| /* SPDX-License-Identifier: GPL-2.0 */ |
| #ifndef __KVM_X86_VMX_H |
| #define __KVM_X86_VMX_H |
| |
| #include <linux/kvm_host.h> |
| |
| #include <asm/kvm.h> |
| #include <asm/intel_pt.h> |
| |
| #include "capabilities.h" |
| #include "kvm_cache_regs.h" |
| #include "posted_intr.h" |
| #include "vmcs.h" |
| #include "vmx_ops.h" |
| #include "cpuid.h" |
| |
| #define MSR_TYPE_R 1 |
| #define MSR_TYPE_W 2 |
| #define MSR_TYPE_RW 3 |
| |
| #define X2APIC_MSR(r) (APIC_BASE_MSR + ((r) >> 4)) |
| |
| #ifdef CONFIG_X86_64 |
| #define MAX_NR_USER_RETURN_MSRS 7 |
| #else |
| #define MAX_NR_USER_RETURN_MSRS 4 |
| #endif |
| |
| #define MAX_NR_LOADSTORE_MSRS 8 |
| |
| struct vmx_msrs { |
| unsigned int nr; |
| struct vmx_msr_entry val[MAX_NR_LOADSTORE_MSRS]; |
| }; |
| |
| struct vmx_uret_msr { |
| bool load_into_hardware; |
| u64 data; |
| u64 mask; |
| }; |
| |
| enum segment_cache_field { |
| SEG_FIELD_SEL = 0, |
| SEG_FIELD_BASE = 1, |
| SEG_FIELD_LIMIT = 2, |
| SEG_FIELD_AR = 3, |
| |
| SEG_FIELD_NR = 4 |
| }; |
| |
| #define RTIT_ADDR_RANGE 4 |
| |
| struct pt_ctx { |
| u64 ctl; |
| u64 status; |
| u64 output_base; |
| u64 output_mask; |
| u64 cr3_match; |
| u64 addr_a[RTIT_ADDR_RANGE]; |
| u64 addr_b[RTIT_ADDR_RANGE]; |
| }; |
| |
| struct pt_desc { |
| u64 ctl_bitmask; |
| u32 num_address_ranges; |
| u32 caps[PT_CPUID_REGS_NUM * PT_CPUID_LEAVES]; |
| struct pt_ctx host; |
| struct pt_ctx guest; |
| }; |
| |
| union vmx_exit_reason { |
| struct { |
| u32 basic : 16; |
| u32 reserved16 : 1; |
| u32 reserved17 : 1; |
| u32 reserved18 : 1; |
| u32 reserved19 : 1; |
| u32 reserved20 : 1; |
| u32 reserved21 : 1; |
| u32 reserved22 : 1; |
| u32 reserved23 : 1; |
| u32 reserved24 : 1; |
| u32 reserved25 : 1; |
| u32 bus_lock_detected : 1; |
| u32 enclave_mode : 1; |
| u32 smi_pending_mtf : 1; |
| u32 smi_from_vmx_root : 1; |
| u32 reserved30 : 1; |
| u32 failed_vmentry : 1; |
| }; |
| u32 full; |
| }; |
| |
| #define vcpu_to_lbr_desc(vcpu) (&to_vmx(vcpu)->lbr_desc) |
| #define vcpu_to_lbr_records(vcpu) (&to_vmx(vcpu)->lbr_desc.records) |
| |
| bool intel_pmu_lbr_is_compatible(struct kvm_vcpu *vcpu); |
| bool intel_pmu_lbr_is_enabled(struct kvm_vcpu *vcpu); |
| |
| int intel_pmu_create_guest_lbr_event(struct kvm_vcpu *vcpu); |
| void vmx_passthrough_lbr_msrs(struct kvm_vcpu *vcpu); |
| |
| struct lbr_desc { |
| /* Basic info about guest LBR records. */ |
| struct x86_pmu_lbr records; |
| |
| /* |
| * Emulate LBR feature via passthrough LBR registers when the |
| * per-vcpu guest LBR event is scheduled on the current pcpu. |
| * |
| * The records may be inaccurate if the host reclaims the LBR. |
| */ |
| struct perf_event *event; |
| |
| /* True if LBRs are marked as not intercepted in the MSR bitmap */ |
| bool msr_passthrough; |
| }; |
| |
| /* |
| * The nested_vmx structure is part of vcpu_vmx, and holds information we need |
| * for correct emulation of VMX (i.e., nested VMX) on this vcpu. |
| */ |
| struct nested_vmx { |
| /* Has the level1 guest done vmxon? */ |
| bool vmxon; |
| gpa_t vmxon_ptr; |
| bool pml_full; |
| |
| /* The guest-physical address of the current VMCS L1 keeps for L2 */ |
| gpa_t current_vmptr; |
| /* |
| * Cache of the guest's VMCS, existing outside of guest memory. |
| * Loaded from guest memory during VMPTRLD. Flushed to guest |
| * memory during VMCLEAR and VMPTRLD. |
| */ |
| struct vmcs12 *cached_vmcs12; |
| /* |
| * Cache of the guest's shadow VMCS, existing outside of guest |
| * memory. Loaded from guest memory during VM entry. Flushed |
| * to guest memory during VM exit. |
| */ |
| struct vmcs12 *cached_shadow_vmcs12; |
| |
| /* |
| * GPA to HVA cache for accessing vmcs12->vmcs_link_pointer |
| */ |
| struct gfn_to_hva_cache shadow_vmcs12_cache; |
| |
| /* |
| * GPA to HVA cache for VMCS12 |
| */ |
| struct gfn_to_hva_cache vmcs12_cache; |
| |
| /* |
| * Indicates if the shadow vmcs or enlightened vmcs must be updated |
| * with the data held by struct vmcs12. |
| */ |
| bool need_vmcs12_to_shadow_sync; |
| bool dirty_vmcs12; |
| |
| /* |
| * Indicates whether MSR bitmap for L2 needs to be rebuilt due to |
| * changes in MSR bitmap for L1 or switching to a different L2. Note, |
| * this flag can only be used reliably in conjunction with a paravirt L1 |
| * which informs L0 whether any changes to MSR bitmap for L2 were done |
| * on its side. |
| */ |
| bool force_msr_bitmap_recalc; |
| |
| /* |
| * Indicates lazily loaded guest state has not yet been decached from |
| * vmcs02. |
| */ |
| bool need_sync_vmcs02_to_vmcs12_rare; |
| |
| /* |
| * vmcs02 has been initialized, i.e. state that is constant for |
| * vmcs02 has been written to the backing VMCS. Initialization |
| * is delayed until L1 actually attempts to run a nested VM. |
| */ |
| bool vmcs02_initialized; |
| |
| bool change_vmcs01_virtual_apic_mode; |
| bool reload_vmcs01_apic_access_page; |
| bool update_vmcs01_cpu_dirty_logging; |
| |
| /* |
| * Enlightened VMCS has been enabled. It does not mean that L1 has to |
| * use it. However, VMX features available to L1 will be limited based |
| * on what the enlightened VMCS supports. |
| */ |
| bool enlightened_vmcs_enabled; |
| |
| /* L2 must run next, and mustn't decide to exit to L1. */ |
| bool nested_run_pending; |
| |
| /* Pending MTF VM-exit into L1. */ |
| bool mtf_pending; |
| |
| struct loaded_vmcs vmcs02; |
| |
| /* |
| * Guest pages referred to in the vmcs02 with host-physical |
| * pointers, so we must keep them pinned while L2 runs. |
| */ |
| struct page *apic_access_page; |
| struct kvm_host_map virtual_apic_map; |
| struct kvm_host_map pi_desc_map; |
| |
| struct kvm_host_map msr_bitmap_map; |
| |
| struct pi_desc *pi_desc; |
| bool pi_pending; |
| u16 posted_intr_nv; |
| |
| struct hrtimer preemption_timer; |
| u64 preemption_timer_deadline; |
| bool has_preemption_timer_deadline; |
| bool preemption_timer_expired; |
| |
| /* to migrate it to L2 if VM_ENTRY_LOAD_DEBUG_CONTROLS is off */ |
| u64 vmcs01_debugctl; |
| u64 vmcs01_guest_bndcfgs; |
| |
| /* to migrate it to L1 if L2 writes to L1's CR8 directly */ |
| int l1_tpr_threshold; |
| |
| u16 vpid02; |
| u16 last_vpid; |
| |
| struct nested_vmx_msrs msrs; |
| |
| /* SMM related state */ |
| struct { |
| /* in VMX operation on SMM entry? */ |
| bool vmxon; |
| /* in guest mode on SMM entry? */ |
| bool guest_mode; |
| } smm; |
| |
| gpa_t hv_evmcs_vmptr; |
| struct kvm_host_map hv_evmcs_map; |
| struct hv_enlightened_vmcs *hv_evmcs; |
| }; |
| |
| struct vcpu_vmx { |
| struct kvm_vcpu vcpu; |
| u8 fail; |
| u8 x2apic_msr_bitmap_mode; |
| |
| /* |
| * If true, host state has been stored in vmx->loaded_vmcs for |
| * the CPU registers that only need to be switched when transitioning |
| * to/from the kernel, and the registers have been loaded with guest |
| * values. If false, host state is loaded in the CPU registers |
| * and vmx->loaded_vmcs->host_state is invalid. |
| */ |
| bool guest_state_loaded; |
| |
| unsigned long exit_qualification; |
| u32 exit_intr_info; |
| u32 idt_vectoring_info; |
| ulong rflags; |
| |
| /* |
| * User return MSRs are always emulated when enabled in the guest, but |
| * only loaded into hardware when necessary, e.g. SYSCALL #UDs outside |
| * of 64-bit mode or if EFER.SCE=1, thus the SYSCALL MSRs don't need to |
| * be loaded into hardware if those conditions aren't met. |
| */ |
| struct vmx_uret_msr guest_uret_msrs[MAX_NR_USER_RETURN_MSRS]; |
| bool guest_uret_msrs_loaded; |
| #ifdef CONFIG_X86_64 |
| u64 msr_host_kernel_gs_base; |
| u64 msr_guest_kernel_gs_base; |
| #endif |
| |
| u64 spec_ctrl; |
| u32 msr_ia32_umwait_control; |
| |
| /* |
| * loaded_vmcs points to the VMCS currently used in this vcpu. For a |
| * non-nested (L1) guest, it always points to vmcs01. For a nested |
| * guest (L2), it points to a different VMCS. |
| */ |
| struct loaded_vmcs vmcs01; |
| struct loaded_vmcs *loaded_vmcs; |
| |
| struct msr_autoload { |
| struct vmx_msrs guest; |
| struct vmx_msrs host; |
| } msr_autoload; |
| |
| struct msr_autostore { |
| struct vmx_msrs guest; |
| } msr_autostore; |
| |
| struct { |
| int vm86_active; |
| ulong save_rflags; |
| struct kvm_segment segs[8]; |
| } rmode; |
| struct { |
| u32 bitmask; /* 4 bits per segment (1 bit per field) */ |
| struct kvm_save_segment { |
| u16 selector; |
| unsigned long base; |
| u32 limit; |
| u32 ar; |
| } seg[8]; |
| } segment_cache; |
| int vpid; |
| bool emulation_required; |
| |
| union vmx_exit_reason exit_reason; |
| |
| /* Posted interrupt descriptor */ |
| struct pi_desc pi_desc; |
| |
| /* Support for a guest hypervisor (nested VMX) */ |
| struct nested_vmx nested; |
| |
| /* Dynamic PLE window. */ |
| unsigned int ple_window; |
| bool ple_window_dirty; |
| |
| bool req_immediate_exit; |
| |
| /* Support for PML */ |
| #define PML_ENTITY_NUM 512 |
| struct page *pml_pg; |
| |
| /* apic deadline value in host tsc */ |
| u64 hv_deadline_tsc; |
| |
| unsigned long host_debugctlmsr; |
| |
| /* |
| * Only bits masked by msr_ia32_feature_control_valid_bits can be set in |
| * msr_ia32_feature_control. FEAT_CTL_LOCKED is always included |
| * in msr_ia32_feature_control_valid_bits. |
| */ |
| u64 msr_ia32_feature_control; |
| u64 msr_ia32_feature_control_valid_bits; |
| /* SGX Launch Control public key hash */ |
| u64 msr_ia32_sgxlepubkeyhash[4]; |
| |
| struct pt_desc pt_desc; |
| struct lbr_desc lbr_desc; |
| |
| /* Save desired MSR intercept (read: pass-through) state */ |
| #define MAX_POSSIBLE_PASSTHROUGH_MSRS 13 |
| struct { |
| DECLARE_BITMAP(read, MAX_POSSIBLE_PASSTHROUGH_MSRS); |
| DECLARE_BITMAP(write, MAX_POSSIBLE_PASSTHROUGH_MSRS); |
| } shadow_msr_intercept; |
| }; |
| |
| struct kvm_vmx { |
| struct kvm kvm; |
| |
| unsigned int tss_addr; |
| bool ept_identity_pagetable_done; |
| gpa_t ept_identity_map_addr; |
| }; |
| |
| bool nested_vmx_allowed(struct kvm_vcpu *vcpu); |
| void vmx_vcpu_load_vmcs(struct kvm_vcpu *vcpu, int cpu, |
| struct loaded_vmcs *buddy); |
| int allocate_vpid(void); |
| void free_vpid(int vpid); |
| void vmx_set_constant_host_state(struct vcpu_vmx *vmx); |
| void vmx_prepare_switch_to_guest(struct kvm_vcpu *vcpu); |
| void vmx_set_vmcs_host_state(struct vmcs_host_state *host, unsigned long cr3, |
| u16 fs_sel, u16 gs_sel, |
| unsigned long fs_base, unsigned long gs_base); |
| int vmx_get_cpl(struct kvm_vcpu *vcpu); |
| bool vmx_emulation_required(struct kvm_vcpu *vcpu); |
| unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu); |
| void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags); |
| u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu); |
| void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask); |
| int vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer); |
| void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0); |
| void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4); |
| void set_cr4_guest_host_mask(struct vcpu_vmx *vmx); |
| void ept_save_pdptrs(struct kvm_vcpu *vcpu); |
| void vmx_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg); |
| void __vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg); |
| u64 construct_eptp(struct kvm_vcpu *vcpu, hpa_t root_hpa, int root_level); |
| |
| bool vmx_guest_inject_ac(struct kvm_vcpu *vcpu); |
| void vmx_update_exception_bitmap(struct kvm_vcpu *vcpu); |
| bool vmx_nmi_blocked(struct kvm_vcpu *vcpu); |
| bool vmx_interrupt_blocked(struct kvm_vcpu *vcpu); |
| bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu); |
| void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked); |
| void vmx_set_virtual_apic_mode(struct kvm_vcpu *vcpu); |
| struct vmx_uret_msr *vmx_find_uret_msr(struct vcpu_vmx *vmx, u32 msr); |
| void pt_update_intercept_for_msr(struct kvm_vcpu *vcpu); |
| void vmx_update_host_rsp(struct vcpu_vmx *vmx, unsigned long host_rsp); |
| bool __vmx_vcpu_run(struct vcpu_vmx *vmx, unsigned long *regs, bool launched); |
| int vmx_find_loadstore_msr_slot(struct vmx_msrs *m, u32 msr); |
| void vmx_ept_load_pdptrs(struct kvm_vcpu *vcpu); |
| |
| void vmx_disable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type); |
| void vmx_enable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type); |
| |
| u64 vmx_get_l2_tsc_offset(struct kvm_vcpu *vcpu); |
| u64 vmx_get_l2_tsc_multiplier(struct kvm_vcpu *vcpu); |
| |
| static inline void vmx_set_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, |
| int type, bool value) |
| { |
| if (value) |
| vmx_enable_intercept_for_msr(vcpu, msr, type); |
| else |
| vmx_disable_intercept_for_msr(vcpu, msr, type); |
| } |
| |
| void vmx_update_cpu_dirty_logging(struct kvm_vcpu *vcpu); |
| |
| /* |
| * Note, early Intel manuals have the write-low and read-high bitmap offsets |
| * the wrong way round. The bitmaps control MSRs 0x00000000-0x00001fff and |
| * 0xc0000000-0xc0001fff. The former (low) uses bytes 0-0x3ff for reads and |
| * 0x800-0xbff for writes. The latter (high) uses 0x400-0x7ff for reads and |
| * 0xc00-0xfff for writes. MSRs not covered by either of the ranges always |
| * VM-Exit. |
| */ |
| #define __BUILD_VMX_MSR_BITMAP_HELPER(rtype, action, bitop, access, base) \ |
| static inline rtype vmx_##action##_msr_bitmap_##access(unsigned long *bitmap, \ |
| u32 msr) \ |
| { \ |
| int f = sizeof(unsigned long); \ |
| \ |
| if (msr <= 0x1fff) \ |
| return bitop##_bit(msr, bitmap + base / f); \ |
| else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) \ |
| return bitop##_bit(msr & 0x1fff, bitmap + (base + 0x400) / f); \ |
| return (rtype)true; \ |
| } |
| #define BUILD_VMX_MSR_BITMAP_HELPERS(ret_type, action, bitop) \ |
| __BUILD_VMX_MSR_BITMAP_HELPER(ret_type, action, bitop, read, 0x0) \ |
| __BUILD_VMX_MSR_BITMAP_HELPER(ret_type, action, bitop, write, 0x800) |
| |
| BUILD_VMX_MSR_BITMAP_HELPERS(bool, test, test) |
| BUILD_VMX_MSR_BITMAP_HELPERS(void, clear, __clear) |
| BUILD_VMX_MSR_BITMAP_HELPERS(void, set, __set) |
| |
| static inline u8 vmx_get_rvi(void) |
| { |
| return vmcs_read16(GUEST_INTR_STATUS) & 0xff; |
| } |
| |
| #define BUILD_CONTROLS_SHADOW(lname, uname) \ |
| static inline void lname##_controls_set(struct vcpu_vmx *vmx, u32 val) \ |
| { \ |
| if (vmx->loaded_vmcs->controls_shadow.lname != val) { \ |
| vmcs_write32(uname, val); \ |
| vmx->loaded_vmcs->controls_shadow.lname = val; \ |
| } \ |
| } \ |
| static inline u32 __##lname##_controls_get(struct loaded_vmcs *vmcs) \ |
| { \ |
| return vmcs->controls_shadow.lname; \ |
| } \ |
| static inline u32 lname##_controls_get(struct vcpu_vmx *vmx) \ |
| { \ |
| return __##lname##_controls_get(vmx->loaded_vmcs); \ |
| } \ |
| static inline void lname##_controls_setbit(struct vcpu_vmx *vmx, u32 val) \ |
| { \ |
| lname##_controls_set(vmx, lname##_controls_get(vmx) | val); \ |
| } \ |
| static inline void lname##_controls_clearbit(struct vcpu_vmx *vmx, u32 val) \ |
| { \ |
| lname##_controls_set(vmx, lname##_controls_get(vmx) & ~val); \ |
| } |
| BUILD_CONTROLS_SHADOW(vm_entry, VM_ENTRY_CONTROLS) |
| BUILD_CONTROLS_SHADOW(vm_exit, VM_EXIT_CONTROLS) |
| BUILD_CONTROLS_SHADOW(pin, PIN_BASED_VM_EXEC_CONTROL) |
| BUILD_CONTROLS_SHADOW(exec, CPU_BASED_VM_EXEC_CONTROL) |
| BUILD_CONTROLS_SHADOW(secondary_exec, SECONDARY_VM_EXEC_CONTROL) |
| |
| /* |
| * VMX_REGS_LAZY_LOAD_SET - The set of registers that will be updated in the |
| * cache on demand. Other registers not listed here are synced to |
| * the cache immediately after VM-Exit. |
| */ |
| #define VMX_REGS_LAZY_LOAD_SET ((1 << VCPU_REGS_RIP) | \ |
| (1 << VCPU_REGS_RSP) | \ |
| (1 << VCPU_EXREG_RFLAGS) | \ |
| (1 << VCPU_EXREG_PDPTR) | \ |
| (1 << VCPU_EXREG_SEGMENTS) | \ |
| (1 << VCPU_EXREG_CR0) | \ |
| (1 << VCPU_EXREG_CR3) | \ |
| (1 << VCPU_EXREG_CR4) | \ |
| (1 << VCPU_EXREG_EXIT_INFO_1) | \ |
| (1 << VCPU_EXREG_EXIT_INFO_2)) |
| |
| static inline struct kvm_vmx *to_kvm_vmx(struct kvm *kvm) |
| { |
| return container_of(kvm, struct kvm_vmx, kvm); |
| } |
| |
| static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu) |
| { |
| return container_of(vcpu, struct vcpu_vmx, vcpu); |
| } |
| |
| static inline unsigned long vmx_get_exit_qual(struct kvm_vcpu *vcpu) |
| { |
| struct vcpu_vmx *vmx = to_vmx(vcpu); |
| |
| if (!kvm_register_is_available(vcpu, VCPU_EXREG_EXIT_INFO_1)) { |
| kvm_register_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_1); |
| vmx->exit_qualification = vmcs_readl(EXIT_QUALIFICATION); |
| } |
| return vmx->exit_qualification; |
| } |
| |
| static inline u32 vmx_get_intr_info(struct kvm_vcpu *vcpu) |
| { |
| struct vcpu_vmx *vmx = to_vmx(vcpu); |
| |
| if (!kvm_register_is_available(vcpu, VCPU_EXREG_EXIT_INFO_2)) { |
| kvm_register_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_2); |
| vmx->exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO); |
| } |
| return vmx->exit_intr_info; |
| } |
| |
| struct vmcs *alloc_vmcs_cpu(bool shadow, int cpu, gfp_t flags); |
| void free_vmcs(struct vmcs *vmcs); |
| int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs); |
| void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs); |
| void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs); |
| |
| static inline struct vmcs *alloc_vmcs(bool shadow) |
| { |
| return alloc_vmcs_cpu(shadow, raw_smp_processor_id(), |
| GFP_KERNEL_ACCOUNT); |
| } |
| |
| static inline bool vmx_has_waitpkg(struct vcpu_vmx *vmx) |
| { |
| return secondary_exec_controls_get(vmx) & |
| SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE; |
| } |
| |
| static inline bool vmx_need_pf_intercept(struct kvm_vcpu *vcpu) |
| { |
| if (!enable_ept) |
| return true; |
| |
| return allow_smaller_maxphyaddr && cpuid_maxphyaddr(vcpu) < boot_cpu_data.x86_phys_bits; |
| } |
| |
| static inline bool is_unrestricted_guest(struct kvm_vcpu *vcpu) |
| { |
| return enable_unrestricted_guest && (!is_guest_mode(vcpu) || |
| (secondary_exec_controls_get(to_vmx(vcpu)) & |
| SECONDARY_EXEC_UNRESTRICTED_GUEST)); |
| } |
| |
| bool __vmx_guest_state_valid(struct kvm_vcpu *vcpu); |
| static inline bool vmx_guest_state_valid(struct kvm_vcpu *vcpu) |
| { |
| return is_unrestricted_guest(vcpu) || __vmx_guest_state_valid(vcpu); |
| } |
| |
| void dump_vmcs(struct kvm_vcpu *vcpu); |
| |
| static inline int vmx_get_instr_info_reg2(u32 vmx_instr_info) |
| { |
| return (vmx_instr_info >> 28) & 0xf; |
| } |
| |
| #endif /* __KVM_X86_VMX_H */ |