| // SPDX-License-Identifier: GPL-2.0-or-later |
| /* |
| * sun4i-ss-hash.c - hardware cryptographic accelerator for Allwinner A20 SoC |
| * |
| * Copyright (C) 2013-2015 Corentin LABBE <clabbe.montjoie@gmail.com> |
| * |
| * This file add support for MD5 and SHA1. |
| * |
| * You could find the datasheet in Documentation/arm/sunxi.rst |
| */ |
| #include "sun4i-ss.h" |
| #include <linux/scatterlist.h> |
| |
| /* This is a totally arbitrary value */ |
| #define SS_TIMEOUT 100 |
| |
| int sun4i_hash_crainit(struct crypto_tfm *tfm) |
| { |
| struct sun4i_tfm_ctx *op = crypto_tfm_ctx(tfm); |
| struct ahash_alg *alg = __crypto_ahash_alg(tfm->__crt_alg); |
| struct sun4i_ss_alg_template *algt; |
| int err; |
| |
| memset(op, 0, sizeof(struct sun4i_tfm_ctx)); |
| |
| algt = container_of(alg, struct sun4i_ss_alg_template, alg.hash); |
| op->ss = algt->ss; |
| |
| err = pm_runtime_get_sync(op->ss->dev); |
| if (err < 0) |
| return err; |
| |
| crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm), |
| sizeof(struct sun4i_req_ctx)); |
| return 0; |
| } |
| |
| void sun4i_hash_craexit(struct crypto_tfm *tfm) |
| { |
| struct sun4i_tfm_ctx *op = crypto_tfm_ctx(tfm); |
| |
| pm_runtime_put(op->ss->dev); |
| } |
| |
| /* sun4i_hash_init: initialize request context */ |
| int sun4i_hash_init(struct ahash_request *areq) |
| { |
| struct sun4i_req_ctx *op = ahash_request_ctx(areq); |
| struct crypto_ahash *tfm = crypto_ahash_reqtfm(areq); |
| struct ahash_alg *alg = __crypto_ahash_alg(tfm->base.__crt_alg); |
| struct sun4i_ss_alg_template *algt; |
| |
| memset(op, 0, sizeof(struct sun4i_req_ctx)); |
| |
| algt = container_of(alg, struct sun4i_ss_alg_template, alg.hash); |
| op->mode = algt->mode; |
| |
| return 0; |
| } |
| |
| int sun4i_hash_export_md5(struct ahash_request *areq, void *out) |
| { |
| struct sun4i_req_ctx *op = ahash_request_ctx(areq); |
| struct md5_state *octx = out; |
| int i; |
| |
| octx->byte_count = op->byte_count + op->len; |
| |
| memcpy(octx->block, op->buf, op->len); |
| |
| if (op->byte_count) { |
| for (i = 0; i < 4; i++) |
| octx->hash[i] = op->hash[i]; |
| } else { |
| octx->hash[0] = SHA1_H0; |
| octx->hash[1] = SHA1_H1; |
| octx->hash[2] = SHA1_H2; |
| octx->hash[3] = SHA1_H3; |
| } |
| |
| return 0; |
| } |
| |
| int sun4i_hash_import_md5(struct ahash_request *areq, const void *in) |
| { |
| struct sun4i_req_ctx *op = ahash_request_ctx(areq); |
| const struct md5_state *ictx = in; |
| int i; |
| |
| sun4i_hash_init(areq); |
| |
| op->byte_count = ictx->byte_count & ~0x3F; |
| op->len = ictx->byte_count & 0x3F; |
| |
| memcpy(op->buf, ictx->block, op->len); |
| |
| for (i = 0; i < 4; i++) |
| op->hash[i] = ictx->hash[i]; |
| |
| return 0; |
| } |
| |
| int sun4i_hash_export_sha1(struct ahash_request *areq, void *out) |
| { |
| struct sun4i_req_ctx *op = ahash_request_ctx(areq); |
| struct sha1_state *octx = out; |
| int i; |
| |
| octx->count = op->byte_count + op->len; |
| |
| memcpy(octx->buffer, op->buf, op->len); |
| |
| if (op->byte_count) { |
| for (i = 0; i < 5; i++) |
| octx->state[i] = op->hash[i]; |
| } else { |
| octx->state[0] = SHA1_H0; |
| octx->state[1] = SHA1_H1; |
| octx->state[2] = SHA1_H2; |
| octx->state[3] = SHA1_H3; |
| octx->state[4] = SHA1_H4; |
| } |
| |
| return 0; |
| } |
| |
| int sun4i_hash_import_sha1(struct ahash_request *areq, const void *in) |
| { |
| struct sun4i_req_ctx *op = ahash_request_ctx(areq); |
| const struct sha1_state *ictx = in; |
| int i; |
| |
| sun4i_hash_init(areq); |
| |
| op->byte_count = ictx->count & ~0x3F; |
| op->len = ictx->count & 0x3F; |
| |
| memcpy(op->buf, ictx->buffer, op->len); |
| |
| for (i = 0; i < 5; i++) |
| op->hash[i] = ictx->state[i]; |
| |
| return 0; |
| } |
| |
| #define SS_HASH_UPDATE 1 |
| #define SS_HASH_FINAL 2 |
| |
| /* |
| * sun4i_hash_update: update hash engine |
| * |
| * Could be used for both SHA1 and MD5 |
| * Write data by step of 32bits and put then in the SS. |
| * |
| * Since we cannot leave partial data and hash state in the engine, |
| * we need to get the hash state at the end of this function. |
| * We can get the hash state every 64 bytes |
| * |
| * So the first work is to get the number of bytes to write to SS modulo 64 |
| * The extra bytes will go to a temporary buffer op->buf storing op->len bytes |
| * |
| * So at the begin of update() |
| * if op->len + areq->nbytes < 64 |
| * => all data will be written to wait buffer (op->buf) and end=0 |
| * if not, write all data from op->buf to the device and position end to |
| * complete to 64bytes |
| * |
| * example 1: |
| * update1 60o => op->len=60 |
| * update2 60o => need one more word to have 64 bytes |
| * end=4 |
| * so write all data from op->buf and one word of SGs |
| * write remaining data in op->buf |
| * final state op->len=56 |
| */ |
| static int sun4i_hash(struct ahash_request *areq) |
| { |
| /* |
| * i is the total bytes read from SGs, to be compared to areq->nbytes |
| * i is important because we cannot rely on SG length since the sum of |
| * SG->length could be greater than areq->nbytes |
| * |
| * end is the position when we need to stop writing to the device, |
| * to be compared to i |
| * |
| * in_i: advancement in the current SG |
| */ |
| unsigned int i = 0, end, fill, min_fill, nwait, nbw = 0, j = 0, todo; |
| unsigned int in_i = 0; |
| u32 spaces, rx_cnt = SS_RX_DEFAULT, bf[32] = {0}, wb = 0, v, ivmode = 0; |
| struct sun4i_req_ctx *op = ahash_request_ctx(areq); |
| struct crypto_ahash *tfm = crypto_ahash_reqtfm(areq); |
| struct sun4i_tfm_ctx *tfmctx = crypto_ahash_ctx(tfm); |
| struct sun4i_ss_ctx *ss = tfmctx->ss; |
| struct scatterlist *in_sg = areq->src; |
| struct sg_mapping_iter mi; |
| int in_r, err = 0; |
| size_t copied = 0; |
| |
| dev_dbg(ss->dev, "%s %s bc=%llu len=%u mode=%x wl=%u h0=%0x", |
| __func__, crypto_tfm_alg_name(areq->base.tfm), |
| op->byte_count, areq->nbytes, op->mode, |
| op->len, op->hash[0]); |
| |
| if (unlikely(!areq->nbytes) && !(op->flags & SS_HASH_FINAL)) |
| return 0; |
| |
| /* protect against overflow */ |
| if (unlikely(areq->nbytes > UINT_MAX - op->len)) { |
| dev_err(ss->dev, "Cannot process too large request\n"); |
| return -EINVAL; |
| } |
| |
| if (op->len + areq->nbytes < 64 && !(op->flags & SS_HASH_FINAL)) { |
| /* linearize data to op->buf */ |
| copied = sg_pcopy_to_buffer(areq->src, sg_nents(areq->src), |
| op->buf + op->len, areq->nbytes, 0); |
| op->len += copied; |
| return 0; |
| } |
| |
| spin_lock_bh(&ss->slock); |
| |
| /* |
| * if some data have been processed before, |
| * we need to restore the partial hash state |
| */ |
| if (op->byte_count) { |
| ivmode = SS_IV_ARBITRARY; |
| for (i = 0; i < 5; i++) |
| writel(op->hash[i], ss->base + SS_IV0 + i * 4); |
| } |
| /* Enable the device */ |
| writel(op->mode | SS_ENABLED | ivmode, ss->base + SS_CTL); |
| |
| if (!(op->flags & SS_HASH_UPDATE)) |
| goto hash_final; |
| |
| /* start of handling data */ |
| if (!(op->flags & SS_HASH_FINAL)) { |
| end = ((areq->nbytes + op->len) / 64) * 64 - op->len; |
| |
| if (end > areq->nbytes || areq->nbytes - end > 63) { |
| dev_err(ss->dev, "ERROR: Bound error %u %u\n", |
| end, areq->nbytes); |
| err = -EINVAL; |
| goto release_ss; |
| } |
| } else { |
| /* Since we have the flag final, we can go up to modulo 4 */ |
| if (areq->nbytes < 4) |
| end = 0; |
| else |
| end = ((areq->nbytes + op->len) / 4) * 4 - op->len; |
| } |
| |
| /* TODO if SGlen % 4 and !op->len then DMA */ |
| i = 1; |
| while (in_sg && i == 1) { |
| if (in_sg->length % 4) |
| i = 0; |
| in_sg = sg_next(in_sg); |
| } |
| if (i == 1 && !op->len && areq->nbytes) |
| dev_dbg(ss->dev, "We can DMA\n"); |
| |
| i = 0; |
| sg_miter_start(&mi, areq->src, sg_nents(areq->src), |
| SG_MITER_FROM_SG | SG_MITER_ATOMIC); |
| sg_miter_next(&mi); |
| in_i = 0; |
| |
| do { |
| /* |
| * we need to linearize in two case: |
| * - the buffer is already used |
| * - the SG does not have enough byte remaining ( < 4) |
| */ |
| if (op->len || (mi.length - in_i) < 4) { |
| /* |
| * if we have entered here we have two reason to stop |
| * - the buffer is full |
| * - reach the end |
| */ |
| while (op->len < 64 && i < end) { |
| /* how many bytes we can read from current SG */ |
| in_r = min3(mi.length - in_i, end - i, |
| 64 - op->len); |
| memcpy(op->buf + op->len, mi.addr + in_i, in_r); |
| op->len += in_r; |
| i += in_r; |
| in_i += in_r; |
| if (in_i == mi.length) { |
| sg_miter_next(&mi); |
| in_i = 0; |
| } |
| } |
| if (op->len > 3 && !(op->len % 4)) { |
| /* write buf to the device */ |
| writesl(ss->base + SS_RXFIFO, op->buf, |
| op->len / 4); |
| op->byte_count += op->len; |
| op->len = 0; |
| } |
| } |
| if (mi.length - in_i > 3 && i < end) { |
| /* how many bytes we can read from current SG */ |
| in_r = min3(mi.length - in_i, areq->nbytes - i, |
| ((mi.length - in_i) / 4) * 4); |
| /* how many bytes we can write in the device*/ |
| todo = min3((u32)(end - i) / 4, rx_cnt, (u32)in_r / 4); |
| writesl(ss->base + SS_RXFIFO, mi.addr + in_i, todo); |
| op->byte_count += todo * 4; |
| i += todo * 4; |
| in_i += todo * 4; |
| rx_cnt -= todo; |
| if (!rx_cnt) { |
| spaces = readl(ss->base + SS_FCSR); |
| rx_cnt = SS_RXFIFO_SPACES(spaces); |
| } |
| if (in_i == mi.length) { |
| sg_miter_next(&mi); |
| in_i = 0; |
| } |
| } |
| } while (i < end); |
| |
| /* |
| * Now we have written to the device all that we can, |
| * store the remaining bytes in op->buf |
| */ |
| if ((areq->nbytes - i) < 64) { |
| while (i < areq->nbytes && in_i < mi.length && op->len < 64) { |
| /* how many bytes we can read from current SG */ |
| in_r = min3(mi.length - in_i, areq->nbytes - i, |
| 64 - op->len); |
| memcpy(op->buf + op->len, mi.addr + in_i, in_r); |
| op->len += in_r; |
| i += in_r; |
| in_i += in_r; |
| if (in_i == mi.length) { |
| sg_miter_next(&mi); |
| in_i = 0; |
| } |
| } |
| } |
| |
| sg_miter_stop(&mi); |
| |
| /* |
| * End of data process |
| * Now if we have the flag final go to finalize part |
| * If not, store the partial hash |
| */ |
| if (op->flags & SS_HASH_FINAL) |
| goto hash_final; |
| |
| writel(op->mode | SS_ENABLED | SS_DATA_END, ss->base + SS_CTL); |
| i = 0; |
| do { |
| v = readl(ss->base + SS_CTL); |
| i++; |
| } while (i < SS_TIMEOUT && (v & SS_DATA_END)); |
| if (unlikely(i >= SS_TIMEOUT)) { |
| dev_err_ratelimited(ss->dev, |
| "ERROR: hash end timeout %d>%d ctl=%x len=%u\n", |
| i, SS_TIMEOUT, v, areq->nbytes); |
| err = -EIO; |
| goto release_ss; |
| } |
| |
| /* |
| * The datasheet isn't very clear about when to retrieve the digest. The |
| * bit SS_DATA_END is cleared when the engine has processed the data and |
| * when the digest is computed *but* it doesn't mean the digest is |
| * available in the digest registers. Hence the delay to be sure we can |
| * read it. |
| */ |
| ndelay(1); |
| |
| for (i = 0; i < crypto_ahash_digestsize(tfm) / 4; i++) |
| op->hash[i] = readl(ss->base + SS_MD0 + i * 4); |
| |
| goto release_ss; |
| |
| /* |
| * hash_final: finalize hashing operation |
| * |
| * If we have some remaining bytes, we write them. |
| * Then ask the SS for finalizing the hashing operation |
| * |
| * I do not check RX FIFO size in this function since the size is 32 |
| * after each enabling and this function neither write more than 32 words. |
| * If we come from the update part, we cannot have more than |
| * 3 remaining bytes to write and SS is fast enough to not care about it. |
| */ |
| |
| hash_final: |
| |
| /* write the remaining words of the wait buffer */ |
| if (op->len) { |
| nwait = op->len / 4; |
| if (nwait) { |
| writesl(ss->base + SS_RXFIFO, op->buf, nwait); |
| op->byte_count += 4 * nwait; |
| } |
| |
| nbw = op->len - 4 * nwait; |
| if (nbw) { |
| wb = *(u32 *)(op->buf + nwait * 4); |
| wb &= GENMASK((nbw * 8) - 1, 0); |
| |
| op->byte_count += nbw; |
| } |
| } |
| |
| /* write the remaining bytes of the nbw buffer */ |
| wb |= ((1 << 7) << (nbw * 8)); |
| bf[j++] = wb; |
| |
| /* |
| * number of space to pad to obtain 64o minus 8(size) minus 4 (final 1) |
| * I take the operations from other MD5/SHA1 implementations |
| */ |
| |
| /* last block size */ |
| fill = 64 - (op->byte_count % 64); |
| min_fill = 2 * sizeof(u32) + (nbw ? 0 : sizeof(u32)); |
| |
| /* if we can't fill all data, jump to the next 64 block */ |
| if (fill < min_fill) |
| fill += 64; |
| |
| j += (fill - min_fill) / sizeof(u32); |
| |
| /* write the length of data */ |
| if (op->mode == SS_OP_SHA1) { |
| __be64 bits = cpu_to_be64(op->byte_count << 3); |
| bf[j++] = lower_32_bits(bits); |
| bf[j++] = upper_32_bits(bits); |
| } else { |
| __le64 bits = op->byte_count << 3; |
| bf[j++] = lower_32_bits(bits); |
| bf[j++] = upper_32_bits(bits); |
| } |
| writesl(ss->base + SS_RXFIFO, bf, j); |
| |
| /* Tell the SS to stop the hashing */ |
| writel(op->mode | SS_ENABLED | SS_DATA_END, ss->base + SS_CTL); |
| |
| /* |
| * Wait for SS to finish the hash. |
| * The timeout could happen only in case of bad overclocking |
| * or driver bug. |
| */ |
| i = 0; |
| do { |
| v = readl(ss->base + SS_CTL); |
| i++; |
| } while (i < SS_TIMEOUT && (v & SS_DATA_END)); |
| if (unlikely(i >= SS_TIMEOUT)) { |
| dev_err_ratelimited(ss->dev, |
| "ERROR: hash end timeout %d>%d ctl=%x len=%u\n", |
| i, SS_TIMEOUT, v, areq->nbytes); |
| err = -EIO; |
| goto release_ss; |
| } |
| |
| /* |
| * The datasheet isn't very clear about when to retrieve the digest. The |
| * bit SS_DATA_END is cleared when the engine has processed the data and |
| * when the digest is computed *but* it doesn't mean the digest is |
| * available in the digest registers. Hence the delay to be sure we can |
| * read it. |
| */ |
| ndelay(1); |
| |
| /* Get the hash from the device */ |
| if (op->mode == SS_OP_SHA1) { |
| for (i = 0; i < 5; i++) { |
| v = cpu_to_be32(readl(ss->base + SS_MD0 + i * 4)); |
| memcpy(areq->result + i * 4, &v, 4); |
| } |
| } else { |
| for (i = 0; i < 4; i++) { |
| v = readl(ss->base + SS_MD0 + i * 4); |
| memcpy(areq->result + i * 4, &v, 4); |
| } |
| } |
| |
| release_ss: |
| writel(0, ss->base + SS_CTL); |
| spin_unlock_bh(&ss->slock); |
| return err; |
| } |
| |
| int sun4i_hash_final(struct ahash_request *areq) |
| { |
| struct sun4i_req_ctx *op = ahash_request_ctx(areq); |
| |
| op->flags = SS_HASH_FINAL; |
| return sun4i_hash(areq); |
| } |
| |
| int sun4i_hash_update(struct ahash_request *areq) |
| { |
| struct sun4i_req_ctx *op = ahash_request_ctx(areq); |
| |
| op->flags = SS_HASH_UPDATE; |
| return sun4i_hash(areq); |
| } |
| |
| /* sun4i_hash_finup: finalize hashing operation after an update */ |
| int sun4i_hash_finup(struct ahash_request *areq) |
| { |
| struct sun4i_req_ctx *op = ahash_request_ctx(areq); |
| |
| op->flags = SS_HASH_UPDATE | SS_HASH_FINAL; |
| return sun4i_hash(areq); |
| } |
| |
| /* combo of init/update/final functions */ |
| int sun4i_hash_digest(struct ahash_request *areq) |
| { |
| int err; |
| struct sun4i_req_ctx *op = ahash_request_ctx(areq); |
| |
| err = sun4i_hash_init(areq); |
| if (err) |
| return err; |
| |
| op->flags = SS_HASH_UPDATE | SS_HASH_FINAL; |
| return sun4i_hash(areq); |
| } |