blob: 790e41c6fdd0fed0498c6e0058aa9e3302a234e1 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Copyright(c) 1999 - 2004 Intel Corporation. All rights reserved.
*/
#include <linux/skbuff.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/pkt_sched.h>
#include <linux/spinlock.h>
#include <linux/slab.h>
#include <linux/timer.h>
#include <linux/ip.h>
#include <linux/ipv6.h>
#include <linux/if_arp.h>
#include <linux/if_ether.h>
#include <linux/if_bonding.h>
#include <linux/if_vlan.h>
#include <linux/in.h>
#include <net/ipx.h>
#include <net/arp.h>
#include <net/ipv6.h>
#include <asm/byteorder.h>
#include <net/bonding.h>
#include <net/bond_alb.h>
static const u8 mac_v6_allmcast[ETH_ALEN + 2] __long_aligned = {
0x33, 0x33, 0x00, 0x00, 0x00, 0x01
};
static const int alb_delta_in_ticks = HZ / ALB_TIMER_TICKS_PER_SEC;
#pragma pack(1)
struct learning_pkt {
u8 mac_dst[ETH_ALEN];
u8 mac_src[ETH_ALEN];
__be16 type;
u8 padding[ETH_ZLEN - ETH_HLEN];
};
struct arp_pkt {
__be16 hw_addr_space;
__be16 prot_addr_space;
u8 hw_addr_len;
u8 prot_addr_len;
__be16 op_code;
u8 mac_src[ETH_ALEN]; /* sender hardware address */
__be32 ip_src; /* sender IP address */
u8 mac_dst[ETH_ALEN]; /* target hardware address */
__be32 ip_dst; /* target IP address */
};
#pragma pack()
static inline struct arp_pkt *arp_pkt(const struct sk_buff *skb)
{
return (struct arp_pkt *)skb_network_header(skb);
}
/* Forward declaration */
static void alb_send_learning_packets(struct slave *slave, u8 mac_addr[],
bool strict_match);
static void rlb_purge_src_ip(struct bonding *bond, struct arp_pkt *arp);
static void rlb_src_unlink(struct bonding *bond, u32 index);
static void rlb_src_link(struct bonding *bond, u32 ip_src_hash,
u32 ip_dst_hash);
static inline u8 _simple_hash(const u8 *hash_start, int hash_size)
{
int i;
u8 hash = 0;
for (i = 0; i < hash_size; i++)
hash ^= hash_start[i];
return hash;
}
/*********************** tlb specific functions ***************************/
static inline void tlb_init_table_entry(struct tlb_client_info *entry, int save_load)
{
if (save_load) {
entry->load_history = 1 + entry->tx_bytes /
BOND_TLB_REBALANCE_INTERVAL;
entry->tx_bytes = 0;
}
entry->tx_slave = NULL;
entry->next = TLB_NULL_INDEX;
entry->prev = TLB_NULL_INDEX;
}
static inline void tlb_init_slave(struct slave *slave)
{
SLAVE_TLB_INFO(slave).load = 0;
SLAVE_TLB_INFO(slave).head = TLB_NULL_INDEX;
}
static void __tlb_clear_slave(struct bonding *bond, struct slave *slave,
int save_load)
{
struct tlb_client_info *tx_hash_table;
u32 index;
/* clear slave from tx_hashtbl */
tx_hash_table = BOND_ALB_INFO(bond).tx_hashtbl;
/* skip this if we've already freed the tx hash table */
if (tx_hash_table) {
index = SLAVE_TLB_INFO(slave).head;
while (index != TLB_NULL_INDEX) {
u32 next_index = tx_hash_table[index].next;
tlb_init_table_entry(&tx_hash_table[index], save_load);
index = next_index;
}
}
tlb_init_slave(slave);
}
static void tlb_clear_slave(struct bonding *bond, struct slave *slave,
int save_load)
{
spin_lock_bh(&bond->mode_lock);
__tlb_clear_slave(bond, slave, save_load);
spin_unlock_bh(&bond->mode_lock);
}
/* Must be called before starting the monitor timer */
static int tlb_initialize(struct bonding *bond)
{
struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
int size = TLB_HASH_TABLE_SIZE * sizeof(struct tlb_client_info);
struct tlb_client_info *new_hashtbl;
int i;
new_hashtbl = kzalloc(size, GFP_KERNEL);
if (!new_hashtbl)
return -ENOMEM;
spin_lock_bh(&bond->mode_lock);
bond_info->tx_hashtbl = new_hashtbl;
for (i = 0; i < TLB_HASH_TABLE_SIZE; i++)
tlb_init_table_entry(&bond_info->tx_hashtbl[i], 0);
spin_unlock_bh(&bond->mode_lock);
return 0;
}
/* Must be called only after all slaves have been released */
static void tlb_deinitialize(struct bonding *bond)
{
struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
spin_lock_bh(&bond->mode_lock);
kfree(bond_info->tx_hashtbl);
bond_info->tx_hashtbl = NULL;
spin_unlock_bh(&bond->mode_lock);
}
static long long compute_gap(struct slave *slave)
{
return (s64) (slave->speed << 20) - /* Convert to Megabit per sec */
(s64) (SLAVE_TLB_INFO(slave).load << 3); /* Bytes to bits */
}
static struct slave *tlb_get_least_loaded_slave(struct bonding *bond)
{
struct slave *slave, *least_loaded;
struct list_head *iter;
long long max_gap;
least_loaded = NULL;
max_gap = LLONG_MIN;
/* Find the slave with the largest gap */
bond_for_each_slave_rcu(bond, slave, iter) {
if (bond_slave_can_tx(slave)) {
long long gap = compute_gap(slave);
if (max_gap < gap) {
least_loaded = slave;
max_gap = gap;
}
}
}
return least_loaded;
}
static struct slave *__tlb_choose_channel(struct bonding *bond, u32 hash_index,
u32 skb_len)
{
struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
struct tlb_client_info *hash_table;
struct slave *assigned_slave;
hash_table = bond_info->tx_hashtbl;
assigned_slave = hash_table[hash_index].tx_slave;
if (!assigned_slave) {
assigned_slave = tlb_get_least_loaded_slave(bond);
if (assigned_slave) {
struct tlb_slave_info *slave_info =
&(SLAVE_TLB_INFO(assigned_slave));
u32 next_index = slave_info->head;
hash_table[hash_index].tx_slave = assigned_slave;
hash_table[hash_index].next = next_index;
hash_table[hash_index].prev = TLB_NULL_INDEX;
if (next_index != TLB_NULL_INDEX)
hash_table[next_index].prev = hash_index;
slave_info->head = hash_index;
slave_info->load +=
hash_table[hash_index].load_history;
}
}
if (assigned_slave)
hash_table[hash_index].tx_bytes += skb_len;
return assigned_slave;
}
static struct slave *tlb_choose_channel(struct bonding *bond, u32 hash_index,
u32 skb_len)
{
struct slave *tx_slave;
/* We don't need to disable softirq here, becase
* tlb_choose_channel() is only called by bond_alb_xmit()
* which already has softirq disabled.
*/
spin_lock(&bond->mode_lock);
tx_slave = __tlb_choose_channel(bond, hash_index, skb_len);
spin_unlock(&bond->mode_lock);
return tx_slave;
}
/*********************** rlb specific functions ***************************/
/* when an ARP REPLY is received from a client update its info
* in the rx_hashtbl
*/
static void rlb_update_entry_from_arp(struct bonding *bond, struct arp_pkt *arp)
{
struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
struct rlb_client_info *client_info;
u32 hash_index;
spin_lock_bh(&bond->mode_lock);
hash_index = _simple_hash((u8 *)&(arp->ip_src), sizeof(arp->ip_src));
client_info = &(bond_info->rx_hashtbl[hash_index]);
if ((client_info->assigned) &&
(client_info->ip_src == arp->ip_dst) &&
(client_info->ip_dst == arp->ip_src) &&
(!ether_addr_equal_64bits(client_info->mac_dst, arp->mac_src))) {
/* update the clients MAC address */
ether_addr_copy(client_info->mac_dst, arp->mac_src);
client_info->ntt = 1;
bond_info->rx_ntt = 1;
}
spin_unlock_bh(&bond->mode_lock);
}
static int rlb_arp_recv(const struct sk_buff *skb, struct bonding *bond,
struct slave *slave)
{
struct arp_pkt *arp, _arp;
if (skb->protocol != cpu_to_be16(ETH_P_ARP))
goto out;
arp = skb_header_pointer(skb, 0, sizeof(_arp), &_arp);
if (!arp)
goto out;
/* We received an ARP from arp->ip_src.
* We might have used this IP address previously (on the bonding host
* itself or on a system that is bridged together with the bond).
* However, if arp->mac_src is different than what is stored in
* rx_hashtbl, some other host is now using the IP and we must prevent
* sending out client updates with this IP address and the old MAC
* address.
* Clean up all hash table entries that have this address as ip_src but
* have a different mac_src.
*/
rlb_purge_src_ip(bond, arp);
if (arp->op_code == htons(ARPOP_REPLY)) {
/* update rx hash table for this ARP */
rlb_update_entry_from_arp(bond, arp);
netdev_dbg(bond->dev, "Server received an ARP Reply from client\n");
}
out:
return RX_HANDLER_ANOTHER;
}
/* Caller must hold rcu_read_lock() */
static struct slave *__rlb_next_rx_slave(struct bonding *bond)
{
struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
struct slave *before = NULL, *rx_slave = NULL, *slave;
struct list_head *iter;
bool found = false;
bond_for_each_slave_rcu(bond, slave, iter) {
if (!bond_slave_can_tx(slave))
continue;
if (!found) {
if (!before || before->speed < slave->speed)
before = slave;
} else {
if (!rx_slave || rx_slave->speed < slave->speed)
rx_slave = slave;
}
if (slave == bond_info->rx_slave)
found = true;
}
/* we didn't find anything after the current or we have something
* better before and up to the current slave
*/
if (!rx_slave || (before && rx_slave->speed < before->speed))
rx_slave = before;
if (rx_slave)
bond_info->rx_slave = rx_slave;
return rx_slave;
}
/* Caller must hold RTNL, rcu_read_lock is obtained only to silence checkers */
static struct slave *rlb_next_rx_slave(struct bonding *bond)
{
struct slave *rx_slave;
ASSERT_RTNL();
rcu_read_lock();
rx_slave = __rlb_next_rx_slave(bond);
rcu_read_unlock();
return rx_slave;
}
/* teach the switch the mac of a disabled slave
* on the primary for fault tolerance
*
* Caller must hold RTNL
*/
static void rlb_teach_disabled_mac_on_primary(struct bonding *bond, u8 addr[])
{
struct slave *curr_active = rtnl_dereference(bond->curr_active_slave);
if (!curr_active)
return;
if (!bond->alb_info.primary_is_promisc) {
if (!dev_set_promiscuity(curr_active->dev, 1))
bond->alb_info.primary_is_promisc = 1;
else
bond->alb_info.primary_is_promisc = 0;
}
bond->alb_info.rlb_promisc_timeout_counter = 0;
alb_send_learning_packets(curr_active, addr, true);
}
/* slave being removed should not be active at this point
*
* Caller must hold rtnl.
*/
static void rlb_clear_slave(struct bonding *bond, struct slave *slave)
{
struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
struct rlb_client_info *rx_hash_table;
u32 index, next_index;
/* clear slave from rx_hashtbl */
spin_lock_bh(&bond->mode_lock);
rx_hash_table = bond_info->rx_hashtbl;
index = bond_info->rx_hashtbl_used_head;
for (; index != RLB_NULL_INDEX; index = next_index) {
next_index = rx_hash_table[index].used_next;
if (rx_hash_table[index].slave == slave) {
struct slave *assigned_slave = rlb_next_rx_slave(bond);
if (assigned_slave) {
rx_hash_table[index].slave = assigned_slave;
if (is_valid_ether_addr(rx_hash_table[index].mac_dst)) {
bond_info->rx_hashtbl[index].ntt = 1;
bond_info->rx_ntt = 1;
/* A slave has been removed from the
* table because it is either disabled
* or being released. We must retry the
* update to avoid clients from not
* being updated & disconnecting when
* there is stress
*/
bond_info->rlb_update_retry_counter =
RLB_UPDATE_RETRY;
}
} else { /* there is no active slave */
rx_hash_table[index].slave = NULL;
}
}
}
spin_unlock_bh(&bond->mode_lock);
if (slave != rtnl_dereference(bond->curr_active_slave))
rlb_teach_disabled_mac_on_primary(bond, slave->dev->dev_addr);
}
static void rlb_update_client(struct rlb_client_info *client_info)
{
int i;
if (!client_info->slave || !is_valid_ether_addr(client_info->mac_dst))
return;
for (i = 0; i < RLB_ARP_BURST_SIZE; i++) {
struct sk_buff *skb;
skb = arp_create(ARPOP_REPLY, ETH_P_ARP,
client_info->ip_dst,
client_info->slave->dev,
client_info->ip_src,
client_info->mac_dst,
client_info->slave->dev->dev_addr,
client_info->mac_dst);
if (!skb) {
netdev_err(client_info->slave->bond->dev,
"failed to create an ARP packet\n");
continue;
}
skb->dev = client_info->slave->dev;
if (client_info->vlan_id) {
__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
client_info->vlan_id);
}
arp_xmit(skb);
}
}
/* sends ARP REPLIES that update the clients that need updating */
static void rlb_update_rx_clients(struct bonding *bond)
{
struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
struct rlb_client_info *client_info;
u32 hash_index;
spin_lock_bh(&bond->mode_lock);
hash_index = bond_info->rx_hashtbl_used_head;
for (; hash_index != RLB_NULL_INDEX;
hash_index = client_info->used_next) {
client_info = &(bond_info->rx_hashtbl[hash_index]);
if (client_info->ntt) {
rlb_update_client(client_info);
if (bond_info->rlb_update_retry_counter == 0)
client_info->ntt = 0;
}
}
/* do not update the entries again until this counter is zero so that
* not to confuse the clients.
*/
bond_info->rlb_update_delay_counter = RLB_UPDATE_DELAY;
spin_unlock_bh(&bond->mode_lock);
}
/* The slave was assigned a new mac address - update the clients */
static void rlb_req_update_slave_clients(struct bonding *bond, struct slave *slave)
{
struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
struct rlb_client_info *client_info;
int ntt = 0;
u32 hash_index;
spin_lock_bh(&bond->mode_lock);
hash_index = bond_info->rx_hashtbl_used_head;
for (; hash_index != RLB_NULL_INDEX;
hash_index = client_info->used_next) {
client_info = &(bond_info->rx_hashtbl[hash_index]);
if ((client_info->slave == slave) &&
is_valid_ether_addr(client_info->mac_dst)) {
client_info->ntt = 1;
ntt = 1;
}
}
/* update the team's flag only after the whole iteration */
if (ntt) {
bond_info->rx_ntt = 1;
/* fasten the change */
bond_info->rlb_update_retry_counter = RLB_UPDATE_RETRY;
}
spin_unlock_bh(&bond->mode_lock);
}
/* mark all clients using src_ip to be updated */
static void rlb_req_update_subnet_clients(struct bonding *bond, __be32 src_ip)
{
struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
struct rlb_client_info *client_info;
u32 hash_index;
spin_lock(&bond->mode_lock);
hash_index = bond_info->rx_hashtbl_used_head;
for (; hash_index != RLB_NULL_INDEX;
hash_index = client_info->used_next) {
client_info = &(bond_info->rx_hashtbl[hash_index]);
if (!client_info->slave) {
netdev_err(bond->dev, "found a client with no channel in the client's hash table\n");
continue;
}
/* update all clients using this src_ip, that are not assigned
* to the team's address (curr_active_slave) and have a known
* unicast mac address.
*/
if ((client_info->ip_src == src_ip) &&
!ether_addr_equal_64bits(client_info->slave->dev->dev_addr,
bond->dev->dev_addr) &&
is_valid_ether_addr(client_info->mac_dst)) {
client_info->ntt = 1;
bond_info->rx_ntt = 1;
}
}
spin_unlock(&bond->mode_lock);
}
static struct slave *rlb_choose_channel(struct sk_buff *skb, struct bonding *bond)
{
struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
struct arp_pkt *arp = arp_pkt(skb);
struct slave *assigned_slave, *curr_active_slave;
struct rlb_client_info *client_info;
u32 hash_index = 0;
spin_lock(&bond->mode_lock);
curr_active_slave = rcu_dereference(bond->curr_active_slave);
hash_index = _simple_hash((u8 *)&arp->ip_dst, sizeof(arp->ip_dst));
client_info = &(bond_info->rx_hashtbl[hash_index]);
if (client_info->assigned) {
if ((client_info->ip_src == arp->ip_src) &&
(client_info->ip_dst == arp->ip_dst)) {
/* the entry is already assigned to this client */
if (!is_broadcast_ether_addr(arp->mac_dst)) {
/* update mac address from arp */
ether_addr_copy(client_info->mac_dst, arp->mac_dst);
}
ether_addr_copy(client_info->mac_src, arp->mac_src);
assigned_slave = client_info->slave;
if (assigned_slave) {
spin_unlock(&bond->mode_lock);
return assigned_slave;
}
} else {
/* the entry is already assigned to some other client,
* move the old client to primary (curr_active_slave) so
* that the new client can be assigned to this entry.
*/
if (curr_active_slave &&
client_info->slave != curr_active_slave) {
client_info->slave = curr_active_slave;
rlb_update_client(client_info);
}
}
}
/* assign a new slave */
assigned_slave = __rlb_next_rx_slave(bond);
if (assigned_slave) {
if (!(client_info->assigned &&
client_info->ip_src == arp->ip_src)) {
/* ip_src is going to be updated,
* fix the src hash list
*/
u32 hash_src = _simple_hash((u8 *)&arp->ip_src,
sizeof(arp->ip_src));
rlb_src_unlink(bond, hash_index);
rlb_src_link(bond, hash_src, hash_index);
}
client_info->ip_src = arp->ip_src;
client_info->ip_dst = arp->ip_dst;
/* arp->mac_dst is broadcast for arp reqeusts.
* will be updated with clients actual unicast mac address
* upon receiving an arp reply.
*/
ether_addr_copy(client_info->mac_dst, arp->mac_dst);
ether_addr_copy(client_info->mac_src, arp->mac_src);
client_info->slave = assigned_slave;
if (is_valid_ether_addr(client_info->mac_dst)) {
client_info->ntt = 1;
bond->alb_info.rx_ntt = 1;
} else {
client_info->ntt = 0;
}
if (vlan_get_tag(skb, &client_info->vlan_id))
client_info->vlan_id = 0;
if (!client_info->assigned) {
u32 prev_tbl_head = bond_info->rx_hashtbl_used_head;
bond_info->rx_hashtbl_used_head = hash_index;
client_info->used_next = prev_tbl_head;
if (prev_tbl_head != RLB_NULL_INDEX) {
bond_info->rx_hashtbl[prev_tbl_head].used_prev =
hash_index;
}
client_info->assigned = 1;
}
}
spin_unlock(&bond->mode_lock);
return assigned_slave;
}
/* chooses (and returns) transmit channel for arp reply
* does not choose channel for other arp types since they are
* sent on the curr_active_slave
*/
static struct slave *rlb_arp_xmit(struct sk_buff *skb, struct bonding *bond)
{
struct arp_pkt *arp = arp_pkt(skb);
struct slave *tx_slave = NULL;
/* Don't modify or load balance ARPs that do not originate locally
* (e.g.,arrive via a bridge).
*/
if (!bond_slave_has_mac_rx(bond, arp->mac_src))
return NULL;
if (arp->op_code == htons(ARPOP_REPLY)) {
/* the arp must be sent on the selected rx channel */
tx_slave = rlb_choose_channel(skb, bond);
if (tx_slave)
bond_hw_addr_copy(arp->mac_src, tx_slave->dev->dev_addr,
tx_slave->dev->addr_len);
netdev_dbg(bond->dev, "Server sent ARP Reply packet\n");
} else if (arp->op_code == htons(ARPOP_REQUEST)) {
/* Create an entry in the rx_hashtbl for this client as a
* place holder.
* When the arp reply is received the entry will be updated
* with the correct unicast address of the client.
*/
rlb_choose_channel(skb, bond);
/* The ARP reply packets must be delayed so that
* they can cancel out the influence of the ARP request.
*/
bond->alb_info.rlb_update_delay_counter = RLB_UPDATE_DELAY;
/* arp requests are broadcast and are sent on the primary
* the arp request will collapse all clients on the subnet to
* the primary slave. We must register these clients to be
* updated with their assigned mac.
*/
rlb_req_update_subnet_clients(bond, arp->ip_src);
netdev_dbg(bond->dev, "Server sent ARP Request packet\n");
}
return tx_slave;
}
static void rlb_rebalance(struct bonding *bond)
{
struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
struct slave *assigned_slave;
struct rlb_client_info *client_info;
int ntt;
u32 hash_index;
spin_lock_bh(&bond->mode_lock);
ntt = 0;
hash_index = bond_info->rx_hashtbl_used_head;
for (; hash_index != RLB_NULL_INDEX;
hash_index = client_info->used_next) {
client_info = &(bond_info->rx_hashtbl[hash_index]);
assigned_slave = __rlb_next_rx_slave(bond);
if (assigned_slave && (client_info->slave != assigned_slave)) {
client_info->slave = assigned_slave;
if (!is_zero_ether_addr(client_info->mac_dst)) {
client_info->ntt = 1;
ntt = 1;
}
}
}
/* update the team's flag only after the whole iteration */
if (ntt)
bond_info->rx_ntt = 1;
spin_unlock_bh(&bond->mode_lock);
}
/* Caller must hold mode_lock */
static void rlb_init_table_entry_dst(struct rlb_client_info *entry)
{
entry->used_next = RLB_NULL_INDEX;
entry->used_prev = RLB_NULL_INDEX;
entry->assigned = 0;
entry->slave = NULL;
entry->vlan_id = 0;
}
static void rlb_init_table_entry_src(struct rlb_client_info *entry)
{
entry->src_first = RLB_NULL_INDEX;
entry->src_prev = RLB_NULL_INDEX;
entry->src_next = RLB_NULL_INDEX;
}
static void rlb_init_table_entry(struct rlb_client_info *entry)
{
memset(entry, 0, sizeof(struct rlb_client_info));
rlb_init_table_entry_dst(entry);
rlb_init_table_entry_src(entry);
}
static void rlb_delete_table_entry_dst(struct bonding *bond, u32 index)
{
struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
u32 next_index = bond_info->rx_hashtbl[index].used_next;
u32 prev_index = bond_info->rx_hashtbl[index].used_prev;
if (index == bond_info->rx_hashtbl_used_head)
bond_info->rx_hashtbl_used_head = next_index;
if (prev_index != RLB_NULL_INDEX)
bond_info->rx_hashtbl[prev_index].used_next = next_index;
if (next_index != RLB_NULL_INDEX)
bond_info->rx_hashtbl[next_index].used_prev = prev_index;
}
/* unlink a rlb hash table entry from the src list */
static void rlb_src_unlink(struct bonding *bond, u32 index)
{
struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
u32 next_index = bond_info->rx_hashtbl[index].src_next;
u32 prev_index = bond_info->rx_hashtbl[index].src_prev;
bond_info->rx_hashtbl[index].src_next = RLB_NULL_INDEX;
bond_info->rx_hashtbl[index].src_prev = RLB_NULL_INDEX;
if (next_index != RLB_NULL_INDEX)
bond_info->rx_hashtbl[next_index].src_prev = prev_index;
if (prev_index == RLB_NULL_INDEX)
return;
/* is prev_index pointing to the head of this list? */
if (bond_info->rx_hashtbl[prev_index].src_first == index)
bond_info->rx_hashtbl[prev_index].src_first = next_index;
else
bond_info->rx_hashtbl[prev_index].src_next = next_index;
}
static void rlb_delete_table_entry(struct bonding *bond, u32 index)
{
struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
struct rlb_client_info *entry = &(bond_info->rx_hashtbl[index]);
rlb_delete_table_entry_dst(bond, index);
rlb_init_table_entry_dst(entry);
rlb_src_unlink(bond, index);
}
/* add the rx_hashtbl[ip_dst_hash] entry to the list
* of entries with identical ip_src_hash
*/
static void rlb_src_link(struct bonding *bond, u32 ip_src_hash, u32 ip_dst_hash)
{
struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
u32 next;
bond_info->rx_hashtbl[ip_dst_hash].src_prev = ip_src_hash;
next = bond_info->rx_hashtbl[ip_src_hash].src_first;
bond_info->rx_hashtbl[ip_dst_hash].src_next = next;
if (next != RLB_NULL_INDEX)
bond_info->rx_hashtbl[next].src_prev = ip_dst_hash;
bond_info->rx_hashtbl[ip_src_hash].src_first = ip_dst_hash;
}
/* deletes all rx_hashtbl entries with arp->ip_src if their mac_src does
* not match arp->mac_src
*/
static void rlb_purge_src_ip(struct bonding *bond, struct arp_pkt *arp)
{
struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
u32 ip_src_hash = _simple_hash((u8 *)&(arp->ip_src), sizeof(arp->ip_src));
u32 index;
spin_lock_bh(&bond->mode_lock);
index = bond_info->rx_hashtbl[ip_src_hash].src_first;
while (index != RLB_NULL_INDEX) {
struct rlb_client_info *entry = &(bond_info->rx_hashtbl[index]);
u32 next_index = entry->src_next;
if (entry->ip_src == arp->ip_src &&
!ether_addr_equal_64bits(arp->mac_src, entry->mac_src))
rlb_delete_table_entry(bond, index);
index = next_index;
}
spin_unlock_bh(&bond->mode_lock);
}
static int rlb_initialize(struct bonding *bond)
{
struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
struct rlb_client_info *new_hashtbl;
int size = RLB_HASH_TABLE_SIZE * sizeof(struct rlb_client_info);
int i;
new_hashtbl = kmalloc(size, GFP_KERNEL);
if (!new_hashtbl)
return -1;
spin_lock_bh(&bond->mode_lock);
bond_info->rx_hashtbl = new_hashtbl;
bond_info->rx_hashtbl_used_head = RLB_NULL_INDEX;
for (i = 0; i < RLB_HASH_TABLE_SIZE; i++)
rlb_init_table_entry(bond_info->rx_hashtbl + i);
spin_unlock_bh(&bond->mode_lock);
/* register to receive ARPs */
bond->recv_probe = rlb_arp_recv;
return 0;
}
static void rlb_deinitialize(struct bonding *bond)
{
struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
spin_lock_bh(&bond->mode_lock);
kfree(bond_info->rx_hashtbl);
bond_info->rx_hashtbl = NULL;
bond_info->rx_hashtbl_used_head = RLB_NULL_INDEX;
spin_unlock_bh(&bond->mode_lock);
}
static void rlb_clear_vlan(struct bonding *bond, unsigned short vlan_id)
{
struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
u32 curr_index;
spin_lock_bh(&bond->mode_lock);
curr_index = bond_info->rx_hashtbl_used_head;
while (curr_index != RLB_NULL_INDEX) {
struct rlb_client_info *curr = &(bond_info->rx_hashtbl[curr_index]);
u32 next_index = bond_info->rx_hashtbl[curr_index].used_next;
if (curr->vlan_id == vlan_id)
rlb_delete_table_entry(bond, curr_index);
curr_index = next_index;
}
spin_unlock_bh(&bond->mode_lock);
}
/*********************** tlb/rlb shared functions *********************/
static void alb_send_lp_vid(struct slave *slave, u8 mac_addr[],
__be16 vlan_proto, u16 vid)
{
struct learning_pkt pkt;
struct sk_buff *skb;
int size = sizeof(struct learning_pkt);
memset(&pkt, 0, size);
ether_addr_copy(pkt.mac_dst, mac_addr);
ether_addr_copy(pkt.mac_src, mac_addr);
pkt.type = cpu_to_be16(ETH_P_LOOPBACK);
skb = dev_alloc_skb(size);
if (!skb)
return;
skb_put_data(skb, &pkt, size);
skb_reset_mac_header(skb);
skb->network_header = skb->mac_header + ETH_HLEN;
skb->protocol = pkt.type;
skb->priority = TC_PRIO_CONTROL;
skb->dev = slave->dev;
netdev_dbg(slave->bond->dev,
"Send learning packet: dev %s mac %pM vlan %d\n",
slave->dev->name, mac_addr, vid);
if (vid)
__vlan_hwaccel_put_tag(skb, vlan_proto, vid);
dev_queue_xmit(skb);
}
struct alb_walk_data {
struct bonding *bond;
struct slave *slave;
u8 *mac_addr;
bool strict_match;
};
static int alb_upper_dev_walk(struct net_device *upper, void *_data)
{
struct alb_walk_data *data = _data;
bool strict_match = data->strict_match;
struct bonding *bond = data->bond;
struct slave *slave = data->slave;
u8 *mac_addr = data->mac_addr;
struct bond_vlan_tag *tags;
if (is_vlan_dev(upper) &&
bond->nest_level == vlan_get_encap_level(upper) - 1) {
if (upper->addr_assign_type == NET_ADDR_STOLEN) {
alb_send_lp_vid(slave, mac_addr,
vlan_dev_vlan_proto(upper),
vlan_dev_vlan_id(upper));
} else {
alb_send_lp_vid(slave, upper->dev_addr,
vlan_dev_vlan_proto(upper),
vlan_dev_vlan_id(upper));
}
}
/* If this is a macvlan device, then only send updates
* when strict_match is turned off.
*/
if (netif_is_macvlan(upper) && !strict_match) {
tags = bond_verify_device_path(bond->dev, upper, 0);
if (IS_ERR_OR_NULL(tags))
BUG();
alb_send_lp_vid(slave, upper->dev_addr,
tags[0].vlan_proto, tags[0].vlan_id);
kfree(tags);
}
return 0;
}
static void alb_send_learning_packets(struct slave *slave, u8 mac_addr[],
bool strict_match)
{
struct bonding *bond = bond_get_bond_by_slave(slave);
struct alb_walk_data data = {
.strict_match = strict_match,
.mac_addr = mac_addr,
.slave = slave,
.bond = bond,
};
/* send untagged */
alb_send_lp_vid(slave, mac_addr, 0, 0);
/* loop through all devices and see if we need to send a packet
* for that device.
*/
rcu_read_lock();
netdev_walk_all_upper_dev_rcu(bond->dev, alb_upper_dev_walk, &data);
rcu_read_unlock();
}
static int alb_set_slave_mac_addr(struct slave *slave, u8 addr[],
unsigned int len)
{
struct net_device *dev = slave->dev;
struct sockaddr_storage ss;
if (BOND_MODE(slave->bond) == BOND_MODE_TLB) {
memcpy(dev->dev_addr, addr, len);
return 0;
}
/* for rlb each slave must have a unique hw mac addresses so that
* each slave will receive packets destined to a different mac
*/
memcpy(ss.__data, addr, len);
ss.ss_family = dev->type;
if (dev_set_mac_address(dev, (struct sockaddr *)&ss, NULL)) {
netdev_err(slave->bond->dev, "dev_set_mac_address of dev %s failed! ALB mode requires that the base driver support setting the hw address also when the network device's interface is open\n",
dev->name);
return -EOPNOTSUPP;
}
return 0;
}
/* Swap MAC addresses between two slaves.
*
* Called with RTNL held, and no other locks.
*/
static void alb_swap_mac_addr(struct slave *slave1, struct slave *slave2)
{
u8 tmp_mac_addr[MAX_ADDR_LEN];
bond_hw_addr_copy(tmp_mac_addr, slave1->dev->dev_addr,
slave1->dev->addr_len);
alb_set_slave_mac_addr(slave1, slave2->dev->dev_addr,
slave2->dev->addr_len);
alb_set_slave_mac_addr(slave2, tmp_mac_addr,
slave1->dev->addr_len);
}
/* Send learning packets after MAC address swap.
*
* Called with RTNL and no other locks
*/
static void alb_fasten_mac_swap(struct bonding *bond, struct slave *slave1,
struct slave *slave2)
{
int slaves_state_differ = (bond_slave_can_tx(slave1) != bond_slave_can_tx(slave2));
struct slave *disabled_slave = NULL;
ASSERT_RTNL();
/* fasten the change in the switch */
if (bond_slave_can_tx(slave1)) {
alb_send_learning_packets(slave1, slave1->dev->dev_addr, false);
if (bond->alb_info.rlb_enabled) {
/* inform the clients that the mac address
* has changed
*/
rlb_req_update_slave_clients(bond, slave1);
}
} else {
disabled_slave = slave1;
}
if (bond_slave_can_tx(slave2)) {
alb_send_learning_packets(slave2, slave2->dev->dev_addr, false);
if (bond->alb_info.rlb_enabled) {
/* inform the clients that the mac address
* has changed
*/
rlb_req_update_slave_clients(bond, slave2);
}
} else {
disabled_slave = slave2;
}
if (bond->alb_info.rlb_enabled && slaves_state_differ) {
/* A disabled slave was assigned an active mac addr */
rlb_teach_disabled_mac_on_primary(bond,
disabled_slave->dev->dev_addr);
}
}
/**
* alb_change_hw_addr_on_detach
* @bond: bonding we're working on
* @slave: the slave that was just detached
*
* We assume that @slave was already detached from the slave list.
*
* If @slave's permanent hw address is different both from its current
* address and from @bond's address, then somewhere in the bond there's
* a slave that has @slave's permanet address as its current address.
* We'll make sure that that slave no longer uses @slave's permanent address.
*
* Caller must hold RTNL and no other locks
*/
static void alb_change_hw_addr_on_detach(struct bonding *bond, struct slave *slave)
{
int perm_curr_diff;
int perm_bond_diff;
struct slave *found_slave;
perm_curr_diff = !ether_addr_equal_64bits(slave->perm_hwaddr,
slave->dev->dev_addr);
perm_bond_diff = !ether_addr_equal_64bits(slave->perm_hwaddr,
bond->dev->dev_addr);
if (perm_curr_diff && perm_bond_diff) {
found_slave = bond_slave_has_mac(bond, slave->perm_hwaddr);
if (found_slave) {
alb_swap_mac_addr(slave, found_slave);
alb_fasten_mac_swap(bond, slave, found_slave);
}
}
}
/**
* alb_handle_addr_collision_on_attach
* @bond: bonding we're working on
* @slave: the slave that was just attached
*
* checks uniqueness of slave's mac address and handles the case the
* new slave uses the bonds mac address.
*
* If the permanent hw address of @slave is @bond's hw address, we need to
* find a different hw address to give @slave, that isn't in use by any other
* slave in the bond. This address must be, of course, one of the permanent
* addresses of the other slaves.
*
* We go over the slave list, and for each slave there we compare its
* permanent hw address with the current address of all the other slaves.
* If no match was found, then we've found a slave with a permanent address
* that isn't used by any other slave in the bond, so we can assign it to
* @slave.
*
* assumption: this function is called before @slave is attached to the
* bond slave list.
*/
static int alb_handle_addr_collision_on_attach(struct bonding *bond, struct slave *slave)
{
struct slave *has_bond_addr = rcu_access_pointer(bond->curr_active_slave);
struct slave *tmp_slave1, *free_mac_slave = NULL;
struct list_head *iter;
if (!bond_has_slaves(bond)) {
/* this is the first slave */
return 0;
}
/* if slave's mac address differs from bond's mac address
* check uniqueness of slave's mac address against the other
* slaves in the bond.
*/
if (!ether_addr_equal_64bits(slave->perm_hwaddr, bond->dev->dev_addr)) {
if (!bond_slave_has_mac(bond, slave->dev->dev_addr))
return 0;
/* Try setting slave mac to bond address and fall-through
* to code handling that situation below...
*/
alb_set_slave_mac_addr(slave, bond->dev->dev_addr,
bond->dev->addr_len);
}
/* The slave's address is equal to the address of the bond.
* Search for a spare address in the bond for this slave.
*/
bond_for_each_slave(bond, tmp_slave1, iter) {
if (!bond_slave_has_mac(bond, tmp_slave1->perm_hwaddr)) {
/* no slave has tmp_slave1's perm addr
* as its curr addr
*/
free_mac_slave = tmp_slave1;
break;
}
if (!has_bond_addr) {
if (ether_addr_equal_64bits(tmp_slave1->dev->dev_addr,
bond->dev->dev_addr)) {
has_bond_addr = tmp_slave1;
}
}
}
if (free_mac_slave) {
alb_set_slave_mac_addr(slave, free_mac_slave->perm_hwaddr,
free_mac_slave->dev->addr_len);
netdev_warn(bond->dev, "the hw address of slave %s is in use by the bond; giving it the hw address of %s\n",
slave->dev->name, free_mac_slave->dev->name);
} else if (has_bond_addr) {
netdev_err(bond->dev, "the hw address of slave %s is in use by the bond; couldn't find a slave with a free hw address to give it (this should not have happened)\n",
slave->dev->name);
return -EFAULT;
}
return 0;
}
/**
* alb_set_mac_address
* @bond:
* @addr:
*
* In TLB mode all slaves are configured to the bond's hw address, but set
* their dev_addr field to different addresses (based on their permanent hw
* addresses).
*
* For each slave, this function sets the interface to the new address and then
* changes its dev_addr field to its previous value.
*
* Unwinding assumes bond's mac address has not yet changed.
*/
static int alb_set_mac_address(struct bonding *bond, void *addr)
{
struct slave *slave, *rollback_slave;
struct list_head *iter;
struct sockaddr_storage ss;
char tmp_addr[MAX_ADDR_LEN];
int res;
if (bond->alb_info.rlb_enabled)
return 0;
bond_for_each_slave(bond, slave, iter) {
/* save net_device's current hw address */
bond_hw_addr_copy(tmp_addr, slave->dev->dev_addr,
slave->dev->addr_len);
res = dev_set_mac_address(slave->dev, addr, NULL);
/* restore net_device's hw address */
bond_hw_addr_copy(slave->dev->dev_addr, tmp_addr,
slave->dev->addr_len);
if (res)
goto unwind;
}
return 0;
unwind:
memcpy(ss.__data, bond->dev->dev_addr, bond->dev->addr_len);
ss.ss_family = bond->dev->type;
/* unwind from head to the slave that failed */
bond_for_each_slave(bond, rollback_slave, iter) {
if (rollback_slave == slave)
break;
bond_hw_addr_copy(tmp_addr, rollback_slave->dev->dev_addr,
rollback_slave->dev->addr_len);
dev_set_mac_address(rollback_slave->dev,
(struct sockaddr *)&ss, NULL);
bond_hw_addr_copy(rollback_slave->dev->dev_addr, tmp_addr,
rollback_slave->dev->addr_len);
}
return res;
}
/************************ exported alb funcions ************************/
int bond_alb_initialize(struct bonding *bond, int rlb_enabled)
{
int res;
res = tlb_initialize(bond);
if (res)
return res;
if (rlb_enabled) {
bond->alb_info.rlb_enabled = 1;
res = rlb_initialize(bond);
if (res) {
tlb_deinitialize(bond);
return res;
}
} else {
bond->alb_info.rlb_enabled = 0;
}
return 0;
}
void bond_alb_deinitialize(struct bonding *bond)
{
struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
tlb_deinitialize(bond);
if (bond_info->rlb_enabled)
rlb_deinitialize(bond);
}
static netdev_tx_t bond_do_alb_xmit(struct sk_buff *skb, struct bonding *bond,
struct slave *tx_slave)
{
struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
struct ethhdr *eth_data = eth_hdr(skb);
if (!tx_slave) {
/* unbalanced or unassigned, send through primary */
tx_slave = rcu_dereference(bond->curr_active_slave);
if (bond->params.tlb_dynamic_lb)
bond_info->unbalanced_load += skb->len;
}
if (tx_slave && bond_slave_can_tx(tx_slave)) {
if (tx_slave != rcu_access_pointer(bond->curr_active_slave)) {
ether_addr_copy(eth_data->h_source,
tx_slave->dev->dev_addr);
}
bond_dev_queue_xmit(bond, skb, tx_slave->dev);
goto out;
}
if (tx_slave && bond->params.tlb_dynamic_lb) {
spin_lock(&bond->mode_lock);
__tlb_clear_slave(bond, tx_slave, 0);
spin_unlock(&bond->mode_lock);
}
/* no suitable interface, frame not sent */
bond_tx_drop(bond->dev, skb);
out:
return NETDEV_TX_OK;
}
netdev_tx_t bond_tlb_xmit(struct sk_buff *skb, struct net_device *bond_dev)
{
struct bonding *bond = netdev_priv(bond_dev);
struct ethhdr *eth_data;
struct slave *tx_slave = NULL;
u32 hash_index;
skb_reset_mac_header(skb);
eth_data = eth_hdr(skb);
/* Do not TX balance any multicast or broadcast */
if (!is_multicast_ether_addr(eth_data->h_dest)) {
switch (skb->protocol) {
case htons(ETH_P_IP):
case htons(ETH_P_IPX):
/* In case of IPX, it will falback to L2 hash */
case htons(ETH_P_IPV6):
hash_index = bond_xmit_hash(bond, skb);
if (bond->params.tlb_dynamic_lb) {
tx_slave = tlb_choose_channel(bond,
hash_index & 0xFF,
skb->len);
} else {
struct bond_up_slave *slaves;
unsigned int count;
slaves = rcu_dereference(bond->slave_arr);
count = slaves ? READ_ONCE(slaves->count) : 0;
if (likely(count))
tx_slave = slaves->arr[hash_index %
count];
}
break;
}
}
return bond_do_alb_xmit(skb, bond, tx_slave);
}
netdev_tx_t bond_alb_xmit(struct sk_buff *skb, struct net_device *bond_dev)
{
struct bonding *bond = netdev_priv(bond_dev);
struct ethhdr *eth_data;
struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
struct slave *tx_slave = NULL;
static const __be32 ip_bcast = htonl(0xffffffff);
int hash_size = 0;
bool do_tx_balance = true;
u32 hash_index = 0;
const u8 *hash_start = NULL;
struct ipv6hdr *ip6hdr;
skb_reset_mac_header(skb);
eth_data = eth_hdr(skb);
switch (ntohs(skb->protocol)) {
case ETH_P_IP: {
const struct iphdr *iph = ip_hdr(skb);
if (is_broadcast_ether_addr(eth_data->h_dest) ||
iph->daddr == ip_bcast ||
iph->protocol == IPPROTO_IGMP) {
do_tx_balance = false;
break;
}
hash_start = (char *)&(iph->daddr);
hash_size = sizeof(iph->daddr);
}
break;
case ETH_P_IPV6:
/* IPv6 doesn't really use broadcast mac address, but leave
* that here just in case.
*/
if (is_broadcast_ether_addr(eth_data->h_dest)) {
do_tx_balance = false;
break;
}
/* IPv6 uses all-nodes multicast as an equivalent to
* broadcasts in IPv4.
*/
if (ether_addr_equal_64bits(eth_data->h_dest, mac_v6_allmcast)) {
do_tx_balance = false;
break;
}
/* Additianally, DAD probes should not be tx-balanced as that
* will lead to false positives for duplicate addresses and
* prevent address configuration from working.
*/
ip6hdr = ipv6_hdr(skb);
if (ipv6_addr_any(&ip6hdr->saddr)) {
do_tx_balance = false;
break;
}
hash_start = (char *)&(ipv6_hdr(skb)->daddr);
hash_size = sizeof(ipv6_hdr(skb)->daddr);
break;
case ETH_P_IPX:
if (ipx_hdr(skb)->ipx_checksum != IPX_NO_CHECKSUM) {
/* something is wrong with this packet */
do_tx_balance = false;
break;
}
if (ipx_hdr(skb)->ipx_type != IPX_TYPE_NCP) {
/* The only protocol worth balancing in
* this family since it has an "ARP" like
* mechanism
*/
do_tx_balance = false;
break;
}
hash_start = (char *)eth_data->h_dest;
hash_size = ETH_ALEN;
break;
case ETH_P_ARP:
do_tx_balance = false;
if (bond_info->rlb_enabled)
tx_slave = rlb_arp_xmit(skb, bond);
break;
default:
do_tx_balance = false;
break;
}
if (do_tx_balance) {
if (bond->params.tlb_dynamic_lb) {
hash_index = _simple_hash(hash_start, hash_size);
tx_slave = tlb_choose_channel(bond, hash_index, skb->len);
} else {
/*
* do_tx_balance means we are free to select the tx_slave
* So we do exactly what tlb would do for hash selection
*/
struct bond_up_slave *slaves;
unsigned int count;
slaves = rcu_dereference(bond->slave_arr);
count = slaves ? READ_ONCE(slaves->count) : 0;
if (likely(count))
tx_slave = slaves->arr[bond_xmit_hash(bond, skb) %
count];
}
}
return bond_do_alb_xmit(skb, bond, tx_slave);
}
void bond_alb_monitor(struct work_struct *work)
{
struct bonding *bond = container_of(work, struct bonding,
alb_work.work);
struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
struct list_head *iter;
struct slave *slave;
if (!bond_has_slaves(bond)) {
bond_info->tx_rebalance_counter = 0;
bond_info->lp_counter = 0;
goto re_arm;
}
rcu_read_lock();
bond_info->tx_rebalance_counter++;
bond_info->lp_counter++;
/* send learning packets */
if (bond_info->lp_counter >= BOND_ALB_LP_TICKS(bond)) {
bool strict_match;
bond_for_each_slave_rcu(bond, slave, iter) {
/* If updating current_active, use all currently
* user mac addreses (!strict_match). Otherwise, only
* use mac of the slave device.
* In RLB mode, we always use strict matches.
*/
strict_match = (slave != rcu_access_pointer(bond->curr_active_slave) ||
bond_info->rlb_enabled);
alb_send_learning_packets(slave, slave->dev->dev_addr,
strict_match);
}
bond_info->lp_counter = 0;
}
/* rebalance tx traffic */
if (bond_info->tx_rebalance_counter >= BOND_TLB_REBALANCE_TICKS) {
bond_for_each_slave_rcu(bond, slave, iter) {
tlb_clear_slave(bond, slave, 1);
if (slave == rcu_access_pointer(bond->curr_active_slave)) {
SLAVE_TLB_INFO(slave).load =
bond_info->unbalanced_load /
BOND_TLB_REBALANCE_INTERVAL;
bond_info->unbalanced_load = 0;
}
}
bond_info->tx_rebalance_counter = 0;
}
if (bond_info->rlb_enabled) {
if (bond_info->primary_is_promisc &&
(++bond_info->rlb_promisc_timeout_counter >= RLB_PROMISC_TIMEOUT)) {
/* dev_set_promiscuity requires rtnl and
* nothing else. Avoid race with bond_close.
*/
rcu_read_unlock();
if (!rtnl_trylock())
goto re_arm;
bond_info->rlb_promisc_timeout_counter = 0;
/* If the primary was set to promiscuous mode
* because a slave was disabled then
* it can now leave promiscuous mode.
*/
dev_set_promiscuity(rtnl_dereference(bond->curr_active_slave)->dev,
-1);
bond_info->primary_is_promisc = 0;
rtnl_unlock();
rcu_read_lock();
}
if (bond_info->rlb_rebalance) {
bond_info->rlb_rebalance = 0;
rlb_rebalance(bond);
}
/* check if clients need updating */
if (bond_info->rx_ntt) {
if (bond_info->rlb_update_delay_counter) {
--bond_info->rlb_update_delay_counter;
} else {
rlb_update_rx_clients(bond);
if (bond_info->rlb_update_retry_counter)
--bond_info->rlb_update_retry_counter;
else
bond_info->rx_ntt = 0;
}
}
}
rcu_read_unlock();
re_arm:
queue_delayed_work(bond->wq, &bond->alb_work, alb_delta_in_ticks);
}
/* assumption: called before the slave is attached to the bond
* and not locked by the bond lock
*/
int bond_alb_init_slave(struct bonding *bond, struct slave *slave)
{
int res;
res = alb_set_slave_mac_addr(slave, slave->perm_hwaddr,
slave->dev->addr_len);
if (res)
return res;
res = alb_handle_addr_collision_on_attach(bond, slave);
if (res)
return res;
tlb_init_slave(slave);
/* order a rebalance ASAP */
bond->alb_info.tx_rebalance_counter = BOND_TLB_REBALANCE_TICKS;
if (bond->alb_info.rlb_enabled)
bond->alb_info.rlb_rebalance = 1;
return 0;
}
/* Remove slave from tlb and rlb hash tables, and fix up MAC addresses
* if necessary.
*
* Caller must hold RTNL and no other locks
*/
void bond_alb_deinit_slave(struct bonding *bond, struct slave *slave)
{
if (bond_has_slaves(bond))
alb_change_hw_addr_on_detach(bond, slave);
tlb_clear_slave(bond, slave, 0);
if (bond->alb_info.rlb_enabled) {
bond->alb_info.rx_slave = NULL;
rlb_clear_slave(bond, slave);
}
}
void bond_alb_handle_link_change(struct bonding *bond, struct slave *slave, char link)
{
struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
if (link == BOND_LINK_DOWN) {
tlb_clear_slave(bond, slave, 0);
if (bond->alb_info.rlb_enabled)
rlb_clear_slave(bond, slave);
} else if (link == BOND_LINK_UP) {
/* order a rebalance ASAP */
bond_info->tx_rebalance_counter = BOND_TLB_REBALANCE_TICKS;
if (bond->alb_info.rlb_enabled) {
bond->alb_info.rlb_rebalance = 1;
/* If the updelay module parameter is smaller than the
* forwarding delay of the switch the rebalance will
* not work because the rebalance arp replies will
* not be forwarded to the clients..
*/
}
}
if (bond_is_nondyn_tlb(bond)) {
if (bond_update_slave_arr(bond, NULL))
pr_err("Failed to build slave-array for TLB mode.\n");
}
}
/**
* bond_alb_handle_active_change - assign new curr_active_slave
* @bond: our bonding struct
* @new_slave: new slave to assign
*
* Set the bond->curr_active_slave to @new_slave and handle
* mac address swapping and promiscuity changes as needed.
*
* Caller must hold RTNL
*/
void bond_alb_handle_active_change(struct bonding *bond, struct slave *new_slave)
{
struct slave *swap_slave;
struct slave *curr_active;
curr_active = rtnl_dereference(bond->curr_active_slave);
if (curr_active == new_slave)
return;
if (curr_active && bond->alb_info.primary_is_promisc) {
dev_set_promiscuity(curr_active->dev, -1);
bond->alb_info.primary_is_promisc = 0;
bond->alb_info.rlb_promisc_timeout_counter = 0;
}
swap_slave = curr_active;
rcu_assign_pointer(bond->curr_active_slave, new_slave);
if (!new_slave || !bond_has_slaves(bond))
return;
/* set the new curr_active_slave to the bonds mac address
* i.e. swap mac addresses of old curr_active_slave and new curr_active_slave
*/
if (!swap_slave)
swap_slave = bond_slave_has_mac(bond, bond->dev->dev_addr);
/* Arrange for swap_slave and new_slave to temporarily be
* ignored so we can mess with their MAC addresses without
* fear of interference from transmit activity.
*/
if (swap_slave)
tlb_clear_slave(bond, swap_slave, 1);
tlb_clear_slave(bond, new_slave, 1);
/* in TLB mode, the slave might flip down/up with the old dev_addr,
* and thus filter bond->dev_addr's packets, so force bond's mac
*/
if (BOND_MODE(bond) == BOND_MODE_TLB) {
struct sockaddr_storage ss;
u8 tmp_addr[MAX_ADDR_LEN];
bond_hw_addr_copy(tmp_addr, new_slave->dev->dev_addr,
new_slave->dev->addr_len);
bond_hw_addr_copy(ss.__data, bond->dev->dev_addr,
bond->dev->addr_len);
ss.ss_family = bond->dev->type;
/* we don't care if it can't change its mac, best effort */
dev_set_mac_address(new_slave->dev, (struct sockaddr *)&ss,
NULL);
bond_hw_addr_copy(new_slave->dev->dev_addr, tmp_addr,
new_slave->dev->addr_len);
}
/* curr_active_slave must be set before calling alb_swap_mac_addr */
if (swap_slave) {
/* swap mac address */
alb_swap_mac_addr(swap_slave, new_slave);
alb_fasten_mac_swap(bond, swap_slave, new_slave);
} else {
/* set the new_slave to the bond mac address */
alb_set_slave_mac_addr(new_slave, bond->dev->dev_addr,
bond->dev->addr_len);
alb_send_learning_packets(new_slave, bond->dev->dev_addr,
false);
}
}
/* Called with RTNL */
int bond_alb_set_mac_address(struct net_device *bond_dev, void *addr)
{
struct bonding *bond = netdev_priv(bond_dev);
struct sockaddr_storage *ss = addr;
struct slave *curr_active;
struct slave *swap_slave;
int res;
if (!is_valid_ether_addr(ss->__data))
return -EADDRNOTAVAIL;
res = alb_set_mac_address(bond, addr);
if (res)
return res;
bond_hw_addr_copy(bond_dev->dev_addr, ss->__data, bond_dev->addr_len);
/* If there is no curr_active_slave there is nothing else to do.
* Otherwise we'll need to pass the new address to it and handle
* duplications.
*/
curr_active = rtnl_dereference(bond->curr_active_slave);
if (!curr_active)
return 0;
swap_slave = bond_slave_has_mac(bond, bond_dev->dev_addr);
if (swap_slave) {
alb_swap_mac_addr(swap_slave, curr_active);
alb_fasten_mac_swap(bond, swap_slave, curr_active);
} else {
alb_set_slave_mac_addr(curr_active, bond_dev->dev_addr,
bond_dev->addr_len);
alb_send_learning_packets(curr_active,
bond_dev->dev_addr, false);
if (bond->alb_info.rlb_enabled) {
/* inform clients mac address has changed */
rlb_req_update_slave_clients(bond, curr_active);
}
}
return 0;
}
void bond_alb_clear_vlan(struct bonding *bond, unsigned short vlan_id)
{
if (bond->alb_info.rlb_enabled)
rlb_clear_vlan(bond, vlan_id);
}