| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * Copyright (C) 2015 - 2016 Cavium, Inc. |
| */ |
| |
| #include <linux/bitfield.h> |
| #include <linux/kernel.h> |
| #include <linux/init.h> |
| #include <linux/pci.h> |
| #include <linux/of_address.h> |
| #include <linux/of_pci.h> |
| #include <linux/pci-acpi.h> |
| #include <linux/pci-ecam.h> |
| #include <linux/platform_device.h> |
| #include "../pci.h" |
| |
| #if defined(CONFIG_PCI_HOST_THUNDER_PEM) || (defined(CONFIG_ACPI) && defined(CONFIG_PCI_QUIRKS)) |
| |
| #define PEM_CFG_WR 0x28 |
| #define PEM_CFG_RD 0x30 |
| |
| struct thunder_pem_pci { |
| u32 ea_entry[3]; |
| void __iomem *pem_reg_base; |
| }; |
| |
| static int thunder_pem_bridge_read(struct pci_bus *bus, unsigned int devfn, |
| int where, int size, u32 *val) |
| { |
| u64 read_val, tmp_val; |
| struct pci_config_window *cfg = bus->sysdata; |
| struct thunder_pem_pci *pem_pci = (struct thunder_pem_pci *)cfg->priv; |
| |
| if (devfn != 0 || where >= 2048) { |
| *val = ~0; |
| return PCIBIOS_DEVICE_NOT_FOUND; |
| } |
| |
| /* |
| * 32-bit accesses only. Write the address to the low order |
| * bits of PEM_CFG_RD, then trigger the read by reading back. |
| * The config data lands in the upper 32-bits of PEM_CFG_RD. |
| */ |
| read_val = where & ~3ull; |
| writeq(read_val, pem_pci->pem_reg_base + PEM_CFG_RD); |
| read_val = readq(pem_pci->pem_reg_base + PEM_CFG_RD); |
| read_val >>= 32; |
| |
| /* |
| * The config space contains some garbage, fix it up. Also |
| * synthesize an EA capability for the BAR used by MSI-X. |
| */ |
| switch (where & ~3) { |
| case 0x40: |
| read_val &= 0xffff00ff; |
| read_val |= 0x00007000; /* Skip MSI CAP */ |
| break; |
| case 0x70: /* Express Cap */ |
| /* |
| * Change PME interrupt to vector 2 on T88 where it |
| * reads as 0, else leave it alone. |
| */ |
| if (!(read_val & (0x1f << 25))) |
| read_val |= (2u << 25); |
| break; |
| case 0xb0: /* MSI-X Cap */ |
| /* TableSize=2 or 4, Next Cap is EA */ |
| read_val &= 0xc00000ff; |
| /* |
| * If Express Cap(0x70) raw PME vector reads as 0 we are on |
| * T88 and TableSize is reported as 4, else TableSize |
| * is 2. |
| */ |
| writeq(0x70, pem_pci->pem_reg_base + PEM_CFG_RD); |
| tmp_val = readq(pem_pci->pem_reg_base + PEM_CFG_RD); |
| tmp_val >>= 32; |
| if (!(tmp_val & (0x1f << 25))) |
| read_val |= 0x0003bc00; |
| else |
| read_val |= 0x0001bc00; |
| break; |
| case 0xb4: |
| /* Table offset=0, BIR=0 */ |
| read_val = 0x00000000; |
| break; |
| case 0xb8: |
| /* BPA offset=0xf0000, BIR=0 */ |
| read_val = 0x000f0000; |
| break; |
| case 0xbc: |
| /* EA, 1 entry, no next Cap */ |
| read_val = 0x00010014; |
| break; |
| case 0xc0: |
| /* DW2 for type-1 */ |
| read_val = 0x00000000; |
| break; |
| case 0xc4: |
| /* Entry BEI=0, PP=0x00, SP=0xff, ES=3 */ |
| read_val = 0x80ff0003; |
| break; |
| case 0xc8: |
| read_val = pem_pci->ea_entry[0]; |
| break; |
| case 0xcc: |
| read_val = pem_pci->ea_entry[1]; |
| break; |
| case 0xd0: |
| read_val = pem_pci->ea_entry[2]; |
| break; |
| default: |
| break; |
| } |
| read_val >>= (8 * (where & 3)); |
| switch (size) { |
| case 1: |
| read_val &= 0xff; |
| break; |
| case 2: |
| read_val &= 0xffff; |
| break; |
| default: |
| break; |
| } |
| *val = read_val; |
| return PCIBIOS_SUCCESSFUL; |
| } |
| |
| static int thunder_pem_config_read(struct pci_bus *bus, unsigned int devfn, |
| int where, int size, u32 *val) |
| { |
| struct pci_config_window *cfg = bus->sysdata; |
| |
| if (bus->number < cfg->busr.start || |
| bus->number > cfg->busr.end) |
| return PCIBIOS_DEVICE_NOT_FOUND; |
| |
| /* |
| * The first device on the bus is the PEM PCIe bridge. |
| * Special case its config access. |
| */ |
| if (bus->number == cfg->busr.start) |
| return thunder_pem_bridge_read(bus, devfn, where, size, val); |
| |
| return pci_generic_config_read(bus, devfn, where, size, val); |
| } |
| |
| /* |
| * Some of the w1c_bits below also include read-only or non-writable |
| * reserved bits, this makes the code simpler and is OK as the bits |
| * are not affected by writing zeros to them. |
| */ |
| static u32 thunder_pem_bridge_w1c_bits(u64 where_aligned) |
| { |
| u32 w1c_bits = 0; |
| |
| switch (where_aligned) { |
| case 0x04: /* Command/Status */ |
| case 0x1c: /* Base and I/O Limit/Secondary Status */ |
| w1c_bits = 0xff000000; |
| break; |
| case 0x44: /* Power Management Control and Status */ |
| w1c_bits = 0xfffffe00; |
| break; |
| case 0x78: /* Device Control/Device Status */ |
| case 0x80: /* Link Control/Link Status */ |
| case 0x88: /* Slot Control/Slot Status */ |
| case 0x90: /* Root Status */ |
| case 0xa0: /* Link Control 2 Registers/Link Status 2 */ |
| w1c_bits = 0xffff0000; |
| break; |
| case 0x104: /* Uncorrectable Error Status */ |
| case 0x110: /* Correctable Error Status */ |
| case 0x130: /* Error Status */ |
| case 0x160: /* Link Control 4 */ |
| w1c_bits = 0xffffffff; |
| break; |
| default: |
| break; |
| } |
| return w1c_bits; |
| } |
| |
| /* Some bits must be written to one so they appear to be read-only. */ |
| static u32 thunder_pem_bridge_w1_bits(u64 where_aligned) |
| { |
| u32 w1_bits; |
| |
| switch (where_aligned) { |
| case 0x1c: /* I/O Base / I/O Limit, Secondary Status */ |
| /* Force 32-bit I/O addressing. */ |
| w1_bits = 0x0101; |
| break; |
| case 0x24: /* Prefetchable Memory Base / Prefetchable Memory Limit */ |
| /* Force 64-bit addressing */ |
| w1_bits = 0x00010001; |
| break; |
| default: |
| w1_bits = 0; |
| break; |
| } |
| return w1_bits; |
| } |
| |
| static int thunder_pem_bridge_write(struct pci_bus *bus, unsigned int devfn, |
| int where, int size, u32 val) |
| { |
| struct pci_config_window *cfg = bus->sysdata; |
| struct thunder_pem_pci *pem_pci = (struct thunder_pem_pci *)cfg->priv; |
| u64 write_val, read_val; |
| u64 where_aligned = where & ~3ull; |
| u32 mask = 0; |
| |
| |
| if (devfn != 0 || where >= 2048) |
| return PCIBIOS_DEVICE_NOT_FOUND; |
| |
| /* |
| * 32-bit accesses only. If the write is for a size smaller |
| * than 32-bits, we must first read the 32-bit value and merge |
| * in the desired bits and then write the whole 32-bits back |
| * out. |
| */ |
| switch (size) { |
| case 1: |
| writeq(where_aligned, pem_pci->pem_reg_base + PEM_CFG_RD); |
| read_val = readq(pem_pci->pem_reg_base + PEM_CFG_RD); |
| read_val >>= 32; |
| mask = ~(0xff << (8 * (where & 3))); |
| read_val &= mask; |
| val = (val & 0xff) << (8 * (where & 3)); |
| val |= (u32)read_val; |
| break; |
| case 2: |
| writeq(where_aligned, pem_pci->pem_reg_base + PEM_CFG_RD); |
| read_val = readq(pem_pci->pem_reg_base + PEM_CFG_RD); |
| read_val >>= 32; |
| mask = ~(0xffff << (8 * (where & 3))); |
| read_val &= mask; |
| val = (val & 0xffff) << (8 * (where & 3)); |
| val |= (u32)read_val; |
| break; |
| default: |
| break; |
| } |
| |
| /* |
| * By expanding the write width to 32 bits, we may |
| * inadvertently hit some W1C bits that were not intended to |
| * be written. Calculate the mask that must be applied to the |
| * data to be written to avoid these cases. |
| */ |
| if (mask) { |
| u32 w1c_bits = thunder_pem_bridge_w1c_bits(where); |
| |
| if (w1c_bits) { |
| mask &= w1c_bits; |
| val &= ~mask; |
| } |
| } |
| |
| /* |
| * Some bits must be read-only with value of one. Since the |
| * access method allows these to be cleared if a zero is |
| * written, force them to one before writing. |
| */ |
| val |= thunder_pem_bridge_w1_bits(where_aligned); |
| |
| /* |
| * Low order bits are the config address, the high order 32 |
| * bits are the data to be written. |
| */ |
| write_val = (((u64)val) << 32) | where_aligned; |
| writeq(write_val, pem_pci->pem_reg_base + PEM_CFG_WR); |
| return PCIBIOS_SUCCESSFUL; |
| } |
| |
| static int thunder_pem_config_write(struct pci_bus *bus, unsigned int devfn, |
| int where, int size, u32 val) |
| { |
| struct pci_config_window *cfg = bus->sysdata; |
| |
| if (bus->number < cfg->busr.start || |
| bus->number > cfg->busr.end) |
| return PCIBIOS_DEVICE_NOT_FOUND; |
| /* |
| * The first device on the bus is the PEM PCIe bridge. |
| * Special case its config access. |
| */ |
| if (bus->number == cfg->busr.start) |
| return thunder_pem_bridge_write(bus, devfn, where, size, val); |
| |
| |
| return pci_generic_config_write(bus, devfn, where, size, val); |
| } |
| |
| static int thunder_pem_init(struct device *dev, struct pci_config_window *cfg, |
| struct resource *res_pem) |
| { |
| struct thunder_pem_pci *pem_pci; |
| resource_size_t bar4_start; |
| |
| pem_pci = devm_kzalloc(dev, sizeof(*pem_pci), GFP_KERNEL); |
| if (!pem_pci) |
| return -ENOMEM; |
| |
| pem_pci->pem_reg_base = devm_ioremap(dev, res_pem->start, 0x10000); |
| if (!pem_pci->pem_reg_base) |
| return -ENOMEM; |
| |
| /* |
| * The MSI-X BAR for the PEM and AER interrupts is located at |
| * a fixed offset from the PEM register base. Generate a |
| * fragment of the synthesized Enhanced Allocation capability |
| * structure here for the BAR. |
| */ |
| bar4_start = res_pem->start + 0xf00000; |
| pem_pci->ea_entry[0] = (u32)bar4_start | 2; |
| pem_pci->ea_entry[1] = (u32)(res_pem->end - bar4_start) & ~3u; |
| pem_pci->ea_entry[2] = (u32)(bar4_start >> 32); |
| |
| cfg->priv = pem_pci; |
| return 0; |
| } |
| |
| #if defined(CONFIG_ACPI) && defined(CONFIG_PCI_QUIRKS) |
| |
| #define PEM_RES_BASE 0x87e0c0000000UL |
| #define PEM_NODE_MASK GENMASK(45, 44) |
| #define PEM_INDX_MASK GENMASK(26, 24) |
| #define PEM_MIN_DOM_IN_NODE 4 |
| #define PEM_MAX_DOM_IN_NODE 10 |
| |
| static void thunder_pem_reserve_range(struct device *dev, int seg, |
| struct resource *r) |
| { |
| resource_size_t start = r->start, end = r->end; |
| struct resource *res; |
| const char *regionid; |
| |
| regionid = kasprintf(GFP_KERNEL, "PEM RC:%d", seg); |
| if (!regionid) |
| return; |
| |
| res = request_mem_region(start, end - start + 1, regionid); |
| if (res) |
| res->flags &= ~IORESOURCE_BUSY; |
| else |
| kfree(regionid); |
| |
| dev_info(dev, "%pR %s reserved\n", r, |
| res ? "has been" : "could not be"); |
| } |
| |
| static void thunder_pem_legacy_fw(struct acpi_pci_root *root, |
| struct resource *res_pem) |
| { |
| int node = acpi_get_node(root->device->handle); |
| int index; |
| |
| if (node == NUMA_NO_NODE) |
| node = 0; |
| |
| index = root->segment - PEM_MIN_DOM_IN_NODE; |
| index -= node * PEM_MAX_DOM_IN_NODE; |
| res_pem->start = PEM_RES_BASE | FIELD_PREP(PEM_NODE_MASK, node) | |
| FIELD_PREP(PEM_INDX_MASK, index); |
| res_pem->flags = IORESOURCE_MEM; |
| } |
| |
| static int thunder_pem_acpi_init(struct pci_config_window *cfg) |
| { |
| struct device *dev = cfg->parent; |
| struct acpi_device *adev = to_acpi_device(dev); |
| struct acpi_pci_root *root = acpi_driver_data(adev); |
| struct resource *res_pem; |
| int ret; |
| |
| res_pem = devm_kzalloc(&adev->dev, sizeof(*res_pem), GFP_KERNEL); |
| if (!res_pem) |
| return -ENOMEM; |
| |
| ret = acpi_get_rc_resources(dev, "CAVA02B", root->segment, res_pem); |
| |
| /* |
| * If we fail to gather resources it means that we run with old |
| * FW where we need to calculate PEM-specific resources manually. |
| */ |
| if (ret) { |
| thunder_pem_legacy_fw(root, res_pem); |
| /* |
| * Reserve 64K size PEM specific resources. The full 16M range |
| * size is required for thunder_pem_init() call. |
| */ |
| res_pem->end = res_pem->start + SZ_64K - 1; |
| thunder_pem_reserve_range(dev, root->segment, res_pem); |
| res_pem->end = res_pem->start + SZ_16M - 1; |
| |
| /* Reserve PCI configuration space as well. */ |
| thunder_pem_reserve_range(dev, root->segment, &cfg->res); |
| } |
| |
| return thunder_pem_init(dev, cfg, res_pem); |
| } |
| |
| const struct pci_ecam_ops thunder_pem_ecam_ops = { |
| .bus_shift = 24, |
| .init = thunder_pem_acpi_init, |
| .pci_ops = { |
| .map_bus = pci_ecam_map_bus, |
| .read = thunder_pem_config_read, |
| .write = thunder_pem_config_write, |
| } |
| }; |
| |
| #endif |
| |
| #ifdef CONFIG_PCI_HOST_THUNDER_PEM |
| |
| static int thunder_pem_platform_init(struct pci_config_window *cfg) |
| { |
| struct device *dev = cfg->parent; |
| struct platform_device *pdev = to_platform_device(dev); |
| struct resource *res_pem; |
| |
| if (!dev->of_node) |
| return -EINVAL; |
| |
| /* |
| * The second register range is the PEM bridge to the PCIe |
| * bus. It has a different config access method than those |
| * devices behind the bridge. |
| */ |
| res_pem = platform_get_resource(pdev, IORESOURCE_MEM, 1); |
| if (!res_pem) { |
| dev_err(dev, "missing \"reg[1]\"property\n"); |
| return -EINVAL; |
| } |
| |
| return thunder_pem_init(dev, cfg, res_pem); |
| } |
| |
| static const struct pci_ecam_ops pci_thunder_pem_ops = { |
| .bus_shift = 24, |
| .init = thunder_pem_platform_init, |
| .pci_ops = { |
| .map_bus = pci_ecam_map_bus, |
| .read = thunder_pem_config_read, |
| .write = thunder_pem_config_write, |
| } |
| }; |
| |
| static const struct of_device_id thunder_pem_of_match[] = { |
| { .compatible = "cavium,pci-host-thunder-pem" }, |
| { }, |
| }; |
| |
| static int thunder_pem_probe(struct platform_device *pdev) |
| { |
| return pci_host_common_probe(pdev, &pci_thunder_pem_ops); |
| } |
| |
| static struct platform_driver thunder_pem_driver = { |
| .driver = { |
| .name = KBUILD_MODNAME, |
| .of_match_table = thunder_pem_of_match, |
| .suppress_bind_attrs = true, |
| }, |
| .probe = thunder_pem_probe, |
| }; |
| builtin_platform_driver(thunder_pem_driver); |
| |
| #endif |
| #endif |