| // SPDX-License-Identifier: GPL-2.0 |
| #include <linux/spinlock.h> |
| #include <linux/task_work.h> |
| #include <linux/tracehook.h> |
| |
| static struct callback_head work_exited; /* all we need is ->next == NULL */ |
| |
| /* |
| * TWA_SIGNAL signaling - use TIF_NOTIFY_SIGNAL, if available, as it's faster |
| * than TIF_SIGPENDING as there's no dependency on ->sighand. The latter is |
| * shared for threads, and can cause contention on sighand->lock. Even for |
| * the non-threaded case TIF_NOTIFY_SIGNAL is more efficient, as no locking |
| * or IRQ disabling is involved for notification (or running) purposes. |
| */ |
| static void task_work_notify_signal(struct task_struct *task) |
| { |
| #if defined(TIF_NOTIFY_SIGNAL) |
| set_notify_signal(task); |
| #else |
| unsigned long flags; |
| |
| /* |
| * Only grab the sighand lock if we don't already have some |
| * task_work pending. This pairs with the smp_store_mb() |
| * in get_signal(), see comment there. |
| */ |
| if (!(READ_ONCE(task->jobctl) & JOBCTL_TASK_WORK) && |
| lock_task_sighand(task, &flags)) { |
| task->jobctl |= JOBCTL_TASK_WORK; |
| signal_wake_up(task, 0); |
| unlock_task_sighand(task, &flags); |
| } |
| #endif |
| } |
| |
| /** |
| * task_work_add - ask the @task to execute @work->func() |
| * @task: the task which should run the callback |
| * @work: the callback to run |
| * @notify: how to notify the targeted task |
| * |
| * Queue @work for task_work_run() below and notify the @task if @notify |
| * is @TWA_RESUME or @TWA_SIGNAL. @TWA_SIGNAL works like signals, in that the |
| * it will interrupt the targeted task and run the task_work. @TWA_RESUME |
| * work is run only when the task exits the kernel and returns to user mode, |
| * or before entering guest mode. Fails if the @task is exiting/exited and thus |
| * it can't process this @work. Otherwise @work->func() will be called when the |
| * @task goes through one of the aforementioned transitions, or exits. |
| * |
| * If the targeted task is exiting, then an error is returned and the work item |
| * is not queued. It's up to the caller to arrange for an alternative mechanism |
| * in that case. |
| * |
| * Note: there is no ordering guarantee on works queued here. The task_work |
| * list is LIFO. |
| * |
| * RETURNS: |
| * 0 if succeeds or -ESRCH. |
| */ |
| int task_work_add(struct task_struct *task, struct callback_head *work, |
| enum task_work_notify_mode notify) |
| { |
| struct callback_head *head; |
| |
| do { |
| head = READ_ONCE(task->task_works); |
| if (unlikely(head == &work_exited)) |
| return -ESRCH; |
| work->next = head; |
| } while (cmpxchg(&task->task_works, head, work) != head); |
| |
| switch (notify) { |
| case TWA_NONE: |
| break; |
| case TWA_RESUME: |
| set_notify_resume(task); |
| break; |
| case TWA_SIGNAL: |
| task_work_notify_signal(task); |
| break; |
| default: |
| WARN_ON_ONCE(1); |
| break; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * task_work_cancel - cancel a pending work added by task_work_add() |
| * @task: the task which should execute the work |
| * @func: identifies the work to remove |
| * |
| * Find the last queued pending work with ->func == @func and remove |
| * it from queue. |
| * |
| * RETURNS: |
| * The found work or NULL if not found. |
| */ |
| struct callback_head * |
| task_work_cancel(struct task_struct *task, task_work_func_t func) |
| { |
| struct callback_head **pprev = &task->task_works; |
| struct callback_head *work; |
| unsigned long flags; |
| |
| if (likely(!task->task_works)) |
| return NULL; |
| /* |
| * If cmpxchg() fails we continue without updating pprev. |
| * Either we raced with task_work_add() which added the |
| * new entry before this work, we will find it again. Or |
| * we raced with task_work_run(), *pprev == NULL/exited. |
| */ |
| raw_spin_lock_irqsave(&task->pi_lock, flags); |
| while ((work = READ_ONCE(*pprev))) { |
| if (work->func != func) |
| pprev = &work->next; |
| else if (cmpxchg(pprev, work, work->next) == work) |
| break; |
| } |
| raw_spin_unlock_irqrestore(&task->pi_lock, flags); |
| |
| return work; |
| } |
| |
| /** |
| * task_work_run - execute the works added by task_work_add() |
| * |
| * Flush the pending works. Should be used by the core kernel code. |
| * Called before the task returns to the user-mode or stops, or when |
| * it exits. In the latter case task_work_add() can no longer add the |
| * new work after task_work_run() returns. |
| */ |
| void task_work_run(void) |
| { |
| struct task_struct *task = current; |
| struct callback_head *work, *head, *next; |
| |
| for (;;) { |
| /* |
| * work->func() can do task_work_add(), do not set |
| * work_exited unless the list is empty. |
| */ |
| do { |
| head = NULL; |
| work = READ_ONCE(task->task_works); |
| if (!work) { |
| if (task->flags & PF_EXITING) |
| head = &work_exited; |
| else |
| break; |
| } |
| } while (cmpxchg(&task->task_works, work, head) != work); |
| |
| if (!work) |
| break; |
| /* |
| * Synchronize with task_work_cancel(). It can not remove |
| * the first entry == work, cmpxchg(task_works) must fail. |
| * But it can remove another entry from the ->next list. |
| */ |
| raw_spin_lock_irq(&task->pi_lock); |
| raw_spin_unlock_irq(&task->pi_lock); |
| |
| do { |
| next = work->next; |
| work->func(work); |
| work = next; |
| cond_resched(); |
| } while (work); |
| } |
| } |