| /* |
| * Copyright (c) 2014-2017 Oracle. All rights reserved. |
| * Copyright (c) 2003-2007 Network Appliance, Inc. All rights reserved. |
| * |
| * This software is available to you under a choice of one of two |
| * licenses. You may choose to be licensed under the terms of the GNU |
| * General Public License (GPL) Version 2, available from the file |
| * COPYING in the main directory of this source tree, or the BSD-type |
| * license below: |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * |
| * Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * |
| * Redistributions in binary form must reproduce the above |
| * copyright notice, this list of conditions and the following |
| * disclaimer in the documentation and/or other materials provided |
| * with the distribution. |
| * |
| * Neither the name of the Network Appliance, Inc. nor the names of |
| * its contributors may be used to endorse or promote products |
| * derived from this software without specific prior written |
| * permission. |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| */ |
| |
| /* |
| * rpc_rdma.c |
| * |
| * This file contains the guts of the RPC RDMA protocol, and |
| * does marshaling/unmarshaling, etc. It is also where interfacing |
| * to the Linux RPC framework lives. |
| */ |
| |
| #include "xprt_rdma.h" |
| |
| #include <linux/highmem.h> |
| |
| #if IS_ENABLED(CONFIG_SUNRPC_DEBUG) |
| # define RPCDBG_FACILITY RPCDBG_TRANS |
| #endif |
| |
| static const char transfertypes[][12] = { |
| "inline", /* no chunks */ |
| "read list", /* some argument via rdma read */ |
| "*read list", /* entire request via rdma read */ |
| "write list", /* some result via rdma write */ |
| "reply chunk" /* entire reply via rdma write */ |
| }; |
| |
| /* Returns size of largest RPC-over-RDMA header in a Call message |
| * |
| * The largest Call header contains a full-size Read list and a |
| * minimal Reply chunk. |
| */ |
| static unsigned int rpcrdma_max_call_header_size(unsigned int maxsegs) |
| { |
| unsigned int size; |
| |
| /* Fixed header fields and list discriminators */ |
| size = RPCRDMA_HDRLEN_MIN; |
| |
| /* Maximum Read list size */ |
| maxsegs += 2; /* segment for head and tail buffers */ |
| size = maxsegs * rpcrdma_readchunk_maxsz * sizeof(__be32); |
| |
| /* Minimal Read chunk size */ |
| size += sizeof(__be32); /* segment count */ |
| size += rpcrdma_segment_maxsz * sizeof(__be32); |
| size += sizeof(__be32); /* list discriminator */ |
| |
| dprintk("RPC: %s: max call header size = %u\n", |
| __func__, size); |
| return size; |
| } |
| |
| /* Returns size of largest RPC-over-RDMA header in a Reply message |
| * |
| * There is only one Write list or one Reply chunk per Reply |
| * message. The larger list is the Write list. |
| */ |
| static unsigned int rpcrdma_max_reply_header_size(unsigned int maxsegs) |
| { |
| unsigned int size; |
| |
| /* Fixed header fields and list discriminators */ |
| size = RPCRDMA_HDRLEN_MIN; |
| |
| /* Maximum Write list size */ |
| maxsegs += 2; /* segment for head and tail buffers */ |
| size = sizeof(__be32); /* segment count */ |
| size += maxsegs * rpcrdma_segment_maxsz * sizeof(__be32); |
| size += sizeof(__be32); /* list discriminator */ |
| |
| dprintk("RPC: %s: max reply header size = %u\n", |
| __func__, size); |
| return size; |
| } |
| |
| void rpcrdma_set_max_header_sizes(struct rpcrdma_xprt *r_xprt) |
| { |
| struct rpcrdma_create_data_internal *cdata = &r_xprt->rx_data; |
| struct rpcrdma_ia *ia = &r_xprt->rx_ia; |
| unsigned int maxsegs = ia->ri_max_segs; |
| |
| ia->ri_max_inline_write = cdata->inline_wsize - |
| rpcrdma_max_call_header_size(maxsegs); |
| ia->ri_max_inline_read = cdata->inline_rsize - |
| rpcrdma_max_reply_header_size(maxsegs); |
| } |
| |
| /* The client can send a request inline as long as the RPCRDMA header |
| * plus the RPC call fit under the transport's inline limit. If the |
| * combined call message size exceeds that limit, the client must use |
| * a Read chunk for this operation. |
| * |
| * A Read chunk is also required if sending the RPC call inline would |
| * exceed this device's max_sge limit. |
| */ |
| static bool rpcrdma_args_inline(struct rpcrdma_xprt *r_xprt, |
| struct rpc_rqst *rqst) |
| { |
| struct xdr_buf *xdr = &rqst->rq_snd_buf; |
| unsigned int count, remaining, offset; |
| |
| if (xdr->len > r_xprt->rx_ia.ri_max_inline_write) |
| return false; |
| |
| if (xdr->page_len) { |
| remaining = xdr->page_len; |
| offset = offset_in_page(xdr->page_base); |
| count = RPCRDMA_MIN_SEND_SGES; |
| while (remaining) { |
| remaining -= min_t(unsigned int, |
| PAGE_SIZE - offset, remaining); |
| offset = 0; |
| if (++count > r_xprt->rx_ia.ri_max_send_sges) |
| return false; |
| } |
| } |
| |
| return true; |
| } |
| |
| /* The client can't know how large the actual reply will be. Thus it |
| * plans for the largest possible reply for that particular ULP |
| * operation. If the maximum combined reply message size exceeds that |
| * limit, the client must provide a write list or a reply chunk for |
| * this request. |
| */ |
| static bool rpcrdma_results_inline(struct rpcrdma_xprt *r_xprt, |
| struct rpc_rqst *rqst) |
| { |
| struct rpcrdma_ia *ia = &r_xprt->rx_ia; |
| |
| return rqst->rq_rcv_buf.buflen <= ia->ri_max_inline_read; |
| } |
| |
| /* Split @vec on page boundaries into SGEs. FMR registers pages, not |
| * a byte range. Other modes coalesce these SGEs into a single MR |
| * when they can. |
| * |
| * Returns pointer to next available SGE, and bumps the total number |
| * of SGEs consumed. |
| */ |
| static struct rpcrdma_mr_seg * |
| rpcrdma_convert_kvec(struct kvec *vec, struct rpcrdma_mr_seg *seg, |
| unsigned int *n) |
| { |
| u32 remaining, page_offset; |
| char *base; |
| |
| base = vec->iov_base; |
| page_offset = offset_in_page(base); |
| remaining = vec->iov_len; |
| while (remaining) { |
| seg->mr_page = NULL; |
| seg->mr_offset = base; |
| seg->mr_len = min_t(u32, PAGE_SIZE - page_offset, remaining); |
| remaining -= seg->mr_len; |
| base += seg->mr_len; |
| ++seg; |
| ++(*n); |
| page_offset = 0; |
| } |
| return seg; |
| } |
| |
| /* Convert @xdrbuf into SGEs no larger than a page each. As they |
| * are registered, these SGEs are then coalesced into RDMA segments |
| * when the selected memreg mode supports it. |
| * |
| * Returns positive number of SGEs consumed, or a negative errno. |
| */ |
| |
| static int |
| rpcrdma_convert_iovs(struct rpcrdma_xprt *r_xprt, struct xdr_buf *xdrbuf, |
| unsigned int pos, enum rpcrdma_chunktype type, |
| struct rpcrdma_mr_seg *seg) |
| { |
| unsigned long page_base; |
| unsigned int len, n; |
| struct page **ppages; |
| |
| n = 0; |
| if (pos == 0) |
| seg = rpcrdma_convert_kvec(&xdrbuf->head[0], seg, &n); |
| |
| len = xdrbuf->page_len; |
| ppages = xdrbuf->pages + (xdrbuf->page_base >> PAGE_SHIFT); |
| page_base = offset_in_page(xdrbuf->page_base); |
| while (len) { |
| if (unlikely(!*ppages)) { |
| /* XXX: Certain upper layer operations do |
| * not provide receive buffer pages. |
| */ |
| *ppages = alloc_page(GFP_ATOMIC); |
| if (!*ppages) |
| return -EAGAIN; |
| } |
| seg->mr_page = *ppages; |
| seg->mr_offset = (char *)page_base; |
| seg->mr_len = min_t(u32, PAGE_SIZE - page_base, len); |
| len -= seg->mr_len; |
| ++ppages; |
| ++seg; |
| ++n; |
| page_base = 0; |
| } |
| |
| /* When encoding a Read chunk, the tail iovec contains an |
| * XDR pad and may be omitted. |
| */ |
| if (type == rpcrdma_readch && r_xprt->rx_ia.ri_implicit_roundup) |
| goto out; |
| |
| /* When encoding a Write chunk, some servers need to see an |
| * extra segment for non-XDR-aligned Write chunks. The upper |
| * layer provides space in the tail iovec that may be used |
| * for this purpose. |
| */ |
| if (type == rpcrdma_writech && r_xprt->rx_ia.ri_implicit_roundup) |
| goto out; |
| |
| if (xdrbuf->tail[0].iov_len) |
| seg = rpcrdma_convert_kvec(&xdrbuf->tail[0], seg, &n); |
| |
| out: |
| if (unlikely(n > RPCRDMA_MAX_SEGS)) |
| return -EIO; |
| return n; |
| } |
| |
| static inline int |
| encode_item_present(struct xdr_stream *xdr) |
| { |
| __be32 *p; |
| |
| p = xdr_reserve_space(xdr, sizeof(*p)); |
| if (unlikely(!p)) |
| return -EMSGSIZE; |
| |
| *p = xdr_one; |
| return 0; |
| } |
| |
| static inline int |
| encode_item_not_present(struct xdr_stream *xdr) |
| { |
| __be32 *p; |
| |
| p = xdr_reserve_space(xdr, sizeof(*p)); |
| if (unlikely(!p)) |
| return -EMSGSIZE; |
| |
| *p = xdr_zero; |
| return 0; |
| } |
| |
| static void |
| xdr_encode_rdma_segment(__be32 *iptr, struct rpcrdma_mr *mr) |
| { |
| *iptr++ = cpu_to_be32(mr->mr_handle); |
| *iptr++ = cpu_to_be32(mr->mr_length); |
| xdr_encode_hyper(iptr, mr->mr_offset); |
| } |
| |
| static int |
| encode_rdma_segment(struct xdr_stream *xdr, struct rpcrdma_mr *mr) |
| { |
| __be32 *p; |
| |
| p = xdr_reserve_space(xdr, 4 * sizeof(*p)); |
| if (unlikely(!p)) |
| return -EMSGSIZE; |
| |
| xdr_encode_rdma_segment(p, mr); |
| return 0; |
| } |
| |
| static int |
| encode_read_segment(struct xdr_stream *xdr, struct rpcrdma_mr *mr, |
| u32 position) |
| { |
| __be32 *p; |
| |
| p = xdr_reserve_space(xdr, 6 * sizeof(*p)); |
| if (unlikely(!p)) |
| return -EMSGSIZE; |
| |
| *p++ = xdr_one; /* Item present */ |
| *p++ = cpu_to_be32(position); |
| xdr_encode_rdma_segment(p, mr); |
| return 0; |
| } |
| |
| /* Register and XDR encode the Read list. Supports encoding a list of read |
| * segments that belong to a single read chunk. |
| * |
| * Encoding key for single-list chunks (HLOO = Handle32 Length32 Offset64): |
| * |
| * Read chunklist (a linked list): |
| * N elements, position P (same P for all chunks of same arg!): |
| * 1 - PHLOO - 1 - PHLOO - ... - 1 - PHLOO - 0 |
| * |
| * Returns zero on success, or a negative errno if a failure occurred. |
| * @xdr is advanced to the next position in the stream. |
| * |
| * Only a single @pos value is currently supported. |
| */ |
| static noinline int |
| rpcrdma_encode_read_list(struct rpcrdma_xprt *r_xprt, struct rpcrdma_req *req, |
| struct rpc_rqst *rqst, enum rpcrdma_chunktype rtype) |
| { |
| struct xdr_stream *xdr = &req->rl_stream; |
| struct rpcrdma_mr_seg *seg; |
| struct rpcrdma_mr *mr; |
| unsigned int pos; |
| int nsegs; |
| |
| pos = rqst->rq_snd_buf.head[0].iov_len; |
| if (rtype == rpcrdma_areadch) |
| pos = 0; |
| seg = req->rl_segments; |
| nsegs = rpcrdma_convert_iovs(r_xprt, &rqst->rq_snd_buf, pos, |
| rtype, seg); |
| if (nsegs < 0) |
| return nsegs; |
| |
| do { |
| seg = r_xprt->rx_ia.ri_ops->ro_map(r_xprt, seg, nsegs, |
| false, &mr); |
| if (IS_ERR(seg)) |
| goto out_maperr; |
| rpcrdma_mr_push(mr, &req->rl_registered); |
| |
| if (encode_read_segment(xdr, mr, pos) < 0) |
| return -EMSGSIZE; |
| |
| trace_xprtrdma_read_chunk(rqst->rq_task, pos, mr, nsegs); |
| r_xprt->rx_stats.read_chunk_count++; |
| nsegs -= mr->mr_nents; |
| } while (nsegs); |
| |
| return 0; |
| |
| out_maperr: |
| if (PTR_ERR(seg) == -EAGAIN) |
| xprt_wait_for_buffer_space(rqst->rq_task, NULL); |
| return PTR_ERR(seg); |
| } |
| |
| /* Register and XDR encode the Write list. Supports encoding a list |
| * containing one array of plain segments that belong to a single |
| * write chunk. |
| * |
| * Encoding key for single-list chunks (HLOO = Handle32 Length32 Offset64): |
| * |
| * Write chunklist (a list of (one) counted array): |
| * N elements: |
| * 1 - N - HLOO - HLOO - ... - HLOO - 0 |
| * |
| * Returns zero on success, or a negative errno if a failure occurred. |
| * @xdr is advanced to the next position in the stream. |
| * |
| * Only a single Write chunk is currently supported. |
| */ |
| static noinline int |
| rpcrdma_encode_write_list(struct rpcrdma_xprt *r_xprt, struct rpcrdma_req *req, |
| struct rpc_rqst *rqst, enum rpcrdma_chunktype wtype) |
| { |
| struct xdr_stream *xdr = &req->rl_stream; |
| struct rpcrdma_mr_seg *seg; |
| struct rpcrdma_mr *mr; |
| int nsegs, nchunks; |
| __be32 *segcount; |
| |
| seg = req->rl_segments; |
| nsegs = rpcrdma_convert_iovs(r_xprt, &rqst->rq_rcv_buf, |
| rqst->rq_rcv_buf.head[0].iov_len, |
| wtype, seg); |
| if (nsegs < 0) |
| return nsegs; |
| |
| if (encode_item_present(xdr) < 0) |
| return -EMSGSIZE; |
| segcount = xdr_reserve_space(xdr, sizeof(*segcount)); |
| if (unlikely(!segcount)) |
| return -EMSGSIZE; |
| /* Actual value encoded below */ |
| |
| nchunks = 0; |
| do { |
| seg = r_xprt->rx_ia.ri_ops->ro_map(r_xprt, seg, nsegs, |
| true, &mr); |
| if (IS_ERR(seg)) |
| goto out_maperr; |
| rpcrdma_mr_push(mr, &req->rl_registered); |
| |
| if (encode_rdma_segment(xdr, mr) < 0) |
| return -EMSGSIZE; |
| |
| trace_xprtrdma_write_chunk(rqst->rq_task, mr, nsegs); |
| r_xprt->rx_stats.write_chunk_count++; |
| r_xprt->rx_stats.total_rdma_request += mr->mr_length; |
| nchunks++; |
| nsegs -= mr->mr_nents; |
| } while (nsegs); |
| |
| /* Update count of segments in this Write chunk */ |
| *segcount = cpu_to_be32(nchunks); |
| |
| return 0; |
| |
| out_maperr: |
| if (PTR_ERR(seg) == -EAGAIN) |
| xprt_wait_for_buffer_space(rqst->rq_task, NULL); |
| return PTR_ERR(seg); |
| } |
| |
| /* Register and XDR encode the Reply chunk. Supports encoding an array |
| * of plain segments that belong to a single write (reply) chunk. |
| * |
| * Encoding key for single-list chunks (HLOO = Handle32 Length32 Offset64): |
| * |
| * Reply chunk (a counted array): |
| * N elements: |
| * 1 - N - HLOO - HLOO - ... - HLOO |
| * |
| * Returns zero on success, or a negative errno if a failure occurred. |
| * @xdr is advanced to the next position in the stream. |
| */ |
| static noinline int |
| rpcrdma_encode_reply_chunk(struct rpcrdma_xprt *r_xprt, struct rpcrdma_req *req, |
| struct rpc_rqst *rqst, enum rpcrdma_chunktype wtype) |
| { |
| struct xdr_stream *xdr = &req->rl_stream; |
| struct rpcrdma_mr_seg *seg; |
| struct rpcrdma_mr *mr; |
| int nsegs, nchunks; |
| __be32 *segcount; |
| |
| seg = req->rl_segments; |
| nsegs = rpcrdma_convert_iovs(r_xprt, &rqst->rq_rcv_buf, 0, wtype, seg); |
| if (nsegs < 0) |
| return nsegs; |
| |
| if (encode_item_present(xdr) < 0) |
| return -EMSGSIZE; |
| segcount = xdr_reserve_space(xdr, sizeof(*segcount)); |
| if (unlikely(!segcount)) |
| return -EMSGSIZE; |
| /* Actual value encoded below */ |
| |
| nchunks = 0; |
| do { |
| seg = r_xprt->rx_ia.ri_ops->ro_map(r_xprt, seg, nsegs, |
| true, &mr); |
| if (IS_ERR(seg)) |
| goto out_maperr; |
| rpcrdma_mr_push(mr, &req->rl_registered); |
| |
| if (encode_rdma_segment(xdr, mr) < 0) |
| return -EMSGSIZE; |
| |
| trace_xprtrdma_reply_chunk(rqst->rq_task, mr, nsegs); |
| r_xprt->rx_stats.reply_chunk_count++; |
| r_xprt->rx_stats.total_rdma_request += mr->mr_length; |
| nchunks++; |
| nsegs -= mr->mr_nents; |
| } while (nsegs); |
| |
| /* Update count of segments in the Reply chunk */ |
| *segcount = cpu_to_be32(nchunks); |
| |
| return 0; |
| |
| out_maperr: |
| if (PTR_ERR(seg) == -EAGAIN) |
| xprt_wait_for_buffer_space(rqst->rq_task, NULL); |
| return PTR_ERR(seg); |
| } |
| |
| /** |
| * rpcrdma_unmap_sendctx - DMA-unmap Send buffers |
| * @sc: sendctx containing SGEs to unmap |
| * |
| */ |
| void |
| rpcrdma_unmap_sendctx(struct rpcrdma_sendctx *sc) |
| { |
| struct rpcrdma_ia *ia = &sc->sc_xprt->rx_ia; |
| struct ib_sge *sge; |
| unsigned int count; |
| |
| /* The first two SGEs contain the transport header and |
| * the inline buffer. These are always left mapped so |
| * they can be cheaply re-used. |
| */ |
| sge = &sc->sc_sges[2]; |
| for (count = sc->sc_unmap_count; count; ++sge, --count) |
| ib_dma_unmap_page(ia->ri_device, |
| sge->addr, sge->length, DMA_TO_DEVICE); |
| |
| if (test_and_clear_bit(RPCRDMA_REQ_F_TX_RESOURCES, &sc->sc_req->rl_flags)) { |
| smp_mb__after_atomic(); |
| wake_up_bit(&sc->sc_req->rl_flags, RPCRDMA_REQ_F_TX_RESOURCES); |
| } |
| } |
| |
| /* Prepare an SGE for the RPC-over-RDMA transport header. |
| */ |
| static bool |
| rpcrdma_prepare_hdr_sge(struct rpcrdma_ia *ia, struct rpcrdma_req *req, |
| u32 len) |
| { |
| struct rpcrdma_sendctx *sc = req->rl_sendctx; |
| struct rpcrdma_regbuf *rb = req->rl_rdmabuf; |
| struct ib_sge *sge = sc->sc_sges; |
| |
| if (!rpcrdma_dma_map_regbuf(ia, rb)) |
| goto out_regbuf; |
| sge->addr = rdmab_addr(rb); |
| sge->length = len; |
| sge->lkey = rdmab_lkey(rb); |
| |
| ib_dma_sync_single_for_device(rdmab_device(rb), sge->addr, |
| sge->length, DMA_TO_DEVICE); |
| sc->sc_wr.num_sge++; |
| return true; |
| |
| out_regbuf: |
| pr_err("rpcrdma: failed to DMA map a Send buffer\n"); |
| return false; |
| } |
| |
| /* Prepare the Send SGEs. The head and tail iovec, and each entry |
| * in the page list, gets its own SGE. |
| */ |
| static bool |
| rpcrdma_prepare_msg_sges(struct rpcrdma_ia *ia, struct rpcrdma_req *req, |
| struct xdr_buf *xdr, enum rpcrdma_chunktype rtype) |
| { |
| struct rpcrdma_sendctx *sc = req->rl_sendctx; |
| unsigned int sge_no, page_base, len, remaining; |
| struct rpcrdma_regbuf *rb = req->rl_sendbuf; |
| struct ib_device *device = ia->ri_device; |
| struct ib_sge *sge = sc->sc_sges; |
| u32 lkey = ia->ri_pd->local_dma_lkey; |
| struct page *page, **ppages; |
| |
| /* The head iovec is straightforward, as it is already |
| * DMA-mapped. Sync the content that has changed. |
| */ |
| if (!rpcrdma_dma_map_regbuf(ia, rb)) |
| goto out_regbuf; |
| sge_no = 1; |
| sge[sge_no].addr = rdmab_addr(rb); |
| sge[sge_no].length = xdr->head[0].iov_len; |
| sge[sge_no].lkey = rdmab_lkey(rb); |
| ib_dma_sync_single_for_device(rdmab_device(rb), sge[sge_no].addr, |
| sge[sge_no].length, DMA_TO_DEVICE); |
| |
| /* If there is a Read chunk, the page list is being handled |
| * via explicit RDMA, and thus is skipped here. However, the |
| * tail iovec may include an XDR pad for the page list, as |
| * well as additional content, and may not reside in the |
| * same page as the head iovec. |
| */ |
| if (rtype == rpcrdma_readch) { |
| len = xdr->tail[0].iov_len; |
| |
| /* Do not include the tail if it is only an XDR pad */ |
| if (len < 4) |
| goto out; |
| |
| page = virt_to_page(xdr->tail[0].iov_base); |
| page_base = offset_in_page(xdr->tail[0].iov_base); |
| |
| /* If the content in the page list is an odd length, |
| * xdr_write_pages() has added a pad at the beginning |
| * of the tail iovec. Force the tail's non-pad content |
| * to land at the next XDR position in the Send message. |
| */ |
| page_base += len & 3; |
| len -= len & 3; |
| goto map_tail; |
| } |
| |
| /* If there is a page list present, temporarily DMA map |
| * and prepare an SGE for each page to be sent. |
| */ |
| if (xdr->page_len) { |
| ppages = xdr->pages + (xdr->page_base >> PAGE_SHIFT); |
| page_base = offset_in_page(xdr->page_base); |
| remaining = xdr->page_len; |
| while (remaining) { |
| sge_no++; |
| if (sge_no > RPCRDMA_MAX_SEND_SGES - 2) |
| goto out_mapping_overflow; |
| |
| len = min_t(u32, PAGE_SIZE - page_base, remaining); |
| sge[sge_no].addr = ib_dma_map_page(device, *ppages, |
| page_base, len, |
| DMA_TO_DEVICE); |
| if (ib_dma_mapping_error(device, sge[sge_no].addr)) |
| goto out_mapping_err; |
| sge[sge_no].length = len; |
| sge[sge_no].lkey = lkey; |
| |
| sc->sc_unmap_count++; |
| ppages++; |
| remaining -= len; |
| page_base = 0; |
| } |
| } |
| |
| /* The tail iovec is not always constructed in the same |
| * page where the head iovec resides (see, for example, |
| * gss_wrap_req_priv). To neatly accommodate that case, |
| * DMA map it separately. |
| */ |
| if (xdr->tail[0].iov_len) { |
| page = virt_to_page(xdr->tail[0].iov_base); |
| page_base = offset_in_page(xdr->tail[0].iov_base); |
| len = xdr->tail[0].iov_len; |
| |
| map_tail: |
| sge_no++; |
| sge[sge_no].addr = ib_dma_map_page(device, page, |
| page_base, len, |
| DMA_TO_DEVICE); |
| if (ib_dma_mapping_error(device, sge[sge_no].addr)) |
| goto out_mapping_err; |
| sge[sge_no].length = len; |
| sge[sge_no].lkey = lkey; |
| sc->sc_unmap_count++; |
| } |
| |
| out: |
| sc->sc_wr.num_sge += sge_no; |
| if (sc->sc_unmap_count) |
| __set_bit(RPCRDMA_REQ_F_TX_RESOURCES, &req->rl_flags); |
| return true; |
| |
| out_regbuf: |
| pr_err("rpcrdma: failed to DMA map a Send buffer\n"); |
| return false; |
| |
| out_mapping_overflow: |
| rpcrdma_unmap_sendctx(sc); |
| pr_err("rpcrdma: too many Send SGEs (%u)\n", sge_no); |
| return false; |
| |
| out_mapping_err: |
| rpcrdma_unmap_sendctx(sc); |
| pr_err("rpcrdma: Send mapping error\n"); |
| return false; |
| } |
| |
| /** |
| * rpcrdma_prepare_send_sges - Construct SGEs for a Send WR |
| * @r_xprt: controlling transport |
| * @req: context of RPC Call being marshalled |
| * @hdrlen: size of transport header, in bytes |
| * @xdr: xdr_buf containing RPC Call |
| * @rtype: chunk type being encoded |
| * |
| * Returns 0 on success; otherwise a negative errno is returned. |
| */ |
| int |
| rpcrdma_prepare_send_sges(struct rpcrdma_xprt *r_xprt, |
| struct rpcrdma_req *req, u32 hdrlen, |
| struct xdr_buf *xdr, enum rpcrdma_chunktype rtype) |
| { |
| req->rl_sendctx = rpcrdma_sendctx_get_locked(&r_xprt->rx_buf); |
| if (!req->rl_sendctx) |
| return -ENOBUFS; |
| req->rl_sendctx->sc_wr.num_sge = 0; |
| req->rl_sendctx->sc_unmap_count = 0; |
| req->rl_sendctx->sc_req = req; |
| __clear_bit(RPCRDMA_REQ_F_TX_RESOURCES, &req->rl_flags); |
| |
| if (!rpcrdma_prepare_hdr_sge(&r_xprt->rx_ia, req, hdrlen)) |
| return -EIO; |
| |
| if (rtype != rpcrdma_areadch) |
| if (!rpcrdma_prepare_msg_sges(&r_xprt->rx_ia, req, xdr, rtype)) |
| return -EIO; |
| |
| return 0; |
| } |
| |
| /** |
| * rpcrdma_marshal_req - Marshal and send one RPC request |
| * @r_xprt: controlling transport |
| * @rqst: RPC request to be marshaled |
| * |
| * For the RPC in "rqst", this function: |
| * - Chooses the transfer mode (eg., RDMA_MSG or RDMA_NOMSG) |
| * - Registers Read, Write, and Reply chunks |
| * - Constructs the transport header |
| * - Posts a Send WR to send the transport header and request |
| * |
| * Returns: |
| * %0 if the RPC was sent successfully, |
| * %-ENOTCONN if the connection was lost, |
| * %-EAGAIN if the caller should call again with the same arguments, |
| * %-ENOBUFS if the caller should call again after a delay, |
| * %-EMSGSIZE if the transport header is too small, |
| * %-EIO if a permanent problem occurred while marshaling. |
| */ |
| int |
| rpcrdma_marshal_req(struct rpcrdma_xprt *r_xprt, struct rpc_rqst *rqst) |
| { |
| struct rpcrdma_req *req = rpcr_to_rdmar(rqst); |
| struct xdr_stream *xdr = &req->rl_stream; |
| enum rpcrdma_chunktype rtype, wtype; |
| bool ddp_allowed; |
| __be32 *p; |
| int ret; |
| |
| rpcrdma_set_xdrlen(&req->rl_hdrbuf, 0); |
| xdr_init_encode(xdr, &req->rl_hdrbuf, |
| req->rl_rdmabuf->rg_base); |
| |
| /* Fixed header fields */ |
| ret = -EMSGSIZE; |
| p = xdr_reserve_space(xdr, 4 * sizeof(*p)); |
| if (!p) |
| goto out_err; |
| *p++ = rqst->rq_xid; |
| *p++ = rpcrdma_version; |
| *p++ = cpu_to_be32(r_xprt->rx_buf.rb_max_requests); |
| |
| /* When the ULP employs a GSS flavor that guarantees integrity |
| * or privacy, direct data placement of individual data items |
| * is not allowed. |
| */ |
| ddp_allowed = !(rqst->rq_cred->cr_auth->au_flags & |
| RPCAUTH_AUTH_DATATOUCH); |
| |
| /* |
| * Chunks needed for results? |
| * |
| * o If the expected result is under the inline threshold, all ops |
| * return as inline. |
| * o Large read ops return data as write chunk(s), header as |
| * inline. |
| * o Large non-read ops return as a single reply chunk. |
| */ |
| if (rpcrdma_results_inline(r_xprt, rqst)) |
| wtype = rpcrdma_noch; |
| else if (ddp_allowed && rqst->rq_rcv_buf.flags & XDRBUF_READ) |
| wtype = rpcrdma_writech; |
| else |
| wtype = rpcrdma_replych; |
| |
| /* |
| * Chunks needed for arguments? |
| * |
| * o If the total request is under the inline threshold, all ops |
| * are sent as inline. |
| * o Large write ops transmit data as read chunk(s), header as |
| * inline. |
| * o Large non-write ops are sent with the entire message as a |
| * single read chunk (protocol 0-position special case). |
| * |
| * This assumes that the upper layer does not present a request |
| * that both has a data payload, and whose non-data arguments |
| * by themselves are larger than the inline threshold. |
| */ |
| if (rpcrdma_args_inline(r_xprt, rqst)) { |
| *p++ = rdma_msg; |
| rtype = rpcrdma_noch; |
| } else if (ddp_allowed && rqst->rq_snd_buf.flags & XDRBUF_WRITE) { |
| *p++ = rdma_msg; |
| rtype = rpcrdma_readch; |
| } else { |
| r_xprt->rx_stats.nomsg_call_count++; |
| *p++ = rdma_nomsg; |
| rtype = rpcrdma_areadch; |
| } |
| |
| /* If this is a retransmit, discard previously registered |
| * chunks. Very likely the connection has been replaced, |
| * so these registrations are invalid and unusable. |
| */ |
| while (unlikely(!list_empty(&req->rl_registered))) { |
| struct rpcrdma_mr *mr; |
| |
| mr = rpcrdma_mr_pop(&req->rl_registered); |
| rpcrdma_mr_defer_recovery(mr); |
| } |
| |
| /* This implementation supports the following combinations |
| * of chunk lists in one RPC-over-RDMA Call message: |
| * |
| * - Read list |
| * - Write list |
| * - Reply chunk |
| * - Read list + Reply chunk |
| * |
| * It might not yet support the following combinations: |
| * |
| * - Read list + Write list |
| * |
| * It does not support the following combinations: |
| * |
| * - Write list + Reply chunk |
| * - Read list + Write list + Reply chunk |
| * |
| * This implementation supports only a single chunk in each |
| * Read or Write list. Thus for example the client cannot |
| * send a Call message with a Position Zero Read chunk and a |
| * regular Read chunk at the same time. |
| */ |
| if (rtype != rpcrdma_noch) { |
| ret = rpcrdma_encode_read_list(r_xprt, req, rqst, rtype); |
| if (ret) |
| goto out_err; |
| } |
| ret = encode_item_not_present(xdr); |
| if (ret) |
| goto out_err; |
| |
| if (wtype == rpcrdma_writech) { |
| ret = rpcrdma_encode_write_list(r_xprt, req, rqst, wtype); |
| if (ret) |
| goto out_err; |
| } |
| ret = encode_item_not_present(xdr); |
| if (ret) |
| goto out_err; |
| |
| if (wtype != rpcrdma_replych) |
| ret = encode_item_not_present(xdr); |
| else |
| ret = rpcrdma_encode_reply_chunk(r_xprt, req, rqst, wtype); |
| if (ret) |
| goto out_err; |
| |
| trace_xprtrdma_marshal(rqst, xdr_stream_pos(xdr), rtype, wtype); |
| |
| ret = rpcrdma_prepare_send_sges(r_xprt, req, xdr_stream_pos(xdr), |
| &rqst->rq_snd_buf, rtype); |
| if (ret) |
| goto out_err; |
| return 0; |
| |
| out_err: |
| r_xprt->rx_stats.failed_marshal_count++; |
| return ret; |
| } |
| |
| /** |
| * rpcrdma_inline_fixup - Scatter inline received data into rqst's iovecs |
| * @rqst: controlling RPC request |
| * @srcp: points to RPC message payload in receive buffer |
| * @copy_len: remaining length of receive buffer content |
| * @pad: Write chunk pad bytes needed (zero for pure inline) |
| * |
| * The upper layer has set the maximum number of bytes it can |
| * receive in each component of rq_rcv_buf. These values are set in |
| * the head.iov_len, page_len, tail.iov_len, and buflen fields. |
| * |
| * Unlike the TCP equivalent (xdr_partial_copy_from_skb), in |
| * many cases this function simply updates iov_base pointers in |
| * rq_rcv_buf to point directly to the received reply data, to |
| * avoid copying reply data. |
| * |
| * Returns the count of bytes which had to be memcopied. |
| */ |
| static unsigned long |
| rpcrdma_inline_fixup(struct rpc_rqst *rqst, char *srcp, int copy_len, int pad) |
| { |
| unsigned long fixup_copy_count; |
| int i, npages, curlen; |
| char *destp; |
| struct page **ppages; |
| int page_base; |
| |
| /* The head iovec is redirected to the RPC reply message |
| * in the receive buffer, to avoid a memcopy. |
| */ |
| rqst->rq_rcv_buf.head[0].iov_base = srcp; |
| rqst->rq_private_buf.head[0].iov_base = srcp; |
| |
| /* The contents of the receive buffer that follow |
| * head.iov_len bytes are copied into the page list. |
| */ |
| curlen = rqst->rq_rcv_buf.head[0].iov_len; |
| if (curlen > copy_len) |
| curlen = copy_len; |
| trace_xprtrdma_fixup(rqst, copy_len, curlen); |
| srcp += curlen; |
| copy_len -= curlen; |
| |
| ppages = rqst->rq_rcv_buf.pages + |
| (rqst->rq_rcv_buf.page_base >> PAGE_SHIFT); |
| page_base = offset_in_page(rqst->rq_rcv_buf.page_base); |
| fixup_copy_count = 0; |
| if (copy_len && rqst->rq_rcv_buf.page_len) { |
| int pagelist_len; |
| |
| pagelist_len = rqst->rq_rcv_buf.page_len; |
| if (pagelist_len > copy_len) |
| pagelist_len = copy_len; |
| npages = PAGE_ALIGN(page_base + pagelist_len) >> PAGE_SHIFT; |
| for (i = 0; i < npages; i++) { |
| curlen = PAGE_SIZE - page_base; |
| if (curlen > pagelist_len) |
| curlen = pagelist_len; |
| |
| trace_xprtrdma_fixup_pg(rqst, i, srcp, |
| copy_len, curlen); |
| destp = kmap_atomic(ppages[i]); |
| memcpy(destp + page_base, srcp, curlen); |
| flush_dcache_page(ppages[i]); |
| kunmap_atomic(destp); |
| srcp += curlen; |
| copy_len -= curlen; |
| fixup_copy_count += curlen; |
| pagelist_len -= curlen; |
| if (!pagelist_len) |
| break; |
| page_base = 0; |
| } |
| |
| /* Implicit padding for the last segment in a Write |
| * chunk is inserted inline at the front of the tail |
| * iovec. The upper layer ignores the content of |
| * the pad. Simply ensure inline content in the tail |
| * that follows the Write chunk is properly aligned. |
| */ |
| if (pad) |
| srcp -= pad; |
| } |
| |
| /* The tail iovec is redirected to the remaining data |
| * in the receive buffer, to avoid a memcopy. |
| */ |
| if (copy_len || pad) { |
| rqst->rq_rcv_buf.tail[0].iov_base = srcp; |
| rqst->rq_private_buf.tail[0].iov_base = srcp; |
| } |
| |
| return fixup_copy_count; |
| } |
| |
| /* By convention, backchannel calls arrive via rdma_msg type |
| * messages, and never populate the chunk lists. This makes |
| * the RPC/RDMA header small and fixed in size, so it is |
| * straightforward to check the RPC header's direction field. |
| */ |
| static bool |
| rpcrdma_is_bcall(struct rpcrdma_xprt *r_xprt, struct rpcrdma_rep *rep) |
| #if defined(CONFIG_SUNRPC_BACKCHANNEL) |
| { |
| struct xdr_stream *xdr = &rep->rr_stream; |
| __be32 *p; |
| |
| if (rep->rr_proc != rdma_msg) |
| return false; |
| |
| /* Peek at stream contents without advancing. */ |
| p = xdr_inline_decode(xdr, 0); |
| |
| /* Chunk lists */ |
| if (*p++ != xdr_zero) |
| return false; |
| if (*p++ != xdr_zero) |
| return false; |
| if (*p++ != xdr_zero) |
| return false; |
| |
| /* RPC header */ |
| if (*p++ != rep->rr_xid) |
| return false; |
| if (*p != cpu_to_be32(RPC_CALL)) |
| return false; |
| |
| /* Now that we are sure this is a backchannel call, |
| * advance to the RPC header. |
| */ |
| p = xdr_inline_decode(xdr, 3 * sizeof(*p)); |
| if (unlikely(!p)) |
| goto out_short; |
| |
| rpcrdma_bc_receive_call(r_xprt, rep); |
| return true; |
| |
| out_short: |
| pr_warn("RPC/RDMA short backward direction call\n"); |
| if (rpcrdma_ep_post_recv(&r_xprt->rx_ia, rep)) |
| xprt_disconnect_done(&r_xprt->rx_xprt); |
| return true; |
| } |
| #else /* CONFIG_SUNRPC_BACKCHANNEL */ |
| { |
| return false; |
| } |
| #endif /* CONFIG_SUNRPC_BACKCHANNEL */ |
| |
| static int decode_rdma_segment(struct xdr_stream *xdr, u32 *length) |
| { |
| u32 handle; |
| u64 offset; |
| __be32 *p; |
| |
| p = xdr_inline_decode(xdr, 4 * sizeof(*p)); |
| if (unlikely(!p)) |
| return -EIO; |
| |
| handle = be32_to_cpup(p++); |
| *length = be32_to_cpup(p++); |
| xdr_decode_hyper(p, &offset); |
| |
| trace_xprtrdma_decode_seg(handle, *length, offset); |
| return 0; |
| } |
| |
| static int decode_write_chunk(struct xdr_stream *xdr, u32 *length) |
| { |
| u32 segcount, seglength; |
| __be32 *p; |
| |
| p = xdr_inline_decode(xdr, sizeof(*p)); |
| if (unlikely(!p)) |
| return -EIO; |
| |
| *length = 0; |
| segcount = be32_to_cpup(p); |
| while (segcount--) { |
| if (decode_rdma_segment(xdr, &seglength)) |
| return -EIO; |
| *length += seglength; |
| } |
| |
| return 0; |
| } |
| |
| /* In RPC-over-RDMA Version One replies, a Read list is never |
| * expected. This decoder is a stub that returns an error if |
| * a Read list is present. |
| */ |
| static int decode_read_list(struct xdr_stream *xdr) |
| { |
| __be32 *p; |
| |
| p = xdr_inline_decode(xdr, sizeof(*p)); |
| if (unlikely(!p)) |
| return -EIO; |
| if (unlikely(*p != xdr_zero)) |
| return -EIO; |
| return 0; |
| } |
| |
| /* Supports only one Write chunk in the Write list |
| */ |
| static int decode_write_list(struct xdr_stream *xdr, u32 *length) |
| { |
| u32 chunklen; |
| bool first; |
| __be32 *p; |
| |
| *length = 0; |
| first = true; |
| do { |
| p = xdr_inline_decode(xdr, sizeof(*p)); |
| if (unlikely(!p)) |
| return -EIO; |
| if (*p == xdr_zero) |
| break; |
| if (!first) |
| return -EIO; |
| |
| if (decode_write_chunk(xdr, &chunklen)) |
| return -EIO; |
| *length += chunklen; |
| first = false; |
| } while (true); |
| return 0; |
| } |
| |
| static int decode_reply_chunk(struct xdr_stream *xdr, u32 *length) |
| { |
| __be32 *p; |
| |
| p = xdr_inline_decode(xdr, sizeof(*p)); |
| if (unlikely(!p)) |
| return -EIO; |
| |
| *length = 0; |
| if (*p != xdr_zero) |
| if (decode_write_chunk(xdr, length)) |
| return -EIO; |
| return 0; |
| } |
| |
| static int |
| rpcrdma_decode_msg(struct rpcrdma_xprt *r_xprt, struct rpcrdma_rep *rep, |
| struct rpc_rqst *rqst) |
| { |
| struct xdr_stream *xdr = &rep->rr_stream; |
| u32 writelist, replychunk, rpclen; |
| char *base; |
| |
| /* Decode the chunk lists */ |
| if (decode_read_list(xdr)) |
| return -EIO; |
| if (decode_write_list(xdr, &writelist)) |
| return -EIO; |
| if (decode_reply_chunk(xdr, &replychunk)) |
| return -EIO; |
| |
| /* RDMA_MSG sanity checks */ |
| if (unlikely(replychunk)) |
| return -EIO; |
| |
| /* Build the RPC reply's Payload stream in rqst->rq_rcv_buf */ |
| base = (char *)xdr_inline_decode(xdr, 0); |
| rpclen = xdr_stream_remaining(xdr); |
| r_xprt->rx_stats.fixup_copy_count += |
| rpcrdma_inline_fixup(rqst, base, rpclen, writelist & 3); |
| |
| r_xprt->rx_stats.total_rdma_reply += writelist; |
| return rpclen + xdr_align_size(writelist); |
| } |
| |
| static noinline int |
| rpcrdma_decode_nomsg(struct rpcrdma_xprt *r_xprt, struct rpcrdma_rep *rep) |
| { |
| struct xdr_stream *xdr = &rep->rr_stream; |
| u32 writelist, replychunk; |
| |
| /* Decode the chunk lists */ |
| if (decode_read_list(xdr)) |
| return -EIO; |
| if (decode_write_list(xdr, &writelist)) |
| return -EIO; |
| if (decode_reply_chunk(xdr, &replychunk)) |
| return -EIO; |
| |
| /* RDMA_NOMSG sanity checks */ |
| if (unlikely(writelist)) |
| return -EIO; |
| if (unlikely(!replychunk)) |
| return -EIO; |
| |
| /* Reply chunk buffer already is the reply vector */ |
| r_xprt->rx_stats.total_rdma_reply += replychunk; |
| return replychunk; |
| } |
| |
| static noinline int |
| rpcrdma_decode_error(struct rpcrdma_xprt *r_xprt, struct rpcrdma_rep *rep, |
| struct rpc_rqst *rqst) |
| { |
| struct xdr_stream *xdr = &rep->rr_stream; |
| __be32 *p; |
| |
| p = xdr_inline_decode(xdr, sizeof(*p)); |
| if (unlikely(!p)) |
| return -EIO; |
| |
| switch (*p) { |
| case err_vers: |
| p = xdr_inline_decode(xdr, 2 * sizeof(*p)); |
| if (!p) |
| break; |
| dprintk("RPC: %5u: %s: server reports version error (%u-%u)\n", |
| rqst->rq_task->tk_pid, __func__, |
| be32_to_cpup(p), be32_to_cpu(*(p + 1))); |
| break; |
| case err_chunk: |
| dprintk("RPC: %5u: %s: server reports header decoding error\n", |
| rqst->rq_task->tk_pid, __func__); |
| break; |
| default: |
| dprintk("RPC: %5u: %s: server reports unrecognized error %d\n", |
| rqst->rq_task->tk_pid, __func__, be32_to_cpup(p)); |
| } |
| |
| r_xprt->rx_stats.bad_reply_count++; |
| return -EREMOTEIO; |
| } |
| |
| /* Perform XID lookup, reconstruction of the RPC reply, and |
| * RPC completion while holding the transport lock to ensure |
| * the rep, rqst, and rq_task pointers remain stable. |
| */ |
| void rpcrdma_complete_rqst(struct rpcrdma_rep *rep) |
| { |
| struct rpcrdma_xprt *r_xprt = rep->rr_rxprt; |
| struct rpc_xprt *xprt = &r_xprt->rx_xprt; |
| struct rpc_rqst *rqst = rep->rr_rqst; |
| unsigned long cwnd; |
| int status; |
| |
| xprt->reestablish_timeout = 0; |
| |
| switch (rep->rr_proc) { |
| case rdma_msg: |
| status = rpcrdma_decode_msg(r_xprt, rep, rqst); |
| break; |
| case rdma_nomsg: |
| status = rpcrdma_decode_nomsg(r_xprt, rep); |
| break; |
| case rdma_error: |
| status = rpcrdma_decode_error(r_xprt, rep, rqst); |
| break; |
| default: |
| status = -EIO; |
| } |
| if (status < 0) |
| goto out_badheader; |
| |
| out: |
| spin_lock(&xprt->recv_lock); |
| cwnd = xprt->cwnd; |
| xprt->cwnd = r_xprt->rx_buf.rb_credits << RPC_CWNDSHIFT; |
| if (xprt->cwnd > cwnd) |
| xprt_release_rqst_cong(rqst->rq_task); |
| |
| xprt_complete_rqst(rqst->rq_task, status); |
| xprt_unpin_rqst(rqst); |
| spin_unlock(&xprt->recv_lock); |
| return; |
| |
| /* If the incoming reply terminated a pending RPC, the next |
| * RPC call will post a replacement receive buffer as it is |
| * being marshaled. |
| */ |
| out_badheader: |
| trace_xprtrdma_reply_hdr(rep); |
| r_xprt->rx_stats.bad_reply_count++; |
| status = -EIO; |
| goto out; |
| } |
| |
| void rpcrdma_release_rqst(struct rpcrdma_xprt *r_xprt, struct rpcrdma_req *req) |
| { |
| /* Invalidate and unmap the data payloads before waking |
| * the waiting application. This guarantees the memory |
| * regions are properly fenced from the server before the |
| * application accesses the data. It also ensures proper |
| * send flow control: waking the next RPC waits until this |
| * RPC has relinquished all its Send Queue entries. |
| */ |
| if (!list_empty(&req->rl_registered)) |
| r_xprt->rx_ia.ri_ops->ro_unmap_sync(r_xprt, |
| &req->rl_registered); |
| |
| /* Ensure that any DMA mapped pages associated with |
| * the Send of the RPC Call have been unmapped before |
| * allowing the RPC to complete. This protects argument |
| * memory not controlled by the RPC client from being |
| * re-used before we're done with it. |
| */ |
| if (test_bit(RPCRDMA_REQ_F_TX_RESOURCES, &req->rl_flags)) { |
| r_xprt->rx_stats.reply_waits_for_send++; |
| out_of_line_wait_on_bit(&req->rl_flags, |
| RPCRDMA_REQ_F_TX_RESOURCES, |
| bit_wait, |
| TASK_UNINTERRUPTIBLE); |
| } |
| } |
| |
| /* Reply handling runs in the poll worker thread. Anything that |
| * might wait is deferred to a separate workqueue. |
| */ |
| void rpcrdma_deferred_completion(struct work_struct *work) |
| { |
| struct rpcrdma_rep *rep = |
| container_of(work, struct rpcrdma_rep, rr_work); |
| struct rpcrdma_req *req = rpcr_to_rdmar(rep->rr_rqst); |
| struct rpcrdma_xprt *r_xprt = rep->rr_rxprt; |
| |
| trace_xprtrdma_defer_cmp(rep); |
| if (rep->rr_wc_flags & IB_WC_WITH_INVALIDATE) |
| r_xprt->rx_ia.ri_ops->ro_reminv(rep, &req->rl_registered); |
| rpcrdma_release_rqst(r_xprt, req); |
| rpcrdma_complete_rqst(rep); |
| } |
| |
| /* Process received RPC/RDMA messages. |
| * |
| * Errors must result in the RPC task either being awakened, or |
| * allowed to timeout, to discover the errors at that time. |
| */ |
| void rpcrdma_reply_handler(struct rpcrdma_rep *rep) |
| { |
| struct rpcrdma_xprt *r_xprt = rep->rr_rxprt; |
| struct rpc_xprt *xprt = &r_xprt->rx_xprt; |
| struct rpcrdma_buffer *buf = &r_xprt->rx_buf; |
| struct rpcrdma_req *req; |
| struct rpc_rqst *rqst; |
| u32 credits; |
| __be32 *p; |
| |
| if (rep->rr_hdrbuf.head[0].iov_len == 0) |
| goto out_badstatus; |
| |
| xdr_init_decode(&rep->rr_stream, &rep->rr_hdrbuf, |
| rep->rr_hdrbuf.head[0].iov_base); |
| |
| /* Fixed transport header fields */ |
| p = xdr_inline_decode(&rep->rr_stream, 4 * sizeof(*p)); |
| if (unlikely(!p)) |
| goto out_shortreply; |
| rep->rr_xid = *p++; |
| rep->rr_vers = *p++; |
| credits = be32_to_cpu(*p++); |
| rep->rr_proc = *p++; |
| |
| if (rep->rr_vers != rpcrdma_version) |
| goto out_badversion; |
| |
| if (rpcrdma_is_bcall(r_xprt, rep)) |
| return; |
| |
| /* Match incoming rpcrdma_rep to an rpcrdma_req to |
| * get context for handling any incoming chunks. |
| */ |
| spin_lock(&xprt->recv_lock); |
| rqst = xprt_lookup_rqst(xprt, rep->rr_xid); |
| if (!rqst) |
| goto out_norqst; |
| xprt_pin_rqst(rqst); |
| |
| if (credits == 0) |
| credits = 1; /* don't deadlock */ |
| else if (credits > buf->rb_max_requests) |
| credits = buf->rb_max_requests; |
| buf->rb_credits = credits; |
| |
| spin_unlock(&xprt->recv_lock); |
| |
| req = rpcr_to_rdmar(rqst); |
| req->rl_reply = rep; |
| rep->rr_rqst = rqst; |
| clear_bit(RPCRDMA_REQ_F_PENDING, &req->rl_flags); |
| |
| trace_xprtrdma_reply(rqst->rq_task, rep, req, credits); |
| |
| queue_work(rpcrdma_receive_wq, &rep->rr_work); |
| return; |
| |
| out_badstatus: |
| rpcrdma_recv_buffer_put(rep); |
| if (r_xprt->rx_ep.rep_connected == 1) { |
| r_xprt->rx_ep.rep_connected = -EIO; |
| rpcrdma_conn_func(&r_xprt->rx_ep); |
| } |
| return; |
| |
| out_badversion: |
| trace_xprtrdma_reply_vers(rep); |
| goto repost; |
| |
| /* The RPC transaction has already been terminated, or the header |
| * is corrupt. |
| */ |
| out_norqst: |
| spin_unlock(&xprt->recv_lock); |
| trace_xprtrdma_reply_rqst(rep); |
| goto repost; |
| |
| out_shortreply: |
| trace_xprtrdma_reply_short(rep); |
| |
| /* If no pending RPC transaction was matched, post a replacement |
| * receive buffer before returning. |
| */ |
| repost: |
| r_xprt->rx_stats.bad_reply_count++; |
| if (rpcrdma_ep_post_recv(&r_xprt->rx_ia, rep)) |
| rpcrdma_recv_buffer_put(rep); |
| } |