| /* |
| * Performance counter x86 architecture code |
| * |
| * Copyright(C) 2008 Thomas Gleixner <tglx@linutronix.de> |
| * Copyright(C) 2008 Red Hat, Inc., Ingo Molnar |
| * |
| * For licencing details see kernel-base/COPYING |
| */ |
| |
| #include <linux/perf_counter.h> |
| #include <linux/capability.h> |
| #include <linux/notifier.h> |
| #include <linux/hardirq.h> |
| #include <linux/kprobes.h> |
| #include <linux/module.h> |
| #include <linux/kdebug.h> |
| #include <linux/sched.h> |
| |
| #include <asm/intel_arch_perfmon.h> |
| #include <asm/apic.h> |
| |
| static bool perf_counters_initialized __read_mostly; |
| |
| /* |
| * Number of (generic) HW counters: |
| */ |
| static int nr_hw_counters __read_mostly; |
| static u32 perf_counter_mask __read_mostly; |
| |
| /* No support for fixed function counters yet */ |
| |
| #define MAX_HW_COUNTERS 8 |
| |
| struct cpu_hw_counters { |
| struct perf_counter *counters[MAX_HW_COUNTERS]; |
| unsigned long used[BITS_TO_LONGS(MAX_HW_COUNTERS)]; |
| }; |
| |
| /* |
| * Intel PerfMon v3. Used on Core2 and later. |
| */ |
| static DEFINE_PER_CPU(struct cpu_hw_counters, cpu_hw_counters); |
| |
| const int intel_perfmon_event_map[] = |
| { |
| [PERF_COUNT_CYCLES] = 0x003c, |
| [PERF_COUNT_INSTRUCTIONS] = 0x00c0, |
| [PERF_COUNT_CACHE_REFERENCES] = 0x4f2e, |
| [PERF_COUNT_CACHE_MISSES] = 0x412e, |
| [PERF_COUNT_BRANCH_INSTRUCTIONS] = 0x00c4, |
| [PERF_COUNT_BRANCH_MISSES] = 0x00c5, |
| }; |
| |
| const int max_intel_perfmon_events = ARRAY_SIZE(intel_perfmon_event_map); |
| |
| /* |
| * Setup the hardware configuration for a given hw_event_type |
| */ |
| static int __hw_perf_counter_init(struct perf_counter *counter) |
| { |
| struct perf_counter_hw_event *hw_event = &counter->hw_event; |
| struct hw_perf_counter *hwc = &counter->hw; |
| |
| if (unlikely(!perf_counters_initialized)) |
| return -EINVAL; |
| |
| /* |
| * Count user events, and generate PMC IRQs: |
| * (keep 'enabled' bit clear for now) |
| */ |
| hwc->config = ARCH_PERFMON_EVENTSEL_USR | ARCH_PERFMON_EVENTSEL_INT; |
| |
| /* |
| * If privileged enough, count OS events too, and allow |
| * NMI events as well: |
| */ |
| hwc->nmi = 0; |
| if (capable(CAP_SYS_ADMIN)) { |
| hwc->config |= ARCH_PERFMON_EVENTSEL_OS; |
| if (hw_event->nmi) |
| hwc->nmi = 1; |
| } |
| |
| hwc->config_base = MSR_ARCH_PERFMON_EVENTSEL0; |
| hwc->counter_base = MSR_ARCH_PERFMON_PERFCTR0; |
| |
| hwc->irq_period = hw_event->irq_period; |
| /* |
| * Intel PMCs cannot be accessed sanely above 32 bit width, |
| * so we install an artificial 1<<31 period regardless of |
| * the generic counter period: |
| */ |
| if (!hwc->irq_period) |
| hwc->irq_period = 0x7FFFFFFF; |
| |
| hwc->next_count = -(s32)hwc->irq_period; |
| |
| /* |
| * Raw event type provide the config in the event structure |
| */ |
| if (hw_event->raw) { |
| hwc->config |= hw_event->type; |
| } else { |
| if (hw_event->type >= max_intel_perfmon_events) |
| return -EINVAL; |
| /* |
| * The generic map: |
| */ |
| hwc->config |= intel_perfmon_event_map[hw_event->type]; |
| } |
| counter->wakeup_pending = 0; |
| |
| return 0; |
| } |
| |
| void hw_perf_enable_all(void) |
| { |
| wrmsr(MSR_CORE_PERF_GLOBAL_CTRL, perf_counter_mask, 0); |
| } |
| |
| void hw_perf_restore(u64 ctrl) |
| { |
| wrmsr(MSR_CORE_PERF_GLOBAL_CTRL, ctrl, 0); |
| } |
| EXPORT_SYMBOL_GPL(hw_perf_restore); |
| |
| u64 hw_perf_save_disable(void) |
| { |
| u64 ctrl; |
| |
| rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl); |
| wrmsr(MSR_CORE_PERF_GLOBAL_CTRL, 0, 0); |
| return ctrl; |
| } |
| EXPORT_SYMBOL_GPL(hw_perf_save_disable); |
| |
| static inline void |
| __x86_perf_counter_disable(struct hw_perf_counter *hwc, unsigned int idx) |
| { |
| wrmsr(hwc->config_base + idx, hwc->config, 0); |
| } |
| |
| static DEFINE_PER_CPU(u64, prev_next_count[MAX_HW_COUNTERS]); |
| |
| static void __hw_perf_counter_set_period(struct hw_perf_counter *hwc, int idx) |
| { |
| per_cpu(prev_next_count[idx], smp_processor_id()) = hwc->next_count; |
| |
| wrmsr(hwc->counter_base + idx, hwc->next_count, 0); |
| } |
| |
| static void __x86_perf_counter_enable(struct hw_perf_counter *hwc, int idx) |
| { |
| wrmsr(hwc->config_base + idx, |
| hwc->config | ARCH_PERFMON_EVENTSEL0_ENABLE, 0); |
| } |
| |
| static void x86_perf_counter_enable(struct perf_counter *counter) |
| { |
| struct cpu_hw_counters *cpuc = &__get_cpu_var(cpu_hw_counters); |
| struct hw_perf_counter *hwc = &counter->hw; |
| int idx = hwc->idx; |
| |
| /* Try to get the previous counter again */ |
| if (test_and_set_bit(idx, cpuc->used)) { |
| idx = find_first_zero_bit(cpuc->used, nr_hw_counters); |
| set_bit(idx, cpuc->used); |
| hwc->idx = idx; |
| } |
| |
| perf_counters_lapic_init(hwc->nmi); |
| |
| __x86_perf_counter_disable(hwc, idx); |
| |
| cpuc->counters[idx] = counter; |
| |
| __hw_perf_counter_set_period(hwc, idx); |
| __x86_perf_counter_enable(hwc, idx); |
| } |
| |
| static void __hw_perf_save_counter(struct perf_counter *counter, |
| struct hw_perf_counter *hwc, int idx) |
| { |
| s64 raw = -1; |
| s64 delta; |
| |
| /* |
| * Get the raw hw counter value: |
| */ |
| rdmsrl(hwc->counter_base + idx, raw); |
| |
| /* |
| * Rebase it to zero (it started counting at -irq_period), |
| * to see the delta since ->prev_count: |
| */ |
| delta = (s64)hwc->irq_period + (s64)(s32)raw; |
| |
| atomic64_counter_set(counter, hwc->prev_count + delta); |
| |
| /* |
| * Adjust the ->prev_count offset - if we went beyond |
| * irq_period of units, then we got an IRQ and the counter |
| * was set back to -irq_period: |
| */ |
| while (delta >= (s64)hwc->irq_period) { |
| hwc->prev_count += hwc->irq_period; |
| delta -= (s64)hwc->irq_period; |
| } |
| |
| /* |
| * Calculate the next raw counter value we'll write into |
| * the counter at the next sched-in time: |
| */ |
| delta -= (s64)hwc->irq_period; |
| |
| hwc->next_count = (s32)delta; |
| } |
| |
| void perf_counter_print_debug(void) |
| { |
| u64 ctrl, status, overflow, pmc_ctrl, pmc_count, next_count; |
| int cpu, idx; |
| |
| if (!nr_hw_counters) |
| return; |
| |
| local_irq_disable(); |
| |
| cpu = smp_processor_id(); |
| |
| rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl); |
| rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status); |
| rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow); |
| |
| printk(KERN_INFO "\n"); |
| printk(KERN_INFO "CPU#%d: ctrl: %016llx\n", cpu, ctrl); |
| printk(KERN_INFO "CPU#%d: status: %016llx\n", cpu, status); |
| printk(KERN_INFO "CPU#%d: overflow: %016llx\n", cpu, overflow); |
| |
| for (idx = 0; idx < nr_hw_counters; idx++) { |
| rdmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + idx, pmc_ctrl); |
| rdmsrl(MSR_ARCH_PERFMON_PERFCTR0 + idx, pmc_count); |
| |
| next_count = per_cpu(prev_next_count[idx], cpu); |
| |
| printk(KERN_INFO "CPU#%d: PMC%d ctrl: %016llx\n", |
| cpu, idx, pmc_ctrl); |
| printk(KERN_INFO "CPU#%d: PMC%d count: %016llx\n", |
| cpu, idx, pmc_count); |
| printk(KERN_INFO "CPU#%d: PMC%d next: %016llx\n", |
| cpu, idx, next_count); |
| } |
| local_irq_enable(); |
| } |
| |
| static void x86_perf_counter_disable(struct perf_counter *counter) |
| { |
| struct cpu_hw_counters *cpuc = &__get_cpu_var(cpu_hw_counters); |
| struct hw_perf_counter *hwc = &counter->hw; |
| unsigned int idx = hwc->idx; |
| |
| __x86_perf_counter_disable(hwc, idx); |
| |
| clear_bit(idx, cpuc->used); |
| cpuc->counters[idx] = NULL; |
| __hw_perf_save_counter(counter, hwc, idx); |
| } |
| |
| static void x86_perf_counter_read(struct perf_counter *counter) |
| { |
| struct hw_perf_counter *hwc = &counter->hw; |
| unsigned long addr = hwc->counter_base + hwc->idx; |
| s64 offs, val = -1LL; |
| s32 val32; |
| |
| /* Careful: NMI might modify the counter offset */ |
| do { |
| offs = hwc->prev_count; |
| rdmsrl(addr, val); |
| } while (offs != hwc->prev_count); |
| |
| val32 = (s32) val; |
| val = (s64)hwc->irq_period + (s64)val32; |
| atomic64_counter_set(counter, hwc->prev_count + val); |
| } |
| |
| static void perf_store_irq_data(struct perf_counter *counter, u64 data) |
| { |
| struct perf_data *irqdata = counter->irqdata; |
| |
| if (irqdata->len > PERF_DATA_BUFLEN - sizeof(u64)) { |
| irqdata->overrun++; |
| } else { |
| u64 *p = (u64 *) &irqdata->data[irqdata->len]; |
| |
| *p = data; |
| irqdata->len += sizeof(u64); |
| } |
| } |
| |
| /* |
| * NMI-safe enable method: |
| */ |
| static void perf_save_and_restart(struct perf_counter *counter) |
| { |
| struct hw_perf_counter *hwc = &counter->hw; |
| int idx = hwc->idx; |
| u64 pmc_ctrl; |
| |
| rdmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + idx, pmc_ctrl); |
| |
| __hw_perf_save_counter(counter, hwc, idx); |
| __hw_perf_counter_set_period(hwc, idx); |
| |
| if (pmc_ctrl & ARCH_PERFMON_EVENTSEL0_ENABLE) |
| __x86_perf_counter_enable(hwc, idx); |
| } |
| |
| static void |
| perf_handle_group(struct perf_counter *sibling, u64 *status, u64 *overflown) |
| { |
| struct perf_counter *counter, *group_leader = sibling->group_leader; |
| int bit; |
| |
| /* |
| * Store the counter's own timestamp first: |
| */ |
| perf_store_irq_data(sibling, sibling->hw_event.type); |
| perf_store_irq_data(sibling, atomic64_counter_read(sibling)); |
| |
| /* |
| * Then store sibling timestamps (if any): |
| */ |
| list_for_each_entry(counter, &group_leader->sibling_list, list_entry) { |
| if (!counter->active) { |
| /* |
| * When counter was not in the overflow mask, we have to |
| * read it from hardware. We read it as well, when it |
| * has not been read yet and clear the bit in the |
| * status mask. |
| */ |
| bit = counter->hw.idx; |
| if (!test_bit(bit, (unsigned long *) overflown) || |
| test_bit(bit, (unsigned long *) status)) { |
| clear_bit(bit, (unsigned long *) status); |
| perf_save_and_restart(counter); |
| } |
| } |
| perf_store_irq_data(sibling, counter->hw_event.type); |
| perf_store_irq_data(sibling, atomic64_counter_read(counter)); |
| } |
| } |
| |
| /* |
| * This handler is triggered by the local APIC, so the APIC IRQ handling |
| * rules apply: |
| */ |
| static void __smp_perf_counter_interrupt(struct pt_regs *regs, int nmi) |
| { |
| int bit, cpu = smp_processor_id(); |
| u64 ack, status, saved_global; |
| struct cpu_hw_counters *cpuc; |
| |
| rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, saved_global); |
| |
| /* Disable counters globally */ |
| wrmsr(MSR_CORE_PERF_GLOBAL_CTRL, 0, 0); |
| ack_APIC_irq(); |
| |
| cpuc = &per_cpu(cpu_hw_counters, cpu); |
| |
| rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status); |
| if (!status) |
| goto out; |
| |
| again: |
| ack = status; |
| for_each_bit(bit, (unsigned long *) &status, nr_hw_counters) { |
| struct perf_counter *counter = cpuc->counters[bit]; |
| |
| clear_bit(bit, (unsigned long *) &status); |
| if (!counter) |
| continue; |
| |
| perf_save_and_restart(counter); |
| |
| switch (counter->hw_event.record_type) { |
| case PERF_RECORD_SIMPLE: |
| continue; |
| case PERF_RECORD_IRQ: |
| perf_store_irq_data(counter, instruction_pointer(regs)); |
| break; |
| case PERF_RECORD_GROUP: |
| perf_handle_group(counter, &status, &ack); |
| break; |
| } |
| /* |
| * From NMI context we cannot call into the scheduler to |
| * do a task wakeup - but we mark these counters as |
| * wakeup_pending and initate a wakeup callback: |
| */ |
| if (nmi) { |
| counter->wakeup_pending = 1; |
| set_tsk_thread_flag(current, TIF_PERF_COUNTERS); |
| } else { |
| wake_up(&counter->waitq); |
| } |
| } |
| |
| wrmsr(MSR_CORE_PERF_GLOBAL_OVF_CTRL, ack, 0); |
| |
| /* |
| * Repeat if there is more work to be done: |
| */ |
| rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status); |
| if (status) |
| goto again; |
| out: |
| /* |
| * Restore - do not reenable when global enable is off: |
| */ |
| wrmsr(MSR_CORE_PERF_GLOBAL_CTRL, saved_global, 0); |
| } |
| |
| void smp_perf_counter_interrupt(struct pt_regs *regs) |
| { |
| irq_enter(); |
| #ifdef CONFIG_X86_64 |
| add_pda(apic_perf_irqs, 1); |
| #else |
| per_cpu(irq_stat, smp_processor_id()).apic_perf_irqs++; |
| #endif |
| apic_write(APIC_LVTPC, LOCAL_PERF_VECTOR); |
| __smp_perf_counter_interrupt(regs, 0); |
| |
| irq_exit(); |
| } |
| |
| /* |
| * This handler is triggered by NMI contexts: |
| */ |
| void perf_counter_notify(struct pt_regs *regs) |
| { |
| struct cpu_hw_counters *cpuc; |
| unsigned long flags; |
| int bit, cpu; |
| |
| local_irq_save(flags); |
| cpu = smp_processor_id(); |
| cpuc = &per_cpu(cpu_hw_counters, cpu); |
| |
| for_each_bit(bit, cpuc->used, nr_hw_counters) { |
| struct perf_counter *counter = cpuc->counters[bit]; |
| |
| if (!counter) |
| continue; |
| |
| if (counter->wakeup_pending) { |
| counter->wakeup_pending = 0; |
| wake_up(&counter->waitq); |
| } |
| } |
| |
| local_irq_restore(flags); |
| } |
| |
| void __cpuinit perf_counters_lapic_init(int nmi) |
| { |
| u32 apic_val; |
| |
| if (!perf_counters_initialized) |
| return; |
| /* |
| * Enable the performance counter vector in the APIC LVT: |
| */ |
| apic_val = apic_read(APIC_LVTERR); |
| |
| apic_write(APIC_LVTERR, apic_val | APIC_LVT_MASKED); |
| if (nmi) |
| apic_write(APIC_LVTPC, APIC_DM_NMI); |
| else |
| apic_write(APIC_LVTPC, LOCAL_PERF_VECTOR); |
| apic_write(APIC_LVTERR, apic_val); |
| } |
| |
| static int __kprobes |
| perf_counter_nmi_handler(struct notifier_block *self, |
| unsigned long cmd, void *__args) |
| { |
| struct die_args *args = __args; |
| struct pt_regs *regs; |
| |
| if (likely(cmd != DIE_NMI_IPI)) |
| return NOTIFY_DONE; |
| |
| regs = args->regs; |
| |
| apic_write(APIC_LVTPC, APIC_DM_NMI); |
| __smp_perf_counter_interrupt(regs, 1); |
| |
| return NOTIFY_STOP; |
| } |
| |
| static __read_mostly struct notifier_block perf_counter_nmi_notifier = { |
| .notifier_call = perf_counter_nmi_handler |
| }; |
| |
| void __init init_hw_perf_counters(void) |
| { |
| union cpuid10_eax eax; |
| unsigned int unused; |
| unsigned int ebx; |
| |
| if (!cpu_has(&boot_cpu_data, X86_FEATURE_ARCH_PERFMON)) |
| return; |
| |
| /* |
| * Check whether the Architectural PerfMon supports |
| * Branch Misses Retired Event or not. |
| */ |
| cpuid(10, &(eax.full), &ebx, &unused, &unused); |
| if (eax.split.mask_length <= ARCH_PERFMON_BRANCH_MISSES_RETIRED) |
| return; |
| |
| printk(KERN_INFO "Intel Performance Monitoring support detected.\n"); |
| |
| printk(KERN_INFO "... version: %d\n", eax.split.version_id); |
| printk(KERN_INFO "... num_counters: %d\n", eax.split.num_counters); |
| nr_hw_counters = eax.split.num_counters; |
| if (nr_hw_counters > MAX_HW_COUNTERS) { |
| nr_hw_counters = MAX_HW_COUNTERS; |
| WARN(1, KERN_ERR "hw perf counters %d > max(%d), clipping!", |
| nr_hw_counters, MAX_HW_COUNTERS); |
| } |
| perf_counter_mask = (1 << nr_hw_counters) - 1; |
| perf_max_counters = nr_hw_counters; |
| |
| printk(KERN_INFO "... bit_width: %d\n", eax.split.bit_width); |
| printk(KERN_INFO "... mask_length: %d\n", eax.split.mask_length); |
| |
| perf_counters_lapic_init(0); |
| register_die_notifier(&perf_counter_nmi_notifier); |
| |
| perf_counters_initialized = true; |
| } |
| |
| static const struct hw_perf_counter_ops x86_perf_counter_ops = { |
| .hw_perf_counter_enable = x86_perf_counter_enable, |
| .hw_perf_counter_disable = x86_perf_counter_disable, |
| .hw_perf_counter_read = x86_perf_counter_read, |
| }; |
| |
| const struct hw_perf_counter_ops * |
| hw_perf_counter_init(struct perf_counter *counter) |
| { |
| int err; |
| |
| err = __hw_perf_counter_init(counter); |
| if (err) |
| return NULL; |
| |
| return &x86_perf_counter_ops; |
| } |