| /* |
| * Elonics E4000 silicon tuner driver |
| * |
| * Copyright (C) 2012 Antti Palosaari <crope@iki.fi> |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2 of the License, or |
| * (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License along |
| * with this program; if not, write to the Free Software Foundation, Inc., |
| * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. |
| */ |
| |
| #include "e4000_priv.h" |
| #include <linux/math64.h> |
| |
| static int e4000_init(struct dvb_frontend *fe) |
| { |
| struct e4000 *s = fe->tuner_priv; |
| int ret; |
| |
| dev_dbg(&s->client->dev, "\n"); |
| |
| /* dummy I2C to ensure I2C wakes up */ |
| ret = regmap_write(s->regmap, 0x02, 0x40); |
| |
| /* reset */ |
| ret = regmap_write(s->regmap, 0x00, 0x01); |
| if (ret) |
| goto err; |
| |
| /* disable output clock */ |
| ret = regmap_write(s->regmap, 0x06, 0x00); |
| if (ret) |
| goto err; |
| |
| ret = regmap_write(s->regmap, 0x7a, 0x96); |
| if (ret) |
| goto err; |
| |
| /* configure gains */ |
| ret = regmap_bulk_write(s->regmap, 0x7e, "\x01\xfe", 2); |
| if (ret) |
| goto err; |
| |
| ret = regmap_write(s->regmap, 0x82, 0x00); |
| if (ret) |
| goto err; |
| |
| ret = regmap_write(s->regmap, 0x24, 0x05); |
| if (ret) |
| goto err; |
| |
| ret = regmap_bulk_write(s->regmap, 0x87, "\x20\x01", 2); |
| if (ret) |
| goto err; |
| |
| ret = regmap_bulk_write(s->regmap, 0x9f, "\x7f\x07", 2); |
| if (ret) |
| goto err; |
| |
| /* DC offset control */ |
| ret = regmap_write(s->regmap, 0x2d, 0x1f); |
| if (ret) |
| goto err; |
| |
| ret = regmap_bulk_write(s->regmap, 0x70, "\x01\x01", 2); |
| if (ret) |
| goto err; |
| |
| /* gain control */ |
| ret = regmap_write(s->regmap, 0x1a, 0x17); |
| if (ret) |
| goto err; |
| |
| ret = regmap_write(s->regmap, 0x1f, 0x1a); |
| if (ret) |
| goto err; |
| |
| s->active = true; |
| err: |
| if (ret) |
| dev_dbg(&s->client->dev, "failed=%d\n", ret); |
| |
| return ret; |
| } |
| |
| static int e4000_sleep(struct dvb_frontend *fe) |
| { |
| struct e4000 *s = fe->tuner_priv; |
| int ret; |
| |
| dev_dbg(&s->client->dev, "\n"); |
| |
| s->active = false; |
| |
| ret = regmap_write(s->regmap, 0x00, 0x00); |
| if (ret) |
| goto err; |
| err: |
| if (ret) |
| dev_dbg(&s->client->dev, "failed=%d\n", ret); |
| |
| return ret; |
| } |
| |
| static int e4000_set_params(struct dvb_frontend *fe) |
| { |
| struct e4000 *s = fe->tuner_priv; |
| struct dtv_frontend_properties *c = &fe->dtv_property_cache; |
| int ret, i; |
| unsigned int div_n, k, k_cw, div_out; |
| u64 f_vco; |
| u8 buf[5], i_data[4], q_data[4]; |
| |
| dev_dbg(&s->client->dev, |
| "delivery_system=%d frequency=%u bandwidth_hz=%u\n", |
| c->delivery_system, c->frequency, c->bandwidth_hz); |
| |
| /* gain control manual */ |
| ret = regmap_write(s->regmap, 0x1a, 0x00); |
| if (ret) |
| goto err; |
| |
| /* |
| * Fractional-N synthesizer |
| * |
| * +----------------------------+ |
| * v | |
| * Fref +----+ +-------+ +------+ +---+ |
| * ------> | PD | --> | VCO | ------> | /N.F | <-- | K | |
| * +----+ +-------+ +------+ +---+ |
| * | |
| * | |
| * v |
| * +-------+ Fout |
| * | /Rout | ------> |
| * +-------+ |
| */ |
| for (i = 0; i < ARRAY_SIZE(e4000_pll_lut); i++) { |
| if (c->frequency <= e4000_pll_lut[i].freq) |
| break; |
| } |
| |
| if (i == ARRAY_SIZE(e4000_pll_lut)) { |
| ret = -EINVAL; |
| goto err; |
| } |
| |
| #define F_REF s->clock |
| div_out = e4000_pll_lut[i].div_out; |
| f_vco = (u64) c->frequency * div_out; |
| /* calculate PLL integer and fractional control word */ |
| div_n = div_u64_rem(f_vco, F_REF, &k); |
| k_cw = div_u64((u64) k * 0x10000, F_REF); |
| |
| dev_dbg(&s->client->dev, |
| "frequency=%u f_vco=%llu F_REF=%u div_n=%u k=%u k_cw=%04x div_out=%u\n", |
| c->frequency, f_vco, F_REF, div_n, k, k_cw, div_out); |
| |
| buf[0] = div_n; |
| buf[1] = (k_cw >> 0) & 0xff; |
| buf[2] = (k_cw >> 8) & 0xff; |
| buf[3] = 0x00; |
| buf[4] = e4000_pll_lut[i].div_out_reg; |
| ret = regmap_bulk_write(s->regmap, 0x09, buf, 5); |
| if (ret) |
| goto err; |
| |
| /* LNA filter (RF filter) */ |
| for (i = 0; i < ARRAY_SIZE(e400_lna_filter_lut); i++) { |
| if (c->frequency <= e400_lna_filter_lut[i].freq) |
| break; |
| } |
| |
| if (i == ARRAY_SIZE(e400_lna_filter_lut)) { |
| ret = -EINVAL; |
| goto err; |
| } |
| |
| ret = regmap_write(s->regmap, 0x10, e400_lna_filter_lut[i].val); |
| if (ret) |
| goto err; |
| |
| /* IF filters */ |
| for (i = 0; i < ARRAY_SIZE(e4000_if_filter_lut); i++) { |
| if (c->bandwidth_hz <= e4000_if_filter_lut[i].freq) |
| break; |
| } |
| |
| if (i == ARRAY_SIZE(e4000_if_filter_lut)) { |
| ret = -EINVAL; |
| goto err; |
| } |
| |
| buf[0] = e4000_if_filter_lut[i].reg11_val; |
| buf[1] = e4000_if_filter_lut[i].reg12_val; |
| |
| ret = regmap_bulk_write(s->regmap, 0x11, buf, 2); |
| if (ret) |
| goto err; |
| |
| /* frequency band */ |
| for (i = 0; i < ARRAY_SIZE(e4000_band_lut); i++) { |
| if (c->frequency <= e4000_band_lut[i].freq) |
| break; |
| } |
| |
| if (i == ARRAY_SIZE(e4000_band_lut)) { |
| ret = -EINVAL; |
| goto err; |
| } |
| |
| ret = regmap_write(s->regmap, 0x07, e4000_band_lut[i].reg07_val); |
| if (ret) |
| goto err; |
| |
| ret = regmap_write(s->regmap, 0x78, e4000_band_lut[i].reg78_val); |
| if (ret) |
| goto err; |
| |
| /* DC offset */ |
| for (i = 0; i < 4; i++) { |
| if (i == 0) |
| ret = regmap_bulk_write(s->regmap, 0x15, "\x00\x7e\x24", 3); |
| else if (i == 1) |
| ret = regmap_bulk_write(s->regmap, 0x15, "\x00\x7f", 2); |
| else if (i == 2) |
| ret = regmap_bulk_write(s->regmap, 0x15, "\x01", 1); |
| else |
| ret = regmap_bulk_write(s->regmap, 0x16, "\x7e", 1); |
| |
| if (ret) |
| goto err; |
| |
| ret = regmap_write(s->regmap, 0x29, 0x01); |
| if (ret) |
| goto err; |
| |
| ret = regmap_bulk_read(s->regmap, 0x2a, buf, 3); |
| if (ret) |
| goto err; |
| |
| i_data[i] = (((buf[2] >> 0) & 0x3) << 6) | (buf[0] & 0x3f); |
| q_data[i] = (((buf[2] >> 4) & 0x3) << 6) | (buf[1] & 0x3f); |
| } |
| |
| swap(q_data[2], q_data[3]); |
| swap(i_data[2], i_data[3]); |
| |
| ret = regmap_bulk_write(s->regmap, 0x50, q_data, 4); |
| if (ret) |
| goto err; |
| |
| ret = regmap_bulk_write(s->regmap, 0x60, i_data, 4); |
| if (ret) |
| goto err; |
| |
| /* gain control auto */ |
| ret = regmap_write(s->regmap, 0x1a, 0x17); |
| if (ret) |
| goto err; |
| err: |
| if (ret) |
| dev_dbg(&s->client->dev, "failed=%d\n", ret); |
| |
| return ret; |
| } |
| |
| static int e4000_get_if_frequency(struct dvb_frontend *fe, u32 *frequency) |
| { |
| struct e4000 *s = fe->tuner_priv; |
| |
| dev_dbg(&s->client->dev, "\n"); |
| |
| *frequency = 0; /* Zero-IF */ |
| |
| return 0; |
| } |
| |
| #if IS_ENABLED(CONFIG_VIDEO_V4L2) |
| static int e4000_set_lna_gain(struct dvb_frontend *fe) |
| { |
| struct e4000 *s = fe->tuner_priv; |
| int ret; |
| u8 u8tmp; |
| |
| dev_dbg(&s->client->dev, "lna auto=%d->%d val=%d->%d\n", |
| s->lna_gain_auto->cur.val, s->lna_gain_auto->val, |
| s->lna_gain->cur.val, s->lna_gain->val); |
| |
| if (s->lna_gain_auto->val && s->if_gain_auto->cur.val) |
| u8tmp = 0x17; |
| else if (s->lna_gain_auto->val) |
| u8tmp = 0x19; |
| else if (s->if_gain_auto->cur.val) |
| u8tmp = 0x16; |
| else |
| u8tmp = 0x10; |
| |
| ret = regmap_write(s->regmap, 0x1a, u8tmp); |
| if (ret) |
| goto err; |
| |
| if (s->lna_gain_auto->val == false) { |
| ret = regmap_write(s->regmap, 0x14, s->lna_gain->val); |
| if (ret) |
| goto err; |
| } |
| err: |
| if (ret) |
| dev_dbg(&s->client->dev, "failed=%d\n", ret); |
| |
| return ret; |
| } |
| |
| static int e4000_set_mixer_gain(struct dvb_frontend *fe) |
| { |
| struct e4000 *s = fe->tuner_priv; |
| int ret; |
| u8 u8tmp; |
| |
| dev_dbg(&s->client->dev, "mixer auto=%d->%d val=%d->%d\n", |
| s->mixer_gain_auto->cur.val, s->mixer_gain_auto->val, |
| s->mixer_gain->cur.val, s->mixer_gain->val); |
| |
| if (s->mixer_gain_auto->val) |
| u8tmp = 0x15; |
| else |
| u8tmp = 0x14; |
| |
| ret = regmap_write(s->regmap, 0x20, u8tmp); |
| if (ret) |
| goto err; |
| |
| if (s->mixer_gain_auto->val == false) { |
| ret = regmap_write(s->regmap, 0x15, s->mixer_gain->val); |
| if (ret) |
| goto err; |
| } |
| err: |
| if (ret) |
| dev_dbg(&s->client->dev, "failed=%d\n", ret); |
| |
| return ret; |
| } |
| |
| static int e4000_set_if_gain(struct dvb_frontend *fe) |
| { |
| struct e4000 *s = fe->tuner_priv; |
| int ret; |
| u8 buf[2]; |
| u8 u8tmp; |
| |
| dev_dbg(&s->client->dev, "if auto=%d->%d val=%d->%d\n", |
| s->if_gain_auto->cur.val, s->if_gain_auto->val, |
| s->if_gain->cur.val, s->if_gain->val); |
| |
| if (s->if_gain_auto->val && s->lna_gain_auto->cur.val) |
| u8tmp = 0x17; |
| else if (s->lna_gain_auto->cur.val) |
| u8tmp = 0x19; |
| else if (s->if_gain_auto->val) |
| u8tmp = 0x16; |
| else |
| u8tmp = 0x10; |
| |
| ret = regmap_write(s->regmap, 0x1a, u8tmp); |
| if (ret) |
| goto err; |
| |
| if (s->if_gain_auto->val == false) { |
| buf[0] = e4000_if_gain_lut[s->if_gain->val].reg16_val; |
| buf[1] = e4000_if_gain_lut[s->if_gain->val].reg17_val; |
| ret = regmap_bulk_write(s->regmap, 0x16, buf, 2); |
| if (ret) |
| goto err; |
| } |
| err: |
| if (ret) |
| dev_dbg(&s->client->dev, "failed=%d\n", ret); |
| |
| return ret; |
| } |
| |
| static int e4000_pll_lock(struct dvb_frontend *fe) |
| { |
| struct e4000 *s = fe->tuner_priv; |
| int ret; |
| unsigned int utmp; |
| |
| ret = regmap_read(s->regmap, 0x07, &utmp); |
| if (ret) |
| goto err; |
| |
| s->pll_lock->val = (utmp & 0x01); |
| err: |
| if (ret) |
| dev_dbg(&s->client->dev, "failed=%d\n", ret); |
| |
| return ret; |
| } |
| |
| static int e4000_g_volatile_ctrl(struct v4l2_ctrl *ctrl) |
| { |
| struct e4000 *s = container_of(ctrl->handler, struct e4000, hdl); |
| int ret; |
| |
| if (!s->active) |
| return 0; |
| |
| switch (ctrl->id) { |
| case V4L2_CID_RF_TUNER_PLL_LOCK: |
| ret = e4000_pll_lock(s->fe); |
| break; |
| default: |
| dev_dbg(&s->client->dev, "unknown ctrl: id=%d name=%s\n", |
| ctrl->id, ctrl->name); |
| ret = -EINVAL; |
| } |
| |
| return ret; |
| } |
| |
| static int e4000_s_ctrl(struct v4l2_ctrl *ctrl) |
| { |
| struct e4000 *s = container_of(ctrl->handler, struct e4000, hdl); |
| struct dvb_frontend *fe = s->fe; |
| struct dtv_frontend_properties *c = &fe->dtv_property_cache; |
| int ret; |
| |
| if (!s->active) |
| return 0; |
| |
| switch (ctrl->id) { |
| case V4L2_CID_RF_TUNER_BANDWIDTH_AUTO: |
| case V4L2_CID_RF_TUNER_BANDWIDTH: |
| c->bandwidth_hz = s->bandwidth->val; |
| ret = e4000_set_params(s->fe); |
| break; |
| case V4L2_CID_RF_TUNER_LNA_GAIN_AUTO: |
| case V4L2_CID_RF_TUNER_LNA_GAIN: |
| ret = e4000_set_lna_gain(s->fe); |
| break; |
| case V4L2_CID_RF_TUNER_MIXER_GAIN_AUTO: |
| case V4L2_CID_RF_TUNER_MIXER_GAIN: |
| ret = e4000_set_mixer_gain(s->fe); |
| break; |
| case V4L2_CID_RF_TUNER_IF_GAIN_AUTO: |
| case V4L2_CID_RF_TUNER_IF_GAIN: |
| ret = e4000_set_if_gain(s->fe); |
| break; |
| default: |
| dev_dbg(&s->client->dev, "unknown ctrl: id=%d name=%s\n", |
| ctrl->id, ctrl->name); |
| ret = -EINVAL; |
| } |
| |
| return ret; |
| } |
| |
| static const struct v4l2_ctrl_ops e4000_ctrl_ops = { |
| .g_volatile_ctrl = e4000_g_volatile_ctrl, |
| .s_ctrl = e4000_s_ctrl, |
| }; |
| #endif |
| |
| static const struct dvb_tuner_ops e4000_tuner_ops = { |
| .info = { |
| .name = "Elonics E4000", |
| .frequency_min = 174000000, |
| .frequency_max = 862000000, |
| }, |
| |
| .init = e4000_init, |
| .sleep = e4000_sleep, |
| .set_params = e4000_set_params, |
| |
| .get_if_frequency = e4000_get_if_frequency, |
| }; |
| |
| /* |
| * Use V4L2 subdev to carry V4L2 control handler, even we don't implement |
| * subdev itself, just to avoid reinventing the wheel. |
| */ |
| static int e4000_probe(struct i2c_client *client, |
| const struct i2c_device_id *id) |
| { |
| struct e4000_config *cfg = client->dev.platform_data; |
| struct dvb_frontend *fe = cfg->fe; |
| struct e4000 *s; |
| int ret; |
| unsigned int utmp; |
| static const struct regmap_config regmap_config = { |
| .reg_bits = 8, |
| .val_bits = 8, |
| .max_register = 0xff, |
| }; |
| |
| s = kzalloc(sizeof(struct e4000), GFP_KERNEL); |
| if (!s) { |
| ret = -ENOMEM; |
| dev_err(&client->dev, "kzalloc() failed\n"); |
| goto err; |
| } |
| |
| s->clock = cfg->clock; |
| s->client = client; |
| s->fe = cfg->fe; |
| s->regmap = devm_regmap_init_i2c(client, ®map_config); |
| if (IS_ERR(s->regmap)) { |
| ret = PTR_ERR(s->regmap); |
| goto err; |
| } |
| |
| /* check if the tuner is there */ |
| ret = regmap_read(s->regmap, 0x02, &utmp); |
| if (ret) |
| goto err; |
| |
| dev_dbg(&s->client->dev, "chip id=%02x\n", utmp); |
| |
| if (utmp != 0x40) { |
| ret = -ENODEV; |
| goto err; |
| } |
| |
| /* put sleep as chip seems to be in normal mode by default */ |
| ret = regmap_write(s->regmap, 0x00, 0x00); |
| if (ret) |
| goto err; |
| |
| #if IS_ENABLED(CONFIG_VIDEO_V4L2) |
| /* Register controls */ |
| v4l2_ctrl_handler_init(&s->hdl, 9); |
| s->bandwidth_auto = v4l2_ctrl_new_std(&s->hdl, &e4000_ctrl_ops, |
| V4L2_CID_RF_TUNER_BANDWIDTH_AUTO, 0, 1, 1, 1); |
| s->bandwidth = v4l2_ctrl_new_std(&s->hdl, &e4000_ctrl_ops, |
| V4L2_CID_RF_TUNER_BANDWIDTH, 4300000, 11000000, 100000, 4300000); |
| v4l2_ctrl_auto_cluster(2, &s->bandwidth_auto, 0, false); |
| s->lna_gain_auto = v4l2_ctrl_new_std(&s->hdl, &e4000_ctrl_ops, |
| V4L2_CID_RF_TUNER_LNA_GAIN_AUTO, 0, 1, 1, 1); |
| s->lna_gain = v4l2_ctrl_new_std(&s->hdl, &e4000_ctrl_ops, |
| V4L2_CID_RF_TUNER_LNA_GAIN, 0, 15, 1, 10); |
| v4l2_ctrl_auto_cluster(2, &s->lna_gain_auto, 0, false); |
| s->mixer_gain_auto = v4l2_ctrl_new_std(&s->hdl, &e4000_ctrl_ops, |
| V4L2_CID_RF_TUNER_MIXER_GAIN_AUTO, 0, 1, 1, 1); |
| s->mixer_gain = v4l2_ctrl_new_std(&s->hdl, &e4000_ctrl_ops, |
| V4L2_CID_RF_TUNER_MIXER_GAIN, 0, 1, 1, 1); |
| v4l2_ctrl_auto_cluster(2, &s->mixer_gain_auto, 0, false); |
| s->if_gain_auto = v4l2_ctrl_new_std(&s->hdl, &e4000_ctrl_ops, |
| V4L2_CID_RF_TUNER_IF_GAIN_AUTO, 0, 1, 1, 1); |
| s->if_gain = v4l2_ctrl_new_std(&s->hdl, &e4000_ctrl_ops, |
| V4L2_CID_RF_TUNER_IF_GAIN, 0, 54, 1, 0); |
| v4l2_ctrl_auto_cluster(2, &s->if_gain_auto, 0, false); |
| s->pll_lock = v4l2_ctrl_new_std(&s->hdl, &e4000_ctrl_ops, |
| V4L2_CID_RF_TUNER_PLL_LOCK, 0, 1, 1, 0); |
| if (s->hdl.error) { |
| ret = s->hdl.error; |
| dev_err(&s->client->dev, "Could not initialize controls\n"); |
| v4l2_ctrl_handler_free(&s->hdl); |
| goto err; |
| } |
| |
| s->sd.ctrl_handler = &s->hdl; |
| #endif |
| |
| dev_info(&s->client->dev, "Elonics E4000 successfully identified\n"); |
| |
| fe->tuner_priv = s; |
| memcpy(&fe->ops.tuner_ops, &e4000_tuner_ops, |
| sizeof(struct dvb_tuner_ops)); |
| |
| v4l2_set_subdevdata(&s->sd, client); |
| i2c_set_clientdata(client, &s->sd); |
| |
| return 0; |
| err: |
| if (ret) { |
| dev_dbg(&client->dev, "failed=%d\n", ret); |
| kfree(s); |
| } |
| |
| return ret; |
| } |
| |
| static int e4000_remove(struct i2c_client *client) |
| { |
| struct v4l2_subdev *sd = i2c_get_clientdata(client); |
| struct e4000 *s = container_of(sd, struct e4000, sd); |
| struct dvb_frontend *fe = s->fe; |
| |
| dev_dbg(&client->dev, "\n"); |
| |
| #if IS_ENABLED(CONFIG_VIDEO_V4L2) |
| v4l2_ctrl_handler_free(&s->hdl); |
| #endif |
| memset(&fe->ops.tuner_ops, 0, sizeof(struct dvb_tuner_ops)); |
| fe->tuner_priv = NULL; |
| kfree(s); |
| |
| return 0; |
| } |
| |
| static const struct i2c_device_id e4000_id[] = { |
| {"e4000", 0}, |
| {} |
| }; |
| MODULE_DEVICE_TABLE(i2c, e4000_id); |
| |
| static struct i2c_driver e4000_driver = { |
| .driver = { |
| .owner = THIS_MODULE, |
| .name = "e4000", |
| }, |
| .probe = e4000_probe, |
| .remove = e4000_remove, |
| .id_table = e4000_id, |
| }; |
| |
| module_i2c_driver(e4000_driver); |
| |
| MODULE_DESCRIPTION("Elonics E4000 silicon tuner driver"); |
| MODULE_AUTHOR("Antti Palosaari <crope@iki.fi>"); |
| MODULE_LICENSE("GPL"); |