| /* |
| * Intel 5400 class Memory Controllers kernel module (Seaburg) |
| * |
| * This file may be distributed under the terms of the |
| * GNU General Public License. |
| * |
| * Copyright (c) 2008 by: |
| * Ben Woodard <woodard@redhat.com> |
| * Mauro Carvalho Chehab <mchehab@redhat.com> |
| * |
| * Red Hat Inc. http://www.redhat.com |
| * |
| * Forked and adapted from the i5000_edac driver which was |
| * written by Douglas Thompson Linux Networx <norsk5@xmission.com> |
| * |
| * This module is based on the following document: |
| * |
| * Intel 5400 Chipset Memory Controller Hub (MCH) - Datasheet |
| * http://developer.intel.com/design/chipsets/datashts/313070.htm |
| * |
| * This Memory Controller manages DDR2 FB-DIMMs. It has 2 branches, each with |
| * 2 channels operating in lockstep no-mirror mode. Each channel can have up to |
| * 4 dimm's, each with up to 8GB. |
| * |
| */ |
| |
| #include <linux/module.h> |
| #include <linux/init.h> |
| #include <linux/pci.h> |
| #include <linux/pci_ids.h> |
| #include <linux/slab.h> |
| #include <linux/edac.h> |
| #include <linux/mmzone.h> |
| |
| #include "edac_core.h" |
| |
| /* |
| * Alter this version for the I5400 module when modifications are made |
| */ |
| #define I5400_REVISION " Ver: 1.0.0" |
| |
| #define EDAC_MOD_STR "i5400_edac" |
| |
| #define i5400_printk(level, fmt, arg...) \ |
| edac_printk(level, "i5400", fmt, ##arg) |
| |
| #define i5400_mc_printk(mci, level, fmt, arg...) \ |
| edac_mc_chipset_printk(mci, level, "i5400", fmt, ##arg) |
| |
| /* Limits for i5400 */ |
| #define MAX_BRANCHES 2 |
| #define CHANNELS_PER_BRANCH 2 |
| #define DIMMS_PER_CHANNEL 4 |
| #define MAX_CHANNELS (MAX_BRANCHES * CHANNELS_PER_BRANCH) |
| |
| /* Device 16, |
| * Function 0: System Address |
| * Function 1: Memory Branch Map, Control, Errors Register |
| * Function 2: FSB Error Registers |
| * |
| * All 3 functions of Device 16 (0,1,2) share the SAME DID and |
| * uses PCI_DEVICE_ID_INTEL_5400_ERR for device 16 (0,1,2), |
| * PCI_DEVICE_ID_INTEL_5400_FBD0 and PCI_DEVICE_ID_INTEL_5400_FBD1 |
| * for device 21 (0,1). |
| */ |
| |
| /* OFFSETS for Function 0 */ |
| #define AMBASE 0x48 /* AMB Mem Mapped Reg Region Base */ |
| #define MAXCH 0x56 /* Max Channel Number */ |
| #define MAXDIMMPERCH 0x57 /* Max DIMM PER Channel Number */ |
| |
| /* OFFSETS for Function 1 */ |
| #define TOLM 0x6C |
| #define REDMEMB 0x7C |
| #define REC_ECC_LOCATOR_ODD(x) ((x) & 0x3fe00) /* bits [17:9] indicate ODD, [8:0] indicate EVEN */ |
| #define MIR0 0x80 |
| #define MIR1 0x84 |
| #define AMIR0 0x8c |
| #define AMIR1 0x90 |
| |
| /* Fatal error registers */ |
| #define FERR_FAT_FBD 0x98 /* also called as FERR_FAT_FB_DIMM at datasheet */ |
| #define FERR_FAT_FBDCHAN (3<<28) /* channel index where the highest-order error occurred */ |
| |
| #define NERR_FAT_FBD 0x9c |
| #define FERR_NF_FBD 0xa0 /* also called as FERR_NFAT_FB_DIMM at datasheet */ |
| |
| /* Non-fatal error register */ |
| #define NERR_NF_FBD 0xa4 |
| |
| /* Enable error mask */ |
| #define EMASK_FBD 0xa8 |
| |
| #define ERR0_FBD 0xac |
| #define ERR1_FBD 0xb0 |
| #define ERR2_FBD 0xb4 |
| #define MCERR_FBD 0xb8 |
| |
| /* No OFFSETS for Device 16 Function 2 */ |
| |
| /* |
| * Device 21, |
| * Function 0: Memory Map Branch 0 |
| * |
| * Device 22, |
| * Function 0: Memory Map Branch 1 |
| */ |
| |
| /* OFFSETS for Function 0 */ |
| #define AMBPRESENT_0 0x64 |
| #define AMBPRESENT_1 0x66 |
| #define MTR0 0x80 |
| #define MTR1 0x82 |
| #define MTR2 0x84 |
| #define MTR3 0x86 |
| |
| /* OFFSETS for Function 1 */ |
| #define NRECFGLOG 0x74 |
| #define RECFGLOG 0x78 |
| #define NRECMEMA 0xbe |
| #define NRECMEMB 0xc0 |
| #define NRECFB_DIMMA 0xc4 |
| #define NRECFB_DIMMB 0xc8 |
| #define NRECFB_DIMMC 0xcc |
| #define NRECFB_DIMMD 0xd0 |
| #define NRECFB_DIMME 0xd4 |
| #define NRECFB_DIMMF 0xd8 |
| #define REDMEMA 0xdC |
| #define RECMEMA 0xf0 |
| #define RECMEMB 0xf4 |
| #define RECFB_DIMMA 0xf8 |
| #define RECFB_DIMMB 0xec |
| #define RECFB_DIMMC 0xf0 |
| #define RECFB_DIMMD 0xf4 |
| #define RECFB_DIMME 0xf8 |
| #define RECFB_DIMMF 0xfC |
| |
| /* |
| * Error indicator bits and masks |
| * Error masks are according with Table 5-17 of i5400 datasheet |
| */ |
| |
| enum error_mask { |
| EMASK_M1 = 1<<0, /* Memory Write error on non-redundant retry */ |
| EMASK_M2 = 1<<1, /* Memory or FB-DIMM configuration CRC read error */ |
| EMASK_M3 = 1<<2, /* Reserved */ |
| EMASK_M4 = 1<<3, /* Uncorrectable Data ECC on Replay */ |
| EMASK_M5 = 1<<4, /* Aliased Uncorrectable Non-Mirrored Demand Data ECC */ |
| EMASK_M6 = 1<<5, /* Unsupported on i5400 */ |
| EMASK_M7 = 1<<6, /* Aliased Uncorrectable Resilver- or Spare-Copy Data ECC */ |
| EMASK_M8 = 1<<7, /* Aliased Uncorrectable Patrol Data ECC */ |
| EMASK_M9 = 1<<8, /* Non-Aliased Uncorrectable Non-Mirrored Demand Data ECC */ |
| EMASK_M10 = 1<<9, /* Unsupported on i5400 */ |
| EMASK_M11 = 1<<10, /* Non-Aliased Uncorrectable Resilver- or Spare-Copy Data ECC */ |
| EMASK_M12 = 1<<11, /* Non-Aliased Uncorrectable Patrol Data ECC */ |
| EMASK_M13 = 1<<12, /* Memory Write error on first attempt */ |
| EMASK_M14 = 1<<13, /* FB-DIMM Configuration Write error on first attempt */ |
| EMASK_M15 = 1<<14, /* Memory or FB-DIMM configuration CRC read error */ |
| EMASK_M16 = 1<<15, /* Channel Failed-Over Occurred */ |
| EMASK_M17 = 1<<16, /* Correctable Non-Mirrored Demand Data ECC */ |
| EMASK_M18 = 1<<17, /* Unsupported on i5400 */ |
| EMASK_M19 = 1<<18, /* Correctable Resilver- or Spare-Copy Data ECC */ |
| EMASK_M20 = 1<<19, /* Correctable Patrol Data ECC */ |
| EMASK_M21 = 1<<20, /* FB-DIMM Northbound parity error on FB-DIMM Sync Status */ |
| EMASK_M22 = 1<<21, /* SPD protocol Error */ |
| EMASK_M23 = 1<<22, /* Non-Redundant Fast Reset Timeout */ |
| EMASK_M24 = 1<<23, /* Refresh error */ |
| EMASK_M25 = 1<<24, /* Memory Write error on redundant retry */ |
| EMASK_M26 = 1<<25, /* Redundant Fast Reset Timeout */ |
| EMASK_M27 = 1<<26, /* Correctable Counter Threshold Exceeded */ |
| EMASK_M28 = 1<<27, /* DIMM-Spare Copy Completed */ |
| EMASK_M29 = 1<<28, /* DIMM-Isolation Completed */ |
| }; |
| |
| /* |
| * Names to translate bit error into something useful |
| */ |
| static const char *error_name[] = { |
| [0] = "Memory Write error on non-redundant retry", |
| [1] = "Memory or FB-DIMM configuration CRC read error", |
| /* Reserved */ |
| [3] = "Uncorrectable Data ECC on Replay", |
| [4] = "Aliased Uncorrectable Non-Mirrored Demand Data ECC", |
| /* M6 Unsupported on i5400 */ |
| [6] = "Aliased Uncorrectable Resilver- or Spare-Copy Data ECC", |
| [7] = "Aliased Uncorrectable Patrol Data ECC", |
| [8] = "Non-Aliased Uncorrectable Non-Mirrored Demand Data ECC", |
| /* M10 Unsupported on i5400 */ |
| [10] = "Non-Aliased Uncorrectable Resilver- or Spare-Copy Data ECC", |
| [11] = "Non-Aliased Uncorrectable Patrol Data ECC", |
| [12] = "Memory Write error on first attempt", |
| [13] = "FB-DIMM Configuration Write error on first attempt", |
| [14] = "Memory or FB-DIMM configuration CRC read error", |
| [15] = "Channel Failed-Over Occurred", |
| [16] = "Correctable Non-Mirrored Demand Data ECC", |
| /* M18 Unsupported on i5400 */ |
| [18] = "Correctable Resilver- or Spare-Copy Data ECC", |
| [19] = "Correctable Patrol Data ECC", |
| [20] = "FB-DIMM Northbound parity error on FB-DIMM Sync Status", |
| [21] = "SPD protocol Error", |
| [22] = "Non-Redundant Fast Reset Timeout", |
| [23] = "Refresh error", |
| [24] = "Memory Write error on redundant retry", |
| [25] = "Redundant Fast Reset Timeout", |
| [26] = "Correctable Counter Threshold Exceeded", |
| [27] = "DIMM-Spare Copy Completed", |
| [28] = "DIMM-Isolation Completed", |
| }; |
| |
| /* Fatal errors */ |
| #define ERROR_FAT_MASK (EMASK_M1 | \ |
| EMASK_M2 | \ |
| EMASK_M23) |
| |
| /* Correctable errors */ |
| #define ERROR_NF_CORRECTABLE (EMASK_M27 | \ |
| EMASK_M20 | \ |
| EMASK_M19 | \ |
| EMASK_M18 | \ |
| EMASK_M17 | \ |
| EMASK_M16) |
| #define ERROR_NF_DIMM_SPARE (EMASK_M29 | \ |
| EMASK_M28) |
| #define ERROR_NF_SPD_PROTOCOL (EMASK_M22) |
| #define ERROR_NF_NORTH_CRC (EMASK_M21) |
| |
| /* Recoverable errors */ |
| #define ERROR_NF_RECOVERABLE (EMASK_M26 | \ |
| EMASK_M25 | \ |
| EMASK_M24 | \ |
| EMASK_M15 | \ |
| EMASK_M14 | \ |
| EMASK_M13 | \ |
| EMASK_M12 | \ |
| EMASK_M11 | \ |
| EMASK_M9 | \ |
| EMASK_M8 | \ |
| EMASK_M7 | \ |
| EMASK_M5) |
| |
| /* uncorrectable errors */ |
| #define ERROR_NF_UNCORRECTABLE (EMASK_M4) |
| |
| /* mask to all non-fatal errors */ |
| #define ERROR_NF_MASK (ERROR_NF_CORRECTABLE | \ |
| ERROR_NF_UNCORRECTABLE | \ |
| ERROR_NF_RECOVERABLE | \ |
| ERROR_NF_DIMM_SPARE | \ |
| ERROR_NF_SPD_PROTOCOL | \ |
| ERROR_NF_NORTH_CRC) |
| |
| /* |
| * Define error masks for the several registers |
| */ |
| |
| /* Enable all fatal and non fatal errors */ |
| #define ENABLE_EMASK_ALL (ERROR_FAT_MASK | ERROR_NF_MASK) |
| |
| /* mask for fatal error registers */ |
| #define FERR_FAT_MASK ERROR_FAT_MASK |
| |
| /* masks for non-fatal error register */ |
| static inline int to_nf_mask(unsigned int mask) |
| { |
| return (mask & EMASK_M29) | (mask >> 3); |
| }; |
| |
| static inline int from_nf_ferr(unsigned int mask) |
| { |
| return (mask & EMASK_M29) | /* Bit 28 */ |
| (mask & ((1 << 28) - 1) << 3); /* Bits 0 to 27 */ |
| }; |
| |
| #define FERR_NF_MASK to_nf_mask(ERROR_NF_MASK) |
| #define FERR_NF_CORRECTABLE to_nf_mask(ERROR_NF_CORRECTABLE) |
| #define FERR_NF_DIMM_SPARE to_nf_mask(ERROR_NF_DIMM_SPARE) |
| #define FERR_NF_SPD_PROTOCOL to_nf_mask(ERROR_NF_SPD_PROTOCOL) |
| #define FERR_NF_NORTH_CRC to_nf_mask(ERROR_NF_NORTH_CRC) |
| #define FERR_NF_RECOVERABLE to_nf_mask(ERROR_NF_RECOVERABLE) |
| #define FERR_NF_UNCORRECTABLE to_nf_mask(ERROR_NF_UNCORRECTABLE) |
| |
| /* Defines to extract the vaious fields from the |
| * MTRx - Memory Technology Registers |
| */ |
| #define MTR_DIMMS_PRESENT(mtr) ((mtr) & (1 << 10)) |
| #define MTR_DIMMS_ETHROTTLE(mtr) ((mtr) & (1 << 9)) |
| #define MTR_DRAM_WIDTH(mtr) (((mtr) & (1 << 8)) ? 8 : 4) |
| #define MTR_DRAM_BANKS(mtr) (((mtr) & (1 << 6)) ? 8 : 4) |
| #define MTR_DRAM_BANKS_ADDR_BITS(mtr) ((MTR_DRAM_BANKS(mtr) == 8) ? 3 : 2) |
| #define MTR_DIMM_RANK(mtr) (((mtr) >> 5) & 0x1) |
| #define MTR_DIMM_RANK_ADDR_BITS(mtr) (MTR_DIMM_RANK(mtr) ? 2 : 1) |
| #define MTR_DIMM_ROWS(mtr) (((mtr) >> 2) & 0x3) |
| #define MTR_DIMM_ROWS_ADDR_BITS(mtr) (MTR_DIMM_ROWS(mtr) + 13) |
| #define MTR_DIMM_COLS(mtr) ((mtr) & 0x3) |
| #define MTR_DIMM_COLS_ADDR_BITS(mtr) (MTR_DIMM_COLS(mtr) + 10) |
| |
| /* This applies to FERR_NF_FB-DIMM as well as FERR_FAT_FB-DIMM */ |
| static inline int extract_fbdchan_indx(u32 x) |
| { |
| return (x>>28) & 0x3; |
| } |
| |
| /* Device name and register DID (Device ID) */ |
| struct i5400_dev_info { |
| const char *ctl_name; /* name for this device */ |
| u16 fsb_mapping_errors; /* DID for the branchmap,control */ |
| }; |
| |
| /* Table of devices attributes supported by this driver */ |
| static const struct i5400_dev_info i5400_devs[] = { |
| { |
| .ctl_name = "I5400", |
| .fsb_mapping_errors = PCI_DEVICE_ID_INTEL_5400_ERR, |
| }, |
| }; |
| |
| struct i5400_dimm_info { |
| int megabytes; /* size, 0 means not present */ |
| }; |
| |
| /* driver private data structure */ |
| struct i5400_pvt { |
| struct pci_dev *system_address; /* 16.0 */ |
| struct pci_dev *branchmap_werrors; /* 16.1 */ |
| struct pci_dev *fsb_error_regs; /* 16.2 */ |
| struct pci_dev *branch_0; /* 21.0 */ |
| struct pci_dev *branch_1; /* 22.0 */ |
| |
| u16 tolm; /* top of low memory */ |
| u64 ambase; /* AMB BAR */ |
| |
| u16 mir0, mir1; |
| |
| u16 b0_mtr[DIMMS_PER_CHANNEL]; /* Memory Technlogy Reg */ |
| u16 b0_ambpresent0; /* Branch 0, Channel 0 */ |
| u16 b0_ambpresent1; /* Brnach 0, Channel 1 */ |
| |
| u16 b1_mtr[DIMMS_PER_CHANNEL]; /* Memory Technlogy Reg */ |
| u16 b1_ambpresent0; /* Branch 1, Channel 8 */ |
| u16 b1_ambpresent1; /* Branch 1, Channel 1 */ |
| |
| /* DIMM information matrix, allocating architecture maximums */ |
| struct i5400_dimm_info dimm_info[DIMMS_PER_CHANNEL][MAX_CHANNELS]; |
| |
| /* Actual values for this controller */ |
| int maxch; /* Max channels */ |
| int maxdimmperch; /* Max DIMMs per channel */ |
| }; |
| |
| /* I5400 MCH error information retrieved from Hardware */ |
| struct i5400_error_info { |
| /* These registers are always read from the MC */ |
| u32 ferr_fat_fbd; /* First Errors Fatal */ |
| u32 nerr_fat_fbd; /* Next Errors Fatal */ |
| u32 ferr_nf_fbd; /* First Errors Non-Fatal */ |
| u32 nerr_nf_fbd; /* Next Errors Non-Fatal */ |
| |
| /* These registers are input ONLY if there was a Recoverable Error */ |
| u32 redmemb; /* Recoverable Mem Data Error log B */ |
| u16 recmema; /* Recoverable Mem Error log A */ |
| u32 recmemb; /* Recoverable Mem Error log B */ |
| |
| /* These registers are input ONLY if there was a Non-Rec Error */ |
| u16 nrecmema; /* Non-Recoverable Mem log A */ |
| u16 nrecmemb; /* Non-Recoverable Mem log B */ |
| |
| }; |
| |
| /* note that nrec_rdwr changed from NRECMEMA to NRECMEMB between the 5000 and |
| 5400 better to use an inline function than a macro in this case */ |
| static inline int nrec_bank(struct i5400_error_info *info) |
| { |
| return ((info->nrecmema) >> 12) & 0x7; |
| } |
| static inline int nrec_rank(struct i5400_error_info *info) |
| { |
| return ((info->nrecmema) >> 8) & 0xf; |
| } |
| static inline int nrec_buf_id(struct i5400_error_info *info) |
| { |
| return ((info->nrecmema)) & 0xff; |
| } |
| static inline int nrec_rdwr(struct i5400_error_info *info) |
| { |
| return (info->nrecmemb) >> 31; |
| } |
| /* This applies to both NREC and REC string so it can be used with nrec_rdwr |
| and rec_rdwr */ |
| static inline const char *rdwr_str(int rdwr) |
| { |
| return rdwr ? "Write" : "Read"; |
| } |
| static inline int nrec_cas(struct i5400_error_info *info) |
| { |
| return ((info->nrecmemb) >> 16) & 0x1fff; |
| } |
| static inline int nrec_ras(struct i5400_error_info *info) |
| { |
| return (info->nrecmemb) & 0xffff; |
| } |
| static inline int rec_bank(struct i5400_error_info *info) |
| { |
| return ((info->recmema) >> 12) & 0x7; |
| } |
| static inline int rec_rank(struct i5400_error_info *info) |
| { |
| return ((info->recmema) >> 8) & 0xf; |
| } |
| static inline int rec_rdwr(struct i5400_error_info *info) |
| { |
| return (info->recmemb) >> 31; |
| } |
| static inline int rec_cas(struct i5400_error_info *info) |
| { |
| return ((info->recmemb) >> 16) & 0x1fff; |
| } |
| static inline int rec_ras(struct i5400_error_info *info) |
| { |
| return (info->recmemb) & 0xffff; |
| } |
| |
| static struct edac_pci_ctl_info *i5400_pci; |
| |
| /* |
| * i5400_get_error_info Retrieve the hardware error information from |
| * the hardware and cache it in the 'info' |
| * structure |
| */ |
| static void i5400_get_error_info(struct mem_ctl_info *mci, |
| struct i5400_error_info *info) |
| { |
| struct i5400_pvt *pvt; |
| u32 value; |
| |
| pvt = mci->pvt_info; |
| |
| /* read in the 1st FATAL error register */ |
| pci_read_config_dword(pvt->branchmap_werrors, FERR_FAT_FBD, &value); |
| |
| /* Mask only the bits that the doc says are valid |
| */ |
| value &= (FERR_FAT_FBDCHAN | FERR_FAT_MASK); |
| |
| /* If there is an error, then read in the |
| NEXT FATAL error register and the Memory Error Log Register A |
| */ |
| if (value & FERR_FAT_MASK) { |
| info->ferr_fat_fbd = value; |
| |
| /* harvest the various error data we need */ |
| pci_read_config_dword(pvt->branchmap_werrors, |
| NERR_FAT_FBD, &info->nerr_fat_fbd); |
| pci_read_config_word(pvt->branchmap_werrors, |
| NRECMEMA, &info->nrecmema); |
| pci_read_config_word(pvt->branchmap_werrors, |
| NRECMEMB, &info->nrecmemb); |
| |
| /* Clear the error bits, by writing them back */ |
| pci_write_config_dword(pvt->branchmap_werrors, |
| FERR_FAT_FBD, value); |
| } else { |
| info->ferr_fat_fbd = 0; |
| info->nerr_fat_fbd = 0; |
| info->nrecmema = 0; |
| info->nrecmemb = 0; |
| } |
| |
| /* read in the 1st NON-FATAL error register */ |
| pci_read_config_dword(pvt->branchmap_werrors, FERR_NF_FBD, &value); |
| |
| /* If there is an error, then read in the 1st NON-FATAL error |
| * register as well */ |
| if (value & FERR_NF_MASK) { |
| info->ferr_nf_fbd = value; |
| |
| /* harvest the various error data we need */ |
| pci_read_config_dword(pvt->branchmap_werrors, |
| NERR_NF_FBD, &info->nerr_nf_fbd); |
| pci_read_config_word(pvt->branchmap_werrors, |
| RECMEMA, &info->recmema); |
| pci_read_config_dword(pvt->branchmap_werrors, |
| RECMEMB, &info->recmemb); |
| pci_read_config_dword(pvt->branchmap_werrors, |
| REDMEMB, &info->redmemb); |
| |
| /* Clear the error bits, by writing them back */ |
| pci_write_config_dword(pvt->branchmap_werrors, |
| FERR_NF_FBD, value); |
| } else { |
| info->ferr_nf_fbd = 0; |
| info->nerr_nf_fbd = 0; |
| info->recmema = 0; |
| info->recmemb = 0; |
| info->redmemb = 0; |
| } |
| } |
| |
| /* |
| * i5400_proccess_non_recoverable_info(struct mem_ctl_info *mci, |
| * struct i5400_error_info *info, |
| * int handle_errors); |
| * |
| * handle the Intel FATAL and unrecoverable errors, if any |
| */ |
| static void i5400_proccess_non_recoverable_info(struct mem_ctl_info *mci, |
| struct i5400_error_info *info, |
| unsigned long allErrors) |
| { |
| char msg[EDAC_MC_LABEL_LEN + 1 + 90 + 80]; |
| int branch; |
| int channel; |
| int bank; |
| int buf_id; |
| int rank; |
| int rdwr; |
| int ras, cas; |
| int errnum; |
| char *type = NULL; |
| enum hw_event_mc_err_type tp_event = HW_EVENT_ERR_UNCORRECTED; |
| |
| if (!allErrors) |
| return; /* if no error, return now */ |
| |
| if (allErrors & ERROR_FAT_MASK) { |
| type = "FATAL"; |
| tp_event = HW_EVENT_ERR_FATAL; |
| } else if (allErrors & FERR_NF_UNCORRECTABLE) |
| type = "NON-FATAL uncorrected"; |
| else |
| type = "NON-FATAL recoverable"; |
| |
| /* ONLY ONE of the possible error bits will be set, as per the docs */ |
| |
| branch = extract_fbdchan_indx(info->ferr_fat_fbd); |
| channel = branch; |
| |
| /* Use the NON-Recoverable macros to extract data */ |
| bank = nrec_bank(info); |
| rank = nrec_rank(info); |
| buf_id = nrec_buf_id(info); |
| rdwr = nrec_rdwr(info); |
| ras = nrec_ras(info); |
| cas = nrec_cas(info); |
| |
| edac_dbg(0, "\t\tDIMM= %d Channels= %d,%d (Branch= %d DRAM Bank= %d Buffer ID = %d rdwr= %s ras= %d cas= %d)\n", |
| rank, channel, channel + 1, branch >> 1, bank, |
| buf_id, rdwr_str(rdwr), ras, cas); |
| |
| /* Only 1 bit will be on */ |
| errnum = find_first_bit(&allErrors, ARRAY_SIZE(error_name)); |
| |
| /* Form out message */ |
| snprintf(msg, sizeof(msg), |
| "Bank=%d Buffer ID = %d RAS=%d CAS=%d Err=0x%lx (%s)", |
| bank, buf_id, ras, cas, allErrors, error_name[errnum]); |
| |
| edac_mc_handle_error(tp_event, mci, 0, 0, 0, |
| branch >> 1, -1, rank, |
| rdwr ? "Write error" : "Read error", |
| msg); |
| } |
| |
| /* |
| * i5400_process_fatal_error_info(struct mem_ctl_info *mci, |
| * struct i5400_error_info *info, |
| * int handle_errors); |
| * |
| * handle the Intel NON-FATAL errors, if any |
| */ |
| static void i5400_process_nonfatal_error_info(struct mem_ctl_info *mci, |
| struct i5400_error_info *info) |
| { |
| char msg[EDAC_MC_LABEL_LEN + 1 + 90 + 80]; |
| unsigned long allErrors; |
| int branch; |
| int channel; |
| int bank; |
| int rank; |
| int rdwr; |
| int ras, cas; |
| int errnum; |
| |
| /* mask off the Error bits that are possible */ |
| allErrors = from_nf_ferr(info->ferr_nf_fbd & FERR_NF_MASK); |
| if (!allErrors) |
| return; /* if no error, return now */ |
| |
| /* ONLY ONE of the possible error bits will be set, as per the docs */ |
| |
| if (allErrors & (ERROR_NF_UNCORRECTABLE | ERROR_NF_RECOVERABLE)) { |
| i5400_proccess_non_recoverable_info(mci, info, allErrors); |
| return; |
| } |
| |
| /* Correctable errors */ |
| if (allErrors & ERROR_NF_CORRECTABLE) { |
| edac_dbg(0, "\tCorrected bits= 0x%lx\n", allErrors); |
| |
| branch = extract_fbdchan_indx(info->ferr_nf_fbd); |
| |
| channel = 0; |
| if (REC_ECC_LOCATOR_ODD(info->redmemb)) |
| channel = 1; |
| |
| /* Convert channel to be based from zero, instead of |
| * from branch base of 0 */ |
| channel += branch; |
| |
| bank = rec_bank(info); |
| rank = rec_rank(info); |
| rdwr = rec_rdwr(info); |
| ras = rec_ras(info); |
| cas = rec_cas(info); |
| |
| /* Only 1 bit will be on */ |
| errnum = find_first_bit(&allErrors, ARRAY_SIZE(error_name)); |
| |
| edac_dbg(0, "\t\tDIMM= %d Channel= %d (Branch %d DRAM Bank= %d rdwr= %s ras= %d cas= %d)\n", |
| rank, channel, branch >> 1, bank, |
| rdwr_str(rdwr), ras, cas); |
| |
| /* Form out message */ |
| snprintf(msg, sizeof(msg), |
| "Corrected error (Branch=%d DRAM-Bank=%d RDWR=%s " |
| "RAS=%d CAS=%d, CE Err=0x%lx (%s))", |
| branch >> 1, bank, rdwr_str(rdwr), ras, cas, |
| allErrors, error_name[errnum]); |
| |
| edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, 0, 0, 0, |
| branch >> 1, channel % 2, rank, |
| rdwr ? "Write error" : "Read error", |
| msg); |
| |
| return; |
| } |
| |
| /* Miscellaneous errors */ |
| errnum = find_first_bit(&allErrors, ARRAY_SIZE(error_name)); |
| |
| branch = extract_fbdchan_indx(info->ferr_nf_fbd); |
| |
| i5400_mc_printk(mci, KERN_EMERG, |
| "Non-Fatal misc error (Branch=%d Err=%#lx (%s))", |
| branch >> 1, allErrors, error_name[errnum]); |
| } |
| |
| /* |
| * i5400_process_error_info Process the error info that is |
| * in the 'info' structure, previously retrieved from hardware |
| */ |
| static void i5400_process_error_info(struct mem_ctl_info *mci, |
| struct i5400_error_info *info) |
| { u32 allErrors; |
| |
| /* First handle any fatal errors that occurred */ |
| allErrors = (info->ferr_fat_fbd & FERR_FAT_MASK); |
| i5400_proccess_non_recoverable_info(mci, info, allErrors); |
| |
| /* now handle any non-fatal errors that occurred */ |
| i5400_process_nonfatal_error_info(mci, info); |
| } |
| |
| /* |
| * i5400_clear_error Retrieve any error from the hardware |
| * but do NOT process that error. |
| * Used for 'clearing' out of previous errors |
| * Called by the Core module. |
| */ |
| static void i5400_clear_error(struct mem_ctl_info *mci) |
| { |
| struct i5400_error_info info; |
| |
| i5400_get_error_info(mci, &info); |
| } |
| |
| /* |
| * i5400_check_error Retrieve and process errors reported by the |
| * hardware. Called by the Core module. |
| */ |
| static void i5400_check_error(struct mem_ctl_info *mci) |
| { |
| struct i5400_error_info info; |
| edac_dbg(4, "MC%d\n", mci->mc_idx); |
| i5400_get_error_info(mci, &info); |
| i5400_process_error_info(mci, &info); |
| } |
| |
| /* |
| * i5400_put_devices 'put' all the devices that we have |
| * reserved via 'get' |
| */ |
| static void i5400_put_devices(struct mem_ctl_info *mci) |
| { |
| struct i5400_pvt *pvt; |
| |
| pvt = mci->pvt_info; |
| |
| /* Decrement usage count for devices */ |
| pci_dev_put(pvt->branch_1); |
| pci_dev_put(pvt->branch_0); |
| pci_dev_put(pvt->fsb_error_regs); |
| pci_dev_put(pvt->branchmap_werrors); |
| } |
| |
| /* |
| * i5400_get_devices Find and perform 'get' operation on the MCH's |
| * device/functions we want to reference for this driver |
| * |
| * Need to 'get' device 16 func 1 and func 2 |
| */ |
| static int i5400_get_devices(struct mem_ctl_info *mci, int dev_idx) |
| { |
| struct i5400_pvt *pvt; |
| struct pci_dev *pdev; |
| |
| pvt = mci->pvt_info; |
| pvt->branchmap_werrors = NULL; |
| pvt->fsb_error_regs = NULL; |
| pvt->branch_0 = NULL; |
| pvt->branch_1 = NULL; |
| |
| /* Attempt to 'get' the MCH register we want */ |
| pdev = NULL; |
| while (1) { |
| pdev = pci_get_device(PCI_VENDOR_ID_INTEL, |
| PCI_DEVICE_ID_INTEL_5400_ERR, pdev); |
| if (!pdev) { |
| /* End of list, leave */ |
| i5400_printk(KERN_ERR, |
| "'system address,Process Bus' " |
| "device not found:" |
| "vendor 0x%x device 0x%x ERR func 1 " |
| "(broken BIOS?)\n", |
| PCI_VENDOR_ID_INTEL, |
| PCI_DEVICE_ID_INTEL_5400_ERR); |
| return -ENODEV; |
| } |
| |
| /* Store device 16 func 1 */ |
| if (PCI_FUNC(pdev->devfn) == 1) |
| break; |
| } |
| pvt->branchmap_werrors = pdev; |
| |
| pdev = NULL; |
| while (1) { |
| pdev = pci_get_device(PCI_VENDOR_ID_INTEL, |
| PCI_DEVICE_ID_INTEL_5400_ERR, pdev); |
| if (!pdev) { |
| /* End of list, leave */ |
| i5400_printk(KERN_ERR, |
| "'system address,Process Bus' " |
| "device not found:" |
| "vendor 0x%x device 0x%x ERR func 2 " |
| "(broken BIOS?)\n", |
| PCI_VENDOR_ID_INTEL, |
| PCI_DEVICE_ID_INTEL_5400_ERR); |
| |
| pci_dev_put(pvt->branchmap_werrors); |
| return -ENODEV; |
| } |
| |
| /* Store device 16 func 2 */ |
| if (PCI_FUNC(pdev->devfn) == 2) |
| break; |
| } |
| pvt->fsb_error_regs = pdev; |
| |
| edac_dbg(1, "System Address, processor bus- PCI Bus ID: %s %x:%x\n", |
| pci_name(pvt->system_address), |
| pvt->system_address->vendor, pvt->system_address->device); |
| edac_dbg(1, "Branchmap, control and errors - PCI Bus ID: %s %x:%x\n", |
| pci_name(pvt->branchmap_werrors), |
| pvt->branchmap_werrors->vendor, |
| pvt->branchmap_werrors->device); |
| edac_dbg(1, "FSB Error Regs - PCI Bus ID: %s %x:%x\n", |
| pci_name(pvt->fsb_error_regs), |
| pvt->fsb_error_regs->vendor, pvt->fsb_error_regs->device); |
| |
| pvt->branch_0 = pci_get_device(PCI_VENDOR_ID_INTEL, |
| PCI_DEVICE_ID_INTEL_5400_FBD0, NULL); |
| if (!pvt->branch_0) { |
| i5400_printk(KERN_ERR, |
| "MC: 'BRANCH 0' device not found:" |
| "vendor 0x%x device 0x%x Func 0 (broken BIOS?)\n", |
| PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_5400_FBD0); |
| |
| pci_dev_put(pvt->fsb_error_regs); |
| pci_dev_put(pvt->branchmap_werrors); |
| return -ENODEV; |
| } |
| |
| /* If this device claims to have more than 2 channels then |
| * fetch Branch 1's information |
| */ |
| if (pvt->maxch < CHANNELS_PER_BRANCH) |
| return 0; |
| |
| pvt->branch_1 = pci_get_device(PCI_VENDOR_ID_INTEL, |
| PCI_DEVICE_ID_INTEL_5400_FBD1, NULL); |
| if (!pvt->branch_1) { |
| i5400_printk(KERN_ERR, |
| "MC: 'BRANCH 1' device not found:" |
| "vendor 0x%x device 0x%x Func 0 " |
| "(broken BIOS?)\n", |
| PCI_VENDOR_ID_INTEL, |
| PCI_DEVICE_ID_INTEL_5400_FBD1); |
| |
| pci_dev_put(pvt->branch_0); |
| pci_dev_put(pvt->fsb_error_regs); |
| pci_dev_put(pvt->branchmap_werrors); |
| return -ENODEV; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * determine_amb_present |
| * |
| * the information is contained in DIMMS_PER_CHANNEL different |
| * registers determining which of the DIMMS_PER_CHANNEL requires |
| * knowing which channel is in question |
| * |
| * 2 branches, each with 2 channels |
| * b0_ambpresent0 for channel '0' |
| * b0_ambpresent1 for channel '1' |
| * b1_ambpresent0 for channel '2' |
| * b1_ambpresent1 for channel '3' |
| */ |
| static int determine_amb_present_reg(struct i5400_pvt *pvt, int channel) |
| { |
| int amb_present; |
| |
| if (channel < CHANNELS_PER_BRANCH) { |
| if (channel & 0x1) |
| amb_present = pvt->b0_ambpresent1; |
| else |
| amb_present = pvt->b0_ambpresent0; |
| } else { |
| if (channel & 0x1) |
| amb_present = pvt->b1_ambpresent1; |
| else |
| amb_present = pvt->b1_ambpresent0; |
| } |
| |
| return amb_present; |
| } |
| |
| /* |
| * determine_mtr(pvt, dimm, channel) |
| * |
| * return the proper MTR register as determine by the dimm and desired channel |
| */ |
| static int determine_mtr(struct i5400_pvt *pvt, int dimm, int channel) |
| { |
| int mtr; |
| int n; |
| |
| /* There is one MTR for each slot pair of FB-DIMMs, |
| Each slot pair may be at branch 0 or branch 1. |
| */ |
| n = dimm; |
| |
| if (n >= DIMMS_PER_CHANNEL) { |
| edac_dbg(0, "ERROR: trying to access an invalid dimm: %d\n", |
| dimm); |
| return 0; |
| } |
| |
| if (channel < CHANNELS_PER_BRANCH) |
| mtr = pvt->b0_mtr[n]; |
| else |
| mtr = pvt->b1_mtr[n]; |
| |
| return mtr; |
| } |
| |
| /* |
| */ |
| static void decode_mtr(int slot_row, u16 mtr) |
| { |
| int ans; |
| |
| ans = MTR_DIMMS_PRESENT(mtr); |
| |
| edac_dbg(2, "\tMTR%d=0x%x: DIMMs are %sPresent\n", |
| slot_row, mtr, ans ? "" : "NOT "); |
| if (!ans) |
| return; |
| |
| edac_dbg(2, "\t\tWIDTH: x%d\n", MTR_DRAM_WIDTH(mtr)); |
| |
| edac_dbg(2, "\t\tELECTRICAL THROTTLING is %s\n", |
| MTR_DIMMS_ETHROTTLE(mtr) ? "enabled" : "disabled"); |
| |
| edac_dbg(2, "\t\tNUMBANK: %d bank(s)\n", MTR_DRAM_BANKS(mtr)); |
| edac_dbg(2, "\t\tNUMRANK: %s\n", |
| MTR_DIMM_RANK(mtr) ? "double" : "single"); |
| edac_dbg(2, "\t\tNUMROW: %s\n", |
| MTR_DIMM_ROWS(mtr) == 0 ? "8,192 - 13 rows" : |
| MTR_DIMM_ROWS(mtr) == 1 ? "16,384 - 14 rows" : |
| MTR_DIMM_ROWS(mtr) == 2 ? "32,768 - 15 rows" : |
| "65,536 - 16 rows"); |
| edac_dbg(2, "\t\tNUMCOL: %s\n", |
| MTR_DIMM_COLS(mtr) == 0 ? "1,024 - 10 columns" : |
| MTR_DIMM_COLS(mtr) == 1 ? "2,048 - 11 columns" : |
| MTR_DIMM_COLS(mtr) == 2 ? "4,096 - 12 columns" : |
| "reserved"); |
| } |
| |
| static void handle_channel(struct i5400_pvt *pvt, int dimm, int channel, |
| struct i5400_dimm_info *dinfo) |
| { |
| int mtr; |
| int amb_present_reg; |
| int addrBits; |
| |
| mtr = determine_mtr(pvt, dimm, channel); |
| if (MTR_DIMMS_PRESENT(mtr)) { |
| amb_present_reg = determine_amb_present_reg(pvt, channel); |
| |
| /* Determine if there is a DIMM present in this DIMM slot */ |
| if (amb_present_reg & (1 << dimm)) { |
| /* Start with the number of bits for a Bank |
| * on the DRAM */ |
| addrBits = MTR_DRAM_BANKS_ADDR_BITS(mtr); |
| /* Add thenumber of ROW bits */ |
| addrBits += MTR_DIMM_ROWS_ADDR_BITS(mtr); |
| /* add the number of COLUMN bits */ |
| addrBits += MTR_DIMM_COLS_ADDR_BITS(mtr); |
| /* add the number of RANK bits */ |
| addrBits += MTR_DIMM_RANK(mtr); |
| |
| addrBits += 6; /* add 64 bits per DIMM */ |
| addrBits -= 20; /* divide by 2^^20 */ |
| addrBits -= 3; /* 8 bits per bytes */ |
| |
| dinfo->megabytes = 1 << addrBits; |
| } |
| } |
| } |
| |
| /* |
| * calculate_dimm_size |
| * |
| * also will output a DIMM matrix map, if debug is enabled, for viewing |
| * how the DIMMs are populated |
| */ |
| static void calculate_dimm_size(struct i5400_pvt *pvt) |
| { |
| struct i5400_dimm_info *dinfo; |
| int dimm, max_dimms; |
| char *p, *mem_buffer; |
| int space, n; |
| int channel, branch; |
| |
| /* ================= Generate some debug output ================= */ |
| space = PAGE_SIZE; |
| mem_buffer = p = kmalloc(space, GFP_KERNEL); |
| if (p == NULL) { |
| i5400_printk(KERN_ERR, "MC: %s:%s() kmalloc() failed\n", |
| __FILE__, __func__); |
| return; |
| } |
| |
| /* Scan all the actual DIMMS |
| * and calculate the information for each DIMM |
| * Start with the highest dimm first, to display it first |
| * and work toward the 0th dimm |
| */ |
| max_dimms = pvt->maxdimmperch; |
| for (dimm = max_dimms - 1; dimm >= 0; dimm--) { |
| |
| /* on an odd dimm, first output a 'boundary' marker, |
| * then reset the message buffer */ |
| if (dimm & 0x1) { |
| n = snprintf(p, space, "---------------------------" |
| "-------------------------------"); |
| p += n; |
| space -= n; |
| edac_dbg(2, "%s\n", mem_buffer); |
| p = mem_buffer; |
| space = PAGE_SIZE; |
| } |
| n = snprintf(p, space, "dimm %2d ", dimm); |
| p += n; |
| space -= n; |
| |
| for (channel = 0; channel < pvt->maxch; channel++) { |
| dinfo = &pvt->dimm_info[dimm][channel]; |
| handle_channel(pvt, dimm, channel, dinfo); |
| n = snprintf(p, space, "%4d MB | ", dinfo->megabytes); |
| p += n; |
| space -= n; |
| } |
| edac_dbg(2, "%s\n", mem_buffer); |
| p = mem_buffer; |
| space = PAGE_SIZE; |
| } |
| |
| /* Output the last bottom 'boundary' marker */ |
| n = snprintf(p, space, "---------------------------" |
| "-------------------------------"); |
| p += n; |
| space -= n; |
| edac_dbg(2, "%s\n", mem_buffer); |
| p = mem_buffer; |
| space = PAGE_SIZE; |
| |
| /* now output the 'channel' labels */ |
| n = snprintf(p, space, " "); |
| p += n; |
| space -= n; |
| for (channel = 0; channel < pvt->maxch; channel++) { |
| n = snprintf(p, space, "channel %d | ", channel); |
| p += n; |
| space -= n; |
| } |
| |
| space -= n; |
| edac_dbg(2, "%s\n", mem_buffer); |
| p = mem_buffer; |
| space = PAGE_SIZE; |
| |
| n = snprintf(p, space, " "); |
| p += n; |
| for (branch = 0; branch < MAX_BRANCHES; branch++) { |
| n = snprintf(p, space, " branch %d | ", branch); |
| p += n; |
| space -= n; |
| } |
| |
| /* output the last message and free buffer */ |
| edac_dbg(2, "%s\n", mem_buffer); |
| kfree(mem_buffer); |
| } |
| |
| /* |
| * i5400_get_mc_regs read in the necessary registers and |
| * cache locally |
| * |
| * Fills in the private data members |
| */ |
| static void i5400_get_mc_regs(struct mem_ctl_info *mci) |
| { |
| struct i5400_pvt *pvt; |
| u32 actual_tolm; |
| u16 limit; |
| int slot_row; |
| int maxch; |
| int maxdimmperch; |
| int way0, way1; |
| |
| pvt = mci->pvt_info; |
| |
| pci_read_config_dword(pvt->system_address, AMBASE, |
| (u32 *) &pvt->ambase); |
| pci_read_config_dword(pvt->system_address, AMBASE + sizeof(u32), |
| ((u32 *) &pvt->ambase) + sizeof(u32)); |
| |
| maxdimmperch = pvt->maxdimmperch; |
| maxch = pvt->maxch; |
| |
| edac_dbg(2, "AMBASE= 0x%lx MAXCH= %d MAX-DIMM-Per-CH= %d\n", |
| (long unsigned int)pvt->ambase, pvt->maxch, pvt->maxdimmperch); |
| |
| /* Get the Branch Map regs */ |
| pci_read_config_word(pvt->branchmap_werrors, TOLM, &pvt->tolm); |
| pvt->tolm >>= 12; |
| edac_dbg(2, "\nTOLM (number of 256M regions) =%u (0x%x)\n", |
| pvt->tolm, pvt->tolm); |
| |
| actual_tolm = (u32) ((1000l * pvt->tolm) >> (30 - 28)); |
| edac_dbg(2, "Actual TOLM byte addr=%u.%03u GB (0x%x)\n", |
| actual_tolm/1000, actual_tolm % 1000, pvt->tolm << 28); |
| |
| pci_read_config_word(pvt->branchmap_werrors, MIR0, &pvt->mir0); |
| pci_read_config_word(pvt->branchmap_werrors, MIR1, &pvt->mir1); |
| |
| /* Get the MIR[0-1] regs */ |
| limit = (pvt->mir0 >> 4) & 0x0fff; |
| way0 = pvt->mir0 & 0x1; |
| way1 = pvt->mir0 & 0x2; |
| edac_dbg(2, "MIR0: limit= 0x%x WAY1= %u WAY0= %x\n", |
| limit, way1, way0); |
| limit = (pvt->mir1 >> 4) & 0xfff; |
| way0 = pvt->mir1 & 0x1; |
| way1 = pvt->mir1 & 0x2; |
| edac_dbg(2, "MIR1: limit= 0x%x WAY1= %u WAY0= %x\n", |
| limit, way1, way0); |
| |
| /* Get the set of MTR[0-3] regs by each branch */ |
| for (slot_row = 0; slot_row < DIMMS_PER_CHANNEL; slot_row++) { |
| int where = MTR0 + (slot_row * sizeof(u16)); |
| |
| /* Branch 0 set of MTR registers */ |
| pci_read_config_word(pvt->branch_0, where, |
| &pvt->b0_mtr[slot_row]); |
| |
| edac_dbg(2, "MTR%d where=0x%x B0 value=0x%x\n", |
| slot_row, where, pvt->b0_mtr[slot_row]); |
| |
| if (pvt->maxch < CHANNELS_PER_BRANCH) { |
| pvt->b1_mtr[slot_row] = 0; |
| continue; |
| } |
| |
| /* Branch 1 set of MTR registers */ |
| pci_read_config_word(pvt->branch_1, where, |
| &pvt->b1_mtr[slot_row]); |
| edac_dbg(2, "MTR%d where=0x%x B1 value=0x%x\n", |
| slot_row, where, pvt->b1_mtr[slot_row]); |
| } |
| |
| /* Read and dump branch 0's MTRs */ |
| edac_dbg(2, "Memory Technology Registers:\n"); |
| edac_dbg(2, " Branch 0:\n"); |
| for (slot_row = 0; slot_row < DIMMS_PER_CHANNEL; slot_row++) |
| decode_mtr(slot_row, pvt->b0_mtr[slot_row]); |
| |
| pci_read_config_word(pvt->branch_0, AMBPRESENT_0, |
| &pvt->b0_ambpresent0); |
| edac_dbg(2, "\t\tAMB-Branch 0-present0 0x%x:\n", pvt->b0_ambpresent0); |
| pci_read_config_word(pvt->branch_0, AMBPRESENT_1, |
| &pvt->b0_ambpresent1); |
| edac_dbg(2, "\t\tAMB-Branch 0-present1 0x%x:\n", pvt->b0_ambpresent1); |
| |
| /* Only if we have 2 branchs (4 channels) */ |
| if (pvt->maxch < CHANNELS_PER_BRANCH) { |
| pvt->b1_ambpresent0 = 0; |
| pvt->b1_ambpresent1 = 0; |
| } else { |
| /* Read and dump branch 1's MTRs */ |
| edac_dbg(2, " Branch 1:\n"); |
| for (slot_row = 0; slot_row < DIMMS_PER_CHANNEL; slot_row++) |
| decode_mtr(slot_row, pvt->b1_mtr[slot_row]); |
| |
| pci_read_config_word(pvt->branch_1, AMBPRESENT_0, |
| &pvt->b1_ambpresent0); |
| edac_dbg(2, "\t\tAMB-Branch 1-present0 0x%x:\n", |
| pvt->b1_ambpresent0); |
| pci_read_config_word(pvt->branch_1, AMBPRESENT_1, |
| &pvt->b1_ambpresent1); |
| edac_dbg(2, "\t\tAMB-Branch 1-present1 0x%x:\n", |
| pvt->b1_ambpresent1); |
| } |
| |
| /* Go and determine the size of each DIMM and place in an |
| * orderly matrix */ |
| calculate_dimm_size(pvt); |
| } |
| |
| /* |
| * i5400_init_dimms Initialize the 'dimms' table within |
| * the mci control structure with the |
| * addressing of memory. |
| * |
| * return: |
| * 0 success |
| * 1 no actual memory found on this MC |
| */ |
| static int i5400_init_dimms(struct mem_ctl_info *mci) |
| { |
| struct i5400_pvt *pvt; |
| struct dimm_info *dimm; |
| int ndimms, channel_count; |
| int max_dimms; |
| int mtr; |
| int size_mb; |
| int channel, slot; |
| |
| pvt = mci->pvt_info; |
| |
| channel_count = pvt->maxch; |
| max_dimms = pvt->maxdimmperch; |
| |
| ndimms = 0; |
| |
| /* |
| * FIXME: remove pvt->dimm_info[slot][channel] and use the 3 |
| * layers here. |
| */ |
| for (channel = 0; channel < mci->layers[0].size * mci->layers[1].size; |
| channel++) { |
| for (slot = 0; slot < mci->layers[2].size; slot++) { |
| mtr = determine_mtr(pvt, slot, channel); |
| |
| /* if no DIMMS on this slot, continue */ |
| if (!MTR_DIMMS_PRESENT(mtr)) |
| continue; |
| |
| dimm = EDAC_DIMM_PTR(mci->layers, mci->dimms, mci->n_layers, |
| channel / 2, channel % 2, slot); |
| |
| size_mb = pvt->dimm_info[slot][channel].megabytes; |
| |
| edac_dbg(2, "dimm (branch %d channel %d slot %d): %d.%03d GB\n", |
| channel / 2, channel % 2, slot, |
| size_mb / 1000, size_mb % 1000); |
| |
| dimm->nr_pages = size_mb << 8; |
| dimm->grain = 8; |
| dimm->dtype = MTR_DRAM_WIDTH(mtr) ? DEV_X8 : DEV_X4; |
| dimm->mtype = MEM_FB_DDR2; |
| /* |
| * The eccc mechanism is SDDC (aka SECC), with |
| * is similar to Chipkill. |
| */ |
| dimm->edac_mode = MTR_DRAM_WIDTH(mtr) ? |
| EDAC_S8ECD8ED : EDAC_S4ECD4ED; |
| ndimms++; |
| } |
| } |
| |
| /* |
| * When just one memory is provided, it should be at location (0,0,0). |
| * With such single-DIMM mode, the SDCC algorithm degrades to SECDEC+. |
| */ |
| if (ndimms == 1) |
| mci->dimms[0]->edac_mode = EDAC_SECDED; |
| |
| return (ndimms == 0); |
| } |
| |
| /* |
| * i5400_enable_error_reporting |
| * Turn on the memory reporting features of the hardware |
| */ |
| static void i5400_enable_error_reporting(struct mem_ctl_info *mci) |
| { |
| struct i5400_pvt *pvt; |
| u32 fbd_error_mask; |
| |
| pvt = mci->pvt_info; |
| |
| /* Read the FBD Error Mask Register */ |
| pci_read_config_dword(pvt->branchmap_werrors, EMASK_FBD, |
| &fbd_error_mask); |
| |
| /* Enable with a '0' */ |
| fbd_error_mask &= ~(ENABLE_EMASK_ALL); |
| |
| pci_write_config_dword(pvt->branchmap_werrors, EMASK_FBD, |
| fbd_error_mask); |
| } |
| |
| /* |
| * i5400_probe1 Probe for ONE instance of device to see if it is |
| * present. |
| * return: |
| * 0 for FOUND a device |
| * < 0 for error code |
| */ |
| static int i5400_probe1(struct pci_dev *pdev, int dev_idx) |
| { |
| struct mem_ctl_info *mci; |
| struct i5400_pvt *pvt; |
| struct edac_mc_layer layers[3]; |
| |
| if (dev_idx >= ARRAY_SIZE(i5400_devs)) |
| return -EINVAL; |
| |
| edac_dbg(0, "MC: pdev bus %u dev=0x%x fn=0x%x\n", |
| pdev->bus->number, |
| PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn)); |
| |
| /* We only are looking for func 0 of the set */ |
| if (PCI_FUNC(pdev->devfn) != 0) |
| return -ENODEV; |
| |
| /* |
| * allocate a new MC control structure |
| * |
| * This drivers uses the DIMM slot as "csrow" and the rest as "channel". |
| */ |
| layers[0].type = EDAC_MC_LAYER_BRANCH; |
| layers[0].size = MAX_BRANCHES; |
| layers[0].is_virt_csrow = false; |
| layers[1].type = EDAC_MC_LAYER_CHANNEL; |
| layers[1].size = CHANNELS_PER_BRANCH; |
| layers[1].is_virt_csrow = false; |
| layers[2].type = EDAC_MC_LAYER_SLOT; |
| layers[2].size = DIMMS_PER_CHANNEL; |
| layers[2].is_virt_csrow = true; |
| mci = edac_mc_alloc(0, ARRAY_SIZE(layers), layers, sizeof(*pvt)); |
| if (mci == NULL) |
| return -ENOMEM; |
| |
| edac_dbg(0, "MC: mci = %p\n", mci); |
| |
| mci->pdev = &pdev->dev; /* record ptr to the generic device */ |
| |
| pvt = mci->pvt_info; |
| pvt->system_address = pdev; /* Record this device in our private */ |
| pvt->maxch = MAX_CHANNELS; |
| pvt->maxdimmperch = DIMMS_PER_CHANNEL; |
| |
| /* 'get' the pci devices we want to reserve for our use */ |
| if (i5400_get_devices(mci, dev_idx)) |
| goto fail0; |
| |
| /* Time to get serious */ |
| i5400_get_mc_regs(mci); /* retrieve the hardware registers */ |
| |
| mci->mc_idx = 0; |
| mci->mtype_cap = MEM_FLAG_FB_DDR2; |
| mci->edac_ctl_cap = EDAC_FLAG_NONE; |
| mci->edac_cap = EDAC_FLAG_NONE; |
| mci->mod_name = "i5400_edac.c"; |
| mci->mod_ver = I5400_REVISION; |
| mci->ctl_name = i5400_devs[dev_idx].ctl_name; |
| mci->dev_name = pci_name(pdev); |
| mci->ctl_page_to_phys = NULL; |
| |
| /* Set the function pointer to an actual operation function */ |
| mci->edac_check = i5400_check_error; |
| |
| /* initialize the MC control structure 'dimms' table |
| * with the mapping and control information */ |
| if (i5400_init_dimms(mci)) { |
| edac_dbg(0, "MC: Setting mci->edac_cap to EDAC_FLAG_NONE because i5400_init_dimms() returned nonzero value\n"); |
| mci->edac_cap = EDAC_FLAG_NONE; /* no dimms found */ |
| } else { |
| edac_dbg(1, "MC: Enable error reporting now\n"); |
| i5400_enable_error_reporting(mci); |
| } |
| |
| /* add this new MC control structure to EDAC's list of MCs */ |
| if (edac_mc_add_mc(mci)) { |
| edac_dbg(0, "MC: failed edac_mc_add_mc()\n"); |
| /* FIXME: perhaps some code should go here that disables error |
| * reporting if we just enabled it |
| */ |
| goto fail1; |
| } |
| |
| i5400_clear_error(mci); |
| |
| /* allocating generic PCI control info */ |
| i5400_pci = edac_pci_create_generic_ctl(&pdev->dev, EDAC_MOD_STR); |
| if (!i5400_pci) { |
| printk(KERN_WARNING |
| "%s(): Unable to create PCI control\n", |
| __func__); |
| printk(KERN_WARNING |
| "%s(): PCI error report via EDAC not setup\n", |
| __func__); |
| } |
| |
| return 0; |
| |
| /* Error exit unwinding stack */ |
| fail1: |
| |
| i5400_put_devices(mci); |
| |
| fail0: |
| edac_mc_free(mci); |
| return -ENODEV; |
| } |
| |
| /* |
| * i5400_init_one constructor for one instance of device |
| * |
| * returns: |
| * negative on error |
| * count (>= 0) |
| */ |
| static int __devinit i5400_init_one(struct pci_dev *pdev, |
| const struct pci_device_id *id) |
| { |
| int rc; |
| |
| edac_dbg(0, "MC:\n"); |
| |
| /* wake up device */ |
| rc = pci_enable_device(pdev); |
| if (rc) |
| return rc; |
| |
| /* now probe and enable the device */ |
| return i5400_probe1(pdev, id->driver_data); |
| } |
| |
| /* |
| * i5400_remove_one destructor for one instance of device |
| * |
| */ |
| static void __devexit i5400_remove_one(struct pci_dev *pdev) |
| { |
| struct mem_ctl_info *mci; |
| |
| edac_dbg(0, "\n"); |
| |
| if (i5400_pci) |
| edac_pci_release_generic_ctl(i5400_pci); |
| |
| mci = edac_mc_del_mc(&pdev->dev); |
| if (!mci) |
| return; |
| |
| /* retrieve references to resources, and free those resources */ |
| i5400_put_devices(mci); |
| |
| edac_mc_free(mci); |
| } |
| |
| /* |
| * pci_device_id table for which devices we are looking for |
| * |
| * The "E500P" device is the first device supported. |
| */ |
| static DEFINE_PCI_DEVICE_TABLE(i5400_pci_tbl) = { |
| {PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_5400_ERR)}, |
| {0,} /* 0 terminated list. */ |
| }; |
| |
| MODULE_DEVICE_TABLE(pci, i5400_pci_tbl); |
| |
| /* |
| * i5400_driver pci_driver structure for this module |
| * |
| */ |
| static struct pci_driver i5400_driver = { |
| .name = "i5400_edac", |
| .probe = i5400_init_one, |
| .remove = __devexit_p(i5400_remove_one), |
| .id_table = i5400_pci_tbl, |
| }; |
| |
| /* |
| * i5400_init Module entry function |
| * Try to initialize this module for its devices |
| */ |
| static int __init i5400_init(void) |
| { |
| int pci_rc; |
| |
| edac_dbg(2, "MC:\n"); |
| |
| /* Ensure that the OPSTATE is set correctly for POLL or NMI */ |
| opstate_init(); |
| |
| pci_rc = pci_register_driver(&i5400_driver); |
| |
| return (pci_rc < 0) ? pci_rc : 0; |
| } |
| |
| /* |
| * i5400_exit() Module exit function |
| * Unregister the driver |
| */ |
| static void __exit i5400_exit(void) |
| { |
| edac_dbg(2, "MC:\n"); |
| pci_unregister_driver(&i5400_driver); |
| } |
| |
| module_init(i5400_init); |
| module_exit(i5400_exit); |
| |
| MODULE_LICENSE("GPL"); |
| MODULE_AUTHOR("Ben Woodard <woodard@redhat.com>"); |
| MODULE_AUTHOR("Mauro Carvalho Chehab <mchehab@redhat.com>"); |
| MODULE_AUTHOR("Red Hat Inc. (http://www.redhat.com)"); |
| MODULE_DESCRIPTION("MC Driver for Intel I5400 memory controllers - " |
| I5400_REVISION); |
| |
| module_param(edac_op_state, int, 0444); |
| MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI"); |