %016llX\n", c->c3);
fprintf(stderr, "c6: %016llX\n", c->c6);
fprintf(stderr, "c7: %016llX\n", c->c7);
}
if (p) {
fprintf(stderr, "package: %d\n", p->package_id);
fprintf(stderr, "pc2: %016llX\n", p->pc2);
fprintf(stderr, "pc3: %016llX\n", p->pc3);
fprintf(stderr, "pc6: %016llX\n", p->pc6);
fprintf(stderr, "pc7: %016llX\n", p->pc7);
}
return 0;
}
/*
* column formatting convention & formats
* package: "pk" 2 columns %2d
* core: "cor" 3 columns %3d
* CPU: "CPU" 3 columns %3d
* GHz: "GHz" 3 columns %3.2
* TSC: "TSC" 3 columns %3.2
* percentage " %pc3" %6.2
*/
int format_counters(struct thread_data *t, struct core_data *c,
struct pkg_data *p)
{
double interval_float;
/* if showing only 1st thread in core and this isn't one, bail out */
if (show_core_only && !(t->flags & CPU_IS_FIRST_THREAD_IN_CORE))
return 0;
/* if showing only 1st thread in pkg and this isn't one, bail out */
if (show_pkg_only && !(t->flags & CPU_IS_FIRST_CORE_IN_PACKAGE))
return 0;
interval_float = tv_delta.tv_sec + tv_delta.tv_usec/1000000.0;
/* topo columns, print blanks on 1st (average) line */
if (t == &average.threads) {
if (show_pkg)
outp += sprintf(outp, " ");
if (show_pkg && show_core)
outp += sprintf(outp, " ");
if (show_core)
outp += sprintf(outp, " ");
if (show_cpu)
outp += sprintf(outp, " " " ");
} else {
if (show_pkg) {
if (p)
outp += sprintf(outp, "%2d", p->package_id);
else
outp += sprintf(outp, " ");
}
if (show_pkg && show_core)
outp += sprintf(outp, " ");
if (show_core) {
if (c)
outp += sprintf(outp, "%3d", c->core_id);
else
outp += sprintf(outp, " ");
}
if (show_cpu)
outp += sprintf(outp, " %3d", t->cpu_id);
}
/* %c0 */
if (do_nhm_cstates) {
if (show_pkg || show_core || show_cpu)
outp += sprintf(outp, " ");
if (!skip_c0)
outp += sprintf(outp, "%6.2f", 100.0 * t->mperf/t->tsc);
else
outp += sprintf(outp, " ****");
}
/* GHz */
if (has_aperf) {
if (!aperf_mperf_unstable) {
outp += sprintf(outp, " %3.2f",
1.0 * t->tsc / units * t->aperf /
t->mperf / interval_float);
} else {
if (t->aperf > t->tsc || t->mperf > t->tsc) {
outp += sprintf(outp, " ***");
} else {
outp += sprintf(outp, "%3.1f*",
1.0 * t->tsc /
units * t->aperf /
t->mperf / interval_float);
}
}
}
/* TSC */
outp += sprintf(outp, "%5.2f", 1.0 * t->tsc/units/interval_float);
/* MSR */
if (extra_msr_offset)
outp += sprintf(outp, " 0x%016llx", t->extra_msr);
if (do_nhm_cstates) {
if (!skip_c1)
outp += sprintf(outp, " %6.2f", 100.0 * t->c1/t->tsc);
else
outp += sprintf(outp, " ****");
}
/* print per-core data only for 1st thread in core */
if (!(t->flags & CPU_IS_FIRST_THREAD_IN_CORE))
goto done;
if (do_nhm_cstates)
outp += sprintf(outp, " %6.2f", 100.0 * c->c3/t->tsc);
if (do_nhm_cstates)
outp += sprintf(outp, " %6.2f", 100.0 * c->c6/t->tsc);
if (do_snb_cstates)
outp += sprintf(outp, " %6.2f", 100.0 * c->c7/t->tsc);
/* print per-package data only for 1st core in package */
if (!(t->flags & CPU_IS_FIRST_CORE_IN_PACKAGE))
goto done;
if (do_snb_cstates)
outp += sprintf(outp, " %6.2f", 100.0 * p->pc2/t->tsc);
if (do_nhm_cstates)
outp += sprintf(outp, " %6.2f", 100.0 * p->pc3/t->tsc);
if (do_nhm_cstates)
outp += sprintf(outp, " %6.2f", 100.0 * p->pc6/t->tsc);
if (do_snb_cstates)
outp += sprintf(outp, " %6.2f", 100.0 * p->pc7/t->tsc);
done:
outp += sprintf(outp, "\n");
return 0;
}
void flush_stdout()
{
fputs(output_buffer, stdout);
outp = output_buffer;
}
void flush_stderr()
{
fputs(output_buffer, stderr);
outp = output_buffer;
}
void format_all_counters(struct thread_data *t, struct core_data *c, struct pkg_data *p)
{
static int printed;
if (!printed || !summary_only)
print_header();
if (topo.num_cpus > 1)
format_counters(&average.threads, &average.cores,
&average.packages);
printed = 1;
if (summary_only)
return;
for_all_cpus(format_counters, t, c, p);
}
void
delta_package(struct pkg_data *new, struct pkg_data *old)
{
old->pc2 = new->pc2 - old->pc2;
old->pc3 = new->pc3 - old->pc3;
old->pc6 = new->pc6 - old->pc6;
old->pc7 = new->pc7 - old->pc7;
}
void
delta_core(struct core_data *new, struct core_data *old)
{
old->c3 = new->c3 - old->c3;
old->c6 = new->c6 - old->c6;
old->c7 = new->c7 - old->c7;
}
/*
* old = new - old
*/
void
delta_thread(struct thread_data *new, struct thread_data *old,
struct core_data *core_delta)
{
old->tsc = new->tsc - old->tsc;
/* check for TSC < 1 Mcycles over interval */
if (old->tsc < (1000 * 1000)) {
fprintf(stderr, "Insanely slow TSC rate, TSC stops in idle?\n");
fprintf(stderr, "You can disable all c-states by booting with \"idle=poll\"\n");
fprintf(stderr, "or just the deep ones with \"processor.max_cstate=1\"\n");
exit(-3);
}
old->c1 = new->c1 - old->c1;
if ((new->aperf > old->aperf) && (new->mperf > old->mperf)) {
old->aperf = new->aperf - old->aperf;
old->mperf = new->mperf - old->mperf;
} else {
if (!aperf_mperf_unstable) {
fprintf(stderr, "%s: APERF or MPERF went backwards *\n", progname);
fprintf(stderr, "* Frequency results do not cover entire interval *\n");
fprintf(stderr, "* fix this by running Linux-2.6.30 or later *\n");
aperf_mperf_unstable = 1;
}
/*
* mperf delta is likely a huge "positive" number
* can not use it for calculating c0 time
*/
skip_c0 = 1;
skip_c1 = 1;
}
/*
* As counter collection is not atomic,
* it is possible for mperf's non-halted cycles + idle states
* to exceed TSC's all cycles: show c1 = 0% in that case.
*/
if ((old->mperf + core_delta->c3 + core_delta->c6 + core_delta->c7) > old->tsc)
old->c1 = 0;
else {
/* normal case, derive c1 */
old->c1 = old->tsc - old->mperf - core_delta->c3
- core_delta->c6 - core_delta->c7;
}
if (old->mperf == 0) {
if (verbose > 1) fprintf(stderr, "cpu%d MPERF 0!\n", old->cpu_id);
old->mperf = 1; /* divide by 0 protection */
}
/*
* for "extra msr", just copy the latest w/o subtracting
*/
old->extra_msr = new->extra_msr;
}
int delta_cpu(struct thread_data *t, struct core_data *c,
struct pkg_data *p, struct thread_data *t2,
struct core_data *c2, struct pkg_data *p2)
{
/* calculate core delta only for 1st thread in core */
if (t->flags & CPU_IS_FIRST_THREAD_IN_CORE)
delta_core(c, c2);
/* always calculate thread delta */
delta_thread(t, t2, c2); /* c2 is core delta */
/* calculate package delta only for 1st core in package */
if (t->flags & CPU_IS_FIRST_CORE_IN_PACKAGE)
delta_package(p, p2);
return 0;
}
void clear_counters(struct thread_data *t, struct core_data *c, struct pkg_data *p)
{
t->tsc = 0;
t->aperf = 0;
t->mperf = 0;
t->c1 = 0;
/* tells format_counters to dump all fields from this set */
t->flags = CPU_IS_FIRST_THREAD_IN_CORE | CPU_IS_FIRST_CORE_IN_PACKAGE;
c->c3 = 0;
c->c6 = 0;
c->c7 = 0;
p->pc2 = 0;
p->pc3 = 0;
p->pc6 = 0;
p->pc7 = 0;
}
int sum_counters(struct thread_data *t, struct core_data *c,
struct pkg_data *p)
{
average.threads.tsc += t->tsc;
average.threads.aperf += t->aperf;
average.threads.mperf += t->mperf;
average.threads.c1 += t->c1;
/* sum per-core values only for 1st thread in core */
if (!(t->flags & CPU_IS_FIRST_THREAD_IN_CORE))
return 0;
average.cores.c3 += c->c3;
average.cores.c6 += c->c6;
average.cores.c7 += c->c7;
/* sum per-pkg values only for 1st core in pkg */
if (!(t->flags & CPU_IS_FIRST_CORE_IN_PACKAGE))
return 0;
average.packages.pc2 += p->pc2;
average.packages.pc3 += p->pc3;
average.packages.pc6 += p->pc6;
average.packages.pc7 += p->pc7;
return 0;
}
/*
* sum the counters for all cpus in the system
* compute the weighted average
*/
void compute_average(struct thread_data *t, struct core_data *c,
struct pkg_data *p)
{
clear_counters(&average.threads, &average.cores, &average.packages);
for_all_cpus(sum_counters, t, c, p);
average.threads.tsc /= topo.num_cpus;
average.threads.aperf /= topo.num_cpus;
average.threads.mperf /= topo.num_cpus;
average.threads.c1 /= topo.num_cpus;
average.cores.c3 /= topo.num_cores;
average.cores.c6 /= topo.num_cores;
average.cores.c7 /= topo.num_cores;
average.packages.pc2 /= topo.num_packages;
average.packages.pc3 /= topo.num_packages;
average.packages.pc6 /= topo.num_packages;
average.packages.pc7 /= topo.num_packages;
}
static unsigned long long rdtsc(void)
{
unsigned int low, high;
asm volatile("rdtsc" : "=a" (low), "=d" (high));
return low | ((unsigned long long)high) << 32;
}
/*
* get_counters(...)
* migrate to cpu
* acquire and record local counters for that cpu
*/
int get_counters(struct thread_data *t, struct core_data *c, struct pkg_data *p)
{
int cpu = t->cpu_id;
if (cpu_migrate(cpu))
return -1;
t->tsc = rdtsc(); /* we are running on local CPU of interest */
if (has_aperf) {
if (get_msr(cpu, MSR_APERF, &t->aperf))
return -3;
if (get_msr(cpu, MSR_MPERF, &t->mperf))
return -4;
}
if (extra_msr_offset)
if (get_msr(cpu, extra_msr_offset, &t->extra_msr))
return -5;
/* collect core counters only for 1st thread in core */
if (!(t->flags & CPU_IS_FIRST_THREAD_IN_CORE))
return 0;
if (do_nhm_cstates) {
if (get_msr(cpu, MSR_CORE_C3_RESIDENCY, &c->c3))
return -6;
if (get_msr(cpu, MSR_CORE_C6_RESIDENCY, &c->c6))
return -7;
}
if (do_snb_cstates)
if (get_msr(cpu, MSR_CORE_C7_RESIDENCY, &c->c7))
return -8;
/* collect package counters only for 1st core in package */
if (!(t->flags & CPU_IS_FIRST_CORE_IN_PACKAGE))
return 0;
if (do_nhm_cstates) {
if (get_msr(cpu, MSR_PKG_C3_RESIDENCY, &p->pc3))
return -9;
if (get_msr(cpu, MSR_PKG_C6_RESIDENCY, &p->pc6))
return -10;
}
if (do_snb_cstates) {
if (get_msr(cpu, MSR_PKG_C2_RESIDENCY, &p->pc2))
return -11;
if (get_msr(cpu, MSR_PKG_C7_RESIDENCY, &p->pc7))
return -12;
}
return 0;
}
void print_verbose_header(void)
{
unsigned long long msr;
unsigned int ratio;
if (!do_nehalem_platform_info)
return;
get_msr(0, MSR_NEHALEM_PLATFORM_INFO, &msr);
if (verbose > 1)
fprintf(stderr, "MSR_NEHALEM_PLATFORM_INFO: 0x%llx\n", msr);
ratio = (msr >> 40) & 0xFF;
fprintf(stderr, "%d * %.0f = %.0f MHz max efficiency\n",
ratio, bclk, ratio * bclk);
ratio = (msr >> 8) & 0xFF;
fprintf(stderr, "%d * %.0f = %.0f MHz TSC frequency\n",
ratio, bclk, ratio * bclk);
if (!do_ivt_turbo_ratio_limit)
goto print_nhm_turbo_ratio_limits;
get_msr(0, MSR_IVT_TURBO_RATIO_LIMIT, &msr);
if (verbose > 1)
fprintf(stderr, "MSR_IVT_TURBO_RATIO_LIMIT: 0x%llx\n", msr);
ratio = (msr >> 56) & 0xFF;
if (ratio)
fprintf(stderr, "%d * %.0f = %.0f MHz max turbo 16 active cores\n",
ratio, bclk, ratio * bclk);
ratio = (msr >> 48) & 0xFF;
if (ratio)
fprintf(stderr, "%d * %.0f = %.0f MHz max turbo 15 active cores\n",
ratio, bclk, ratio * bclk);
ratio = (msr >> 40) & 0xFF;
if (ratio)
fprintf(stderr, "%d * %.0f = %.0f MHz max turbo 14 active cores\n",
ratio, bclk, ratio * bclk);
ratio = (msr >> 32) & 0xFF;
if (ratio)
fprintf(stderr, "%d * %.0f = %.0f MHz max turbo 13 active cores\n",
ratio, bclk, ratio * bclk);
ratio = (msr >> 24) & 0xFF;
if (ratio)
fprintf(stderr, "%d * %.0f = %.0f MHz max turbo 12 active cores\n",
ratio, bclk, ratio * bclk);
ratio = (msr >> 16) & 0xFF;
if (ratio)
fprintf(stderr, "%d * %.0f = %.0f MHz max turbo 11 active cores\n",
ratio, bclk, ratio * bclk);
ratio = (msr >> 8) & 0xFF;
if (ratio)
fprintf(stderr, "%d * %.0f = %.0f MHz max turbo 10 active cores\n",
ratio, bclk, ratio * bclk);
ratio = (msr >> 0) & 0xFF;
if (ratio)
fprintf(stderr, "%d * %.0f = %.0f MHz max turbo 9 active cores\n",
ratio, bclk, ratio * bclk);
print_nhm_turbo_ratio_limits:
if (!do_nehalem_turbo_ratio_limit)
return;
get_msr(0, MSR_NEHALEM_TURBO_RATIO_LIMIT, &msr);
if (verbose > 1)
fprintf(stderr, "MSR_NEHALEM_TURBO_RATIO_LIMIT: 0x%llx\n", msr);
ratio = (msr >> 56) & 0xFF;
if (ratio)
fprintf(stderr, "%d * %.0f = %.0f MHz max turbo 8 active cores\n",
ratio, bclk, ratio * bclk);
ratio = (msr >> 48) & 0xFF;
if (ratio)
fprintf(stderr, "%d * %.0f = %.0f MHz max turbo 7 active cores\n",
ratio, bclk, ratio * bclk);
ratio = (msr >> 40) & 0xFF;
if (ratio)
fprintf(stderr, "%d * %.0f = %.0f MHz max turbo 6 active cores\n",
ratio, bclk, ratio * bclk);
ratio = (msr >> 32) & 0xFF;
if (ratio)
fprintf(stderr, "%d * %.0f = %.0f MHz max turbo 5 active cores\n",
ratio, bclk, ratio * bclk);
ratio = (msr >> 24) & 0xFF;
if (ratio)
fprintf(stderr, "%d * %.0f = %.0f MHz max turbo 4 active cores\n",
ratio, bclk, ratio * bclk);
ratio = (msr >> 16) & 0xFF;
if (ratio)
fprintf(stderr, "%d * %.0f = %.0f MHz max turbo 3 active cores\n",
ratio, bclk, ratio * bclk);
ratio = (msr >> 8) & 0xFF;
if (ratio)
fprintf(stderr, "%d * %.0f = %.0f MHz max turbo 2 active cores\n",
ratio, bclk, ratio * bclk);
ratio = (msr >> 0) & 0xFF;
if (ratio)
fprintf(stderr, "%d * %.0f = %.0f MHz max turbo 1 active cores\n",
ratio, bclk, ratio * bclk);
}
void free_all_buffers(void)
{
CPU_FREE(cpu_present_set);
cpu_present_set = NULL;
cpu_present_set = 0;
CPU_FREE(cpu_affinity_set);
cpu_affinity_set = NULL;
cpu_affinity_setsize = 0;
free(thread_even);
free(core_even);
free(package_even);
thread_even = NULL;
core_even = NULL;
package_even = NULL;
free(thread_odd);
free(core_odd);
free(package_odd);
thread_odd = NULL;
core_odd = NULL;
package_odd = NULL;
free(output_buffer);
output_buffer = NULL;
outp = NULL;
}
/*
* cpu_is_first_sibling_in_core(cpu)
* return 1 if given CPU is 1st HT sibling in the core
*/
int cpu_is_first_sibling_in_core(int cpu)
{
char path[64];
FILE *filep;
int first_cpu;
sprintf(path, "/sys/devices/system/cpu/cpu%d/topology/thread_siblings_list", cpu);
filep = fopen(path, "r");
if (filep == NULL) {
perror(path);
exit(1);
}
fscanf(filep, "%d", &first_cpu);
fclose(filep);
return (cpu == first_cpu);
}
/*
* cpu_is_first_core_in_package(cpu)
* return 1 if given CPU is 1st core in package
*/
int cpu_is_first_core_in_package(int cpu)
{
char path[64];
FILE *filep;
int first_cpu;
sprintf(path, "/sys/devices/system/cpu/cpu%d/topology/core_siblings_list", cpu);
filep = fopen(path, "r");
if (filep == NULL) {
perror(path);
exit(1);
}
fscanf(filep, "%d", &first_cpu);
fclose(filep);
return (cpu == first_cpu);
}
int get_physical_package_id(int cpu)
{
char path[80];
FILE *filep;
int pkg;
sprintf(path, "/sys/devices/system/cpu/cpu%d/topology/physical_package_id", cpu);
filep = fopen(path, "r");
if (filep == NULL) {
perror(path);
exit(1);
}
fscanf(filep, "%d", &pkg);
fclose(filep);
return pkg;
}
int get_core_id(int cpu)
{
char path[80];
FILE *filep;
int core;
sprintf(path, "/sys/devices/system/cpu/cpu%d/topology/core_id", cpu);
filep = fopen(path, "r");
if (filep == NULL) {
perror(path);
exit(1);
}
fscanf(filep, "%d", &core);
fclose(filep);
return core;
}
int get_num_ht_siblings(int cpu)
{
char path[80];
FILE *filep;
int sib1, sib2;
int matches;
char character;
sprintf(path, "/sys/devices/system/cpu/cpu%d/topology/thread_siblings_list", cpu);
filep = fopen(path, "r");
if (filep == NULL) {
perror(path);
exit(1);
}
/*
* file format:
* if a pair of number with a character between: 2 siblings (eg. 1-2, or 1,4)
* otherwinse 1 sibling (self).
*/
matches = fscanf(filep, "%d%c%d\n", &sib1, &character, &sib2);
fclose(filep);
if (matches == 3)
return 2;
else
return 1;
}
/*
* run func(thread, core, package) in topology order
* skip non-present cpus
*/
int for_all_cpus_2(int (func)(struct thread_data *, struct core_data *,
struct pkg_data *, struct thread_data *, struct core_data *,
struct pkg_data *), struct thread_data *thread_base,
struct core_data *core_base, struct pkg_data *pkg_base,
struct thread_data *thread_base2, struct core_data *core_base2,
struct pkg_data *pkg_base2)
{
int retval, pkg_no, core_no, thread_no;
for (pkg_no = 0; pkg_no < topo.num_packages; ++pkg_no) {
for (core_no = 0; core_no < topo.num_cores_per_pkg; ++core_no) {
for (thread_no = 0; thread_no <
topo.num_threads_per_core; ++thread_no) {
struct thread_data *t, *t2;
struct core_data *c, *c2;
struct pkg_data *p, *p2;
t = GET_THREAD(thread_base, thread_no, core_no, pkg_no);
if (cpu_is_not_present(t->cpu_id))
continue;
t2 = GET_THREAD(thread_base2, thread_no, core_no, pkg_no);
c = GET_CORE(core_base, core_no, pkg_no);
c2 = GET_CORE(core_base2, core_no, pkg_no);
p = GET_PKG(pkg_base, pkg_no);
p2 = GET_PKG(pkg_base2, pkg_no);
retval = func(t, c, p, t2, c2, p2);
if (retval)
return retval;
}
}
}
return 0;
}
/*
* run func(cpu) on every cpu in /proc/stat
* return max_cpu number
*/
int for_all_proc_cpus(int (func)(int))
{
FILE *fp;
int cpu_num;
int retval;
fp = fopen(proc_stat, "r");
if (fp == NULL) {
perror(proc_stat);
exit(1);
}
retval = fscanf(fp, "cpu %*d %*d %*d %*d %*d %*d %*d %*d %*d %*d\n");
if (retval != 0) {
perror("/proc/stat format");
exit(1);
}
while (1) {
retval = fscanf(fp, "cpu%u %*d %*d %*d %*d %*d %*d %*d %*d %*d %*d\n", &cpu_num);
if (retval != 1)
break;
retval = func(cpu_num);
if (retval) {
fclose(fp);
return(retval);
}
}
fclose(fp);
return 0;
}
void re_initialize(void)
{
free_all_buffers();
setup_all_buffers();
printf("turbostat: re-initialized with num_cpus %d\n", topo.num_cpus);
}
/*
* count_cpus()
* remember the last one seen, it will be the max
*/
int count_cpus(int cpu)
{
if (topo.max_cpu_num < cpu)
topo.max_cpu_num = cpu;
topo.num_cpus += 1;
return 0;
}
int mark_cpu_present(int cpu)
{
CPU_SET_S(cpu, cpu_present_setsize, cpu_present_set);
return 0;
}
void turbostat_loop()
{
int retval;
restart:
retval = for_all_cpus(get_counters, EVEN_COUNTERS);
if (retval) {
re_initialize();
goto restart;
}
gettimeofday(&tv_even, (struct timezone *)NULL);
while (1) {
if (for_all_proc_cpus(cpu_is_not_present)) {
re_initialize();
goto restart;
}
sleep(interval_sec);
retval = for_all_cpus(get_counters, ODD_COUNTERS);
if (retval) {
re_initialize();
goto restart;
}
gettimeofday(&tv_odd, (struct timezone *)NULL);
timersub(&tv_odd, &tv_even, &tv_delta);
for_all_cpus_2(delta_cpu, ODD_COUNTERS, EVEN_COUNTERS);
compute_average(EVEN_COUNTERS);
format_all_counters(EVEN_COUNTERS);
flush_stdout();
sleep(interval_sec);
retval = for_all_cpus(get_counters, EVEN_COUNTERS);
if (retval) {
re_initialize();
goto restart;
}
gettimeofday(&tv_even, (struct timezone *)NULL);
timersub(&tv_even, &tv_odd, &tv_delta);
for_all_cpus_2(delta_cpu, EVEN_COUNTERS, ODD_COUNTERS);
compute_average(ODD_COUNTERS);
format_all_counters(ODD_COUNTERS);
flush_stdout();
}
}
void check_dev_msr()
{
struct stat sb;
if (stat("/dev/cpu/0/msr", &sb)) {
fprintf(stderr, "no /dev/cpu/0/msr\n");
fprintf(stderr, "Try \"# modprobe msr\"\n");
exit(-5);
}
}
void check_super_user()
{
if (getuid() != 0) {
fprintf(stderr, "must be root\n");
exit(-6);
}
}
int has_nehalem_turbo_ratio_limit(unsigned int family, unsigned int model)
{
if (!genuine_intel)
return 0;
if (family != 6)
return 0;
switch (model) {
case 0x1A: /* Core i7, Xeon 5500 series - Bloomfield, Gainstown NHM-EP */
case 0x1E: /* Core i7 and i5 Processor - Clarksfield, Lynnfield, Jasper Forest */
case 0x1F: /* Core i7 and i5 Processor - Nehalem */
case 0x25: /* Westmere Client - Clarkdale, Arrandale */
case 0x2C: /* Westmere EP - Gulftown */
case 0x2A: /* SNB */
case 0x2D: /* SNB Xeon */
case 0x3A: /* IVB */
case 0x3E: /* IVB Xeon */
return 1;
case 0x2E: /* Nehalem-EX Xeon - Beckton */
case 0x2F: /* Westmere-EX Xeon - Eagleton */
default:
return 0;
}
}
int has_ivt_turbo_ratio_limit(unsigned int family, unsigned int model)
{
if (!genuine_intel)
return 0;
if (family != 6)
return 0;
switch (model) {
case 0x3E: /* IVB Xeon */
return 1;
default:
return 0;
}
}
int is_snb(unsigned int family, unsigned int model)
{
if (!genuine_intel)
return 0;
switch (model) {
case 0x2A:
case 0x2D:
case 0x3A: /* IVB */
case 0x3E: /* IVB Xeon */
return 1;
}
return 0;
}
double discover_bclk(unsigned int family, unsigned int model)
{
if (is_snb(family, model))
return 100.00;
else
return 133.33;
}
void check_cpuid()
{
unsigned int eax, ebx, ecx, edx, max_level;
unsigned int fms, family, model, stepping;
eax = ebx = ecx = edx = 0;
asm("cpuid" : "=a" (max_level), "=b" (ebx), "=c" (ecx), "=d" (edx) : "a" (0));
if (ebx == 0x756e6547 && edx == 0x49656e69 && ecx == 0x6c65746e)
genuine_intel = 1;
if (verbose)
fprintf(stderr, "%.4s%.4s%.4s ",
(char *)&ebx, (char *)&edx, (char *)&ecx);
asm("cpuid" : "=a" (fms), "=c" (ecx), "=d" (edx) : "a" (1) : "ebx");
family = (fms >> 8) & 0xf;
model = (fms >> 4) & 0xf;
stepping = fms & 0xf;
if (family == 6 || family == 0xf)
model += ((fms >> 16) & 0xf) << 4;
if (verbose)
fprintf(stderr, "%d CPUID levels; family:model:stepping 0x%x:%x:%x (%d:%d:%d)\n",
max_level, family, model, stepping, family, model, stepping);
if (!(edx & (1 << 5))) {
fprintf(stderr, "CPUID: no MSR\n");
exit(1);
}
/*
* check max extended function levels of CPUID.
* This is needed to check for invariant TSC.
* This check is valid for both Intel and AMD.
*/
ebx = ecx = edx = 0;
asm("cpuid" : "=a" (max_level), "=b" (ebx), "=c" (ecx), "=d" (edx) : "a" (0x80000000));
if (max_level < 0x80000007) {
fprintf(stderr, "CPUID: no invariant TSC (max_level 0x%x)\n", max_level);
exit(1);
}
/*
* Non-Stop TSC is advertised by CPUID.EAX=0x80000007: EDX.bit8
* this check is valid for both Intel and AMD
*/
asm("cpuid" : "=a" (eax), "=b" (ebx), "=c" (ecx), "=d" (edx) : "a" (0x80000007));
has_invariant_tsc = edx & (1 << 8);
if (!has_invariant_tsc) {
fprintf(stderr, "No invariant TSC\n");
exit(1);
}
/*
* APERF/MPERF is advertised by CPUID.EAX=0x6: ECX.bit0
* this check is valid for both Intel and AMD
*/
asm("cpuid" : "=a" (eax), "=b" (ebx), "=c" (ecx), "=d" (edx) : "a" (0x6));
has_aperf = ecx & (1 << 0);
if (!has_aperf) {
fprintf(stderr, "No APERF MSR\n");
exit(1);
}
do_nehalem_platform_info = genuine_intel && has_invariant_tsc;
do_nhm_cstates = genuine_intel; /* all Intel w/ non-stop TSC have NHM counters */
do_snb_cstates = is_snb(family, model);
bclk = discover_bclk(family, model);
do_nehalem_turbo_ratio_limit = has_nehalem_turbo_ratio_limit(family, model);
do_ivt_turbo_ratio_limit = has_ivt_turbo_ratio_limit(family, model);
}
void usage()
{
fprintf(stderr, "%s: [-v] [-M MSR#] [-i interval_sec | command ...]\n",
progname);
exit(1);
}
/*
* in /dev/cpu/ return success for names that are numbers
* ie. filter out ".", "..", "microcode".
*/
int dir_filter(const struct dirent *dirp)
{
if (isdigit(dirp->d_name[0]))
return 1;
else
return 0;
}
int open_dev_cpu_msr(int dummy1)
{
return 0;
}
void topology_probe()
{
int i;
int max_core_id = 0;
int max_package_id = 0;
int max_siblings = 0;
struct cpu_topology {
int core_id;
int physical_package_id;
} *cpus;
/* Initialize num_cpus, max_cpu_num */
topo.num_cpus = 0;
topo.max_cpu_num = 0;
for_all_proc_cpus(count_cpus);
if (!summary_only && topo.num_cpus > 1)
show_cpu = 1;
if (verbose > 1)
fprintf(stderr, "num_cpus %d max_cpu_num %d\n", topo.num_cpus, topo.max_cpu_num);
cpus = calloc(1, (topo.max_cpu_num + 1) * sizeof(struct cpu_topology));
if (cpus == NULL) {
perror("calloc cpus");
exit(1);
}
/*
* Allocate and initialize cpu_present_set
*/
cpu_present_set = CPU_ALLOC((topo.max_cpu_num + 1));
if (cpu_present_set == NULL) {
perror("CPU_ALLOC");
exit(3);
}
cpu_present_setsize = CPU_ALLOC_SIZE((topo.max_cpu_num + 1));
CPU_ZERO_S(cpu_present_setsize, cpu_present_set);
for_all_proc_cpus(mark_cpu_present);
/*
* Allocate and initialize cpu_affinity_set
*/
cpu_affinity_set = CPU_ALLOC((topo.max_cpu_num + 1));
if (cpu_affinity_set == NULL) {
perror("CPU_ALLOC");
exit(3);
}
cpu_affinity_setsize = CPU_ALLOC_SIZE((topo.max_cpu_num + 1));
CPU_ZERO_S(cpu_affinity_setsize, cpu_affinity_set);
/*
* For online cpus
* find max_core_id, max_package_id
*/
for (i = 0; i <= topo.max_cpu_num; ++i) {
int siblings;
if (cpu_is_not_present(i)) {
if (verbose > 1)
fprintf(stderr, "cpu%d NOT PRESENT\n", i);
continue;
}
cpus[i].core_id = get_core_id(i);
if (cpus[i].core_id > max_core_id)
max_core_id = cpus[i].core_id;
cpus[i].physical_package_id = get_physical_package_id(i);
if (cpus[i].physical_package_id > max_package_id)
max_package_id = cpus[i].physical_package_id;
siblings = get_num_ht_siblings(i);
if (siblings > max_siblings)
max_siblings = siblings;
if (verbose > 1)
fprintf(stderr, "cpu %d pkg %d core %d\n",
i, cpus[i].physical_package_id, cpus[i].core_id);
}
topo.num_cores_per_pkg = max_core_id + 1;
if (verbose > 1)
fprintf(stderr, "max_core_id %d, sizing for %d cores per package\n",
max_core_id, topo.num_cores_per_pkg);
if (!summary_only && topo.num_cores_per_pkg > 1)
show_core = 1;
topo.num_packages = max_package_id + 1;
if (verbose > 1)
fprintf(stderr, "max_package_id %d, sizing for %d packages\n",
max_package_id, topo.num_packages);
if (!summary_only && topo.num_packages > 1)
show_pkg = 1;
topo.num_threads_per_core = max_siblings;
if (verbose > 1)
fprintf(stderr, "max_siblings %d\n", max_siblings);
free(cpus);
}
void
allocate_counters(struct thread_data **t, struct core_data **c, struct pkg_data **p)
{
int i;
*t = calloc(topo.num_threads_per_core * topo.num_cores_per_pkg *
topo.num_packages, sizeof(struct thread_data));
if (*t == NULL)
goto error;
for (i = 0; i < topo.num_threads_per_core *
topo.num_cores_per_pkg * topo.num_packages; i++)
(*t)[i].cpu_id = -1;
*c = calloc(topo.num_cores_per_pkg * topo.num_packages,
sizeof(struct core_data));
if (*c == NULL)
goto error;
for (i = 0; i < topo.num_cores_per_pkg * topo.num_packages; i++)
(*c)[i].core_id = -1;
*p = calloc(topo.num_packages, sizeof(struct pkg_data));
if (*p == NULL)
goto error;
for (i = 0; i < topo.num_packages; i++)
(*p)[i].package_id = i;
return;
error:
perror("calloc counters");
exit(1);
}
/*
* init_counter()
*
* set cpu_id, core_num, pkg_num
* set FIRST_THREAD_IN_CORE and FIRST_CORE_IN_PACKAGE
*
* increment topo.num_cores when 1st core in pkg seen
*/
void init_counter(struct thread_data *thread_base, struct core_data *core_base,
struct pkg_data *pkg_base, int thread_num, int core_num,
int pkg_num, int cpu_id)
{
struct thread_data *t;
struct core_data *c;
struct pkg_data *p;
t = GET_THREAD(thread_base, thread_num, core_num, pkg_num);
c = GET_CORE(core_base, core_num, pkg_num);
p = GET_PKG(pkg_base, pkg_num);
t->cpu_id = cpu_id;
if (thread_num == 0) {
t->flags |= CPU_IS_FIRST_THREAD_IN_CORE;
if (cpu_is_first_core_in_package(cpu_id))
t->flags |= CPU_IS_FIRST_CORE_IN_PACKAGE;
}
c->core_id = core_num;
p->package_id = pkg_num;
}
int initialize_counters(int cpu_id)
{
int my_thread_id, my_core_id, my_package_id;
my_package_id = get_physical_package_id(cpu_id);
my_core_id = get_core_id(cpu_id);
if (cpu_is_first_sibling_in_core(cpu_id)) {
my_thread_id = 0;
topo.num_cores++;
} else {
my_thread_id = 1;
}
init_counter(EVEN_COUNTERS, my_thread_id, my_core_id, my_package_id, cpu_id);
init_counter(ODD_COUNTERS, my_thread_id, my_core_id, my_package_id, cpu_id);
return 0;
}
void allocate_output_buffer()
{
output_buffer = calloc(1, (1 + topo.num_cpus) * 128);
outp = output_buffer;
if (outp == NULL) {
perror("calloc");
exit(-1);
}
}
void setup_all_buffers(void)
{
topology_probe();
allocate_counters(&thread_even, &core_even, &package_even);
allocate_counters(&thread_odd, &core_odd, &package_odd);
allocate_output_buffer();
for_all_proc_cpus(initialize_counters);
}
void turbostat_init()
{
check_cpuid();
check_dev_msr();
check_super_user();
setup_all_buffers();
if (verbose)
print_verbose_header();
}
int fork_it(char **argv)
{
pid_t child_pid;
for_all_cpus(get_counters, EVEN_COUNTERS);
/* clear affinity side-effect of get_counters() */
sched_setaffinity(0, cpu_present_setsize, cpu_present_set);
gettimeofday(&tv_even, (struct timezone *)NULL);
child_pid = fork();
if (!child_pid) {
/* child */
execvp(argv[0], argv);
} else {
int status;
/* parent */
if (child_pid == -1) {
perror("fork");
exit(1);
}
signal(SIGINT, SIG_IGN);
signal(SIGQUIT, SIG_IGN);
if (waitpid(child_pid, &status, 0) == -1) {
perror("wait");
exit(1);
}
}
/*
* n.b. fork_it() does not check for errors from for_all_cpus()
* because re-starting is problematic when forking
*/
for_all_cpus(get_counters, ODD_COUNTERS);
gettimeofday(&tv_odd, (struct timezone *)NULL);
timersub(&tv_odd, &tv_even, &tv_delta);
for_all_cpus_2(delta_cpu, ODD_COUNTERS, EVEN_COUNTERS);
compute_average(EVEN_COUNTERS);
format_all_counters(EVEN_COUNTERS);
flush_stderr();
fprintf(stderr, "%.6f sec\n", tv_delta.tv_sec + tv_delta.tv_usec/1000000.0);
return 0;
}
void cmdline(int argc, char **argv)
{
int opt;
progname = argv[0];
while ((opt = getopt(argc, argv, "+cpsvi:M:")) != -1) {
switch (opt) {
case 'c':
show_core_only++;
break;
case 'p':
show_pkg_only++;
break;
case 's':
summary_only++;
break;
case 'v':
verbose++;
break;
case 'i':
interval_sec = atoi(optarg);
break;
case 'M':
sscanf(optarg, "%x", &extra_msr_offset);
if (verbose > 1)
fprintf(stderr, "MSR 0x%X\n", extra_msr_offset);
break;
default:
usage();
}
}
}
int main(int argc, char **argv)
{
cmdline(argc, argv);
if (verbose > 1)
fprintf(stderr, "turbostat v2.0 May 16, 2012"
" - Len Brown <lenb@kernel.org>\n");
turbostat_init();
/*
* if any params left, it must be a command to fork
*/
if (argc - optind)
return fork_it(argv + optind);
else
turbostat_loop();
return 0;
}