| /* |
| * This file is part of UBIFS. |
| * |
| * Copyright (C) 2006-2008 Nokia Corporation |
| * |
| * This program is free software; you can redistribute it and/or modify it |
| * under the terms of the GNU General Public License version 2 as published by |
| * the Free Software Foundation. |
| * |
| * This program is distributed in the hope that it will be useful, but WITHOUT |
| * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for |
| * more details. |
| * |
| * You should have received a copy of the GNU General Public License along with |
| * this program; if not, write to the Free Software Foundation, Inc., 51 |
| * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA |
| * |
| * Authors: Adrian Hunter |
| * Artem Bityutskiy (Битюцкий Артём) |
| */ |
| |
| /* |
| * This file implements functions needed to recover from unclean un-mounts. |
| * When UBIFS is mounted, it checks a flag on the master node to determine if |
| * an un-mount was completed successfully. If not, the process of mounting |
| * incorporates additional checking and fixing of on-flash data structures. |
| * UBIFS always cleans away all remnants of an unclean un-mount, so that |
| * errors do not accumulate. However UBIFS defers recovery if it is mounted |
| * read-only, and the flash is not modified in that case. |
| * |
| * The general UBIFS approach to the recovery is that it recovers from |
| * corruptions which could be caused by power cuts, but it refuses to recover |
| * from corruption caused by other reasons. And UBIFS tries to distinguish |
| * between these 2 reasons of corruptions and silently recover in the former |
| * case and loudly complain in the latter case. |
| * |
| * UBIFS writes only to erased LEBs, so it writes only to the flash space |
| * containing only 0xFFs. UBIFS also always writes strictly from the beginning |
| * of the LEB to the end. And UBIFS assumes that the underlying flash media |
| * writes in @c->max_write_size bytes at a time. |
| * |
| * Hence, if UBIFS finds a corrupted node at offset X, it expects only the min. |
| * I/O unit corresponding to offset X to contain corrupted data, all the |
| * following min. I/O units have to contain empty space (all 0xFFs). If this is |
| * not true, the corruption cannot be the result of a power cut, and UBIFS |
| * refuses to mount. |
| */ |
| |
| #include <linux/crc32.h> |
| #include <linux/slab.h> |
| #include "ubifs.h" |
| |
| /** |
| * is_empty - determine whether a buffer is empty (contains all 0xff). |
| * @buf: buffer to clean |
| * @len: length of buffer |
| * |
| * This function returns %1 if the buffer is empty (contains all 0xff) otherwise |
| * %0 is returned. |
| */ |
| static int is_empty(void *buf, int len) |
| { |
| uint8_t *p = buf; |
| int i; |
| |
| for (i = 0; i < len; i++) |
| if (*p++ != 0xff) |
| return 0; |
| return 1; |
| } |
| |
| /** |
| * first_non_ff - find offset of the first non-0xff byte. |
| * @buf: buffer to search in |
| * @len: length of buffer |
| * |
| * This function returns offset of the first non-0xff byte in @buf or %-1 if |
| * the buffer contains only 0xff bytes. |
| */ |
| static int first_non_ff(void *buf, int len) |
| { |
| uint8_t *p = buf; |
| int i; |
| |
| for (i = 0; i < len; i++) |
| if (*p++ != 0xff) |
| return i; |
| return -1; |
| } |
| |
| /** |
| * get_master_node - get the last valid master node allowing for corruption. |
| * @c: UBIFS file-system description object |
| * @lnum: LEB number |
| * @pbuf: buffer containing the LEB read, is returned here |
| * @mst: master node, if found, is returned here |
| * @cor: corruption, if found, is returned here |
| * |
| * This function allocates a buffer, reads the LEB into it, and finds and |
| * returns the last valid master node allowing for one area of corruption. |
| * The corrupt area, if there is one, must be consistent with the assumption |
| * that it is the result of an unclean unmount while the master node was being |
| * written. Under those circumstances, it is valid to use the previously written |
| * master node. |
| * |
| * This function returns %0 on success and a negative error code on failure. |
| */ |
| static int get_master_node(const struct ubifs_info *c, int lnum, void **pbuf, |
| struct ubifs_mst_node **mst, void **cor) |
| { |
| const int sz = c->mst_node_alsz; |
| int err, offs, len; |
| void *sbuf, *buf; |
| |
| sbuf = vmalloc(c->leb_size); |
| if (!sbuf) |
| return -ENOMEM; |
| |
| err = ubifs_leb_read(c, lnum, sbuf, 0, c->leb_size, 0); |
| if (err && err != -EBADMSG) |
| goto out_free; |
| |
| /* Find the first position that is definitely not a node */ |
| offs = 0; |
| buf = sbuf; |
| len = c->leb_size; |
| while (offs + UBIFS_MST_NODE_SZ <= c->leb_size) { |
| struct ubifs_ch *ch = buf; |
| |
| if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC) |
| break; |
| offs += sz; |
| buf += sz; |
| len -= sz; |
| } |
| /* See if there was a valid master node before that */ |
| if (offs) { |
| int ret; |
| |
| offs -= sz; |
| buf -= sz; |
| len += sz; |
| ret = ubifs_scan_a_node(c, buf, len, lnum, offs, 1); |
| if (ret != SCANNED_A_NODE && offs) { |
| /* Could have been corruption so check one place back */ |
| offs -= sz; |
| buf -= sz; |
| len += sz; |
| ret = ubifs_scan_a_node(c, buf, len, lnum, offs, 1); |
| if (ret != SCANNED_A_NODE) |
| /* |
| * We accept only one area of corruption because |
| * we are assuming that it was caused while |
| * trying to write a master node. |
| */ |
| goto out_err; |
| } |
| if (ret == SCANNED_A_NODE) { |
| struct ubifs_ch *ch = buf; |
| |
| if (ch->node_type != UBIFS_MST_NODE) |
| goto out_err; |
| dbg_rcvry("found a master node at %d:%d", lnum, offs); |
| *mst = buf; |
| offs += sz; |
| buf += sz; |
| len -= sz; |
| } |
| } |
| /* Check for corruption */ |
| if (offs < c->leb_size) { |
| if (!is_empty(buf, min_t(int, len, sz))) { |
| *cor = buf; |
| dbg_rcvry("found corruption at %d:%d", lnum, offs); |
| } |
| offs += sz; |
| buf += sz; |
| len -= sz; |
| } |
| /* Check remaining empty space */ |
| if (offs < c->leb_size) |
| if (!is_empty(buf, len)) |
| goto out_err; |
| *pbuf = sbuf; |
| return 0; |
| |
| out_err: |
| err = -EINVAL; |
| out_free: |
| vfree(sbuf); |
| *mst = NULL; |
| *cor = NULL; |
| return err; |
| } |
| |
| /** |
| * write_rcvrd_mst_node - write recovered master node. |
| * @c: UBIFS file-system description object |
| * @mst: master node |
| * |
| * This function returns %0 on success and a negative error code on failure. |
| */ |
| static int write_rcvrd_mst_node(struct ubifs_info *c, |
| struct ubifs_mst_node *mst) |
| { |
| int err = 0, lnum = UBIFS_MST_LNUM, sz = c->mst_node_alsz; |
| __le32 save_flags; |
| |
| dbg_rcvry("recovery"); |
| |
| save_flags = mst->flags; |
| mst->flags |= cpu_to_le32(UBIFS_MST_RCVRY); |
| |
| err = ubifs_prepare_node_hmac(c, mst, UBIFS_MST_NODE_SZ, |
| offsetof(struct ubifs_mst_node, hmac), 1); |
| if (err) |
| goto out; |
| err = ubifs_leb_change(c, lnum, mst, sz); |
| if (err) |
| goto out; |
| err = ubifs_leb_change(c, lnum + 1, mst, sz); |
| if (err) |
| goto out; |
| out: |
| mst->flags = save_flags; |
| return err; |
| } |
| |
| /** |
| * ubifs_recover_master_node - recover the master node. |
| * @c: UBIFS file-system description object |
| * |
| * This function recovers the master node from corruption that may occur due to |
| * an unclean unmount. |
| * |
| * This function returns %0 on success and a negative error code on failure. |
| */ |
| int ubifs_recover_master_node(struct ubifs_info *c) |
| { |
| void *buf1 = NULL, *buf2 = NULL, *cor1 = NULL, *cor2 = NULL; |
| struct ubifs_mst_node *mst1 = NULL, *mst2 = NULL, *mst; |
| const int sz = c->mst_node_alsz; |
| int err, offs1, offs2; |
| |
| dbg_rcvry("recovery"); |
| |
| err = get_master_node(c, UBIFS_MST_LNUM, &buf1, &mst1, &cor1); |
| if (err) |
| goto out_free; |
| |
| err = get_master_node(c, UBIFS_MST_LNUM + 1, &buf2, &mst2, &cor2); |
| if (err) |
| goto out_free; |
| |
| if (mst1) { |
| offs1 = (void *)mst1 - buf1; |
| if ((le32_to_cpu(mst1->flags) & UBIFS_MST_RCVRY) && |
| (offs1 == 0 && !cor1)) { |
| /* |
| * mst1 was written by recovery at offset 0 with no |
| * corruption. |
| */ |
| dbg_rcvry("recovery recovery"); |
| mst = mst1; |
| } else if (mst2) { |
| offs2 = (void *)mst2 - buf2; |
| if (offs1 == offs2) { |
| /* Same offset, so must be the same */ |
| if (ubifs_compare_master_node(c, mst1, mst2)) |
| goto out_err; |
| mst = mst1; |
| } else if (offs2 + sz == offs1) { |
| /* 1st LEB was written, 2nd was not */ |
| if (cor1) |
| goto out_err; |
| mst = mst1; |
| } else if (offs1 == 0 && |
| c->leb_size - offs2 - sz < sz) { |
| /* 1st LEB was unmapped and written, 2nd not */ |
| if (cor1) |
| goto out_err; |
| mst = mst1; |
| } else |
| goto out_err; |
| } else { |
| /* |
| * 2nd LEB was unmapped and about to be written, so |
| * there must be only one master node in the first LEB |
| * and no corruption. |
| */ |
| if (offs1 != 0 || cor1) |
| goto out_err; |
| mst = mst1; |
| } |
| } else { |
| if (!mst2) |
| goto out_err; |
| /* |
| * 1st LEB was unmapped and about to be written, so there must |
| * be no room left in 2nd LEB. |
| */ |
| offs2 = (void *)mst2 - buf2; |
| if (offs2 + sz + sz <= c->leb_size) |
| goto out_err; |
| mst = mst2; |
| } |
| |
| ubifs_msg(c, "recovered master node from LEB %d", |
| (mst == mst1 ? UBIFS_MST_LNUM : UBIFS_MST_LNUM + 1)); |
| |
| memcpy(c->mst_node, mst, UBIFS_MST_NODE_SZ); |
| |
| if (c->ro_mount) { |
| /* Read-only mode. Keep a copy for switching to rw mode */ |
| c->rcvrd_mst_node = kmalloc(sz, GFP_KERNEL); |
| if (!c->rcvrd_mst_node) { |
| err = -ENOMEM; |
| goto out_free; |
| } |
| memcpy(c->rcvrd_mst_node, c->mst_node, UBIFS_MST_NODE_SZ); |
| |
| /* |
| * We had to recover the master node, which means there was an |
| * unclean reboot. However, it is possible that the master node |
| * is clean at this point, i.e., %UBIFS_MST_DIRTY is not set. |
| * E.g., consider the following chain of events: |
| * |
| * 1. UBIFS was cleanly unmounted, so the master node is clean |
| * 2. UBIFS is being mounted R/W and starts changing the master |
| * node in the first (%UBIFS_MST_LNUM). A power cut happens, |
| * so this LEB ends up with some amount of garbage at the |
| * end. |
| * 3. UBIFS is being mounted R/O. We reach this place and |
| * recover the master node from the second LEB |
| * (%UBIFS_MST_LNUM + 1). But we cannot update the media |
| * because we are being mounted R/O. We have to defer the |
| * operation. |
| * 4. However, this master node (@c->mst_node) is marked as |
| * clean (since the step 1). And if we just return, the |
| * mount code will be confused and won't recover the master |
| * node when it is re-mounter R/W later. |
| * |
| * Thus, to force the recovery by marking the master node as |
| * dirty. |
| */ |
| c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY); |
| } else { |
| /* Write the recovered master node */ |
| c->max_sqnum = le64_to_cpu(mst->ch.sqnum) - 1; |
| err = write_rcvrd_mst_node(c, c->mst_node); |
| if (err) |
| goto out_free; |
| } |
| |
| vfree(buf2); |
| vfree(buf1); |
| |
| return 0; |
| |
| out_err: |
| err = -EINVAL; |
| out_free: |
| ubifs_err(c, "failed to recover master node"); |
| if (mst1) { |
| ubifs_err(c, "dumping first master node"); |
| ubifs_dump_node(c, mst1); |
| } |
| if (mst2) { |
| ubifs_err(c, "dumping second master node"); |
| ubifs_dump_node(c, mst2); |
| } |
| vfree(buf2); |
| vfree(buf1); |
| return err; |
| } |
| |
| /** |
| * ubifs_write_rcvrd_mst_node - write the recovered master node. |
| * @c: UBIFS file-system description object |
| * |
| * This function writes the master node that was recovered during mounting in |
| * read-only mode and must now be written because we are remounting rw. |
| * |
| * This function returns %0 on success and a negative error code on failure. |
| */ |
| int ubifs_write_rcvrd_mst_node(struct ubifs_info *c) |
| { |
| int err; |
| |
| if (!c->rcvrd_mst_node) |
| return 0; |
| c->rcvrd_mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY); |
| c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY); |
| err = write_rcvrd_mst_node(c, c->rcvrd_mst_node); |
| if (err) |
| return err; |
| kfree(c->rcvrd_mst_node); |
| c->rcvrd_mst_node = NULL; |
| return 0; |
| } |
| |
| /** |
| * is_last_write - determine if an offset was in the last write to a LEB. |
| * @c: UBIFS file-system description object |
| * @buf: buffer to check |
| * @offs: offset to check |
| * |
| * This function returns %1 if @offs was in the last write to the LEB whose data |
| * is in @buf, otherwise %0 is returned. The determination is made by checking |
| * for subsequent empty space starting from the next @c->max_write_size |
| * boundary. |
| */ |
| static int is_last_write(const struct ubifs_info *c, void *buf, int offs) |
| { |
| int empty_offs, check_len; |
| uint8_t *p; |
| |
| /* |
| * Round up to the next @c->max_write_size boundary i.e. @offs is in |
| * the last wbuf written. After that should be empty space. |
| */ |
| empty_offs = ALIGN(offs + 1, c->max_write_size); |
| check_len = c->leb_size - empty_offs; |
| p = buf + empty_offs - offs; |
| return is_empty(p, check_len); |
| } |
| |
| /** |
| * clean_buf - clean the data from an LEB sitting in a buffer. |
| * @c: UBIFS file-system description object |
| * @buf: buffer to clean |
| * @lnum: LEB number to clean |
| * @offs: offset from which to clean |
| * @len: length of buffer |
| * |
| * This function pads up to the next min_io_size boundary (if there is one) and |
| * sets empty space to all 0xff. @buf, @offs and @len are updated to the next |
| * @c->min_io_size boundary. |
| */ |
| static void clean_buf(const struct ubifs_info *c, void **buf, int lnum, |
| int *offs, int *len) |
| { |
| int empty_offs, pad_len; |
| |
| dbg_rcvry("cleaning corruption at %d:%d", lnum, *offs); |
| |
| ubifs_assert(c, !(*offs & 7)); |
| empty_offs = ALIGN(*offs, c->min_io_size); |
| pad_len = empty_offs - *offs; |
| ubifs_pad(c, *buf, pad_len); |
| *offs += pad_len; |
| *buf += pad_len; |
| *len -= pad_len; |
| memset(*buf, 0xff, c->leb_size - empty_offs); |
| } |
| |
| /** |
| * no_more_nodes - determine if there are no more nodes in a buffer. |
| * @c: UBIFS file-system description object |
| * @buf: buffer to check |
| * @len: length of buffer |
| * @lnum: LEB number of the LEB from which @buf was read |
| * @offs: offset from which @buf was read |
| * |
| * This function ensures that the corrupted node at @offs is the last thing |
| * written to a LEB. This function returns %1 if more data is not found and |
| * %0 if more data is found. |
| */ |
| static int no_more_nodes(const struct ubifs_info *c, void *buf, int len, |
| int lnum, int offs) |
| { |
| struct ubifs_ch *ch = buf; |
| int skip, dlen = le32_to_cpu(ch->len); |
| |
| /* Check for empty space after the corrupt node's common header */ |
| skip = ALIGN(offs + UBIFS_CH_SZ, c->max_write_size) - offs; |
| if (is_empty(buf + skip, len - skip)) |
| return 1; |
| /* |
| * The area after the common header size is not empty, so the common |
| * header must be intact. Check it. |
| */ |
| if (ubifs_check_node(c, buf, lnum, offs, 1, 0) != -EUCLEAN) { |
| dbg_rcvry("unexpected bad common header at %d:%d", lnum, offs); |
| return 0; |
| } |
| /* Now we know the corrupt node's length we can skip over it */ |
| skip = ALIGN(offs + dlen, c->max_write_size) - offs; |
| /* After which there should be empty space */ |
| if (is_empty(buf + skip, len - skip)) |
| return 1; |
| dbg_rcvry("unexpected data at %d:%d", lnum, offs + skip); |
| return 0; |
| } |
| |
| /** |
| * fix_unclean_leb - fix an unclean LEB. |
| * @c: UBIFS file-system description object |
| * @sleb: scanned LEB information |
| * @start: offset where scan started |
| */ |
| static int fix_unclean_leb(struct ubifs_info *c, struct ubifs_scan_leb *sleb, |
| int start) |
| { |
| int lnum = sleb->lnum, endpt = start; |
| |
| /* Get the end offset of the last node we are keeping */ |
| if (!list_empty(&sleb->nodes)) { |
| struct ubifs_scan_node *snod; |
| |
| snod = list_entry(sleb->nodes.prev, |
| struct ubifs_scan_node, list); |
| endpt = snod->offs + snod->len; |
| } |
| |
| if (c->ro_mount && !c->remounting_rw) { |
| /* Add to recovery list */ |
| struct ubifs_unclean_leb *ucleb; |
| |
| dbg_rcvry("need to fix LEB %d start %d endpt %d", |
| lnum, start, sleb->endpt); |
| ucleb = kzalloc(sizeof(struct ubifs_unclean_leb), GFP_NOFS); |
| if (!ucleb) |
| return -ENOMEM; |
| ucleb->lnum = lnum; |
| ucleb->endpt = endpt; |
| list_add_tail(&ucleb->list, &c->unclean_leb_list); |
| } else { |
| /* Write the fixed LEB back to flash */ |
| int err; |
| |
| dbg_rcvry("fixing LEB %d start %d endpt %d", |
| lnum, start, sleb->endpt); |
| if (endpt == 0) { |
| err = ubifs_leb_unmap(c, lnum); |
| if (err) |
| return err; |
| } else { |
| int len = ALIGN(endpt, c->min_io_size); |
| |
| if (start) { |
| err = ubifs_leb_read(c, lnum, sleb->buf, 0, |
| start, 1); |
| if (err) |
| return err; |
| } |
| /* Pad to min_io_size */ |
| if (len > endpt) { |
| int pad_len = len - ALIGN(endpt, 8); |
| |
| if (pad_len > 0) { |
| void *buf = sleb->buf + len - pad_len; |
| |
| ubifs_pad(c, buf, pad_len); |
| } |
| } |
| err = ubifs_leb_change(c, lnum, sleb->buf, len); |
| if (err) |
| return err; |
| } |
| } |
| return 0; |
| } |
| |
| /** |
| * drop_last_group - drop the last group of nodes. |
| * @sleb: scanned LEB information |
| * @offs: offset of dropped nodes is returned here |
| * |
| * This is a helper function for 'ubifs_recover_leb()' which drops the last |
| * group of nodes of the scanned LEB. |
| */ |
| static void drop_last_group(struct ubifs_scan_leb *sleb, int *offs) |
| { |
| while (!list_empty(&sleb->nodes)) { |
| struct ubifs_scan_node *snod; |
| struct ubifs_ch *ch; |
| |
| snod = list_entry(sleb->nodes.prev, struct ubifs_scan_node, |
| list); |
| ch = snod->node; |
| if (ch->group_type != UBIFS_IN_NODE_GROUP) |
| break; |
| |
| dbg_rcvry("dropping grouped node at %d:%d", |
| sleb->lnum, snod->offs); |
| *offs = snod->offs; |
| list_del(&snod->list); |
| kfree(snod); |
| sleb->nodes_cnt -= 1; |
| } |
| } |
| |
| /** |
| * drop_last_node - drop the last node. |
| * @sleb: scanned LEB information |
| * @offs: offset of dropped nodes is returned here |
| * |
| * This is a helper function for 'ubifs_recover_leb()' which drops the last |
| * node of the scanned LEB. |
| */ |
| static void drop_last_node(struct ubifs_scan_leb *sleb, int *offs) |
| { |
| struct ubifs_scan_node *snod; |
| |
| if (!list_empty(&sleb->nodes)) { |
| snod = list_entry(sleb->nodes.prev, struct ubifs_scan_node, |
| list); |
| |
| dbg_rcvry("dropping last node at %d:%d", |
| sleb->lnum, snod->offs); |
| *offs = snod->offs; |
| list_del(&snod->list); |
| kfree(snod); |
| sleb->nodes_cnt -= 1; |
| } |
| } |
| |
| /** |
| * ubifs_recover_leb - scan and recover a LEB. |
| * @c: UBIFS file-system description object |
| * @lnum: LEB number |
| * @offs: offset |
| * @sbuf: LEB-sized buffer to use |
| * @jhead: journal head number this LEB belongs to (%-1 if the LEB does not |
| * belong to any journal head) |
| * |
| * This function does a scan of a LEB, but caters for errors that might have |
| * been caused by the unclean unmount from which we are attempting to recover. |
| * Returns the scanned information on success and a negative error code on |
| * failure. |
| */ |
| struct ubifs_scan_leb *ubifs_recover_leb(struct ubifs_info *c, int lnum, |
| int offs, void *sbuf, int jhead) |
| { |
| int ret = 0, err, len = c->leb_size - offs, start = offs, min_io_unit; |
| int grouped = jhead == -1 ? 0 : c->jheads[jhead].grouped; |
| struct ubifs_scan_leb *sleb; |
| void *buf = sbuf + offs; |
| |
| dbg_rcvry("%d:%d, jhead %d, grouped %d", lnum, offs, jhead, grouped); |
| |
| sleb = ubifs_start_scan(c, lnum, offs, sbuf); |
| if (IS_ERR(sleb)) |
| return sleb; |
| |
| ubifs_assert(c, len >= 8); |
| while (len >= 8) { |
| dbg_scan("look at LEB %d:%d (%d bytes left)", |
| lnum, offs, len); |
| |
| cond_resched(); |
| |
| /* |
| * Scan quietly until there is an error from which we cannot |
| * recover |
| */ |
| ret = ubifs_scan_a_node(c, buf, len, lnum, offs, 1); |
| if (ret == SCANNED_A_NODE) { |
| /* A valid node, and not a padding node */ |
| struct ubifs_ch *ch = buf; |
| int node_len; |
| |
| err = ubifs_add_snod(c, sleb, buf, offs); |
| if (err) |
| goto error; |
| node_len = ALIGN(le32_to_cpu(ch->len), 8); |
| offs += node_len; |
| buf += node_len; |
| len -= node_len; |
| } else if (ret > 0) { |
| /* Padding bytes or a valid padding node */ |
| offs += ret; |
| buf += ret; |
| len -= ret; |
| } else if (ret == SCANNED_EMPTY_SPACE || |
| ret == SCANNED_GARBAGE || |
| ret == SCANNED_A_BAD_PAD_NODE || |
| ret == SCANNED_A_CORRUPT_NODE) { |
| dbg_rcvry("found corruption (%d) at %d:%d", |
| ret, lnum, offs); |
| break; |
| } else { |
| ubifs_err(c, "unexpected return value %d", ret); |
| err = -EINVAL; |
| goto error; |
| } |
| } |
| |
| if (ret == SCANNED_GARBAGE || ret == SCANNED_A_BAD_PAD_NODE) { |
| if (!is_last_write(c, buf, offs)) |
| goto corrupted_rescan; |
| } else if (ret == SCANNED_A_CORRUPT_NODE) { |
| if (!no_more_nodes(c, buf, len, lnum, offs)) |
| goto corrupted_rescan; |
| } else if (!is_empty(buf, len)) { |
| if (!is_last_write(c, buf, offs)) { |
| int corruption = first_non_ff(buf, len); |
| |
| /* |
| * See header comment for this file for more |
| * explanations about the reasons we have this check. |
| */ |
| ubifs_err(c, "corrupt empty space LEB %d:%d, corruption starts at %d", |
| lnum, offs, corruption); |
| /* Make sure we dump interesting non-0xFF data */ |
| offs += corruption; |
| buf += corruption; |
| goto corrupted; |
| } |
| } |
| |
| min_io_unit = round_down(offs, c->min_io_size); |
| if (grouped) |
| /* |
| * If nodes are grouped, always drop the incomplete group at |
| * the end. |
| */ |
| drop_last_group(sleb, &offs); |
| |
| if (jhead == GCHD) { |
| /* |
| * If this LEB belongs to the GC head then while we are in the |
| * middle of the same min. I/O unit keep dropping nodes. So |
| * basically, what we want is to make sure that the last min. |
| * I/O unit where we saw the corruption is dropped completely |
| * with all the uncorrupted nodes which may possibly sit there. |
| * |
| * In other words, let's name the min. I/O unit where the |
| * corruption starts B, and the previous min. I/O unit A. The |
| * below code tries to deal with a situation when half of B |
| * contains valid nodes or the end of a valid node, and the |
| * second half of B contains corrupted data or garbage. This |
| * means that UBIFS had been writing to B just before the power |
| * cut happened. I do not know how realistic is this scenario |
| * that half of the min. I/O unit had been written successfully |
| * and the other half not, but this is possible in our 'failure |
| * mode emulation' infrastructure at least. |
| * |
| * So what is the problem, why we need to drop those nodes? Why |
| * can't we just clean-up the second half of B by putting a |
| * padding node there? We can, and this works fine with one |
| * exception which was reproduced with power cut emulation |
| * testing and happens extremely rarely. |
| * |
| * Imagine the file-system is full, we run GC which starts |
| * moving valid nodes from LEB X to LEB Y (obviously, LEB Y is |
| * the current GC head LEB). The @c->gc_lnum is -1, which means |
| * that GC will retain LEB X and will try to continue. Imagine |
| * that LEB X is currently the dirtiest LEB, and the amount of |
| * used space in LEB Y is exactly the same as amount of free |
| * space in LEB X. |
| * |
| * And a power cut happens when nodes are moved from LEB X to |
| * LEB Y. We are here trying to recover LEB Y which is the GC |
| * head LEB. We find the min. I/O unit B as described above. |
| * Then we clean-up LEB Y by padding min. I/O unit. And later |
| * 'ubifs_rcvry_gc_commit()' function fails, because it cannot |
| * find a dirty LEB which could be GC'd into LEB Y! Even LEB X |
| * does not match because the amount of valid nodes there does |
| * not fit the free space in LEB Y any more! And this is |
| * because of the padding node which we added to LEB Y. The |
| * user-visible effect of this which I once observed and |
| * analysed is that we cannot mount the file-system with |
| * -ENOSPC error. |
| * |
| * So obviously, to make sure that situation does not happen we |
| * should free min. I/O unit B in LEB Y completely and the last |
| * used min. I/O unit in LEB Y should be A. This is basically |
| * what the below code tries to do. |
| */ |
| while (offs > min_io_unit) |
| drop_last_node(sleb, &offs); |
| } |
| |
| buf = sbuf + offs; |
| len = c->leb_size - offs; |
| |
| clean_buf(c, &buf, lnum, &offs, &len); |
| ubifs_end_scan(c, sleb, lnum, offs); |
| |
| err = fix_unclean_leb(c, sleb, start); |
| if (err) |
| goto error; |
| |
| return sleb; |
| |
| corrupted_rescan: |
| /* Re-scan the corrupted data with verbose messages */ |
| ubifs_err(c, "corruption %d", ret); |
| ubifs_scan_a_node(c, buf, len, lnum, offs, 0); |
| corrupted: |
| ubifs_scanned_corruption(c, lnum, offs, buf); |
| err = -EUCLEAN; |
| error: |
| ubifs_err(c, "LEB %d scanning failed", lnum); |
| ubifs_scan_destroy(sleb); |
| return ERR_PTR(err); |
| } |
| |
| /** |
| * get_cs_sqnum - get commit start sequence number. |
| * @c: UBIFS file-system description object |
| * @lnum: LEB number of commit start node |
| * @offs: offset of commit start node |
| * @cs_sqnum: commit start sequence number is returned here |
| * |
| * This function returns %0 on success and a negative error code on failure. |
| */ |
| static int get_cs_sqnum(struct ubifs_info *c, int lnum, int offs, |
| unsigned long long *cs_sqnum) |
| { |
| struct ubifs_cs_node *cs_node = NULL; |
| int err, ret; |
| |
| dbg_rcvry("at %d:%d", lnum, offs); |
| cs_node = kmalloc(UBIFS_CS_NODE_SZ, GFP_KERNEL); |
| if (!cs_node) |
| return -ENOMEM; |
| if (c->leb_size - offs < UBIFS_CS_NODE_SZ) |
| goto out_err; |
| err = ubifs_leb_read(c, lnum, (void *)cs_node, offs, |
| UBIFS_CS_NODE_SZ, 0); |
| if (err && err != -EBADMSG) |
| goto out_free; |
| ret = ubifs_scan_a_node(c, cs_node, UBIFS_CS_NODE_SZ, lnum, offs, 0); |
| if (ret != SCANNED_A_NODE) { |
| ubifs_err(c, "Not a valid node"); |
| goto out_err; |
| } |
| if (cs_node->ch.node_type != UBIFS_CS_NODE) { |
| ubifs_err(c, "Node a CS node, type is %d", cs_node->ch.node_type); |
| goto out_err; |
| } |
| if (le64_to_cpu(cs_node->cmt_no) != c->cmt_no) { |
| ubifs_err(c, "CS node cmt_no %llu != current cmt_no %llu", |
| (unsigned long long)le64_to_cpu(cs_node->cmt_no), |
| c->cmt_no); |
| goto out_err; |
| } |
| *cs_sqnum = le64_to_cpu(cs_node->ch.sqnum); |
| dbg_rcvry("commit start sqnum %llu", *cs_sqnum); |
| kfree(cs_node); |
| return 0; |
| |
| out_err: |
| err = -EINVAL; |
| out_free: |
| ubifs_err(c, "failed to get CS sqnum"); |
| kfree(cs_node); |
| return err; |
| } |
| |
| /** |
| * ubifs_recover_log_leb - scan and recover a log LEB. |
| * @c: UBIFS file-system description object |
| * @lnum: LEB number |
| * @offs: offset |
| * @sbuf: LEB-sized buffer to use |
| * |
| * This function does a scan of a LEB, but caters for errors that might have |
| * been caused by unclean reboots from which we are attempting to recover |
| * (assume that only the last log LEB can be corrupted by an unclean reboot). |
| * |
| * This function returns %0 on success and a negative error code on failure. |
| */ |
| struct ubifs_scan_leb *ubifs_recover_log_leb(struct ubifs_info *c, int lnum, |
| int offs, void *sbuf) |
| { |
| struct ubifs_scan_leb *sleb; |
| int next_lnum; |
| |
| dbg_rcvry("LEB %d", lnum); |
| next_lnum = lnum + 1; |
| if (next_lnum >= UBIFS_LOG_LNUM + c->log_lebs) |
| next_lnum = UBIFS_LOG_LNUM; |
| if (next_lnum != c->ltail_lnum) { |
| /* |
| * We can only recover at the end of the log, so check that the |
| * next log LEB is empty or out of date. |
| */ |
| sleb = ubifs_scan(c, next_lnum, 0, sbuf, 0); |
| if (IS_ERR(sleb)) |
| return sleb; |
| if (sleb->nodes_cnt) { |
| struct ubifs_scan_node *snod; |
| unsigned long long cs_sqnum = c->cs_sqnum; |
| |
| snod = list_entry(sleb->nodes.next, |
| struct ubifs_scan_node, list); |
| if (cs_sqnum == 0) { |
| int err; |
| |
| err = get_cs_sqnum(c, lnum, offs, &cs_sqnum); |
| if (err) { |
| ubifs_scan_destroy(sleb); |
| return ERR_PTR(err); |
| } |
| } |
| if (snod->sqnum > cs_sqnum) { |
| ubifs_err(c, "unrecoverable log corruption in LEB %d", |
| lnum); |
| ubifs_scan_destroy(sleb); |
| return ERR_PTR(-EUCLEAN); |
| } |
| } |
| ubifs_scan_destroy(sleb); |
| } |
| return ubifs_recover_leb(c, lnum, offs, sbuf, -1); |
| } |
| |
| /** |
| * recover_head - recover a head. |
| * @c: UBIFS file-system description object |
| * @lnum: LEB number of head to recover |
| * @offs: offset of head to recover |
| * @sbuf: LEB-sized buffer to use |
| * |
| * This function ensures that there is no data on the flash at a head location. |
| * |
| * This function returns %0 on success and a negative error code on failure. |
| */ |
| static int recover_head(struct ubifs_info *c, int lnum, int offs, void *sbuf) |
| { |
| int len = c->max_write_size, err; |
| |
| if (offs + len > c->leb_size) |
| len = c->leb_size - offs; |
| |
| if (!len) |
| return 0; |
| |
| /* Read at the head location and check it is empty flash */ |
| err = ubifs_leb_read(c, lnum, sbuf, offs, len, 1); |
| if (err || !is_empty(sbuf, len)) { |
| dbg_rcvry("cleaning head at %d:%d", lnum, offs); |
| if (offs == 0) |
| return ubifs_leb_unmap(c, lnum); |
| err = ubifs_leb_read(c, lnum, sbuf, 0, offs, 1); |
| if (err) |
| return err; |
| return ubifs_leb_change(c, lnum, sbuf, offs); |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * ubifs_recover_inl_heads - recover index and LPT heads. |
| * @c: UBIFS file-system description object |
| * @sbuf: LEB-sized buffer to use |
| * |
| * This function ensures that there is no data on the flash at the index and |
| * LPT head locations. |
| * |
| * This deals with the recovery of a half-completed journal commit. UBIFS is |
| * careful never to overwrite the last version of the index or the LPT. Because |
| * the index and LPT are wandering trees, data from a half-completed commit will |
| * not be referenced anywhere in UBIFS. The data will be either in LEBs that are |
| * assumed to be empty and will be unmapped anyway before use, or in the index |
| * and LPT heads. |
| * |
| * This function returns %0 on success and a negative error code on failure. |
| */ |
| int ubifs_recover_inl_heads(struct ubifs_info *c, void *sbuf) |
| { |
| int err; |
| |
| ubifs_assert(c, !c->ro_mount || c->remounting_rw); |
| |
| dbg_rcvry("checking index head at %d:%d", c->ihead_lnum, c->ihead_offs); |
| err = recover_head(c, c->ihead_lnum, c->ihead_offs, sbuf); |
| if (err) |
| return err; |
| |
| dbg_rcvry("checking LPT head at %d:%d", c->nhead_lnum, c->nhead_offs); |
| |
| return recover_head(c, c->nhead_lnum, c->nhead_offs, sbuf); |
| } |
| |
| /** |
| * clean_an_unclean_leb - read and write a LEB to remove corruption. |
| * @c: UBIFS file-system description object |
| * @ucleb: unclean LEB information |
| * @sbuf: LEB-sized buffer to use |
| * |
| * This function reads a LEB up to a point pre-determined by the mount recovery, |
| * checks the nodes, and writes the result back to the flash, thereby cleaning |
| * off any following corruption, or non-fatal ECC errors. |
| * |
| * This function returns %0 on success and a negative error code on failure. |
| */ |
| static int clean_an_unclean_leb(struct ubifs_info *c, |
| struct ubifs_unclean_leb *ucleb, void *sbuf) |
| { |
| int err, lnum = ucleb->lnum, offs = 0, len = ucleb->endpt, quiet = 1; |
| void *buf = sbuf; |
| |
| dbg_rcvry("LEB %d len %d", lnum, len); |
| |
| if (len == 0) { |
| /* Nothing to read, just unmap it */ |
| return ubifs_leb_unmap(c, lnum); |
| } |
| |
| err = ubifs_leb_read(c, lnum, buf, offs, len, 0); |
| if (err && err != -EBADMSG) |
| return err; |
| |
| while (len >= 8) { |
| int ret; |
| |
| cond_resched(); |
| |
| /* Scan quietly until there is an error */ |
| ret = ubifs_scan_a_node(c, buf, len, lnum, offs, quiet); |
| |
| if (ret == SCANNED_A_NODE) { |
| /* A valid node, and not a padding node */ |
| struct ubifs_ch *ch = buf; |
| int node_len; |
| |
| node_len = ALIGN(le32_to_cpu(ch->len), 8); |
| offs += node_len; |
| buf += node_len; |
| len -= node_len; |
| continue; |
| } |
| |
| if (ret > 0) { |
| /* Padding bytes or a valid padding node */ |
| offs += ret; |
| buf += ret; |
| len -= ret; |
| continue; |
| } |
| |
| if (ret == SCANNED_EMPTY_SPACE) { |
| ubifs_err(c, "unexpected empty space at %d:%d", |
| lnum, offs); |
| return -EUCLEAN; |
| } |
| |
| if (quiet) { |
| /* Redo the last scan but noisily */ |
| quiet = 0; |
| continue; |
| } |
| |
| ubifs_scanned_corruption(c, lnum, offs, buf); |
| return -EUCLEAN; |
| } |
| |
| /* Pad to min_io_size */ |
| len = ALIGN(ucleb->endpt, c->min_io_size); |
| if (len > ucleb->endpt) { |
| int pad_len = len - ALIGN(ucleb->endpt, 8); |
| |
| if (pad_len > 0) { |
| buf = c->sbuf + len - pad_len; |
| ubifs_pad(c, buf, pad_len); |
| } |
| } |
| |
| /* Write back the LEB atomically */ |
| err = ubifs_leb_change(c, lnum, sbuf, len); |
| if (err) |
| return err; |
| |
| dbg_rcvry("cleaned LEB %d", lnum); |
| |
| return 0; |
| } |
| |
| /** |
| * ubifs_clean_lebs - clean LEBs recovered during read-only mount. |
| * @c: UBIFS file-system description object |
| * @sbuf: LEB-sized buffer to use |
| * |
| * This function cleans a LEB identified during recovery that needs to be |
| * written but was not because UBIFS was mounted read-only. This happens when |
| * remounting to read-write mode. |
| * |
| * This function returns %0 on success and a negative error code on failure. |
| */ |
| int ubifs_clean_lebs(struct ubifs_info *c, void *sbuf) |
| { |
| dbg_rcvry("recovery"); |
| while (!list_empty(&c->unclean_leb_list)) { |
| struct ubifs_unclean_leb *ucleb; |
| int err; |
| |
| ucleb = list_entry(c->unclean_leb_list.next, |
| struct ubifs_unclean_leb, list); |
| err = clean_an_unclean_leb(c, ucleb, sbuf); |
| if (err) |
| return err; |
| list_del(&ucleb->list); |
| kfree(ucleb); |
| } |
| return 0; |
| } |
| |
| /** |
| * grab_empty_leb - grab an empty LEB to use as GC LEB and run commit. |
| * @c: UBIFS file-system description object |
| * |
| * This is a helper function for 'ubifs_rcvry_gc_commit()' which grabs an empty |
| * LEB to be used as GC LEB (@c->gc_lnum), and then runs the commit. Returns |
| * zero in case of success and a negative error code in case of failure. |
| */ |
| static int grab_empty_leb(struct ubifs_info *c) |
| { |
| int lnum, err; |
| |
| /* |
| * Note, it is very important to first search for an empty LEB and then |
| * run the commit, not vice-versa. The reason is that there might be |
| * only one empty LEB at the moment, the one which has been the |
| * @c->gc_lnum just before the power cut happened. During the regular |
| * UBIFS operation (not now) @c->gc_lnum is marked as "taken", so no |
| * one but GC can grab it. But at this moment this single empty LEB is |
| * not marked as taken, so if we run commit - what happens? Right, the |
| * commit will grab it and write the index there. Remember that the |
| * index always expands as long as there is free space, and it only |
| * starts consolidating when we run out of space. |
| * |
| * IOW, if we run commit now, we might not be able to find a free LEB |
| * after this. |
| */ |
| lnum = ubifs_find_free_leb_for_idx(c); |
| if (lnum < 0) { |
| ubifs_err(c, "could not find an empty LEB"); |
| ubifs_dump_lprops(c); |
| ubifs_dump_budg(c, &c->bi); |
| return lnum; |
| } |
| |
| /* Reset the index flag */ |
| err = ubifs_change_one_lp(c, lnum, LPROPS_NC, LPROPS_NC, 0, |
| LPROPS_INDEX, 0); |
| if (err) |
| return err; |
| |
| c->gc_lnum = lnum; |
| dbg_rcvry("found empty LEB %d, run commit", lnum); |
| |
| return ubifs_run_commit(c); |
| } |
| |
| /** |
| * ubifs_rcvry_gc_commit - recover the GC LEB number and run the commit. |
| * @c: UBIFS file-system description object |
| * |
| * Out-of-place garbage collection requires always one empty LEB with which to |
| * start garbage collection. The LEB number is recorded in c->gc_lnum and is |
| * written to the master node on unmounting. In the case of an unclean unmount |
| * the value of gc_lnum recorded in the master node is out of date and cannot |
| * be used. Instead, recovery must allocate an empty LEB for this purpose. |
| * However, there may not be enough empty space, in which case it must be |
| * possible to GC the dirtiest LEB into the GC head LEB. |
| * |
| * This function also runs the commit which causes the TNC updates from |
| * size-recovery and orphans to be written to the flash. That is important to |
| * ensure correct replay order for subsequent mounts. |
| * |
| * This function returns %0 on success and a negative error code on failure. |
| */ |
| int ubifs_rcvry_gc_commit(struct ubifs_info *c) |
| { |
| struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf; |
| struct ubifs_lprops lp; |
| int err; |
| |
| dbg_rcvry("GC head LEB %d, offs %d", wbuf->lnum, wbuf->offs); |
| |
| c->gc_lnum = -1; |
| if (wbuf->lnum == -1 || wbuf->offs == c->leb_size) |
| return grab_empty_leb(c); |
| |
| err = ubifs_find_dirty_leb(c, &lp, wbuf->offs, 2); |
| if (err) { |
| if (err != -ENOSPC) |
| return err; |
| |
| dbg_rcvry("could not find a dirty LEB"); |
| return grab_empty_leb(c); |
| } |
| |
| ubifs_assert(c, !(lp.flags & LPROPS_INDEX)); |
| ubifs_assert(c, lp.free + lp.dirty >= wbuf->offs); |
| |
| /* |
| * We run the commit before garbage collection otherwise subsequent |
| * mounts will see the GC and orphan deletion in a different order. |
| */ |
| dbg_rcvry("committing"); |
| err = ubifs_run_commit(c); |
| if (err) |
| return err; |
| |
| dbg_rcvry("GC'ing LEB %d", lp.lnum); |
| mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead); |
| err = ubifs_garbage_collect_leb(c, &lp); |
| if (err >= 0) { |
| int err2 = ubifs_wbuf_sync_nolock(wbuf); |
| |
| if (err2) |
| err = err2; |
| } |
| mutex_unlock(&wbuf->io_mutex); |
| if (err < 0) { |
| ubifs_err(c, "GC failed, error %d", err); |
| if (err == -EAGAIN) |
| err = -EINVAL; |
| return err; |
| } |
| |
| ubifs_assert(c, err == LEB_RETAINED); |
| if (err != LEB_RETAINED) |
| return -EINVAL; |
| |
| err = ubifs_leb_unmap(c, c->gc_lnum); |
| if (err) |
| return err; |
| |
| dbg_rcvry("allocated LEB %d for GC", lp.lnum); |
| return 0; |
| } |
| |
| /** |
| * struct size_entry - inode size information for recovery. |
| * @rb: link in the RB-tree of sizes |
| * @inum: inode number |
| * @i_size: size on inode |
| * @d_size: maximum size based on data nodes |
| * @exists: indicates whether the inode exists |
| * @inode: inode if pinned in memory awaiting rw mode to fix it |
| */ |
| struct size_entry { |
| struct rb_node rb; |
| ino_t inum; |
| loff_t i_size; |
| loff_t d_size; |
| int exists; |
| struct inode *inode; |
| }; |
| |
| /** |
| * add_ino - add an entry to the size tree. |
| * @c: UBIFS file-system description object |
| * @inum: inode number |
| * @i_size: size on inode |
| * @d_size: maximum size based on data nodes |
| * @exists: indicates whether the inode exists |
| */ |
| static int add_ino(struct ubifs_info *c, ino_t inum, loff_t i_size, |
| loff_t d_size, int exists) |
| { |
| struct rb_node **p = &c->size_tree.rb_node, *parent = NULL; |
| struct size_entry *e; |
| |
| while (*p) { |
| parent = *p; |
| e = rb_entry(parent, struct size_entry, rb); |
| if (inum < e->inum) |
| p = &(*p)->rb_left; |
| else |
| p = &(*p)->rb_right; |
| } |
| |
| e = kzalloc(sizeof(struct size_entry), GFP_KERNEL); |
| if (!e) |
| return -ENOMEM; |
| |
| e->inum = inum; |
| e->i_size = i_size; |
| e->d_size = d_size; |
| e->exists = exists; |
| |
| rb_link_node(&e->rb, parent, p); |
| rb_insert_color(&e->rb, &c->size_tree); |
| |
| return 0; |
| } |
| |
| /** |
| * find_ino - find an entry on the size tree. |
| * @c: UBIFS file-system description object |
| * @inum: inode number |
| */ |
| static struct size_entry *find_ino(struct ubifs_info *c, ino_t inum) |
| { |
| struct rb_node *p = c->size_tree.rb_node; |
| struct size_entry *e; |
| |
| while (p) { |
| e = rb_entry(p, struct size_entry, rb); |
| if (inum < e->inum) |
| p = p->rb_left; |
| else if (inum > e->inum) |
| p = p->rb_right; |
| else |
| return e; |
| } |
| return NULL; |
| } |
| |
| /** |
| * remove_ino - remove an entry from the size tree. |
| * @c: UBIFS file-system description object |
| * @inum: inode number |
| */ |
| static void remove_ino(struct ubifs_info *c, ino_t inum) |
| { |
| struct size_entry *e = find_ino(c, inum); |
| |
| if (!e) |
| return; |
| rb_erase(&e->rb, &c->size_tree); |
| kfree(e); |
| } |
| |
| /** |
| * ubifs_destroy_size_tree - free resources related to the size tree. |
| * @c: UBIFS file-system description object |
| */ |
| void ubifs_destroy_size_tree(struct ubifs_info *c) |
| { |
| struct size_entry *e, *n; |
| |
| rbtree_postorder_for_each_entry_safe(e, n, &c->size_tree, rb) { |
| iput(e->inode); |
| kfree(e); |
| } |
| |
| c->size_tree = RB_ROOT; |
| } |
| |
| /** |
| * ubifs_recover_size_accum - accumulate inode sizes for recovery. |
| * @c: UBIFS file-system description object |
| * @key: node key |
| * @deletion: node is for a deletion |
| * @new_size: inode size |
| * |
| * This function has two purposes: |
| * 1) to ensure there are no data nodes that fall outside the inode size |
| * 2) to ensure there are no data nodes for inodes that do not exist |
| * To accomplish those purposes, a rb-tree is constructed containing an entry |
| * for each inode number in the journal that has not been deleted, and recording |
| * the size from the inode node, the maximum size of any data node (also altered |
| * by truncations) and a flag indicating a inode number for which no inode node |
| * was present in the journal. |
| * |
| * Note that there is still the possibility that there are data nodes that have |
| * been committed that are beyond the inode size, however the only way to find |
| * them would be to scan the entire index. Alternatively, some provision could |
| * be made to record the size of inodes at the start of commit, which would seem |
| * very cumbersome for a scenario that is quite unlikely and the only negative |
| * consequence of which is wasted space. |
| * |
| * This functions returns %0 on success and a negative error code on failure. |
| */ |
| int ubifs_recover_size_accum(struct ubifs_info *c, union ubifs_key *key, |
| int deletion, loff_t new_size) |
| { |
| ino_t inum = key_inum(c, key); |
| struct size_entry *e; |
| int err; |
| |
| switch (key_type(c, key)) { |
| case UBIFS_INO_KEY: |
| if (deletion) |
| remove_ino(c, inum); |
| else { |
| e = find_ino(c, inum); |
| if (e) { |
| e->i_size = new_size; |
| e->exists = 1; |
| } else { |
| err = add_ino(c, inum, new_size, 0, 1); |
| if (err) |
| return err; |
| } |
| } |
| break; |
| case UBIFS_DATA_KEY: |
| e = find_ino(c, inum); |
| if (e) { |
| if (new_size > e->d_size) |
| e->d_size = new_size; |
| } else { |
| err = add_ino(c, inum, 0, new_size, 0); |
| if (err) |
| return err; |
| } |
| break; |
| case UBIFS_TRUN_KEY: |
| e = find_ino(c, inum); |
| if (e) |
| e->d_size = new_size; |
| break; |
| } |
| return 0; |
| } |
| |
| /** |
| * fix_size_in_place - fix inode size in place on flash. |
| * @c: UBIFS file-system description object |
| * @e: inode size information for recovery |
| */ |
| static int fix_size_in_place(struct ubifs_info *c, struct size_entry *e) |
| { |
| struct ubifs_ino_node *ino = c->sbuf; |
| unsigned char *p; |
| union ubifs_key key; |
| int err, lnum, offs, len; |
| loff_t i_size; |
| uint32_t crc; |
| |
| /* Locate the inode node LEB number and offset */ |
| ino_key_init(c, &key, e->inum); |
| err = ubifs_tnc_locate(c, &key, ino, &lnum, &offs); |
| if (err) |
| goto out; |
| /* |
| * If the size recorded on the inode node is greater than the size that |
| * was calculated from nodes in the journal then don't change the inode. |
| */ |
| i_size = le64_to_cpu(ino->size); |
| if (i_size >= e->d_size) |
| return 0; |
| /* Read the LEB */ |
| err = ubifs_leb_read(c, lnum, c->sbuf, 0, c->leb_size, 1); |
| if (err) |
| goto out; |
| /* Change the size field and recalculate the CRC */ |
| ino = c->sbuf + offs; |
| ino->size = cpu_to_le64(e->d_size); |
| len = le32_to_cpu(ino->ch.len); |
| crc = crc32(UBIFS_CRC32_INIT, (void *)ino + 8, len - 8); |
| ino->ch.crc = cpu_to_le32(crc); |
| /* Work out where data in the LEB ends and free space begins */ |
| p = c->sbuf; |
| len = c->leb_size - 1; |
| while (p[len] == 0xff) |
| len -= 1; |
| len = ALIGN(len + 1, c->min_io_size); |
| /* Atomically write the fixed LEB back again */ |
| err = ubifs_leb_change(c, lnum, c->sbuf, len); |
| if (err) |
| goto out; |
| dbg_rcvry("inode %lu at %d:%d size %lld -> %lld", |
| (unsigned long)e->inum, lnum, offs, i_size, e->d_size); |
| return 0; |
| |
| out: |
| ubifs_warn(c, "inode %lu failed to fix size %lld -> %lld error %d", |
| (unsigned long)e->inum, e->i_size, e->d_size, err); |
| return err; |
| } |
| |
| /** |
| * ubifs_recover_size - recover inode size. |
| * @c: UBIFS file-system description object |
| * |
| * This function attempts to fix inode size discrepancies identified by the |
| * 'ubifs_recover_size_accum()' function. |
| * |
| * This functions returns %0 on success and a negative error code on failure. |
| */ |
| int ubifs_recover_size(struct ubifs_info *c) |
| { |
| struct rb_node *this = rb_first(&c->size_tree); |
| |
| while (this) { |
| struct size_entry *e; |
| int err; |
| |
| e = rb_entry(this, struct size_entry, rb); |
| if (!e->exists) { |
| union ubifs_key key; |
| |
| ino_key_init(c, &key, e->inum); |
| err = ubifs_tnc_lookup(c, &key, c->sbuf); |
| if (err && err != -ENOENT) |
| return err; |
| if (err == -ENOENT) { |
| /* Remove data nodes that have no inode */ |
| dbg_rcvry("removing ino %lu", |
| (unsigned long)e->inum); |
| err = ubifs_tnc_remove_ino(c, e->inum); |
| if (err) |
| return err; |
| } else { |
| struct ubifs_ino_node *ino = c->sbuf; |
| |
| e->exists = 1; |
| e->i_size = le64_to_cpu(ino->size); |
| } |
| } |
| |
| if (e->exists && e->i_size < e->d_size) { |
| if (c->ro_mount) { |
| /* Fix the inode size and pin it in memory */ |
| struct inode *inode; |
| struct ubifs_inode *ui; |
| |
| ubifs_assert(c, !e->inode); |
| |
| inode = ubifs_iget(c->vfs_sb, e->inum); |
| if (IS_ERR(inode)) |
| return PTR_ERR(inode); |
| |
| ui = ubifs_inode(inode); |
| if (inode->i_size < e->d_size) { |
| dbg_rcvry("ino %lu size %lld -> %lld", |
| (unsigned long)e->inum, |
| inode->i_size, e->d_size); |
| inode->i_size = e->d_size; |
| ui->ui_size = e->d_size; |
| ui->synced_i_size = e->d_size; |
| e->inode = inode; |
| this = rb_next(this); |
| continue; |
| } |
| iput(inode); |
| } else { |
| /* Fix the size in place */ |
| err = fix_size_in_place(c, e); |
| if (err) |
| return err; |
| iput(e->inode); |
| } |
| } |
| |
| this = rb_next(this); |
| rb_erase(&e->rb, &c->size_tree); |
| kfree(e); |
| } |
| |
| return 0; |
| } |