| /* |
| * A driver for the ARM PL022 PrimeCell SSP/SPI bus master. |
| * |
| * Copyright (C) 2008-2012 ST-Ericsson AB |
| * Copyright (C) 2006 STMicroelectronics Pvt. Ltd. |
| * |
| * Author: Linus Walleij <linus.walleij@stericsson.com> |
| * |
| * Initial version inspired by: |
| * linux-2.6.17-rc3-mm1/drivers/spi/pxa2xx_spi.c |
| * Initial adoption to PL022 by: |
| * Sachin Verma <sachin.verma@st.com> |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2 of the License, or |
| * (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| */ |
| |
| #include <linux/init.h> |
| #include <linux/module.h> |
| #include <linux/device.h> |
| #include <linux/ioport.h> |
| #include <linux/errno.h> |
| #include <linux/interrupt.h> |
| #include <linux/spi/spi.h> |
| #include <linux/delay.h> |
| #include <linux/clk.h> |
| #include <linux/err.h> |
| #include <linux/amba/bus.h> |
| #include <linux/amba/pl022.h> |
| #include <linux/io.h> |
| #include <linux/slab.h> |
| #include <linux/dmaengine.h> |
| #include <linux/dma-mapping.h> |
| #include <linux/scatterlist.h> |
| #include <linux/pm_runtime.h> |
| #include <linux/gpio.h> |
| #include <linux/of_gpio.h> |
| #include <linux/pinctrl/consumer.h> |
| |
| /* |
| * This macro is used to define some register default values. |
| * reg is masked with mask, the OR:ed with an (again masked) |
| * val shifted sb steps to the left. |
| */ |
| #define SSP_WRITE_BITS(reg, val, mask, sb) \ |
| ((reg) = (((reg) & ~(mask)) | (((val)<<(sb)) & (mask)))) |
| |
| /* |
| * This macro is also used to define some default values. |
| * It will just shift val by sb steps to the left and mask |
| * the result with mask. |
| */ |
| #define GEN_MASK_BITS(val, mask, sb) \ |
| (((val)<<(sb)) & (mask)) |
| |
| #define DRIVE_TX 0 |
| #define DO_NOT_DRIVE_TX 1 |
| |
| #define DO_NOT_QUEUE_DMA 0 |
| #define QUEUE_DMA 1 |
| |
| #define RX_TRANSFER 1 |
| #define TX_TRANSFER 2 |
| |
| /* |
| * Macros to access SSP Registers with their offsets |
| */ |
| #define SSP_CR0(r) (r + 0x000) |
| #define SSP_CR1(r) (r + 0x004) |
| #define SSP_DR(r) (r + 0x008) |
| #define SSP_SR(r) (r + 0x00C) |
| #define SSP_CPSR(r) (r + 0x010) |
| #define SSP_IMSC(r) (r + 0x014) |
| #define SSP_RIS(r) (r + 0x018) |
| #define SSP_MIS(r) (r + 0x01C) |
| #define SSP_ICR(r) (r + 0x020) |
| #define SSP_DMACR(r) (r + 0x024) |
| #define SSP_ITCR(r) (r + 0x080) |
| #define SSP_ITIP(r) (r + 0x084) |
| #define SSP_ITOP(r) (r + 0x088) |
| #define SSP_TDR(r) (r + 0x08C) |
| |
| #define SSP_PID0(r) (r + 0xFE0) |
| #define SSP_PID1(r) (r + 0xFE4) |
| #define SSP_PID2(r) (r + 0xFE8) |
| #define SSP_PID3(r) (r + 0xFEC) |
| |
| #define SSP_CID0(r) (r + 0xFF0) |
| #define SSP_CID1(r) (r + 0xFF4) |
| #define SSP_CID2(r) (r + 0xFF8) |
| #define SSP_CID3(r) (r + 0xFFC) |
| |
| /* |
| * SSP Control Register 0 - SSP_CR0 |
| */ |
| #define SSP_CR0_MASK_DSS (0x0FUL << 0) |
| #define SSP_CR0_MASK_FRF (0x3UL << 4) |
| #define SSP_CR0_MASK_SPO (0x1UL << 6) |
| #define SSP_CR0_MASK_SPH (0x1UL << 7) |
| #define SSP_CR0_MASK_SCR (0xFFUL << 8) |
| |
| /* |
| * The ST version of this block moves som bits |
| * in SSP_CR0 and extends it to 32 bits |
| */ |
| #define SSP_CR0_MASK_DSS_ST (0x1FUL << 0) |
| #define SSP_CR0_MASK_HALFDUP_ST (0x1UL << 5) |
| #define SSP_CR0_MASK_CSS_ST (0x1FUL << 16) |
| #define SSP_CR0_MASK_FRF_ST (0x3UL << 21) |
| |
| /* |
| * SSP Control Register 0 - SSP_CR1 |
| */ |
| #define SSP_CR1_MASK_LBM (0x1UL << 0) |
| #define SSP_CR1_MASK_SSE (0x1UL << 1) |
| #define SSP_CR1_MASK_MS (0x1UL << 2) |
| #define SSP_CR1_MASK_SOD (0x1UL << 3) |
| |
| /* |
| * The ST version of this block adds some bits |
| * in SSP_CR1 |
| */ |
| #define SSP_CR1_MASK_RENDN_ST (0x1UL << 4) |
| #define SSP_CR1_MASK_TENDN_ST (0x1UL << 5) |
| #define SSP_CR1_MASK_MWAIT_ST (0x1UL << 6) |
| #define SSP_CR1_MASK_RXIFLSEL_ST (0x7UL << 7) |
| #define SSP_CR1_MASK_TXIFLSEL_ST (0x7UL << 10) |
| /* This one is only in the PL023 variant */ |
| #define SSP_CR1_MASK_FBCLKDEL_ST (0x7UL << 13) |
| |
| /* |
| * SSP Status Register - SSP_SR |
| */ |
| #define SSP_SR_MASK_TFE (0x1UL << 0) /* Transmit FIFO empty */ |
| #define SSP_SR_MASK_TNF (0x1UL << 1) /* Transmit FIFO not full */ |
| #define SSP_SR_MASK_RNE (0x1UL << 2) /* Receive FIFO not empty */ |
| #define SSP_SR_MASK_RFF (0x1UL << 3) /* Receive FIFO full */ |
| #define SSP_SR_MASK_BSY (0x1UL << 4) /* Busy Flag */ |
| |
| /* |
| * SSP Clock Prescale Register - SSP_CPSR |
| */ |
| #define SSP_CPSR_MASK_CPSDVSR (0xFFUL << 0) |
| |
| /* |
| * SSP Interrupt Mask Set/Clear Register - SSP_IMSC |
| */ |
| #define SSP_IMSC_MASK_RORIM (0x1UL << 0) /* Receive Overrun Interrupt mask */ |
| #define SSP_IMSC_MASK_RTIM (0x1UL << 1) /* Receive timeout Interrupt mask */ |
| #define SSP_IMSC_MASK_RXIM (0x1UL << 2) /* Receive FIFO Interrupt mask */ |
| #define SSP_IMSC_MASK_TXIM (0x1UL << 3) /* Transmit FIFO Interrupt mask */ |
| |
| /* |
| * SSP Raw Interrupt Status Register - SSP_RIS |
| */ |
| /* Receive Overrun Raw Interrupt status */ |
| #define SSP_RIS_MASK_RORRIS (0x1UL << 0) |
| /* Receive Timeout Raw Interrupt status */ |
| #define SSP_RIS_MASK_RTRIS (0x1UL << 1) |
| /* Receive FIFO Raw Interrupt status */ |
| #define SSP_RIS_MASK_RXRIS (0x1UL << 2) |
| /* Transmit FIFO Raw Interrupt status */ |
| #define SSP_RIS_MASK_TXRIS (0x1UL << 3) |
| |
| /* |
| * SSP Masked Interrupt Status Register - SSP_MIS |
| */ |
| /* Receive Overrun Masked Interrupt status */ |
| #define SSP_MIS_MASK_RORMIS (0x1UL << 0) |
| /* Receive Timeout Masked Interrupt status */ |
| #define SSP_MIS_MASK_RTMIS (0x1UL << 1) |
| /* Receive FIFO Masked Interrupt status */ |
| #define SSP_MIS_MASK_RXMIS (0x1UL << 2) |
| /* Transmit FIFO Masked Interrupt status */ |
| #define SSP_MIS_MASK_TXMIS (0x1UL << 3) |
| |
| /* |
| * SSP Interrupt Clear Register - SSP_ICR |
| */ |
| /* Receive Overrun Raw Clear Interrupt bit */ |
| #define SSP_ICR_MASK_RORIC (0x1UL << 0) |
| /* Receive Timeout Clear Interrupt bit */ |
| #define SSP_ICR_MASK_RTIC (0x1UL << 1) |
| |
| /* |
| * SSP DMA Control Register - SSP_DMACR |
| */ |
| /* Receive DMA Enable bit */ |
| #define SSP_DMACR_MASK_RXDMAE (0x1UL << 0) |
| /* Transmit DMA Enable bit */ |
| #define SSP_DMACR_MASK_TXDMAE (0x1UL << 1) |
| |
| /* |
| * SSP Integration Test control Register - SSP_ITCR |
| */ |
| #define SSP_ITCR_MASK_ITEN (0x1UL << 0) |
| #define SSP_ITCR_MASK_TESTFIFO (0x1UL << 1) |
| |
| /* |
| * SSP Integration Test Input Register - SSP_ITIP |
| */ |
| #define ITIP_MASK_SSPRXD (0x1UL << 0) |
| #define ITIP_MASK_SSPFSSIN (0x1UL << 1) |
| #define ITIP_MASK_SSPCLKIN (0x1UL << 2) |
| #define ITIP_MASK_RXDMAC (0x1UL << 3) |
| #define ITIP_MASK_TXDMAC (0x1UL << 4) |
| #define ITIP_MASK_SSPTXDIN (0x1UL << 5) |
| |
| /* |
| * SSP Integration Test output Register - SSP_ITOP |
| */ |
| #define ITOP_MASK_SSPTXD (0x1UL << 0) |
| #define ITOP_MASK_SSPFSSOUT (0x1UL << 1) |
| #define ITOP_MASK_SSPCLKOUT (0x1UL << 2) |
| #define ITOP_MASK_SSPOEn (0x1UL << 3) |
| #define ITOP_MASK_SSPCTLOEn (0x1UL << 4) |
| #define ITOP_MASK_RORINTR (0x1UL << 5) |
| #define ITOP_MASK_RTINTR (0x1UL << 6) |
| #define ITOP_MASK_RXINTR (0x1UL << 7) |
| #define ITOP_MASK_TXINTR (0x1UL << 8) |
| #define ITOP_MASK_INTR (0x1UL << 9) |
| #define ITOP_MASK_RXDMABREQ (0x1UL << 10) |
| #define ITOP_MASK_RXDMASREQ (0x1UL << 11) |
| #define ITOP_MASK_TXDMABREQ (0x1UL << 12) |
| #define ITOP_MASK_TXDMASREQ (0x1UL << 13) |
| |
| /* |
| * SSP Test Data Register - SSP_TDR |
| */ |
| #define TDR_MASK_TESTDATA (0xFFFFFFFF) |
| |
| /* |
| * Message State |
| * we use the spi_message.state (void *) pointer to |
| * hold a single state value, that's why all this |
| * (void *) casting is done here. |
| */ |
| #define STATE_START ((void *) 0) |
| #define STATE_RUNNING ((void *) 1) |
| #define STATE_DONE ((void *) 2) |
| #define STATE_ERROR ((void *) -1) |
| |
| /* |
| * SSP State - Whether Enabled or Disabled |
| */ |
| #define SSP_DISABLED (0) |
| #define SSP_ENABLED (1) |
| |
| /* |
| * SSP DMA State - Whether DMA Enabled or Disabled |
| */ |
| #define SSP_DMA_DISABLED (0) |
| #define SSP_DMA_ENABLED (1) |
| |
| /* |
| * SSP Clock Defaults |
| */ |
| #define SSP_DEFAULT_CLKRATE 0x2 |
| #define SSP_DEFAULT_PRESCALE 0x40 |
| |
| /* |
| * SSP Clock Parameter ranges |
| */ |
| #define CPSDVR_MIN 0x02 |
| #define CPSDVR_MAX 0xFE |
| #define SCR_MIN 0x00 |
| #define SCR_MAX 0xFF |
| |
| /* |
| * SSP Interrupt related Macros |
| */ |
| #define DEFAULT_SSP_REG_IMSC 0x0UL |
| #define DISABLE_ALL_INTERRUPTS DEFAULT_SSP_REG_IMSC |
| #define ENABLE_ALL_INTERRUPTS (~DEFAULT_SSP_REG_IMSC) |
| |
| #define CLEAR_ALL_INTERRUPTS 0x3 |
| |
| #define SPI_POLLING_TIMEOUT 1000 |
| |
| /* |
| * The type of reading going on on this chip |
| */ |
| enum ssp_reading { |
| READING_NULL, |
| READING_U8, |
| READING_U16, |
| READING_U32 |
| }; |
| |
| /** |
| * The type of writing going on on this chip |
| */ |
| enum ssp_writing { |
| WRITING_NULL, |
| WRITING_U8, |
| WRITING_U16, |
| WRITING_U32 |
| }; |
| |
| /** |
| * struct vendor_data - vendor-specific config parameters |
| * for PL022 derivates |
| * @fifodepth: depth of FIFOs (both) |
| * @max_bpw: maximum number of bits per word |
| * @unidir: supports unidirection transfers |
| * @extended_cr: 32 bit wide control register 0 with extra |
| * features and extra features in CR1 as found in the ST variants |
| * @pl023: supports a subset of the ST extensions called "PL023" |
| */ |
| struct vendor_data { |
| int fifodepth; |
| int max_bpw; |
| bool unidir; |
| bool extended_cr; |
| bool pl023; |
| bool loopback; |
| }; |
| |
| /** |
| * struct pl022 - This is the private SSP driver data structure |
| * @adev: AMBA device model hookup |
| * @vendor: vendor data for the IP block |
| * @phybase: the physical memory where the SSP device resides |
| * @virtbase: the virtual memory where the SSP is mapped |
| * @clk: outgoing clock "SPICLK" for the SPI bus |
| * @master: SPI framework hookup |
| * @master_info: controller-specific data from machine setup |
| * @kworker: thread struct for message pump |
| * @kworker_task: pointer to task for message pump kworker thread |
| * @pump_messages: work struct for scheduling work to the message pump |
| * @queue_lock: spinlock to syncronise access to message queue |
| * @queue: message queue |
| * @busy: message pump is busy |
| * @running: message pump is running |
| * @pump_transfers: Tasklet used in Interrupt Transfer mode |
| * @cur_msg: Pointer to current spi_message being processed |
| * @cur_transfer: Pointer to current spi_transfer |
| * @cur_chip: pointer to current clients chip(assigned from controller_state) |
| * @next_msg_cs_active: the next message in the queue has been examined |
| * and it was found that it uses the same chip select as the previous |
| * message, so we left it active after the previous transfer, and it's |
| * active already. |
| * @tx: current position in TX buffer to be read |
| * @tx_end: end position in TX buffer to be read |
| * @rx: current position in RX buffer to be written |
| * @rx_end: end position in RX buffer to be written |
| * @read: the type of read currently going on |
| * @write: the type of write currently going on |
| * @exp_fifo_level: expected FIFO level |
| * @dma_rx_channel: optional channel for RX DMA |
| * @dma_tx_channel: optional channel for TX DMA |
| * @sgt_rx: scattertable for the RX transfer |
| * @sgt_tx: scattertable for the TX transfer |
| * @dummypage: a dummy page used for driving data on the bus with DMA |
| * @cur_cs: current chip select (gpio) |
| * @chipselects: list of chipselects (gpios) |
| */ |
| struct pl022 { |
| struct amba_device *adev; |
| struct vendor_data *vendor; |
| resource_size_t phybase; |
| void __iomem *virtbase; |
| struct clk *clk; |
| /* Two optional pin states - default & sleep */ |
| struct pinctrl *pinctrl; |
| struct pinctrl_state *pins_default; |
| struct pinctrl_state *pins_sleep; |
| struct spi_master *master; |
| struct pl022_ssp_controller *master_info; |
| /* Message per-transfer pump */ |
| struct tasklet_struct pump_transfers; |
| struct spi_message *cur_msg; |
| struct spi_transfer *cur_transfer; |
| struct chip_data *cur_chip; |
| bool next_msg_cs_active; |
| void *tx; |
| void *tx_end; |
| void *rx; |
| void *rx_end; |
| enum ssp_reading read; |
| enum ssp_writing write; |
| u32 exp_fifo_level; |
| enum ssp_rx_level_trig rx_lev_trig; |
| enum ssp_tx_level_trig tx_lev_trig; |
| /* DMA settings */ |
| #ifdef CONFIG_DMA_ENGINE |
| struct dma_chan *dma_rx_channel; |
| struct dma_chan *dma_tx_channel; |
| struct sg_table sgt_rx; |
| struct sg_table sgt_tx; |
| char *dummypage; |
| bool dma_running; |
| #endif |
| int cur_cs; |
| int *chipselects; |
| }; |
| |
| /** |
| * struct chip_data - To maintain runtime state of SSP for each client chip |
| * @cr0: Value of control register CR0 of SSP - on later ST variants this |
| * register is 32 bits wide rather than just 16 |
| * @cr1: Value of control register CR1 of SSP |
| * @dmacr: Value of DMA control Register of SSP |
| * @cpsr: Value of Clock prescale register |
| * @n_bytes: how many bytes(power of 2) reqd for a given data width of client |
| * @enable_dma: Whether to enable DMA or not |
| * @read: function ptr to be used to read when doing xfer for this chip |
| * @write: function ptr to be used to write when doing xfer for this chip |
| * @cs_control: chip select callback provided by chip |
| * @xfer_type: polling/interrupt/DMA |
| * |
| * Runtime state of the SSP controller, maintained per chip, |
| * This would be set according to the current message that would be served |
| */ |
| struct chip_data { |
| u32 cr0; |
| u16 cr1; |
| u16 dmacr; |
| u16 cpsr; |
| u8 n_bytes; |
| bool enable_dma; |
| enum ssp_reading read; |
| enum ssp_writing write; |
| void (*cs_control) (u32 command); |
| int xfer_type; |
| }; |
| |
| /** |
| * null_cs_control - Dummy chip select function |
| * @command: select/delect the chip |
| * |
| * If no chip select function is provided by client this is used as dummy |
| * chip select |
| */ |
| static void null_cs_control(u32 command) |
| { |
| pr_debug("pl022: dummy chip select control, CS=0x%x\n", command); |
| } |
| |
| static void pl022_cs_control(struct pl022 *pl022, u32 command) |
| { |
| if (gpio_is_valid(pl022->cur_cs)) |
| gpio_set_value(pl022->cur_cs, command); |
| else |
| pl022->cur_chip->cs_control(command); |
| } |
| |
| /** |
| * giveback - current spi_message is over, schedule next message and call |
| * callback of this message. Assumes that caller already |
| * set message->status; dma and pio irqs are blocked |
| * @pl022: SSP driver private data structure |
| */ |
| static void giveback(struct pl022 *pl022) |
| { |
| struct spi_transfer *last_transfer; |
| pl022->next_msg_cs_active = false; |
| |
| last_transfer = list_entry(pl022->cur_msg->transfers.prev, |
| struct spi_transfer, |
| transfer_list); |
| |
| /* Delay if requested before any change in chip select */ |
| if (last_transfer->delay_usecs) |
| /* |
| * FIXME: This runs in interrupt context. |
| * Is this really smart? |
| */ |
| udelay(last_transfer->delay_usecs); |
| |
| if (!last_transfer->cs_change) { |
| struct spi_message *next_msg; |
| |
| /* |
| * cs_change was not set. We can keep the chip select |
| * enabled if there is message in the queue and it is |
| * for the same spi device. |
| * |
| * We cannot postpone this until pump_messages, because |
| * after calling msg->complete (below) the driver that |
| * sent the current message could be unloaded, which |
| * could invalidate the cs_control() callback... |
| */ |
| /* get a pointer to the next message, if any */ |
| next_msg = spi_get_next_queued_message(pl022->master); |
| |
| /* |
| * see if the next and current messages point |
| * to the same spi device. |
| */ |
| if (next_msg && next_msg->spi != pl022->cur_msg->spi) |
| next_msg = NULL; |
| if (!next_msg || pl022->cur_msg->state == STATE_ERROR) |
| pl022_cs_control(pl022, SSP_CHIP_DESELECT); |
| else |
| pl022->next_msg_cs_active = true; |
| |
| } |
| |
| pl022->cur_msg = NULL; |
| pl022->cur_transfer = NULL; |
| pl022->cur_chip = NULL; |
| spi_finalize_current_message(pl022->master); |
| |
| /* disable the SPI/SSP operation */ |
| writew((readw(SSP_CR1(pl022->virtbase)) & |
| (~SSP_CR1_MASK_SSE)), SSP_CR1(pl022->virtbase)); |
| |
| } |
| |
| /** |
| * flush - flush the FIFO to reach a clean state |
| * @pl022: SSP driver private data structure |
| */ |
| static int flush(struct pl022 *pl022) |
| { |
| unsigned long limit = loops_per_jiffy << 1; |
| |
| dev_dbg(&pl022->adev->dev, "flush\n"); |
| do { |
| while (readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE) |
| readw(SSP_DR(pl022->virtbase)); |
| } while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_BSY) && limit--); |
| |
| pl022->exp_fifo_level = 0; |
| |
| return limit; |
| } |
| |
| /** |
| * restore_state - Load configuration of current chip |
| * @pl022: SSP driver private data structure |
| */ |
| static void restore_state(struct pl022 *pl022) |
| { |
| struct chip_data *chip = pl022->cur_chip; |
| |
| if (pl022->vendor->extended_cr) |
| writel(chip->cr0, SSP_CR0(pl022->virtbase)); |
| else |
| writew(chip->cr0, SSP_CR0(pl022->virtbase)); |
| writew(chip->cr1, SSP_CR1(pl022->virtbase)); |
| writew(chip->dmacr, SSP_DMACR(pl022->virtbase)); |
| writew(chip->cpsr, SSP_CPSR(pl022->virtbase)); |
| writew(DISABLE_ALL_INTERRUPTS, SSP_IMSC(pl022->virtbase)); |
| writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase)); |
| } |
| |
| /* |
| * Default SSP Register Values |
| */ |
| #define DEFAULT_SSP_REG_CR0 ( \ |
| GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS, 0) | \ |
| GEN_MASK_BITS(SSP_INTERFACE_MOTOROLA_SPI, SSP_CR0_MASK_FRF, 4) | \ |
| GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \ |
| GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \ |
| GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) \ |
| ) |
| |
| /* ST versions have slightly different bit layout */ |
| #define DEFAULT_SSP_REG_CR0_ST ( \ |
| GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS_ST, 0) | \ |
| GEN_MASK_BITS(SSP_MICROWIRE_CHANNEL_FULL_DUPLEX, SSP_CR0_MASK_HALFDUP_ST, 5) | \ |
| GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \ |
| GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \ |
| GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) | \ |
| GEN_MASK_BITS(SSP_BITS_8, SSP_CR0_MASK_CSS_ST, 16) | \ |
| GEN_MASK_BITS(SSP_INTERFACE_MOTOROLA_SPI, SSP_CR0_MASK_FRF_ST, 21) \ |
| ) |
| |
| /* The PL023 version is slightly different again */ |
| #define DEFAULT_SSP_REG_CR0_ST_PL023 ( \ |
| GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS_ST, 0) | \ |
| GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \ |
| GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \ |
| GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) \ |
| ) |
| |
| #define DEFAULT_SSP_REG_CR1 ( \ |
| GEN_MASK_BITS(LOOPBACK_DISABLED, SSP_CR1_MASK_LBM, 0) | \ |
| GEN_MASK_BITS(SSP_DISABLED, SSP_CR1_MASK_SSE, 1) | \ |
| GEN_MASK_BITS(SSP_MASTER, SSP_CR1_MASK_MS, 2) | \ |
| GEN_MASK_BITS(DO_NOT_DRIVE_TX, SSP_CR1_MASK_SOD, 3) \ |
| ) |
| |
| /* ST versions extend this register to use all 16 bits */ |
| #define DEFAULT_SSP_REG_CR1_ST ( \ |
| DEFAULT_SSP_REG_CR1 | \ |
| GEN_MASK_BITS(SSP_RX_MSB, SSP_CR1_MASK_RENDN_ST, 4) | \ |
| GEN_MASK_BITS(SSP_TX_MSB, SSP_CR1_MASK_TENDN_ST, 5) | \ |
| GEN_MASK_BITS(SSP_MWIRE_WAIT_ZERO, SSP_CR1_MASK_MWAIT_ST, 6) |\ |
| GEN_MASK_BITS(SSP_RX_1_OR_MORE_ELEM, SSP_CR1_MASK_RXIFLSEL_ST, 7) | \ |
| GEN_MASK_BITS(SSP_TX_1_OR_MORE_EMPTY_LOC, SSP_CR1_MASK_TXIFLSEL_ST, 10) \ |
| ) |
| |
| /* |
| * The PL023 variant has further differences: no loopback mode, no microwire |
| * support, and a new clock feedback delay setting. |
| */ |
| #define DEFAULT_SSP_REG_CR1_ST_PL023 ( \ |
| GEN_MASK_BITS(SSP_DISABLED, SSP_CR1_MASK_SSE, 1) | \ |
| GEN_MASK_BITS(SSP_MASTER, SSP_CR1_MASK_MS, 2) | \ |
| GEN_MASK_BITS(DO_NOT_DRIVE_TX, SSP_CR1_MASK_SOD, 3) | \ |
| GEN_MASK_BITS(SSP_RX_MSB, SSP_CR1_MASK_RENDN_ST, 4) | \ |
| GEN_MASK_BITS(SSP_TX_MSB, SSP_CR1_MASK_TENDN_ST, 5) | \ |
| GEN_MASK_BITS(SSP_RX_1_OR_MORE_ELEM, SSP_CR1_MASK_RXIFLSEL_ST, 7) | \ |
| GEN_MASK_BITS(SSP_TX_1_OR_MORE_EMPTY_LOC, SSP_CR1_MASK_TXIFLSEL_ST, 10) | \ |
| GEN_MASK_BITS(SSP_FEEDBACK_CLK_DELAY_NONE, SSP_CR1_MASK_FBCLKDEL_ST, 13) \ |
| ) |
| |
| #define DEFAULT_SSP_REG_CPSR ( \ |
| GEN_MASK_BITS(SSP_DEFAULT_PRESCALE, SSP_CPSR_MASK_CPSDVSR, 0) \ |
| ) |
| |
| #define DEFAULT_SSP_REG_DMACR (\ |
| GEN_MASK_BITS(SSP_DMA_DISABLED, SSP_DMACR_MASK_RXDMAE, 0) | \ |
| GEN_MASK_BITS(SSP_DMA_DISABLED, SSP_DMACR_MASK_TXDMAE, 1) \ |
| ) |
| |
| /** |
| * load_ssp_default_config - Load default configuration for SSP |
| * @pl022: SSP driver private data structure |
| */ |
| static void load_ssp_default_config(struct pl022 *pl022) |
| { |
| if (pl022->vendor->pl023) { |
| writel(DEFAULT_SSP_REG_CR0_ST_PL023, SSP_CR0(pl022->virtbase)); |
| writew(DEFAULT_SSP_REG_CR1_ST_PL023, SSP_CR1(pl022->virtbase)); |
| } else if (pl022->vendor->extended_cr) { |
| writel(DEFAULT_SSP_REG_CR0_ST, SSP_CR0(pl022->virtbase)); |
| writew(DEFAULT_SSP_REG_CR1_ST, SSP_CR1(pl022->virtbase)); |
| } else { |
| writew(DEFAULT_SSP_REG_CR0, SSP_CR0(pl022->virtbase)); |
| writew(DEFAULT_SSP_REG_CR1, SSP_CR1(pl022->virtbase)); |
| } |
| writew(DEFAULT_SSP_REG_DMACR, SSP_DMACR(pl022->virtbase)); |
| writew(DEFAULT_SSP_REG_CPSR, SSP_CPSR(pl022->virtbase)); |
| writew(DISABLE_ALL_INTERRUPTS, SSP_IMSC(pl022->virtbase)); |
| writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase)); |
| } |
| |
| /** |
| * This will write to TX and read from RX according to the parameters |
| * set in pl022. |
| */ |
| static void readwriter(struct pl022 *pl022) |
| { |
| |
| /* |
| * The FIFO depth is different between primecell variants. |
| * I believe filling in too much in the FIFO might cause |
| * errons in 8bit wide transfers on ARM variants (just 8 words |
| * FIFO, means only 8x8 = 64 bits in FIFO) at least. |
| * |
| * To prevent this issue, the TX FIFO is only filled to the |
| * unused RX FIFO fill length, regardless of what the TX |
| * FIFO status flag indicates. |
| */ |
| dev_dbg(&pl022->adev->dev, |
| "%s, rx: %p, rxend: %p, tx: %p, txend: %p\n", |
| __func__, pl022->rx, pl022->rx_end, pl022->tx, pl022->tx_end); |
| |
| /* Read as much as you can */ |
| while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE) |
| && (pl022->rx < pl022->rx_end)) { |
| switch (pl022->read) { |
| case READING_NULL: |
| readw(SSP_DR(pl022->virtbase)); |
| break; |
| case READING_U8: |
| *(u8 *) (pl022->rx) = |
| readw(SSP_DR(pl022->virtbase)) & 0xFFU; |
| break; |
| case READING_U16: |
| *(u16 *) (pl022->rx) = |
| (u16) readw(SSP_DR(pl022->virtbase)); |
| break; |
| case READING_U32: |
| *(u32 *) (pl022->rx) = |
| readl(SSP_DR(pl022->virtbase)); |
| break; |
| } |
| pl022->rx += (pl022->cur_chip->n_bytes); |
| pl022->exp_fifo_level--; |
| } |
| /* |
| * Write as much as possible up to the RX FIFO size |
| */ |
| while ((pl022->exp_fifo_level < pl022->vendor->fifodepth) |
| && (pl022->tx < pl022->tx_end)) { |
| switch (pl022->write) { |
| case WRITING_NULL: |
| writew(0x0, SSP_DR(pl022->virtbase)); |
| break; |
| case WRITING_U8: |
| writew(*(u8 *) (pl022->tx), SSP_DR(pl022->virtbase)); |
| break; |
| case WRITING_U16: |
| writew((*(u16 *) (pl022->tx)), SSP_DR(pl022->virtbase)); |
| break; |
| case WRITING_U32: |
| writel(*(u32 *) (pl022->tx), SSP_DR(pl022->virtbase)); |
| break; |
| } |
| pl022->tx += (pl022->cur_chip->n_bytes); |
| pl022->exp_fifo_level++; |
| /* |
| * This inner reader takes care of things appearing in the RX |
| * FIFO as we're transmitting. This will happen a lot since the |
| * clock starts running when you put things into the TX FIFO, |
| * and then things are continuously clocked into the RX FIFO. |
| */ |
| while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE) |
| && (pl022->rx < pl022->rx_end)) { |
| switch (pl022->read) { |
| case READING_NULL: |
| readw(SSP_DR(pl022->virtbase)); |
| break; |
| case READING_U8: |
| *(u8 *) (pl022->rx) = |
| readw(SSP_DR(pl022->virtbase)) & 0xFFU; |
| break; |
| case READING_U16: |
| *(u16 *) (pl022->rx) = |
| (u16) readw(SSP_DR(pl022->virtbase)); |
| break; |
| case READING_U32: |
| *(u32 *) (pl022->rx) = |
| readl(SSP_DR(pl022->virtbase)); |
| break; |
| } |
| pl022->rx += (pl022->cur_chip->n_bytes); |
| pl022->exp_fifo_level--; |
| } |
| } |
| /* |
| * When we exit here the TX FIFO should be full and the RX FIFO |
| * should be empty |
| */ |
| } |
| |
| /** |
| * next_transfer - Move to the Next transfer in the current spi message |
| * @pl022: SSP driver private data structure |
| * |
| * This function moves though the linked list of spi transfers in the |
| * current spi message and returns with the state of current spi |
| * message i.e whether its last transfer is done(STATE_DONE) or |
| * Next transfer is ready(STATE_RUNNING) |
| */ |
| static void *next_transfer(struct pl022 *pl022) |
| { |
| struct spi_message *msg = pl022->cur_msg; |
| struct spi_transfer *trans = pl022->cur_transfer; |
| |
| /* Move to next transfer */ |
| if (trans->transfer_list.next != &msg->transfers) { |
| pl022->cur_transfer = |
| list_entry(trans->transfer_list.next, |
| struct spi_transfer, transfer_list); |
| return STATE_RUNNING; |
| } |
| return STATE_DONE; |
| } |
| |
| /* |
| * This DMA functionality is only compiled in if we have |
| * access to the generic DMA devices/DMA engine. |
| */ |
| #ifdef CONFIG_DMA_ENGINE |
| static void unmap_free_dma_scatter(struct pl022 *pl022) |
| { |
| /* Unmap and free the SG tables */ |
| dma_unmap_sg(pl022->dma_tx_channel->device->dev, pl022->sgt_tx.sgl, |
| pl022->sgt_tx.nents, DMA_TO_DEVICE); |
| dma_unmap_sg(pl022->dma_rx_channel->device->dev, pl022->sgt_rx.sgl, |
| pl022->sgt_rx.nents, DMA_FROM_DEVICE); |
| sg_free_table(&pl022->sgt_rx); |
| sg_free_table(&pl022->sgt_tx); |
| } |
| |
| static void dma_callback(void *data) |
| { |
| struct pl022 *pl022 = data; |
| struct spi_message *msg = pl022->cur_msg; |
| |
| BUG_ON(!pl022->sgt_rx.sgl); |
| |
| #ifdef VERBOSE_DEBUG |
| /* |
| * Optionally dump out buffers to inspect contents, this is |
| * good if you want to convince yourself that the loopback |
| * read/write contents are the same, when adopting to a new |
| * DMA engine. |
| */ |
| { |
| struct scatterlist *sg; |
| unsigned int i; |
| |
| dma_sync_sg_for_cpu(&pl022->adev->dev, |
| pl022->sgt_rx.sgl, |
| pl022->sgt_rx.nents, |
| DMA_FROM_DEVICE); |
| |
| for_each_sg(pl022->sgt_rx.sgl, sg, pl022->sgt_rx.nents, i) { |
| dev_dbg(&pl022->adev->dev, "SPI RX SG ENTRY: %d", i); |
| print_hex_dump(KERN_ERR, "SPI RX: ", |
| DUMP_PREFIX_OFFSET, |
| 16, |
| 1, |
| sg_virt(sg), |
| sg_dma_len(sg), |
| 1); |
| } |
| for_each_sg(pl022->sgt_tx.sgl, sg, pl022->sgt_tx.nents, i) { |
| dev_dbg(&pl022->adev->dev, "SPI TX SG ENTRY: %d", i); |
| print_hex_dump(KERN_ERR, "SPI TX: ", |
| DUMP_PREFIX_OFFSET, |
| 16, |
| 1, |
| sg_virt(sg), |
| sg_dma_len(sg), |
| 1); |
| } |
| } |
| #endif |
| |
| unmap_free_dma_scatter(pl022); |
| |
| /* Update total bytes transferred */ |
| msg->actual_length += pl022->cur_transfer->len; |
| if (pl022->cur_transfer->cs_change) |
| pl022_cs_control(pl022, SSP_CHIP_DESELECT); |
| |
| /* Move to next transfer */ |
| msg->state = next_transfer(pl022); |
| tasklet_schedule(&pl022->pump_transfers); |
| } |
| |
| static void setup_dma_scatter(struct pl022 *pl022, |
| void *buffer, |
| unsigned int length, |
| struct sg_table *sgtab) |
| { |
| struct scatterlist *sg; |
| int bytesleft = length; |
| void *bufp = buffer; |
| int mapbytes; |
| int i; |
| |
| if (buffer) { |
| for_each_sg(sgtab->sgl, sg, sgtab->nents, i) { |
| /* |
| * If there are less bytes left than what fits |
| * in the current page (plus page alignment offset) |
| * we just feed in this, else we stuff in as much |
| * as we can. |
| */ |
| if (bytesleft < (PAGE_SIZE - offset_in_page(bufp))) |
| mapbytes = bytesleft; |
| else |
| mapbytes = PAGE_SIZE - offset_in_page(bufp); |
| sg_set_page(sg, virt_to_page(bufp), |
| mapbytes, offset_in_page(bufp)); |
| bufp += mapbytes; |
| bytesleft -= mapbytes; |
| dev_dbg(&pl022->adev->dev, |
| "set RX/TX target page @ %p, %d bytes, %d left\n", |
| bufp, mapbytes, bytesleft); |
| } |
| } else { |
| /* Map the dummy buffer on every page */ |
| for_each_sg(sgtab->sgl, sg, sgtab->nents, i) { |
| if (bytesleft < PAGE_SIZE) |
| mapbytes = bytesleft; |
| else |
| mapbytes = PAGE_SIZE; |
| sg_set_page(sg, virt_to_page(pl022->dummypage), |
| mapbytes, 0); |
| bytesleft -= mapbytes; |
| dev_dbg(&pl022->adev->dev, |
| "set RX/TX to dummy page %d bytes, %d left\n", |
| mapbytes, bytesleft); |
| |
| } |
| } |
| BUG_ON(bytesleft); |
| } |
| |
| /** |
| * configure_dma - configures the channels for the next transfer |
| * @pl022: SSP driver's private data structure |
| */ |
| static int configure_dma(struct pl022 *pl022) |
| { |
| struct dma_slave_config rx_conf = { |
| .src_addr = SSP_DR(pl022->phybase), |
| .direction = DMA_DEV_TO_MEM, |
| .device_fc = false, |
| }; |
| struct dma_slave_config tx_conf = { |
| .dst_addr = SSP_DR(pl022->phybase), |
| .direction = DMA_MEM_TO_DEV, |
| .device_fc = false, |
| }; |
| unsigned int pages; |
| int ret; |
| int rx_sglen, tx_sglen; |
| struct dma_chan *rxchan = pl022->dma_rx_channel; |
| struct dma_chan *txchan = pl022->dma_tx_channel; |
| struct dma_async_tx_descriptor *rxdesc; |
| struct dma_async_tx_descriptor *txdesc; |
| |
| /* Check that the channels are available */ |
| if (!rxchan || !txchan) |
| return -ENODEV; |
| |
| /* |
| * If supplied, the DMA burstsize should equal the FIFO trigger level. |
| * Notice that the DMA engine uses one-to-one mapping. Since we can |
| * not trigger on 2 elements this needs explicit mapping rather than |
| * calculation. |
| */ |
| switch (pl022->rx_lev_trig) { |
| case SSP_RX_1_OR_MORE_ELEM: |
| rx_conf.src_maxburst = 1; |
| break; |
| case SSP_RX_4_OR_MORE_ELEM: |
| rx_conf.src_maxburst = 4; |
| break; |
| case SSP_RX_8_OR_MORE_ELEM: |
| rx_conf.src_maxburst = 8; |
| break; |
| case SSP_RX_16_OR_MORE_ELEM: |
| rx_conf.src_maxburst = 16; |
| break; |
| case SSP_RX_32_OR_MORE_ELEM: |
| rx_conf.src_maxburst = 32; |
| break; |
| default: |
| rx_conf.src_maxburst = pl022->vendor->fifodepth >> 1; |
| break; |
| } |
| |
| switch (pl022->tx_lev_trig) { |
| case SSP_TX_1_OR_MORE_EMPTY_LOC: |
| tx_conf.dst_maxburst = 1; |
| break; |
| case SSP_TX_4_OR_MORE_EMPTY_LOC: |
| tx_conf.dst_maxburst = 4; |
| break; |
| case SSP_TX_8_OR_MORE_EMPTY_LOC: |
| tx_conf.dst_maxburst = 8; |
| break; |
| case SSP_TX_16_OR_MORE_EMPTY_LOC: |
| tx_conf.dst_maxburst = 16; |
| break; |
| case SSP_TX_32_OR_MORE_EMPTY_LOC: |
| tx_conf.dst_maxburst = 32; |
| break; |
| default: |
| tx_conf.dst_maxburst = pl022->vendor->fifodepth >> 1; |
| break; |
| } |
| |
| switch (pl022->read) { |
| case READING_NULL: |
| /* Use the same as for writing */ |
| rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_UNDEFINED; |
| break; |
| case READING_U8: |
| rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE; |
| break; |
| case READING_U16: |
| rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES; |
| break; |
| case READING_U32: |
| rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; |
| break; |
| } |
| |
| switch (pl022->write) { |
| case WRITING_NULL: |
| /* Use the same as for reading */ |
| tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_UNDEFINED; |
| break; |
| case WRITING_U8: |
| tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE; |
| break; |
| case WRITING_U16: |
| tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES; |
| break; |
| case WRITING_U32: |
| tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; |
| break; |
| } |
| |
| /* SPI pecularity: we need to read and write the same width */ |
| if (rx_conf.src_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) |
| rx_conf.src_addr_width = tx_conf.dst_addr_width; |
| if (tx_conf.dst_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) |
| tx_conf.dst_addr_width = rx_conf.src_addr_width; |
| BUG_ON(rx_conf.src_addr_width != tx_conf.dst_addr_width); |
| |
| dmaengine_slave_config(rxchan, &rx_conf); |
| dmaengine_slave_config(txchan, &tx_conf); |
| |
| /* Create sglists for the transfers */ |
| pages = DIV_ROUND_UP(pl022->cur_transfer->len, PAGE_SIZE); |
| dev_dbg(&pl022->adev->dev, "using %d pages for transfer\n", pages); |
| |
| ret = sg_alloc_table(&pl022->sgt_rx, pages, GFP_ATOMIC); |
| if (ret) |
| goto err_alloc_rx_sg; |
| |
| ret = sg_alloc_table(&pl022->sgt_tx, pages, GFP_ATOMIC); |
| if (ret) |
| goto err_alloc_tx_sg; |
| |
| /* Fill in the scatterlists for the RX+TX buffers */ |
| setup_dma_scatter(pl022, pl022->rx, |
| pl022->cur_transfer->len, &pl022->sgt_rx); |
| setup_dma_scatter(pl022, pl022->tx, |
| pl022->cur_transfer->len, &pl022->sgt_tx); |
| |
| /* Map DMA buffers */ |
| rx_sglen = dma_map_sg(rxchan->device->dev, pl022->sgt_rx.sgl, |
| pl022->sgt_rx.nents, DMA_FROM_DEVICE); |
| if (!rx_sglen) |
| goto err_rx_sgmap; |
| |
| tx_sglen = dma_map_sg(txchan->device->dev, pl022->sgt_tx.sgl, |
| pl022->sgt_tx.nents, DMA_TO_DEVICE); |
| if (!tx_sglen) |
| goto err_tx_sgmap; |
| |
| /* Send both scatterlists */ |
| rxdesc = dmaengine_prep_slave_sg(rxchan, |
| pl022->sgt_rx.sgl, |
| rx_sglen, |
| DMA_DEV_TO_MEM, |
| DMA_PREP_INTERRUPT | DMA_CTRL_ACK); |
| if (!rxdesc) |
| goto err_rxdesc; |
| |
| txdesc = dmaengine_prep_slave_sg(txchan, |
| pl022->sgt_tx.sgl, |
| tx_sglen, |
| DMA_MEM_TO_DEV, |
| DMA_PREP_INTERRUPT | DMA_CTRL_ACK); |
| if (!txdesc) |
| goto err_txdesc; |
| |
| /* Put the callback on the RX transfer only, that should finish last */ |
| rxdesc->callback = dma_callback; |
| rxdesc->callback_param = pl022; |
| |
| /* Submit and fire RX and TX with TX last so we're ready to read! */ |
| dmaengine_submit(rxdesc); |
| dmaengine_submit(txdesc); |
| dma_async_issue_pending(rxchan); |
| dma_async_issue_pending(txchan); |
| pl022->dma_running = true; |
| |
| return 0; |
| |
| err_txdesc: |
| dmaengine_terminate_all(txchan); |
| err_rxdesc: |
| dmaengine_terminate_all(rxchan); |
| dma_unmap_sg(txchan->device->dev, pl022->sgt_tx.sgl, |
| pl022->sgt_tx.nents, DMA_TO_DEVICE); |
| err_tx_sgmap: |
| dma_unmap_sg(rxchan->device->dev, pl022->sgt_rx.sgl, |
| pl022->sgt_tx.nents, DMA_FROM_DEVICE); |
| err_rx_sgmap: |
| sg_free_table(&pl022->sgt_tx); |
| err_alloc_tx_sg: |
| sg_free_table(&pl022->sgt_rx); |
| err_alloc_rx_sg: |
| return -ENOMEM; |
| } |
| |
| static int __devinit pl022_dma_probe(struct pl022 *pl022) |
| { |
| dma_cap_mask_t mask; |
| |
| /* Try to acquire a generic DMA engine slave channel */ |
| dma_cap_zero(mask); |
| dma_cap_set(DMA_SLAVE, mask); |
| /* |
| * We need both RX and TX channels to do DMA, else do none |
| * of them. |
| */ |
| pl022->dma_rx_channel = dma_request_channel(mask, |
| pl022->master_info->dma_filter, |
| pl022->master_info->dma_rx_param); |
| if (!pl022->dma_rx_channel) { |
| dev_dbg(&pl022->adev->dev, "no RX DMA channel!\n"); |
| goto err_no_rxchan; |
| } |
| |
| pl022->dma_tx_channel = dma_request_channel(mask, |
| pl022->master_info->dma_filter, |
| pl022->master_info->dma_tx_param); |
| if (!pl022->dma_tx_channel) { |
| dev_dbg(&pl022->adev->dev, "no TX DMA channel!\n"); |
| goto err_no_txchan; |
| } |
| |
| pl022->dummypage = kmalloc(PAGE_SIZE, GFP_KERNEL); |
| if (!pl022->dummypage) { |
| dev_dbg(&pl022->adev->dev, "no DMA dummypage!\n"); |
| goto err_no_dummypage; |
| } |
| |
| dev_info(&pl022->adev->dev, "setup for DMA on RX %s, TX %s\n", |
| dma_chan_name(pl022->dma_rx_channel), |
| dma_chan_name(pl022->dma_tx_channel)); |
| |
| return 0; |
| |
| err_no_dummypage: |
| dma_release_channel(pl022->dma_tx_channel); |
| err_no_txchan: |
| dma_release_channel(pl022->dma_rx_channel); |
| pl022->dma_rx_channel = NULL; |
| err_no_rxchan: |
| dev_err(&pl022->adev->dev, |
| "Failed to work in dma mode, work without dma!\n"); |
| return -ENODEV; |
| } |
| |
| static void terminate_dma(struct pl022 *pl022) |
| { |
| struct dma_chan *rxchan = pl022->dma_rx_channel; |
| struct dma_chan *txchan = pl022->dma_tx_channel; |
| |
| dmaengine_terminate_all(rxchan); |
| dmaengine_terminate_all(txchan); |
| unmap_free_dma_scatter(pl022); |
| pl022->dma_running = false; |
| } |
| |
| static void pl022_dma_remove(struct pl022 *pl022) |
| { |
| if (pl022->dma_running) |
| terminate_dma(pl022); |
| if (pl022->dma_tx_channel) |
| dma_release_channel(pl022->dma_tx_channel); |
| if (pl022->dma_rx_channel) |
| dma_release_channel(pl022->dma_rx_channel); |
| kfree(pl022->dummypage); |
| } |
| |
| #else |
| static inline int configure_dma(struct pl022 *pl022) |
| { |
| return -ENODEV; |
| } |
| |
| static inline int pl022_dma_probe(struct pl022 *pl022) |
| { |
| return 0; |
| } |
| |
| static inline void pl022_dma_remove(struct pl022 *pl022) |
| { |
| } |
| #endif |
| |
| /** |
| * pl022_interrupt_handler - Interrupt handler for SSP controller |
| * |
| * This function handles interrupts generated for an interrupt based transfer. |
| * If a receive overrun (ROR) interrupt is there then we disable SSP, flag the |
| * current message's state as STATE_ERROR and schedule the tasklet |
| * pump_transfers which will do the postprocessing of the current message by |
| * calling giveback(). Otherwise it reads data from RX FIFO till there is no |
| * more data, and writes data in TX FIFO till it is not full. If we complete |
| * the transfer we move to the next transfer and schedule the tasklet. |
| */ |
| static irqreturn_t pl022_interrupt_handler(int irq, void *dev_id) |
| { |
| struct pl022 *pl022 = dev_id; |
| struct spi_message *msg = pl022->cur_msg; |
| u16 irq_status = 0; |
| u16 flag = 0; |
| |
| if (unlikely(!msg)) { |
| dev_err(&pl022->adev->dev, |
| "bad message state in interrupt handler"); |
| /* Never fail */ |
| return IRQ_HANDLED; |
| } |
| |
| /* Read the Interrupt Status Register */ |
| irq_status = readw(SSP_MIS(pl022->virtbase)); |
| |
| if (unlikely(!irq_status)) |
| return IRQ_NONE; |
| |
| /* |
| * This handles the FIFO interrupts, the timeout |
| * interrupts are flatly ignored, they cannot be |
| * trusted. |
| */ |
| if (unlikely(irq_status & SSP_MIS_MASK_RORMIS)) { |
| /* |
| * Overrun interrupt - bail out since our Data has been |
| * corrupted |
| */ |
| dev_err(&pl022->adev->dev, "FIFO overrun\n"); |
| if (readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RFF) |
| dev_err(&pl022->adev->dev, |
| "RXFIFO is full\n"); |
| if (readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_TNF) |
| dev_err(&pl022->adev->dev, |
| "TXFIFO is full\n"); |
| |
| /* |
| * Disable and clear interrupts, disable SSP, |
| * mark message with bad status so it can be |
| * retried. |
| */ |
| writew(DISABLE_ALL_INTERRUPTS, |
| SSP_IMSC(pl022->virtbase)); |
| writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase)); |
| writew((readw(SSP_CR1(pl022->virtbase)) & |
| (~SSP_CR1_MASK_SSE)), SSP_CR1(pl022->virtbase)); |
| msg->state = STATE_ERROR; |
| |
| /* Schedule message queue handler */ |
| tasklet_schedule(&pl022->pump_transfers); |
| return IRQ_HANDLED; |
| } |
| |
| readwriter(pl022); |
| |
| if ((pl022->tx == pl022->tx_end) && (flag == 0)) { |
| flag = 1; |
| /* Disable Transmit interrupt, enable receive interrupt */ |
| writew((readw(SSP_IMSC(pl022->virtbase)) & |
| ~SSP_IMSC_MASK_TXIM) | SSP_IMSC_MASK_RXIM, |
| SSP_IMSC(pl022->virtbase)); |
| } |
| |
| /* |
| * Since all transactions must write as much as shall be read, |
| * we can conclude the entire transaction once RX is complete. |
| * At this point, all TX will always be finished. |
| */ |
| if (pl022->rx >= pl022->rx_end) { |
| writew(DISABLE_ALL_INTERRUPTS, |
| SSP_IMSC(pl022->virtbase)); |
| writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase)); |
| if (unlikely(pl022->rx > pl022->rx_end)) { |
| dev_warn(&pl022->adev->dev, "read %u surplus " |
| "bytes (did you request an odd " |
| "number of bytes on a 16bit bus?)\n", |
| (u32) (pl022->rx - pl022->rx_end)); |
| } |
| /* Update total bytes transferred */ |
| msg->actual_length += pl022->cur_transfer->len; |
| if (pl022->cur_transfer->cs_change) |
| pl022_cs_control(pl022, SSP_CHIP_DESELECT); |
| /* Move to next transfer */ |
| msg->state = next_transfer(pl022); |
| tasklet_schedule(&pl022->pump_transfers); |
| return IRQ_HANDLED; |
| } |
| |
| return IRQ_HANDLED; |
| } |
| |
| /** |
| * This sets up the pointers to memory for the next message to |
| * send out on the SPI bus. |
| */ |
| static int set_up_next_transfer(struct pl022 *pl022, |
| struct spi_transfer *transfer) |
| { |
| int residue; |
| |
| /* Sanity check the message for this bus width */ |
| residue = pl022->cur_transfer->len % pl022->cur_chip->n_bytes; |
| if (unlikely(residue != 0)) { |
| dev_err(&pl022->adev->dev, |
| "message of %u bytes to transmit but the current " |
| "chip bus has a data width of %u bytes!\n", |
| pl022->cur_transfer->len, |
| pl022->cur_chip->n_bytes); |
| dev_err(&pl022->adev->dev, "skipping this message\n"); |
| return -EIO; |
| } |
| pl022->tx = (void *)transfer->tx_buf; |
| pl022->tx_end = pl022->tx + pl022->cur_transfer->len; |
| pl022->rx = (void *)transfer->rx_buf; |
| pl022->rx_end = pl022->rx + pl022->cur_transfer->len; |
| pl022->write = |
| pl022->tx ? pl022->cur_chip->write : WRITING_NULL; |
| pl022->read = pl022->rx ? pl022->cur_chip->read : READING_NULL; |
| return 0; |
| } |
| |
| /** |
| * pump_transfers - Tasklet function which schedules next transfer |
| * when running in interrupt or DMA transfer mode. |
| * @data: SSP driver private data structure |
| * |
| */ |
| static void pump_transfers(unsigned long data) |
| { |
| struct pl022 *pl022 = (struct pl022 *) data; |
| struct spi_message *message = NULL; |
| struct spi_transfer *transfer = NULL; |
| struct spi_transfer *previous = NULL; |
| |
| /* Get current state information */ |
| message = pl022->cur_msg; |
| transfer = pl022->cur_transfer; |
| |
| /* Handle for abort */ |
| if (message->state == STATE_ERROR) { |
| message->status = -EIO; |
| giveback(pl022); |
| return; |
| } |
| |
| /* Handle end of message */ |
| if (message->state == STATE_DONE) { |
| message->status = 0; |
| giveback(pl022); |
| return; |
| } |
| |
| /* Delay if requested at end of transfer before CS change */ |
| if (message->state == STATE_RUNNING) { |
| previous = list_entry(transfer->transfer_list.prev, |
| struct spi_transfer, |
| transfer_list); |
| if (previous->delay_usecs) |
| /* |
| * FIXME: This runs in interrupt context. |
| * Is this really smart? |
| */ |
| udelay(previous->delay_usecs); |
| |
| /* Reselect chip select only if cs_change was requested */ |
| if (previous->cs_change) |
| pl022_cs_control(pl022, SSP_CHIP_SELECT); |
| } else { |
| /* STATE_START */ |
| message->state = STATE_RUNNING; |
| } |
| |
| if (set_up_next_transfer(pl022, transfer)) { |
| message->state = STATE_ERROR; |
| message->status = -EIO; |
| giveback(pl022); |
| return; |
| } |
| /* Flush the FIFOs and let's go! */ |
| flush(pl022); |
| |
| if (pl022->cur_chip->enable_dma) { |
| if (configure_dma(pl022)) { |
| dev_dbg(&pl022->adev->dev, |
| "configuration of DMA failed, fall back to interrupt mode\n"); |
| goto err_config_dma; |
| } |
| return; |
| } |
| |
| err_config_dma: |
| /* enable all interrupts except RX */ |
| writew(ENABLE_ALL_INTERRUPTS & ~SSP_IMSC_MASK_RXIM, SSP_IMSC(pl022->virtbase)); |
| } |
| |
| static void do_interrupt_dma_transfer(struct pl022 *pl022) |
| { |
| /* |
| * Default is to enable all interrupts except RX - |
| * this will be enabled once TX is complete |
| */ |
| u32 irqflags = ENABLE_ALL_INTERRUPTS & ~SSP_IMSC_MASK_RXIM; |
| |
| /* Enable target chip, if not already active */ |
| if (!pl022->next_msg_cs_active) |
| pl022_cs_control(pl022, SSP_CHIP_SELECT); |
| |
| if (set_up_next_transfer(pl022, pl022->cur_transfer)) { |
| /* Error path */ |
| pl022->cur_msg->state = STATE_ERROR; |
| pl022->cur_msg->status = -EIO; |
| giveback(pl022); |
| return; |
| } |
| /* If we're using DMA, set up DMA here */ |
| if (pl022->cur_chip->enable_dma) { |
| /* Configure DMA transfer */ |
| if (configure_dma(pl022)) { |
| dev_dbg(&pl022->adev->dev, |
| "configuration of DMA failed, fall back to interrupt mode\n"); |
| goto err_config_dma; |
| } |
| /* Disable interrupts in DMA mode, IRQ from DMA controller */ |
| irqflags = DISABLE_ALL_INTERRUPTS; |
| } |
| err_config_dma: |
| /* Enable SSP, turn on interrupts */ |
| writew((readw(SSP_CR1(pl022->virtbase)) | SSP_CR1_MASK_SSE), |
| SSP_CR1(pl022->virtbase)); |
| writew(irqflags, SSP_IMSC(pl022->virtbase)); |
| } |
| |
| static void do_polling_transfer(struct pl022 *pl022) |
| { |
| struct spi_message *message = NULL; |
| struct spi_transfer *transfer = NULL; |
| struct spi_transfer *previous = NULL; |
| struct chip_data *chip; |
| unsigned long time, timeout; |
| |
| chip = pl022->cur_chip; |
| message = pl022->cur_msg; |
| |
| while (message->state != STATE_DONE) { |
| /* Handle for abort */ |
| if (message->state == STATE_ERROR) |
| break; |
| transfer = pl022->cur_transfer; |
| |
| /* Delay if requested at end of transfer */ |
| if (message->state == STATE_RUNNING) { |
| previous = |
| list_entry(transfer->transfer_list.prev, |
| struct spi_transfer, transfer_list); |
| if (previous->delay_usecs) |
| udelay(previous->delay_usecs); |
| if (previous->cs_change) |
| pl022_cs_control(pl022, SSP_CHIP_SELECT); |
| } else { |
| /* STATE_START */ |
| message->state = STATE_RUNNING; |
| if (!pl022->next_msg_cs_active) |
| pl022_cs_control(pl022, SSP_CHIP_SELECT); |
| } |
| |
| /* Configuration Changing Per Transfer */ |
| if (set_up_next_transfer(pl022, transfer)) { |
| /* Error path */ |
| message->state = STATE_ERROR; |
| break; |
| } |
| /* Flush FIFOs and enable SSP */ |
| flush(pl022); |
| writew((readw(SSP_CR1(pl022->virtbase)) | SSP_CR1_MASK_SSE), |
| SSP_CR1(pl022->virtbase)); |
| |
| dev_dbg(&pl022->adev->dev, "polling transfer ongoing ...\n"); |
| |
| timeout = jiffies + msecs_to_jiffies(SPI_POLLING_TIMEOUT); |
| while (pl022->tx < pl022->tx_end || pl022->rx < pl022->rx_end) { |
| time = jiffies; |
| readwriter(pl022); |
| if (time_after(time, timeout)) { |
| dev_warn(&pl022->adev->dev, |
| "%s: timeout!\n", __func__); |
| message->state = STATE_ERROR; |
| goto out; |
| } |
| cpu_relax(); |
| } |
| |
| /* Update total byte transferred */ |
| message->actual_length += pl022->cur_transfer->len; |
| if (pl022->cur_transfer->cs_change) |
| pl022_cs_control(pl022, SSP_CHIP_DESELECT); |
| /* Move to next transfer */ |
| message->state = next_transfer(pl022); |
| } |
| out: |
| /* Handle end of message */ |
| if (message->state == STATE_DONE) |
| message->status = 0; |
| else |
| message->status = -EIO; |
| |
| giveback(pl022); |
| return; |
| } |
| |
| static int pl022_transfer_one_message(struct spi_master *master, |
| struct spi_message *msg) |
| { |
| struct pl022 *pl022 = spi_master_get_devdata(master); |
| |
| /* Initial message state */ |
| pl022->cur_msg = msg; |
| msg->state = STATE_START; |
| |
| pl022->cur_transfer = list_entry(msg->transfers.next, |
| struct spi_transfer, transfer_list); |
| |
| /* Setup the SPI using the per chip configuration */ |
| pl022->cur_chip = spi_get_ctldata(msg->spi); |
| pl022->cur_cs = pl022->chipselects[msg->spi->chip_select]; |
| |
| restore_state(pl022); |
| flush(pl022); |
| |
| if (pl022->cur_chip->xfer_type == POLLING_TRANSFER) |
| do_polling_transfer(pl022); |
| else |
| do_interrupt_dma_transfer(pl022); |
| |
| return 0; |
| } |
| |
| static int pl022_prepare_transfer_hardware(struct spi_master *master) |
| { |
| struct pl022 *pl022 = spi_master_get_devdata(master); |
| |
| /* |
| * Just make sure we have all we need to run the transfer by syncing |
| * with the runtime PM framework. |
| */ |
| pm_runtime_get_sync(&pl022->adev->dev); |
| return 0; |
| } |
| |
| static int pl022_unprepare_transfer_hardware(struct spi_master *master) |
| { |
| struct pl022 *pl022 = spi_master_get_devdata(master); |
| |
| /* nothing more to do - disable spi/ssp and power off */ |
| writew((readw(SSP_CR1(pl022->virtbase)) & |
| (~SSP_CR1_MASK_SSE)), SSP_CR1(pl022->virtbase)); |
| |
| if (pl022->master_info->autosuspend_delay > 0) { |
| pm_runtime_mark_last_busy(&pl022->adev->dev); |
| pm_runtime_put_autosuspend(&pl022->adev->dev); |
| } else { |
| pm_runtime_put(&pl022->adev->dev); |
| } |
| |
| return 0; |
| } |
| |
| static int verify_controller_parameters(struct pl022 *pl022, |
| struct pl022_config_chip const *chip_info) |
| { |
| if ((chip_info->iface < SSP_INTERFACE_MOTOROLA_SPI) |
| || (chip_info->iface > SSP_INTERFACE_UNIDIRECTIONAL)) { |
| dev_err(&pl022->adev->dev, |
| "interface is configured incorrectly\n"); |
| return -EINVAL; |
| } |
| if ((chip_info->iface == SSP_INTERFACE_UNIDIRECTIONAL) && |
| (!pl022->vendor->unidir)) { |
| dev_err(&pl022->adev->dev, |
| "unidirectional mode not supported in this " |
| "hardware version\n"); |
| return -EINVAL; |
| } |
| if ((chip_info->hierarchy != SSP_MASTER) |
| && (chip_info->hierarchy != SSP_SLAVE)) { |
| dev_err(&pl022->adev->dev, |
| "hierarchy is configured incorrectly\n"); |
| return -EINVAL; |
| } |
| if ((chip_info->com_mode != INTERRUPT_TRANSFER) |
| && (chip_info->com_mode != DMA_TRANSFER) |
| && (chip_info->com_mode != POLLING_TRANSFER)) { |
| dev_err(&pl022->adev->dev, |
| "Communication mode is configured incorrectly\n"); |
| return -EINVAL; |
| } |
| switch (chip_info->rx_lev_trig) { |
| case SSP_RX_1_OR_MORE_ELEM: |
| case SSP_RX_4_OR_MORE_ELEM: |
| case SSP_RX_8_OR_MORE_ELEM: |
| /* These are always OK, all variants can handle this */ |
| break; |
| case SSP_RX_16_OR_MORE_ELEM: |
| if (pl022->vendor->fifodepth < 16) { |
| dev_err(&pl022->adev->dev, |
| "RX FIFO Trigger Level is configured incorrectly\n"); |
| return -EINVAL; |
| } |
| break; |
| case SSP_RX_32_OR_MORE_ELEM: |
| if (pl022->vendor->fifodepth < 32) { |
| dev_err(&pl022->adev->dev, |
| "RX FIFO Trigger Level is configured incorrectly\n"); |
| return -EINVAL; |
| } |
| break; |
| default: |
| dev_err(&pl022->adev->dev, |
| "RX FIFO Trigger Level is configured incorrectly\n"); |
| return -EINVAL; |
| break; |
| } |
| switch (chip_info->tx_lev_trig) { |
| case SSP_TX_1_OR_MORE_EMPTY_LOC: |
| case SSP_TX_4_OR_MORE_EMPTY_LOC: |
| case SSP_TX_8_OR_MORE_EMPTY_LOC: |
| /* These are always OK, all variants can handle this */ |
| break; |
| case SSP_TX_16_OR_MORE_EMPTY_LOC: |
| if (pl022->vendor->fifodepth < 16) { |
| dev_err(&pl022->adev->dev, |
| "TX FIFO Trigger Level is configured incorrectly\n"); |
| return -EINVAL; |
| } |
| break; |
| case SSP_TX_32_OR_MORE_EMPTY_LOC: |
| if (pl022->vendor->fifodepth < 32) { |
| dev_err(&pl022->adev->dev, |
| "TX FIFO Trigger Level is configured incorrectly\n"); |
| return -EINVAL; |
| } |
| break; |
| default: |
| dev_err(&pl022->adev->dev, |
| "TX FIFO Trigger Level is configured incorrectly\n"); |
| return -EINVAL; |
| break; |
| } |
| if (chip_info->iface == SSP_INTERFACE_NATIONAL_MICROWIRE) { |
| if ((chip_info->ctrl_len < SSP_BITS_4) |
| || (chip_info->ctrl_len > SSP_BITS_32)) { |
| dev_err(&pl022->adev->dev, |
| "CTRL LEN is configured incorrectly\n"); |
| return -EINVAL; |
| } |
| if ((chip_info->wait_state != SSP_MWIRE_WAIT_ZERO) |
| && (chip_info->wait_state != SSP_MWIRE_WAIT_ONE)) { |
| dev_err(&pl022->adev->dev, |
| "Wait State is configured incorrectly\n"); |
| return -EINVAL; |
| } |
| /* Half duplex is only available in the ST Micro version */ |
| if (pl022->vendor->extended_cr) { |
| if ((chip_info->duplex != |
| SSP_MICROWIRE_CHANNEL_FULL_DUPLEX) |
| && (chip_info->duplex != |
| SSP_MICROWIRE_CHANNEL_HALF_DUPLEX)) { |
| dev_err(&pl022->adev->dev, |
| "Microwire duplex mode is configured incorrectly\n"); |
| return -EINVAL; |
| } |
| } else { |
| if (chip_info->duplex != SSP_MICROWIRE_CHANNEL_FULL_DUPLEX) |
| dev_err(&pl022->adev->dev, |
| "Microwire half duplex mode requested," |
| " but this is only available in the" |
| " ST version of PL022\n"); |
| return -EINVAL; |
| } |
| } |
| return 0; |
| } |
| |
| static inline u32 spi_rate(u32 rate, u16 cpsdvsr, u16 scr) |
| { |
| return rate / (cpsdvsr * (1 + scr)); |
| } |
| |
| static int calculate_effective_freq(struct pl022 *pl022, int freq, struct |
| ssp_clock_params * clk_freq) |
| { |
| /* Lets calculate the frequency parameters */ |
| u16 cpsdvsr = CPSDVR_MIN, scr = SCR_MIN; |
| u32 rate, max_tclk, min_tclk, best_freq = 0, best_cpsdvsr = 0, |
| best_scr = 0, tmp, found = 0; |
| |
| rate = clk_get_rate(pl022->clk); |
| /* cpsdvscr = 2 & scr 0 */ |
| max_tclk = spi_rate(rate, CPSDVR_MIN, SCR_MIN); |
| /* cpsdvsr = 254 & scr = 255 */ |
| min_tclk = spi_rate(rate, CPSDVR_MAX, SCR_MAX); |
| |
| if (freq > max_tclk) |
| dev_warn(&pl022->adev->dev, |
| "Max speed that can be programmed is %d Hz, you requested %d\n", |
| max_tclk, freq); |
| |
| if (freq < min_tclk) { |
| dev_err(&pl022->adev->dev, |
| "Requested frequency: %d Hz is less than minimum possible %d Hz\n", |
| freq, min_tclk); |
| return -EINVAL; |
| } |
| |
| /* |
| * best_freq will give closest possible available rate (<= requested |
| * freq) for all values of scr & cpsdvsr. |
| */ |
| while ((cpsdvsr <= CPSDVR_MAX) && !found) { |
| while (scr <= SCR_MAX) { |
| tmp = spi_rate(rate, cpsdvsr, scr); |
| |
| if (tmp > freq) { |
| /* we need lower freq */ |
| scr++; |
| continue; |
| } |
| |
| /* |
| * If found exact value, mark found and break. |
| * If found more closer value, update and break. |
| */ |
| if (tmp > best_freq) { |
| best_freq = tmp; |
| best_cpsdvsr = cpsdvsr; |
| best_scr = scr; |
| |
| if (tmp == freq) |
| found = 1; |
| } |
| /* |
| * increased scr will give lower rates, which are not |
| * required |
| */ |
| break; |
| } |
| cpsdvsr += 2; |
| scr = SCR_MIN; |
| } |
| |
| WARN(!best_freq, "pl022: Matching cpsdvsr and scr not found for %d Hz rate \n", |
| freq); |
| |
| clk_freq->cpsdvsr = (u8) (best_cpsdvsr & 0xFF); |
| clk_freq->scr = (u8) (best_scr & 0xFF); |
| dev_dbg(&pl022->adev->dev, |
| "SSP Target Frequency is: %u, Effective Frequency is %u\n", |
| freq, best_freq); |
| dev_dbg(&pl022->adev->dev, "SSP cpsdvsr = %d, scr = %d\n", |
| clk_freq->cpsdvsr, clk_freq->scr); |
| |
| return 0; |
| } |
| |
| /* |
| * A piece of default chip info unless the platform |
| * supplies it. |
| */ |
| static const struct pl022_config_chip pl022_default_chip_info = { |
| .com_mode = POLLING_TRANSFER, |
| .iface = SSP_INTERFACE_MOTOROLA_SPI, |
| .hierarchy = SSP_SLAVE, |
| .slave_tx_disable = DO_NOT_DRIVE_TX, |
| .rx_lev_trig = SSP_RX_1_OR_MORE_ELEM, |
| .tx_lev_trig = SSP_TX_1_OR_MORE_EMPTY_LOC, |
| .ctrl_len = SSP_BITS_8, |
| .wait_state = SSP_MWIRE_WAIT_ZERO, |
| .duplex = SSP_MICROWIRE_CHANNEL_FULL_DUPLEX, |
| .cs_control = null_cs_control, |
| }; |
| |
| /** |
| * pl022_setup - setup function registered to SPI master framework |
| * @spi: spi device which is requesting setup |
| * |
| * This function is registered to the SPI framework for this SPI master |
| * controller. If it is the first time when setup is called by this device, |
| * this function will initialize the runtime state for this chip and save |
| * the same in the device structure. Else it will update the runtime info |
| * with the updated chip info. Nothing is really being written to the |
| * controller hardware here, that is not done until the actual transfer |
| * commence. |
| */ |
| static int pl022_setup(struct spi_device *spi) |
| { |
| struct pl022_config_chip const *chip_info; |
| struct pl022_config_chip chip_info_dt; |
| struct chip_data *chip; |
| struct ssp_clock_params clk_freq = { .cpsdvsr = 0, .scr = 0}; |
| int status = 0; |
| struct pl022 *pl022 = spi_master_get_devdata(spi->master); |
| unsigned int bits = spi->bits_per_word; |
| u32 tmp; |
| struct device_node *np = spi->dev.of_node; |
| |
| if (!spi->max_speed_hz) |
| return -EINVAL; |
| |
| /* Get controller_state if one is supplied */ |
| chip = spi_get_ctldata(spi); |
| |
| if (chip == NULL) { |
| chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL); |
| if (!chip) { |
| dev_err(&spi->dev, |
| "cannot allocate controller state\n"); |
| return -ENOMEM; |
| } |
| dev_dbg(&spi->dev, |
| "allocated memory for controller's runtime state\n"); |
| } |
| |
| /* Get controller data if one is supplied */ |
| chip_info = spi->controller_data; |
| |
| if (chip_info == NULL) { |
| if (np) { |
| chip_info_dt = pl022_default_chip_info; |
| |
| chip_info_dt.hierarchy = SSP_MASTER; |
| of_property_read_u32(np, "pl022,interface", |
| &chip_info_dt.iface); |
| of_property_read_u32(np, "pl022,com-mode", |
| &chip_info_dt.com_mode); |
| of_property_read_u32(np, "pl022,rx-level-trig", |
| &chip_info_dt.rx_lev_trig); |
| of_property_read_u32(np, "pl022,tx-level-trig", |
| &chip_info_dt.tx_lev_trig); |
| of_property_read_u32(np, "pl022,ctrl-len", |
| &chip_info_dt.ctrl_len); |
| of_property_read_u32(np, "pl022,wait-state", |
| &chip_info_dt.wait_state); |
| of_property_read_u32(np, "pl022,duplex", |
| &chip_info_dt.duplex); |
| |
| chip_info = &chip_info_dt; |
| } else { |
| chip_info = &pl022_default_chip_info; |
| /* spi_board_info.controller_data not is supplied */ |
| dev_dbg(&spi->dev, |
| "using default controller_data settings\n"); |
| } |
| } else |
| dev_dbg(&spi->dev, |
| "using user supplied controller_data settings\n"); |
| |
| /* |
| * We can override with custom divisors, else we use the board |
| * frequency setting |
| */ |
| if ((0 == chip_info->clk_freq.cpsdvsr) |
| && (0 == chip_info->clk_freq.scr)) { |
| status = calculate_effective_freq(pl022, |
| spi->max_speed_hz, |
| &clk_freq); |
| if (status < 0) |
| goto err_config_params; |
| } else { |
| memcpy(&clk_freq, &chip_info->clk_freq, sizeof(clk_freq)); |
| if ((clk_freq.cpsdvsr % 2) != 0) |
| clk_freq.cpsdvsr = |
| clk_freq.cpsdvsr - 1; |
| } |
| if ((clk_freq.cpsdvsr < CPSDVR_MIN) |
| || (clk_freq.cpsdvsr > CPSDVR_MAX)) { |
| status = -EINVAL; |
| dev_err(&spi->dev, |
| "cpsdvsr is configured incorrectly\n"); |
| goto err_config_params; |
| } |
| |
| status = verify_controller_parameters(pl022, chip_info); |
| if (status) { |
| dev_err(&spi->dev, "controller data is incorrect"); |
| goto err_config_params; |
| } |
| |
| pl022->rx_lev_trig = chip_info->rx_lev_trig; |
| pl022->tx_lev_trig = chip_info->tx_lev_trig; |
| |
| /* Now set controller state based on controller data */ |
| chip->xfer_type = chip_info->com_mode; |
| if (!chip_info->cs_control) { |
| chip->cs_control = null_cs_control; |
| if (!gpio_is_valid(pl022->chipselects[spi->chip_select])) |
| dev_warn(&spi->dev, |
| "invalid chip select\n"); |
| } else |
| chip->cs_control = chip_info->cs_control; |
| |
| /* Check bits per word with vendor specific range */ |
| if ((bits <= 3) || (bits > pl022->vendor->max_bpw)) { |
| status = -ENOTSUPP; |
| dev_err(&spi->dev, "illegal data size for this controller!\n"); |
| dev_err(&spi->dev, "This controller can only handle 4 <= n <= %d bit words\n", |
| pl022->vendor->max_bpw); |
| goto err_config_params; |
| } else if (bits <= 8) { |
| dev_dbg(&spi->dev, "4 <= n <=8 bits per word\n"); |
| chip->n_bytes = 1; |
| chip->read = READING_U8; |
| chip->write = WRITING_U8; |
| } else if (bits <= 16) { |
| dev_dbg(&spi->dev, "9 <= n <= 16 bits per word\n"); |
| chip->n_bytes = 2; |
| chip->read = READING_U16; |
| chip->write = WRITING_U16; |
| } else { |
| dev_dbg(&spi->dev, "17 <= n <= 32 bits per word\n"); |
| chip->n_bytes = 4; |
| chip->read = READING_U32; |
| chip->write = WRITING_U32; |
| } |
| |
| /* Now Initialize all register settings required for this chip */ |
| chip->cr0 = 0; |
| chip->cr1 = 0; |
| chip->dmacr = 0; |
| chip->cpsr = 0; |
| if ((chip_info->com_mode == DMA_TRANSFER) |
| && ((pl022->master_info)->enable_dma)) { |
| chip->enable_dma = true; |
| dev_dbg(&spi->dev, "DMA mode set in controller state\n"); |
| SSP_WRITE_BITS(chip->dmacr, SSP_DMA_ENABLED, |
| SSP_DMACR_MASK_RXDMAE, 0); |
| SSP_WRITE_BITS(chip->dmacr, SSP_DMA_ENABLED, |
| SSP_DMACR_MASK_TXDMAE, 1); |
| } else { |
| chip->enable_dma = false; |
| dev_dbg(&spi->dev, "DMA mode NOT set in controller state\n"); |
| SSP_WRITE_BITS(chip->dmacr, SSP_DMA_DISABLED, |
| SSP_DMACR_MASK_RXDMAE, 0); |
| SSP_WRITE_BITS(chip->dmacr, SSP_DMA_DISABLED, |
| SSP_DMACR_MASK_TXDMAE, 1); |
| } |
| |
| chip->cpsr = clk_freq.cpsdvsr; |
| |
| /* Special setup for the ST micro extended control registers */ |
| if (pl022->vendor->extended_cr) { |
| u32 etx; |
| |
| if (pl022->vendor->pl023) { |
| /* These bits are only in the PL023 */ |
| SSP_WRITE_BITS(chip->cr1, chip_info->clkdelay, |
| SSP_CR1_MASK_FBCLKDEL_ST, 13); |
| } else { |
| /* These bits are in the PL022 but not PL023 */ |
| SSP_WRITE_BITS(chip->cr0, chip_info->duplex, |
| SSP_CR0_MASK_HALFDUP_ST, 5); |
| SSP_WRITE_BITS(chip->cr0, chip_info->ctrl_len, |
| SSP_CR0_MASK_CSS_ST, 16); |
| SSP_WRITE_BITS(chip->cr0, chip_info->iface, |
| SSP_CR0_MASK_FRF_ST, 21); |
| SSP_WRITE_BITS(chip->cr1, chip_info->wait_state, |
| SSP_CR1_MASK_MWAIT_ST, 6); |
| } |
| SSP_WRITE_BITS(chip->cr0, bits - 1, |
| SSP_CR0_MASK_DSS_ST, 0); |
| |
| if (spi->mode & SPI_LSB_FIRST) { |
| tmp = SSP_RX_LSB; |
| etx = SSP_TX_LSB; |
| } else { |
| tmp = SSP_RX_MSB; |
| etx = SSP_TX_MSB; |
| } |
| SSP_WRITE_BITS(chip->cr1, tmp, SSP_CR1_MASK_RENDN_ST, 4); |
| SSP_WRITE_BITS(chip->cr1, etx, SSP_CR1_MASK_TENDN_ST, 5); |
| SSP_WRITE_BITS(chip->cr1, chip_info->rx_lev_trig, |
| SSP_CR1_MASK_RXIFLSEL_ST, 7); |
| SSP_WRITE_BITS(chip->cr1, chip_info->tx_lev_trig, |
| SSP_CR1_MASK_TXIFLSEL_ST, 10); |
| } else { |
| SSP_WRITE_BITS(chip->cr0, bits - 1, |
| SSP_CR0_MASK_DSS, 0); |
| SSP_WRITE_BITS(chip->cr0, chip_info->iface, |
| SSP_CR0_MASK_FRF, 4); |
| } |
| |
| /* Stuff that is common for all versions */ |
| if (spi->mode & SPI_CPOL) |
| tmp = SSP_CLK_POL_IDLE_HIGH; |
| else |
| tmp = SSP_CLK_POL_IDLE_LOW; |
| SSP_WRITE_BITS(chip->cr0, tmp, SSP_CR0_MASK_SPO, 6); |
| |
| if (spi->mode & SPI_CPHA) |
| tmp = SSP_CLK_SECOND_EDGE; |
| else |
| tmp = SSP_CLK_FIRST_EDGE; |
| SSP_WRITE_BITS(chip->cr0, tmp, SSP_CR0_MASK_SPH, 7); |
| |
| SSP_WRITE_BITS(chip->cr0, clk_freq.scr, SSP_CR0_MASK_SCR, 8); |
| /* Loopback is available on all versions except PL023 */ |
| if (pl022->vendor->loopback) { |
| if (spi->mode & SPI_LOOP) |
| tmp = LOOPBACK_ENABLED; |
| else |
| tmp = LOOPBACK_DISABLED; |
| SSP_WRITE_BITS(chip->cr1, tmp, SSP_CR1_MASK_LBM, 0); |
| } |
| SSP_WRITE_BITS(chip->cr1, SSP_DISABLED, SSP_CR1_MASK_SSE, 1); |
| SSP_WRITE_BITS(chip->cr1, chip_info->hierarchy, SSP_CR1_MASK_MS, 2); |
| SSP_WRITE_BITS(chip->cr1, chip_info->slave_tx_disable, SSP_CR1_MASK_SOD, |
| 3); |
| |
| /* Save controller_state */ |
| spi_set_ctldata(spi, chip); |
| return status; |
| err_config_params: |
| spi_set_ctldata(spi, NULL); |
| kfree(chip); |
| return status; |
| } |
| |
| /** |
| * pl022_cleanup - cleanup function registered to SPI master framework |
| * @spi: spi device which is requesting cleanup |
| * |
| * This function is registered to the SPI framework for this SPI master |
| * controller. It will free the runtime state of chip. |
| */ |
| static void pl022_cleanup(struct spi_device *spi) |
| { |
| struct chip_data *chip = spi_get_ctldata(spi); |
| |
| spi_set_ctldata(spi, NULL); |
| kfree(chip); |
| } |
| |
| static struct pl022_ssp_controller * |
| pl022_platform_data_dt_get(struct device *dev) |
| { |
| struct device_node *np = dev->of_node; |
| struct pl022_ssp_controller *pd; |
| u32 tmp; |
| |
| if (!np) { |
| dev_err(dev, "no dt node defined\n"); |
| return NULL; |
| } |
| |
| pd = devm_kzalloc(dev, sizeof(struct pl022_ssp_controller), GFP_KERNEL); |
| if (!pd) { |
| dev_err(dev, "cannot allocate platform data memory\n"); |
| return NULL; |
| } |
| |
| pd->bus_id = -1; |
| of_property_read_u32(np, "num-cs", &tmp); |
| pd->num_chipselect = tmp; |
| of_property_read_u32(np, "pl022,autosuspend-delay", |
| &pd->autosuspend_delay); |
| pd->rt = of_property_read_bool(np, "pl022,rt"); |
| |
| return pd; |
| } |
| |
| static int __devinit |
| pl022_probe(struct amba_device *adev, const struct amba_id *id) |
| { |
| struct device *dev = &adev->dev; |
| struct pl022_ssp_controller *platform_info = adev->dev.platform_data; |
| struct spi_master *master; |
| struct pl022 *pl022 = NULL; /*Data for this driver */ |
| struct device_node *np = adev->dev.of_node; |
| int status = 0, i, num_cs; |
| |
| dev_info(&adev->dev, |
| "ARM PL022 driver, device ID: 0x%08x\n", adev->periphid); |
| if (!platform_info && IS_ENABLED(CONFIG_OF)) |
| platform_info = pl022_platform_data_dt_get(dev); |
| |
| if (!platform_info) { |
| dev_err(dev, "probe: no platform data defined\n"); |
| return -ENODEV; |
| } |
| |
| if (platform_info->num_chipselect) { |
| num_cs = platform_info->num_chipselect; |
| } else { |
| dev_err(dev, "probe: no chip select defined\n"); |
| return -ENODEV; |
| } |
| |
| /* Allocate master with space for data */ |
| master = spi_alloc_master(dev, sizeof(struct pl022)); |
| if (master == NULL) { |
| dev_err(&adev->dev, "probe - cannot alloc SPI master\n"); |
| return -ENOMEM; |
| } |
| |
| pl022 = spi_master_get_devdata(master); |
| pl022->master = master; |
| pl022->master_info = platform_info; |
| pl022->adev = adev; |
| pl022->vendor = id->data; |
| pl022->chipselects = devm_kzalloc(dev, num_cs * sizeof(int), |
| GFP_KERNEL); |
| |
| pl022->pinctrl = devm_pinctrl_get(dev); |
| if (IS_ERR(pl022->pinctrl)) { |
| status = PTR_ERR(pl022->pinctrl); |
| goto err_no_pinctrl; |
| } |
| |
| pl022->pins_default = pinctrl_lookup_state(pl022->pinctrl, |
| PINCTRL_STATE_DEFAULT); |
| /* enable pins to be muxed in and configured */ |
| if (!IS_ERR(pl022->pins_default)) { |
| status = pinctrl_select_state(pl022->pinctrl, |
| pl022->pins_default); |
| if (status) |
| dev_err(dev, "could not set default pins\n"); |
| } else |
| dev_err(dev, "could not get default pinstate\n"); |
| |
| pl022->pins_sleep = pinctrl_lookup_state(pl022->pinctrl, |
| PINCTRL_STATE_SLEEP); |
| if (IS_ERR(pl022->pins_sleep)) |
| dev_dbg(dev, "could not get sleep pinstate\n"); |
| |
| /* |
| * Bus Number Which has been Assigned to this SSP controller |
| * on this board |
| */ |
| master->bus_num = platform_info->bus_id; |
| master->num_chipselect = num_cs; |
| master->cleanup = pl022_cleanup; |
| master->setup = pl022_setup; |
| master->prepare_transfer_hardware = pl022_prepare_transfer_hardware; |
| master->transfer_one_message = pl022_transfer_one_message; |
| master->unprepare_transfer_hardware = pl022_unprepare_transfer_hardware; |
| master->rt = platform_info->rt; |
| master->dev.of_node = dev->of_node; |
| |
| if (platform_info->num_chipselect && platform_info->chipselects) { |
| for (i = 0; i < num_cs; i++) |
| pl022->chipselects[i] = platform_info->chipselects[i]; |
| } else if (IS_ENABLED(CONFIG_OF)) { |
| for (i = 0; i < num_cs; i++) { |
| int cs_gpio = of_get_named_gpio(np, "cs-gpios", i); |
| |
| if (cs_gpio == -EPROBE_DEFER) { |
| status = -EPROBE_DEFER; |
| goto err_no_gpio; |
| } |
| |
| pl022->chipselects[i] = cs_gpio; |
| |
| if (gpio_is_valid(cs_gpio)) { |
| if (devm_gpio_request(dev, cs_gpio, "ssp-pl022")) |
| dev_err(&adev->dev, |
| "could not request %d gpio\n", |
| cs_gpio); |
| else if (gpio_direction_output(cs_gpio, 1)) |
| dev_err(&adev->dev, |
| "could set gpio %d as output\n", |
| cs_gpio); |
| } |
| } |
| } |
| |
| /* |
| * Supports mode 0-3, loopback, and active low CS. Transfers are |
| * always MS bit first on the original pl022. |
| */ |
| master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LOOP; |
| if (pl022->vendor->extended_cr) |
| master->mode_bits |= SPI_LSB_FIRST; |
| |
| dev_dbg(&adev->dev, "BUSNO: %d\n", master->bus_num); |
| |
| status = amba_request_regions(adev, NULL); |
| if (status) |
| goto err_no_ioregion; |
| |
| pl022->phybase = adev->res.start; |
| pl022->virtbase = devm_ioremap(dev, adev->res.start, |
| resource_size(&adev->res)); |
| if (pl022->virtbase == NULL) { |
| status = -ENOMEM; |
| goto err_no_ioremap; |
| } |
| printk(KERN_INFO "pl022: mapped registers from 0x%08x to %p\n", |
| adev->res.start, pl022->virtbase); |
| |
| pm_runtime_resume(dev); |
| |
| pl022->clk = devm_clk_get(&adev->dev, NULL); |
| if (IS_ERR(pl022->clk)) { |
| status = PTR_ERR(pl022->clk); |
| dev_err(&adev->dev, "could not retrieve SSP/SPI bus clock\n"); |
| goto err_no_clk; |
| } |
| |
| status = clk_prepare(pl022->clk); |
| if (status) { |
| dev_err(&adev->dev, "could not prepare SSP/SPI bus clock\n"); |
| goto err_clk_prep; |
| } |
| |
| status = clk_enable(pl022->clk); |
| if (status) { |
| dev_err(&adev->dev, "could not enable SSP/SPI bus clock\n"); |
| goto err_no_clk_en; |
| } |
| |
| /* Initialize transfer pump */ |
| tasklet_init(&pl022->pump_transfers, pump_transfers, |
| (unsigned long)pl022); |
| |
| /* Disable SSP */ |
| writew((readw(SSP_CR1(pl022->virtbase)) & (~SSP_CR1_MASK_SSE)), |
| SSP_CR1(pl022->virtbase)); |
| load_ssp_default_config(pl022); |
| |
| status = devm_request_irq(dev, adev->irq[0], pl022_interrupt_handler, |
| 0, "pl022", pl022); |
| if (status < 0) { |
| dev_err(&adev->dev, "probe - cannot get IRQ (%d)\n", status); |
| goto err_no_irq; |
| } |
| |
| /* Get DMA channels */ |
| if (platform_info->enable_dma) { |
| status = pl022_dma_probe(pl022); |
| if (status != 0) |
| platform_info->enable_dma = 0; |
| } |
| |
| /* Register with the SPI framework */ |
| amba_set_drvdata(adev, pl022); |
| status = spi_register_master(master); |
| if (status != 0) { |
| dev_err(&adev->dev, |
| "probe - problem registering spi master\n"); |
| goto err_spi_register; |
| } |
| dev_dbg(dev, "probe succeeded\n"); |
| |
| /* let runtime pm put suspend */ |
| if (platform_info->autosuspend_delay > 0) { |
| dev_info(&adev->dev, |
| "will use autosuspend for runtime pm, delay %dms\n", |
| platform_info->autosuspend_delay); |
| pm_runtime_set_autosuspend_delay(dev, |
| platform_info->autosuspend_delay); |
| pm_runtime_use_autosuspend(dev); |
| } |
| pm_runtime_put(dev); |
| |
| return 0; |
| |
| err_spi_register: |
| if (platform_info->enable_dma) |
| pl022_dma_remove(pl022); |
| err_no_irq: |
| clk_disable(pl022->clk); |
| err_no_clk_en: |
| clk_unprepare(pl022->clk); |
| err_clk_prep: |
| err_no_clk: |
| err_no_ioremap: |
| amba_release_regions(adev); |
| err_no_ioregion: |
| err_no_gpio: |
| err_no_pinctrl: |
| spi_master_put(master); |
| return status; |
| } |
| |
| static int __devexit |
| pl022_remove(struct amba_device *adev) |
| { |
| struct pl022 *pl022 = amba_get_drvdata(adev); |
| |
| if (!pl022) |
| return 0; |
| |
| /* |
| * undo pm_runtime_put() in probe. I assume that we're not |
| * accessing the primecell here. |
| */ |
| pm_runtime_get_noresume(&adev->dev); |
| |
| load_ssp_default_config(pl022); |
| if (pl022->master_info->enable_dma) |
| pl022_dma_remove(pl022); |
| |
| clk_disable(pl022->clk); |
| clk_unprepare(pl022->clk); |
| pm_runtime_disable(&adev->dev); |
| amba_release_regions(adev); |
| tasklet_disable(&pl022->pump_transfers); |
| spi_unregister_master(pl022->master); |
| amba_set_drvdata(adev, NULL); |
| return 0; |
| } |
| |
| #if defined(CONFIG_SUSPEND) || defined(CONFIG_PM_RUNTIME) |
| /* |
| * These two functions are used from both suspend/resume and |
| * the runtime counterparts to handle external resources like |
| * clocks, pins and regulators when going to sleep. |
| */ |
| static void pl022_suspend_resources(struct pl022 *pl022) |
| { |
| int ret; |
| |
| clk_disable(pl022->clk); |
| |
| /* Optionally let pins go into sleep states */ |
| if (!IS_ERR(pl022->pins_sleep)) { |
| ret = pinctrl_select_state(pl022->pinctrl, |
| pl022->pins_sleep); |
| if (ret) |
| dev_err(&pl022->adev->dev, |
| "could not set pins to sleep state\n"); |
| } |
| } |
| |
| static void pl022_resume_resources(struct pl022 *pl022) |
| { |
| int ret; |
| |
| /* Optionaly enable pins to be muxed in and configured */ |
| if (!IS_ERR(pl022->pins_default)) { |
| ret = pinctrl_select_state(pl022->pinctrl, |
| pl022->pins_default); |
| if (ret) |
| dev_err(&pl022->adev->dev, |
| "could not set default pins\n"); |
| } |
| |
| clk_enable(pl022->clk); |
| } |
| #endif |
| |
| #ifdef CONFIG_SUSPEND |
| static int pl022_suspend(struct device *dev) |
| { |
| struct pl022 *pl022 = dev_get_drvdata(dev); |
| int ret; |
| |
| ret = spi_master_suspend(pl022->master); |
| if (ret) { |
| dev_warn(dev, "cannot suspend master\n"); |
| return ret; |
| } |
| pl022_suspend_resources(pl022); |
| |
| dev_dbg(dev, "suspended\n"); |
| return 0; |
| } |
| |
| static int pl022_resume(struct device *dev) |
| { |
| struct pl022 *pl022 = dev_get_drvdata(dev); |
| int ret; |
| |
| pl022_resume_resources(pl022); |
| |
| /* Start the queue running */ |
| ret = spi_master_resume(pl022->master); |
| if (ret) |
| dev_err(dev, "problem starting queue (%d)\n", ret); |
| else |
| dev_dbg(dev, "resumed\n"); |
| |
| return ret; |
| } |
| #endif /* CONFIG_PM */ |
| |
| #ifdef CONFIG_PM_RUNTIME |
| static int pl022_runtime_suspend(struct device *dev) |
| { |
| struct pl022 *pl022 = dev_get_drvdata(dev); |
| |
| pl022_suspend_resources(pl022); |
| return 0; |
| } |
| |
| static int pl022_runtime_resume(struct device *dev) |
| { |
| struct pl022 *pl022 = dev_get_drvdata(dev); |
| |
| pl022_resume_resources(pl022); |
| return 0; |
| } |
| #endif |
| |
| static const struct dev_pm_ops pl022_dev_pm_ops = { |
| SET_SYSTEM_SLEEP_PM_OPS(pl022_suspend, pl022_resume) |
| SET_RUNTIME_PM_OPS(pl022_runtime_suspend, pl022_runtime_resume, NULL) |
| }; |
| |
| static struct vendor_data vendor_arm = { |
| .fifodepth = 8, |
| .max_bpw = 16, |
| .unidir = false, |
| .extended_cr = false, |
| .pl023 = false, |
| .loopback = true, |
| }; |
| |
| static struct vendor_data vendor_st = { |
| .fifodepth = 32, |
| .max_bpw = 32, |
| .unidir = false, |
| .extended_cr = true, |
| .pl023 = false, |
| .loopback = true, |
| }; |
| |
| static struct vendor_data vendor_st_pl023 = { |
| .fifodepth = 32, |
| .max_bpw = 32, |
| .unidir = false, |
| .extended_cr = true, |
| .pl023 = true, |
| .loopback = false, |
| }; |
| |
| static struct amba_id pl022_ids[] = { |
| { |
| /* |
| * ARM PL022 variant, this has a 16bit wide |
| * and 8 locations deep TX/RX FIFO |
| */ |
| .id = 0x00041022, |
| .mask = 0x000fffff, |
| .data = &vendor_arm, |
| }, |
| { |
| /* |
| * ST Micro derivative, this has 32bit wide |
| * and 32 locations deep TX/RX FIFO |
| */ |
| .id = 0x01080022, |
| .mask = 0xffffffff, |
| .data = &vendor_st, |
| }, |
| { |
| /* |
| * ST-Ericsson derivative "PL023" (this is not |
| * an official ARM number), this is a PL022 SSP block |
| * stripped to SPI mode only, it has 32bit wide |
| * and 32 locations deep TX/RX FIFO but no extended |
| * CR0/CR1 register |
| */ |
| .id = 0x00080023, |
| .mask = 0xffffffff, |
| .data = &vendor_st_pl023, |
| }, |
| { 0, 0 }, |
| }; |
| |
| MODULE_DEVICE_TABLE(amba, pl022_ids); |
| |
| static struct amba_driver pl022_driver = { |
| .drv = { |
| .name = "ssp-pl022", |
| .pm = &pl022_dev_pm_ops, |
| }, |
| .id_table = pl022_ids, |
| .probe = pl022_probe, |
| .remove = __devexit_p(pl022_remove), |
| }; |
| |
| static int __init pl022_init(void) |
| { |
| return amba_driver_register(&pl022_driver); |
| } |
| subsys_initcall(pl022_init); |
| |
| static void __exit pl022_exit(void) |
| { |
| amba_driver_unregister(&pl022_driver); |
| } |
| module_exit(pl022_exit); |
| |
| MODULE_AUTHOR("Linus Walleij <linus.walleij@stericsson.com>"); |
| MODULE_DESCRIPTION("PL022 SSP Controller Driver"); |
| MODULE_LICENSE("GPL"); |