blob: 76d456c516a137d225357b7fdea978a0826cd2c8 [file] [log] [blame]
/* SPDX-License-Identifier: GPL-2.0-or-later */
/* Generic I/O port emulation.
*
* Copyright (C) 2007 Red Hat, Inc. All Rights Reserved.
* Written by David Howells (dhowells@redhat.com)
*/
#ifndef __ASM_GENERIC_IO_H
#define __ASM_GENERIC_IO_H
#include <asm/page.h> /* I/O is all done through memory accesses */
#include <linux/string.h> /* for memset() and memcpy() */
#include <linux/types.h>
#ifdef CONFIG_GENERIC_IOMAP
#include <asm-generic/iomap.h>
#endif
#include <asm/mmiowb.h>
#include <asm-generic/pci_iomap.h>
#ifndef __io_br
#define __io_br() barrier()
#endif
/* prevent prefetching of coherent DMA data ahead of a dma-complete */
#ifndef __io_ar
#ifdef rmb
#define __io_ar(v) rmb()
#else
#define __io_ar(v) barrier()
#endif
#endif
/* flush writes to coherent DMA data before possibly triggering a DMA read */
#ifndef __io_bw
#ifdef wmb
#define __io_bw() wmb()
#else
#define __io_bw() barrier()
#endif
#endif
/* serialize device access against a spin_unlock, usually handled there. */
#ifndef __io_aw
#define __io_aw() mmiowb_set_pending()
#endif
#ifndef __io_pbw
#define __io_pbw() __io_bw()
#endif
#ifndef __io_paw
#define __io_paw() __io_aw()
#endif
#ifndef __io_pbr
#define __io_pbr() __io_br()
#endif
#ifndef __io_par
#define __io_par(v) __io_ar(v)
#endif
/*
* __raw_{read,write}{b,w,l,q}() access memory in native endianness.
*
* On some architectures memory mapped IO needs to be accessed differently.
* On the simple architectures, we just read/write the memory location
* directly.
*/
#ifndef __raw_readb
#define __raw_readb __raw_readb
static inline u8 __raw_readb(const volatile void __iomem *addr)
{
return *(const volatile u8 __force *)addr;
}
#endif
#ifndef __raw_readw
#define __raw_readw __raw_readw
static inline u16 __raw_readw(const volatile void __iomem *addr)
{
return *(const volatile u16 __force *)addr;
}
#endif
#ifndef __raw_readl
#define __raw_readl __raw_readl
static inline u32 __raw_readl(const volatile void __iomem *addr)
{
return *(const volatile u32 __force *)addr;
}
#endif
#ifdef CONFIG_64BIT
#ifndef __raw_readq
#define __raw_readq __raw_readq
static inline u64 __raw_readq(const volatile void __iomem *addr)
{
return *(const volatile u64 __force *)addr;
}
#endif
#endif /* CONFIG_64BIT */
#ifndef __raw_writeb
#define __raw_writeb __raw_writeb
static inline void __raw_writeb(u8 value, volatile void __iomem *addr)
{
*(volatile u8 __force *)addr = value;
}
#endif
#ifndef __raw_writew
#define __raw_writew __raw_writew
static inline void __raw_writew(u16 value, volatile void __iomem *addr)
{
*(volatile u16 __force *)addr = value;
}
#endif
#ifndef __raw_writel
#define __raw_writel __raw_writel
static inline void __raw_writel(u32 value, volatile void __iomem *addr)
{
*(volatile u32 __force *)addr = value;
}
#endif
#ifdef CONFIG_64BIT
#ifndef __raw_writeq
#define __raw_writeq __raw_writeq
static inline void __raw_writeq(u64 value, volatile void __iomem *addr)
{
*(volatile u64 __force *)addr = value;
}
#endif
#endif /* CONFIG_64BIT */
/*
* {read,write}{b,w,l,q}() access little endian memory and return result in
* native endianness.
*/
#ifndef readb
#define readb readb
static inline u8 readb(const volatile void __iomem *addr)
{
u8 val;
__io_br();
val = __raw_readb(addr);
__io_ar(val);
return val;
}
#endif
#ifndef readw
#define readw readw
static inline u16 readw(const volatile void __iomem *addr)
{
u16 val;
__io_br();
val = __le16_to_cpu((__le16 __force)__raw_readw(addr));
__io_ar(val);
return val;
}
#endif
#ifndef readl
#define readl readl
static inline u32 readl(const volatile void __iomem *addr)
{
u32 val;
__io_br();
val = __le32_to_cpu((__le32 __force)__raw_readl(addr));
__io_ar(val);
return val;
}
#endif
#ifdef CONFIG_64BIT
#ifndef readq
#define readq readq
static inline u64 readq(const volatile void __iomem *addr)
{
u64 val;
__io_br();
val = __le64_to_cpu(__raw_readq(addr));
__io_ar(val);
return val;
}
#endif
#endif /* CONFIG_64BIT */
#ifndef writeb
#define writeb writeb
static inline void writeb(u8 value, volatile void __iomem *addr)
{
__io_bw();
__raw_writeb(value, addr);
__io_aw();
}
#endif
#ifndef writew
#define writew writew
static inline void writew(u16 value, volatile void __iomem *addr)
{
__io_bw();
__raw_writew((u16 __force)cpu_to_le16(value), addr);
__io_aw();
}
#endif
#ifndef writel
#define writel writel
static inline void writel(u32 value, volatile void __iomem *addr)
{
__io_bw();
__raw_writel((u32 __force)__cpu_to_le32(value), addr);
__io_aw();
}
#endif
#ifdef CONFIG_64BIT
#ifndef writeq
#define writeq writeq
static inline void writeq(u64 value, volatile void __iomem *addr)
{
__io_bw();
__raw_writeq(__cpu_to_le64(value), addr);
__io_aw();
}
#endif
#endif /* CONFIG_64BIT */
/*
* {read,write}{b,w,l,q}_relaxed() are like the regular version, but
* are not guaranteed to provide ordering against spinlocks or memory
* accesses.
*/
#ifndef readb_relaxed
#define readb_relaxed readb_relaxed
static inline u8 readb_relaxed(const volatile void __iomem *addr)
{
return __raw_readb(addr);
}
#endif
#ifndef readw_relaxed
#define readw_relaxed readw_relaxed
static inline u16 readw_relaxed(const volatile void __iomem *addr)
{
return __le16_to_cpu(__raw_readw(addr));
}
#endif
#ifndef readl_relaxed
#define readl_relaxed readl_relaxed
static inline u32 readl_relaxed(const volatile void __iomem *addr)
{
return __le32_to_cpu(__raw_readl(addr));
}
#endif
#if defined(readq) && !defined(readq_relaxed)
#define readq_relaxed readq_relaxed
static inline u64 readq_relaxed(const volatile void __iomem *addr)
{
return __le64_to_cpu(__raw_readq(addr));
}
#endif
#ifndef writeb_relaxed
#define writeb_relaxed writeb_relaxed
static inline void writeb_relaxed(u8 value, volatile void __iomem *addr)
{
__raw_writeb(value, addr);
}
#endif
#ifndef writew_relaxed
#define writew_relaxed writew_relaxed
static inline void writew_relaxed(u16 value, volatile void __iomem *addr)
{
__raw_writew(cpu_to_le16(value), addr);
}
#endif
#ifndef writel_relaxed
#define writel_relaxed writel_relaxed
static inline void writel_relaxed(u32 value, volatile void __iomem *addr)
{
__raw_writel(__cpu_to_le32(value), addr);
}
#endif
#if defined(writeq) && !defined(writeq_relaxed)
#define writeq_relaxed writeq_relaxed
static inline void writeq_relaxed(u64 value, volatile void __iomem *addr)
{
__raw_writeq(__cpu_to_le64(value), addr);
}
#endif
/*
* {read,write}s{b,w,l,q}() repeatedly access the same memory address in
* native endianness in 8-, 16-, 32- or 64-bit chunks (@count times).
*/
#ifndef readsb
#define readsb readsb
static inline void readsb(const volatile void __iomem *addr, void *buffer,
unsigned int count)
{
if (count) {
u8 *buf = buffer;
do {
u8 x = __raw_readb(addr);
*buf++ = x;
} while (--count);
}
}
#endif
#ifndef readsw
#define readsw readsw
static inline void readsw(const volatile void __iomem *addr, void *buffer,
unsigned int count)
{
if (count) {
u16 *buf = buffer;
do {
u16 x = __raw_readw(addr);
*buf++ = x;
} while (--count);
}
}
#endif
#ifndef readsl
#define readsl readsl
static inline void readsl(const volatile void __iomem *addr, void *buffer,
unsigned int count)
{
if (count) {
u32 *buf = buffer;
do {
u32 x = __raw_readl(addr);
*buf++ = x;
} while (--count);
}
}
#endif
#ifdef CONFIG_64BIT
#ifndef readsq
#define readsq readsq
static inline void readsq(const volatile void __iomem *addr, void *buffer,
unsigned int count)
{
if (count) {
u64 *buf = buffer;
do {
u64 x = __raw_readq(addr);
*buf++ = x;
} while (--count);
}
}
#endif
#endif /* CONFIG_64BIT */
#ifndef writesb
#define writesb writesb
static inline void writesb(volatile void __iomem *addr, const void *buffer,
unsigned int count)
{
if (count) {
const u8 *buf = buffer;
do {
__raw_writeb(*buf++, addr);
} while (--count);
}
}
#endif
#ifndef writesw
#define writesw writesw
static inline void writesw(volatile void __iomem *addr, const void *buffer,
unsigned int count)
{
if (count) {
const u16 *buf = buffer;
do {
__raw_writew(*buf++, addr);
} while (--count);
}
}
#endif
#ifndef writesl
#define writesl writesl
static inline void writesl(volatile void __iomem *addr, const void *buffer,
unsigned int count)
{
if (count) {
const u32 *buf = buffer;
do {
__raw_writel(*buf++, addr);
} while (--count);
}
}
#endif
#ifdef CONFIG_64BIT
#ifndef writesq
#define writesq writesq
static inline void writesq(volatile void __iomem *addr, const void *buffer,
unsigned int count)
{
if (count) {
const u64 *buf = buffer;
do {
__raw_writeq(*buf++, addr);
} while (--count);
}
}
#endif
#endif /* CONFIG_64BIT */
#ifndef PCI_IOBASE
#define PCI_IOBASE ((void __iomem *)0)
#endif
#ifndef IO_SPACE_LIMIT
#define IO_SPACE_LIMIT 0xffff
#endif
/*
* {in,out}{b,w,l}() access little endian I/O. {in,out}{b,w,l}_p() can be
* implemented on hardware that needs an additional delay for I/O accesses to
* take effect.
*/
#if !defined(inb) && !defined(_inb)
#define _inb _inb
static inline u8 _inb(unsigned long addr)
{
u8 val;
__io_pbr();
val = __raw_readb(PCI_IOBASE + addr);
__io_par(val);
return val;
}
#endif
#if !defined(inw) && !defined(_inw)
#define _inw _inw
static inline u16 _inw(unsigned long addr)
{
u16 val;
__io_pbr();
val = __le16_to_cpu((__le16 __force)__raw_readw(PCI_IOBASE + addr));
__io_par(val);
return val;
}
#endif
#if !defined(inl) && !defined(_inl)
#define _inl _inl
static inline u32 _inl(unsigned long addr)
{
u32 val;
__io_pbr();
val = __le32_to_cpu((__le32 __force)__raw_readl(PCI_IOBASE + addr));
__io_par(val);
return val;
}
#endif
#if !defined(outb) && !defined(_outb)
#define _outb _outb
static inline void _outb(u8 value, unsigned long addr)
{
__io_pbw();
__raw_writeb(value, PCI_IOBASE + addr);
__io_paw();
}
#endif
#if !defined(outw) && !defined(_outw)
#define _outw _outw
static inline void _outw(u16 value, unsigned long addr)
{
__io_pbw();
__raw_writew((u16 __force)cpu_to_le16(value), PCI_IOBASE + addr);
__io_paw();
}
#endif
#if !defined(outl) && !defined(_outl)
#define _outl _outl
static inline void _outl(u32 value, unsigned long addr)
{
__io_pbw();
__raw_writel((u32 __force)cpu_to_le32(value), PCI_IOBASE + addr);
__io_paw();
}
#endif
#include <linux/logic_pio.h>
#ifndef inb
#define inb _inb
#endif
#ifndef inw
#define inw _inw
#endif
#ifndef inl
#define inl _inl
#endif
#ifndef outb
#define outb _outb
#endif
#ifndef outw
#define outw _outw
#endif
#ifndef outl
#define outl _outl
#endif
#ifndef inb_p
#define inb_p inb_p
static inline u8 inb_p(unsigned long addr)
{
return inb(addr);
}
#endif
#ifndef inw_p
#define inw_p inw_p
static inline u16 inw_p(unsigned long addr)
{
return inw(addr);
}
#endif
#ifndef inl_p
#define inl_p inl_p
static inline u32 inl_p(unsigned long addr)
{
return inl(addr);
}
#endif
#ifndef outb_p
#define outb_p outb_p
static inline void outb_p(u8 value, unsigned long addr)
{
outb(value, addr);
}
#endif
#ifndef outw_p
#define outw_p outw_p
static inline void outw_p(u16 value, unsigned long addr)
{
outw(value, addr);
}
#endif
#ifndef outl_p
#define outl_p outl_p
static inline void outl_p(u32 value, unsigned long addr)
{
outl(value, addr);
}
#endif
/*
* {in,out}s{b,w,l}{,_p}() are variants of the above that repeatedly access a
* single I/O port multiple times.
*/
#ifndef insb
#define insb insb
static inline void insb(unsigned long addr, void *buffer, unsigned int count)
{
readsb(PCI_IOBASE + addr, buffer, count);
}
#endif
#ifndef insw
#define insw insw
static inline void insw(unsigned long addr, void *buffer, unsigned int count)
{
readsw(PCI_IOBASE + addr, buffer, count);
}
#endif
#ifndef insl
#define insl insl
static inline void insl(unsigned long addr, void *buffer, unsigned int count)
{
readsl(PCI_IOBASE + addr, buffer, count);
}
#endif
#ifndef outsb
#define outsb outsb
static inline void outsb(unsigned long addr, const void *buffer,
unsigned int count)
{
writesb(PCI_IOBASE + addr, buffer, count);
}
#endif
#ifndef outsw
#define outsw outsw
static inline void outsw(unsigned long addr, const void *buffer,
unsigned int count)
{
writesw(PCI_IOBASE + addr, buffer, count);
}
#endif
#ifndef outsl
#define outsl outsl
static inline void outsl(unsigned long addr, const void *buffer,
unsigned int count)
{
writesl(PCI_IOBASE + addr, buffer, count);
}
#endif
#ifndef insb_p
#define insb_p insb_p
static inline void insb_p(unsigned long addr, void *buffer, unsigned int count)
{
insb(addr, buffer, count);
}
#endif
#ifndef insw_p
#define insw_p insw_p
static inline void insw_p(unsigned long addr, void *buffer, unsigned int count)
{
insw(addr, buffer, count);
}
#endif
#ifndef insl_p
#define insl_p insl_p
static inline void insl_p(unsigned long addr, void *buffer, unsigned int count)
{
insl(addr, buffer, count);
}
#endif
#ifndef outsb_p
#define outsb_p outsb_p
static inline void outsb_p(unsigned long addr, const void *buffer,
unsigned int count)
{
outsb(addr, buffer, count);
}
#endif
#ifndef outsw_p
#define outsw_p outsw_p
static inline void outsw_p(unsigned long addr, const void *buffer,
unsigned int count)
{
outsw(addr, buffer, count);
}
#endif
#ifndef outsl_p
#define outsl_p outsl_p
static inline void outsl_p(unsigned long addr, const void *buffer,
unsigned int count)
{
outsl(addr, buffer, count);
}
#endif
#ifndef CONFIG_GENERIC_IOMAP
#ifndef ioread8
#define ioread8 ioread8
static inline u8 ioread8(const volatile void __iomem *addr)
{
return readb(addr);
}
#endif
#ifndef ioread16
#define ioread16 ioread16
static inline u16 ioread16(const volatile void __iomem *addr)
{
return readw(addr);
}
#endif
#ifndef ioread32
#define ioread32 ioread32
static inline u32 ioread32(const volatile void __iomem *addr)
{
return readl(addr);
}
#endif
#ifdef CONFIG_64BIT
#ifndef ioread64
#define ioread64 ioread64
static inline u64 ioread64(const volatile void __iomem *addr)
{
return readq(addr);
}
#endif
#endif /* CONFIG_64BIT */
#ifndef iowrite8
#define iowrite8 iowrite8
static inline void iowrite8(u8 value, volatile void __iomem *addr)
{
writeb(value, addr);
}
#endif
#ifndef iowrite16
#define iowrite16 iowrite16
static inline void iowrite16(u16 value, volatile void __iomem *addr)
{
writew(value, addr);
}
#endif
#ifndef iowrite32
#define iowrite32 iowrite32
static inline void iowrite32(u32 value, volatile void __iomem *addr)
{
writel(value, addr);
}
#endif
#ifdef CONFIG_64BIT
#ifndef iowrite64
#define iowrite64 iowrite64
static inline void iowrite64(u64 value, volatile void __iomem *addr)
{
writeq(value, addr);
}
#endif
#endif /* CONFIG_64BIT */
#ifndef ioread16be
#define ioread16be ioread16be
static inline u16 ioread16be(const volatile void __iomem *addr)
{
return swab16(readw(addr));
}
#endif
#ifndef ioread32be
#define ioread32be ioread32be
static inline u32 ioread32be(const volatile void __iomem *addr)
{
return swab32(readl(addr));
}
#endif
#ifdef CONFIG_64BIT
#ifndef ioread64be
#define ioread64be ioread64be
static inline u64 ioread64be(const volatile void __iomem *addr)
{
return swab64(readq(addr));
}
#endif
#endif /* CONFIG_64BIT */
#ifndef iowrite16be
#define iowrite16be iowrite16be
static inline void iowrite16be(u16 value, void volatile __iomem *addr)
{
writew(swab16(value), addr);
}
#endif
#ifndef iowrite32be
#define iowrite32be iowrite32be
static inline void iowrite32be(u32 value, volatile void __iomem *addr)
{
writel(swab32(value), addr);
}
#endif
#ifdef CONFIG_64BIT
#ifndef iowrite64be
#define iowrite64be iowrite64be
static inline void iowrite64be(u64 value, volatile void __iomem *addr)
{
writeq(swab64(value), addr);
}
#endif
#endif /* CONFIG_64BIT */
#ifndef ioread8_rep
#define ioread8_rep ioread8_rep
static inline void ioread8_rep(const volatile void __iomem *addr, void *buffer,
unsigned int count)
{
readsb(addr, buffer, count);
}
#endif
#ifndef ioread16_rep
#define ioread16_rep ioread16_rep
static inline void ioread16_rep(const volatile void __iomem *addr,
void *buffer, unsigned int count)
{
readsw(addr, buffer, count);
}
#endif
#ifndef ioread32_rep
#define ioread32_rep ioread32_rep
static inline void ioread32_rep(const volatile void __iomem *addr,
void *buffer, unsigned int count)
{
readsl(addr, buffer, count);
}
#endif
#ifdef CONFIG_64BIT
#ifndef ioread64_rep
#define ioread64_rep ioread64_rep
static inline void ioread64_rep(const volatile void __iomem *addr,
void *buffer, unsigned int count)
{
readsq(addr, buffer, count);
}
#endif
#endif /* CONFIG_64BIT */
#ifndef iowrite8_rep
#define iowrite8_rep iowrite8_rep
static inline void iowrite8_rep(volatile void __iomem *addr,
const void *buffer,
unsigned int count)
{
writesb(addr, buffer, count);
}
#endif
#ifndef iowrite16_rep
#define iowrite16_rep iowrite16_rep
static inline void iowrite16_rep(volatile void __iomem *addr,
const void *buffer,
unsigned int count)
{
writesw(addr, buffer, count);
}
#endif
#ifndef iowrite32_rep
#define iowrite32_rep iowrite32_rep
static inline void iowrite32_rep(volatile void __iomem *addr,
const void *buffer,
unsigned int count)
{
writesl(addr, buffer, count);
}
#endif
#ifdef CONFIG_64BIT
#ifndef iowrite64_rep
#define iowrite64_rep iowrite64_rep
static inline void iowrite64_rep(volatile void __iomem *addr,
const void *buffer,
unsigned int count)
{
writesq(addr, buffer, count);
}
#endif
#endif /* CONFIG_64BIT */
#endif /* CONFIG_GENERIC_IOMAP */
#ifdef __KERNEL__
#include <linux/vmalloc.h>
#define __io_virt(x) ((void __force *)(x))
/*
* Change virtual addresses to physical addresses and vv.
* These are pretty trivial
*/
#ifndef virt_to_phys
#define virt_to_phys virt_to_phys
static inline unsigned long virt_to_phys(volatile void *address)
{
return __pa((unsigned long)address);
}
#endif
#ifndef phys_to_virt
#define phys_to_virt phys_to_virt
static inline void *phys_to_virt(unsigned long address)
{
return __va(address);
}
#endif
/**
* DOC: ioremap() and ioremap_*() variants
*
* Architectures with an MMU are expected to provide ioremap() and iounmap()
* themselves or rely on GENERIC_IOREMAP. For NOMMU architectures we provide
* a default nop-op implementation that expect that the physical address used
* for MMIO are already marked as uncached, and can be used as kernel virtual
* addresses.
*
* ioremap_wc() and ioremap_wt() can provide more relaxed caching attributes
* for specific drivers if the architecture choses to implement them. If they
* are not implemented we fall back to plain ioremap. Conversely, ioremap_np()
* can provide stricter non-posted write semantics if the architecture
* implements them.
*/
#ifndef CONFIG_MMU
#ifndef ioremap
#define ioremap ioremap
static inline void __iomem *ioremap(phys_addr_t offset, size_t size)
{
return (void __iomem *)(unsigned long)offset;
}
#endif
#ifndef iounmap
#define iounmap iounmap
static inline void iounmap(void __iomem *addr)
{
}
#endif
#elif defined(CONFIG_GENERIC_IOREMAP)
#include <linux/pgtable.h>
void __iomem *ioremap_prot(phys_addr_t addr, size_t size, unsigned long prot);
void iounmap(volatile void __iomem *addr);
static inline void __iomem *ioremap(phys_addr_t addr, size_t size)
{
/* _PAGE_IOREMAP needs to be supplied by the architecture */
return ioremap_prot(addr, size, _PAGE_IOREMAP);
}
#endif /* !CONFIG_MMU || CONFIG_GENERIC_IOREMAP */
#ifndef ioremap_wc
#define ioremap_wc ioremap
#endif
#ifndef ioremap_wt
#define ioremap_wt ioremap
#endif
/*
* ioremap_uc is special in that we do require an explicit architecture
* implementation. In general you do not want to use this function in a
* driver and use plain ioremap, which is uncached by default. Similarly
* architectures should not implement it unless they have a very good
* reason.
*/
#ifndef ioremap_uc
#define ioremap_uc ioremap_uc
static inline void __iomem *ioremap_uc(phys_addr_t offset, size_t size)
{
return NULL;
}
#endif
/*
* ioremap_np needs an explicit architecture implementation, as it
* requests stronger semantics than regular ioremap(). Portable drivers
* should instead use one of the higher-level abstractions, like
* devm_ioremap_resource(), to choose the correct variant for any given
* device and bus. Portable drivers with a good reason to want non-posted
* write semantics should always provide an ioremap() fallback in case
* ioremap_np() is not available.
*/
#ifndef ioremap_np
#define ioremap_np ioremap_np
static inline void __iomem *ioremap_np(phys_addr_t offset, size_t size)
{
return NULL;
}
#endif
#ifdef CONFIG_HAS_IOPORT_MAP
#ifndef CONFIG_GENERIC_IOMAP
#ifndef ioport_map
#define ioport_map ioport_map
static inline void __iomem *ioport_map(unsigned long port, unsigned int nr)
{
port &= IO_SPACE_LIMIT;
return (port > MMIO_UPPER_LIMIT) ? NULL : PCI_IOBASE + port;
}
#define __pci_ioport_unmap __pci_ioport_unmap
static inline void __pci_ioport_unmap(void __iomem *p)
{
uintptr_t start = (uintptr_t) PCI_IOBASE;
uintptr_t addr = (uintptr_t) p;
if (addr >= start && addr < start + IO_SPACE_LIMIT)
return;
iounmap(p);
}
#endif
#ifndef ioport_unmap
#define ioport_unmap ioport_unmap
static inline void ioport_unmap(void __iomem *p)
{
}
#endif
#else /* CONFIG_GENERIC_IOMAP */
extern void __iomem *ioport_map(unsigned long port, unsigned int nr);
extern void ioport_unmap(void __iomem *p);
#endif /* CONFIG_GENERIC_IOMAP */
#endif /* CONFIG_HAS_IOPORT_MAP */
#ifndef CONFIG_GENERIC_IOMAP
struct pci_dev;
extern void __iomem *pci_iomap(struct pci_dev *dev, int bar, unsigned long max);
#ifndef __pci_ioport_unmap
static inline void __pci_ioport_unmap(void __iomem *p) {}
#endif
#ifndef pci_iounmap
#define pci_iounmap pci_iounmap
static inline void pci_iounmap(struct pci_dev *dev, void __iomem *p)
{
__pci_ioport_unmap(p);
}
#endif
#endif /* CONFIG_GENERIC_IOMAP */
/*
* Convert a virtual cached pointer to an uncached pointer
*/
#ifndef xlate_dev_kmem_ptr
#define xlate_dev_kmem_ptr xlate_dev_kmem_ptr
static inline void *xlate_dev_kmem_ptr(void *addr)
{
return addr;
}
#endif
#ifndef xlate_dev_mem_ptr
#define xlate_dev_mem_ptr xlate_dev_mem_ptr
static inline void *xlate_dev_mem_ptr(phys_addr_t addr)
{
return __va(addr);
}
#endif
#ifndef unxlate_dev_mem_ptr
#define unxlate_dev_mem_ptr unxlate_dev_mem_ptr
static inline void unxlate_dev_mem_ptr(phys_addr_t phys, void *addr)
{
}
#endif
#ifdef CONFIG_VIRT_TO_BUS
#ifndef virt_to_bus
static inline unsigned long virt_to_bus(void *address)
{
return (unsigned long)address;
}
static inline void *bus_to_virt(unsigned long address)
{
return (void *)address;
}
#endif
#endif
#ifndef memset_io
#define memset_io memset_io
/**
* memset_io Set a range of I/O memory to a constant value
* @addr: The beginning of the I/O-memory range to set
* @val: The value to set the memory to
* @count: The number of bytes to set
*
* Set a range of I/O memory to a given value.
*/
static inline void memset_io(volatile void __iomem *addr, int value,
size_t size)
{
memset(__io_virt(addr), value, size);
}
#endif
#ifndef memcpy_fromio
#define memcpy_fromio memcpy_fromio
/**
* memcpy_fromio Copy a block of data from I/O memory
* @dst: The (RAM) destination for the copy
* @src: The (I/O memory) source for the data
* @count: The number of bytes to copy
*
* Copy a block of data from I/O memory.
*/
static inline void memcpy_fromio(void *buffer,
const volatile void __iomem *addr,
size_t size)
{
memcpy(buffer, __io_virt(addr), size);
}
#endif
#ifndef memcpy_toio
#define memcpy_toio memcpy_toio
/**
* memcpy_toio Copy a block of data into I/O memory
* @dst: The (I/O memory) destination for the copy
* @src: The (RAM) source for the data
* @count: The number of bytes to copy
*
* Copy a block of data to I/O memory.
*/
static inline void memcpy_toio(volatile void __iomem *addr, const void *buffer,
size_t size)
{
memcpy(__io_virt(addr), buffer, size);
}
#endif
#ifndef CONFIG_GENERIC_DEVMEM_IS_ALLOWED
extern int devmem_is_allowed(unsigned long pfn);
#endif
#endif /* __KERNEL__ */
#endif /* __ASM_GENERIC_IO_H */