blob: 5e3d81a0af1b98bc8d23982217e1d5064de4aaf0 [file] [log] [blame]
Daniel Axtensb01df1c2017-03-15 23:37:36 +11001/*
2 * Calculate a CRC T10DIF with vpmsum acceleration
3 *
4 * Constants generated by crc32-vpmsum, available at
5 * https://github.com/antonblanchard/crc32-vpmsum
6 *
7 * crc32-vpmsum is
8 * Copyright (C) 2015 Anton Blanchard <anton@au.ibm.com>, IBM
9 * and is available under the GPL v2 or later.
10 *
11 * This program is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU General Public License
13 * as published by the Free Software Foundation; either version
14 * 2 of the License, or (at your option) any later version.
15 */
16 .section .rodata
17.balign 16
18
19.byteswap_constant:
20 /* byte reverse permute constant */
21 .octa 0x0F0E0D0C0B0A09080706050403020100
22
23.constants:
24
25 /* Reduce 262144 kbits to 1024 bits */
26 /* x^261184 mod p(x), x^261120 mod p(x) */
27 .octa 0x0000000056d300000000000052550000
28
29 /* x^260160 mod p(x), x^260096 mod p(x) */
30 .octa 0x00000000ee67000000000000a1e40000
31
32 /* x^259136 mod p(x), x^259072 mod p(x) */
33 .octa 0x0000000060830000000000004ad10000
34
35 /* x^258112 mod p(x), x^258048 mod p(x) */
36 .octa 0x000000008cfe0000000000009ab40000
37
38 /* x^257088 mod p(x), x^257024 mod p(x) */
39 .octa 0x000000003e93000000000000fdb50000
40
41 /* x^256064 mod p(x), x^256000 mod p(x) */
42 .octa 0x000000003c2000000000000045480000
43
44 /* x^255040 mod p(x), x^254976 mod p(x) */
45 .octa 0x00000000b1fc0000000000008d690000
46
47 /* x^254016 mod p(x), x^253952 mod p(x) */
48 .octa 0x00000000f82b00000000000024ad0000
49
50 /* x^252992 mod p(x), x^252928 mod p(x) */
51 .octa 0x0000000044420000000000009f1a0000
52
53 /* x^251968 mod p(x), x^251904 mod p(x) */
54 .octa 0x00000000e88c00000000000066ec0000
55
56 /* x^250944 mod p(x), x^250880 mod p(x) */
57 .octa 0x00000000385c000000000000c87d0000
58
59 /* x^249920 mod p(x), x^249856 mod p(x) */
60 .octa 0x000000003227000000000000c8ff0000
61
62 /* x^248896 mod p(x), x^248832 mod p(x) */
63 .octa 0x00000000a9a900000000000033440000
64
65 /* x^247872 mod p(x), x^247808 mod p(x) */
66 .octa 0x00000000abaa00000000000066eb0000
67
68 /* x^246848 mod p(x), x^246784 mod p(x) */
69 .octa 0x000000001ac3000000000000c4ef0000
70
71 /* x^245824 mod p(x), x^245760 mod p(x) */
72 .octa 0x0000000063f000000000000056f30000
73
74 /* x^244800 mod p(x), x^244736 mod p(x) */
75 .octa 0x0000000032cc00000000000002050000
76
77 /* x^243776 mod p(x), x^243712 mod p(x) */
78 .octa 0x00000000f8b5000000000000568e0000
79
80 /* x^242752 mod p(x), x^242688 mod p(x) */
81 .octa 0x000000008db100000000000064290000
82
83 /* x^241728 mod p(x), x^241664 mod p(x) */
84 .octa 0x0000000059ca0000000000006b660000
85
86 /* x^240704 mod p(x), x^240640 mod p(x) */
87 .octa 0x000000005f5c00000000000018f80000
88
89 /* x^239680 mod p(x), x^239616 mod p(x) */
90 .octa 0x0000000061af000000000000b6090000
91
92 /* x^238656 mod p(x), x^238592 mod p(x) */
93 .octa 0x00000000e29e000000000000099a0000
94
95 /* x^237632 mod p(x), x^237568 mod p(x) */
96 .octa 0x000000000975000000000000a8360000
97
98 /* x^236608 mod p(x), x^236544 mod p(x) */
99 .octa 0x0000000043900000000000004f570000
100
101 /* x^235584 mod p(x), x^235520 mod p(x) */
102 .octa 0x00000000f9cd000000000000134c0000
103
104 /* x^234560 mod p(x), x^234496 mod p(x) */
105 .octa 0x000000007c29000000000000ec380000
106
107 /* x^233536 mod p(x), x^233472 mod p(x) */
108 .octa 0x000000004c6a000000000000b0d10000
109
110 /* x^232512 mod p(x), x^232448 mod p(x) */
111 .octa 0x00000000e7290000000000007d3e0000
112
113 /* x^231488 mod p(x), x^231424 mod p(x) */
114 .octa 0x00000000f1ab000000000000f0b20000
115
116 /* x^230464 mod p(x), x^230400 mod p(x) */
117 .octa 0x0000000039db0000000000009c270000
118
119 /* x^229440 mod p(x), x^229376 mod p(x) */
120 .octa 0x000000005e2800000000000092890000
121
122 /* x^228416 mod p(x), x^228352 mod p(x) */
123 .octa 0x00000000d44e000000000000d5ee0000
124
125 /* x^227392 mod p(x), x^227328 mod p(x) */
126 .octa 0x00000000cd0a00000000000041f50000
127
128 /* x^226368 mod p(x), x^226304 mod p(x) */
129 .octa 0x00000000c5b400000000000010520000
130
131 /* x^225344 mod p(x), x^225280 mod p(x) */
132 .octa 0x00000000fd2100000000000042170000
133
134 /* x^224320 mod p(x), x^224256 mod p(x) */
135 .octa 0x000000002f2500000000000095c20000
136
137 /* x^223296 mod p(x), x^223232 mod p(x) */
138 .octa 0x000000001b0100000000000001ce0000
139
140 /* x^222272 mod p(x), x^222208 mod p(x) */
141 .octa 0x000000000d430000000000002aca0000
142
143 /* x^221248 mod p(x), x^221184 mod p(x) */
144 .octa 0x0000000030a6000000000000385e0000
145
146 /* x^220224 mod p(x), x^220160 mod p(x) */
147 .octa 0x00000000e37b0000000000006f7a0000
148
149 /* x^219200 mod p(x), x^219136 mod p(x) */
150 .octa 0x00000000873600000000000024320000
151
152 /* x^218176 mod p(x), x^218112 mod p(x) */
153 .octa 0x00000000e9fb000000000000bd9c0000
154
155 /* x^217152 mod p(x), x^217088 mod p(x) */
156 .octa 0x000000003b9500000000000054bc0000
157
158 /* x^216128 mod p(x), x^216064 mod p(x) */
159 .octa 0x00000000133e000000000000a4660000
160
161 /* x^215104 mod p(x), x^215040 mod p(x) */
162 .octa 0x00000000784500000000000079930000
163
164 /* x^214080 mod p(x), x^214016 mod p(x) */
165 .octa 0x00000000b9800000000000001bb80000
166
167 /* x^213056 mod p(x), x^212992 mod p(x) */
168 .octa 0x00000000687600000000000024400000
169
170 /* x^212032 mod p(x), x^211968 mod p(x) */
171 .octa 0x00000000aff300000000000029e10000
172
173 /* x^211008 mod p(x), x^210944 mod p(x) */
174 .octa 0x0000000024b50000000000005ded0000
175
176 /* x^209984 mod p(x), x^209920 mod p(x) */
177 .octa 0x0000000017e8000000000000b12e0000
178
179 /* x^208960 mod p(x), x^208896 mod p(x) */
180 .octa 0x00000000128400000000000026d20000
181
182 /* x^207936 mod p(x), x^207872 mod p(x) */
183 .octa 0x000000002115000000000000a32a0000
184
185 /* x^206912 mod p(x), x^206848 mod p(x) */
186 .octa 0x000000009595000000000000a1210000
187
188 /* x^205888 mod p(x), x^205824 mod p(x) */
189 .octa 0x00000000281e000000000000ee8b0000
190
191 /* x^204864 mod p(x), x^204800 mod p(x) */
192 .octa 0x0000000006010000000000003d0d0000
193
194 /* x^203840 mod p(x), x^203776 mod p(x) */
195 .octa 0x00000000e2b600000000000034e90000
196
197 /* x^202816 mod p(x), x^202752 mod p(x) */
198 .octa 0x000000001bd40000000000004cdb0000
199
200 /* x^201792 mod p(x), x^201728 mod p(x) */
201 .octa 0x00000000df2800000000000030e90000
202
203 /* x^200768 mod p(x), x^200704 mod p(x) */
204 .octa 0x0000000049c200000000000042590000
205
206 /* x^199744 mod p(x), x^199680 mod p(x) */
207 .octa 0x000000009b97000000000000df950000
208
209 /* x^198720 mod p(x), x^198656 mod p(x) */
210 .octa 0x000000006184000000000000da7b0000
211
212 /* x^197696 mod p(x), x^197632 mod p(x) */
213 .octa 0x00000000461700000000000012510000
214
215 /* x^196672 mod p(x), x^196608 mod p(x) */
216 .octa 0x000000009b40000000000000f37e0000
217
218 /* x^195648 mod p(x), x^195584 mod p(x) */
219 .octa 0x00000000eeb2000000000000ecf10000
220
221 /* x^194624 mod p(x), x^194560 mod p(x) */
222 .octa 0x00000000b2e800000000000050f20000
223
224 /* x^193600 mod p(x), x^193536 mod p(x) */
225 .octa 0x00000000f59a000000000000e0b30000
226
227 /* x^192576 mod p(x), x^192512 mod p(x) */
228 .octa 0x00000000467f0000000000004d5a0000
229
230 /* x^191552 mod p(x), x^191488 mod p(x) */
231 .octa 0x00000000da92000000000000bb010000
232
233 /* x^190528 mod p(x), x^190464 mod p(x) */
234 .octa 0x000000001e1000000000000022a40000
235
236 /* x^189504 mod p(x), x^189440 mod p(x) */
237 .octa 0x0000000058fe000000000000836f0000
238
239 /* x^188480 mod p(x), x^188416 mod p(x) */
240 .octa 0x00000000b9ce000000000000d78d0000
241
242 /* x^187456 mod p(x), x^187392 mod p(x) */
243 .octa 0x0000000022210000000000004f8d0000
244
245 /* x^186432 mod p(x), x^186368 mod p(x) */
246 .octa 0x00000000744600000000000033760000
247
248 /* x^185408 mod p(x), x^185344 mod p(x) */
249 .octa 0x000000001c2e000000000000a1e50000
250
251 /* x^184384 mod p(x), x^184320 mod p(x) */
252 .octa 0x00000000dcc8000000000000a1a40000
253
254 /* x^183360 mod p(x), x^183296 mod p(x) */
255 .octa 0x00000000910f00000000000019a20000
256
257 /* x^182336 mod p(x), x^182272 mod p(x) */
258 .octa 0x0000000055d5000000000000f6ae0000
259
260 /* x^181312 mod p(x), x^181248 mod p(x) */
261 .octa 0x00000000c8ba000000000000a7ac0000
262
263 /* x^180288 mod p(x), x^180224 mod p(x) */
264 .octa 0x0000000031f8000000000000eea20000
265
266 /* x^179264 mod p(x), x^179200 mod p(x) */
267 .octa 0x000000001966000000000000c4d90000
268
269 /* x^178240 mod p(x), x^178176 mod p(x) */
270 .octa 0x00000000b9810000000000002b470000
271
272 /* x^177216 mod p(x), x^177152 mod p(x) */
273 .octa 0x000000008303000000000000f7cf0000
274
275 /* x^176192 mod p(x), x^176128 mod p(x) */
276 .octa 0x000000002ce500000000000035b30000
277
278 /* x^175168 mod p(x), x^175104 mod p(x) */
279 .octa 0x000000002fae0000000000000c7c0000
280
281 /* x^174144 mod p(x), x^174080 mod p(x) */
282 .octa 0x00000000f50c0000000000009edf0000
283
284 /* x^173120 mod p(x), x^173056 mod p(x) */
285 .octa 0x00000000714f00000000000004cd0000
286
287 /* x^172096 mod p(x), x^172032 mod p(x) */
288 .octa 0x00000000c161000000000000541b0000
289
290 /* x^171072 mod p(x), x^171008 mod p(x) */
291 .octa 0x0000000021c8000000000000e2700000
292
293 /* x^170048 mod p(x), x^169984 mod p(x) */
294 .octa 0x00000000b93d00000000000009a60000
295
296 /* x^169024 mod p(x), x^168960 mod p(x) */
297 .octa 0x00000000fbcf000000000000761c0000
298
299 /* x^168000 mod p(x), x^167936 mod p(x) */
300 .octa 0x0000000026350000000000009db30000
301
302 /* x^166976 mod p(x), x^166912 mod p(x) */
303 .octa 0x00000000b64f0000000000003e9f0000
304
305 /* x^165952 mod p(x), x^165888 mod p(x) */
306 .octa 0x00000000bd0e00000000000078590000
307
308 /* x^164928 mod p(x), x^164864 mod p(x) */
309 .octa 0x00000000d9360000000000008bc80000
310
311 /* x^163904 mod p(x), x^163840 mod p(x) */
312 .octa 0x000000002f140000000000008c9f0000
313
314 /* x^162880 mod p(x), x^162816 mod p(x) */
315 .octa 0x000000006a270000000000006af70000
316
317 /* x^161856 mod p(x), x^161792 mod p(x) */
318 .octa 0x000000006685000000000000e5210000
319
320 /* x^160832 mod p(x), x^160768 mod p(x) */
321 .octa 0x0000000062da00000000000008290000
322
323 /* x^159808 mod p(x), x^159744 mod p(x) */
324 .octa 0x00000000bb4b000000000000e4d00000
325
326 /* x^158784 mod p(x), x^158720 mod p(x) */
327 .octa 0x00000000d2490000000000004ae10000
328
329 /* x^157760 mod p(x), x^157696 mod p(x) */
330 .octa 0x00000000c85b00000000000000e70000
331
332 /* x^156736 mod p(x), x^156672 mod p(x) */
333 .octa 0x00000000c37a00000000000015650000
334
335 /* x^155712 mod p(x), x^155648 mod p(x) */
336 .octa 0x0000000018530000000000001c2f0000
337
338 /* x^154688 mod p(x), x^154624 mod p(x) */
339 .octa 0x00000000b46600000000000037bd0000
340
341 /* x^153664 mod p(x), x^153600 mod p(x) */
342 .octa 0x00000000439b00000000000012190000
343
344 /* x^152640 mod p(x), x^152576 mod p(x) */
345 .octa 0x00000000b1260000000000005ece0000
346
347 /* x^151616 mod p(x), x^151552 mod p(x) */
348 .octa 0x00000000d8110000000000002a5e0000
349
350 /* x^150592 mod p(x), x^150528 mod p(x) */
351 .octa 0x00000000099f00000000000052330000
352
353 /* x^149568 mod p(x), x^149504 mod p(x) */
354 .octa 0x00000000f9f9000000000000f9120000
355
356 /* x^148544 mod p(x), x^148480 mod p(x) */
357 .octa 0x000000005cc00000000000000ddc0000
358
359 /* x^147520 mod p(x), x^147456 mod p(x) */
360 .octa 0x00000000343b00000000000012200000
361
362 /* x^146496 mod p(x), x^146432 mod p(x) */
363 .octa 0x000000009222000000000000d12b0000
364
365 /* x^145472 mod p(x), x^145408 mod p(x) */
366 .octa 0x00000000d781000000000000eb2d0000
367
368 /* x^144448 mod p(x), x^144384 mod p(x) */
369 .octa 0x000000000bf400000000000058970000
370
371 /* x^143424 mod p(x), x^143360 mod p(x) */
372 .octa 0x00000000094200000000000013690000
373
374 /* x^142400 mod p(x), x^142336 mod p(x) */
375 .octa 0x00000000d55100000000000051950000
376
377 /* x^141376 mod p(x), x^141312 mod p(x) */
378 .octa 0x000000008f11000000000000954b0000
379
380 /* x^140352 mod p(x), x^140288 mod p(x) */
381 .octa 0x00000000140f000000000000b29e0000
382
383 /* x^139328 mod p(x), x^139264 mod p(x) */
384 .octa 0x00000000c6db000000000000db5d0000
385
386 /* x^138304 mod p(x), x^138240 mod p(x) */
387 .octa 0x00000000715b000000000000dfaf0000
388
389 /* x^137280 mod p(x), x^137216 mod p(x) */
390 .octa 0x000000000dea000000000000e3b60000
391
392 /* x^136256 mod p(x), x^136192 mod p(x) */
393 .octa 0x000000006f94000000000000ddaf0000
394
395 /* x^135232 mod p(x), x^135168 mod p(x) */
396 .octa 0x0000000024e1000000000000e4f70000
397
398 /* x^134208 mod p(x), x^134144 mod p(x) */
399 .octa 0x000000008810000000000000aa110000
400
401 /* x^133184 mod p(x), x^133120 mod p(x) */
402 .octa 0x0000000030c2000000000000a8e60000
403
404 /* x^132160 mod p(x), x^132096 mod p(x) */
405 .octa 0x00000000e6d0000000000000ccf30000
406
407 /* x^131136 mod p(x), x^131072 mod p(x) */
408 .octa 0x000000004da000000000000079bf0000
409
410 /* x^130112 mod p(x), x^130048 mod p(x) */
411 .octa 0x000000007759000000000000b3a30000
412
413 /* x^129088 mod p(x), x^129024 mod p(x) */
414 .octa 0x00000000597400000000000028790000
415
416 /* x^128064 mod p(x), x^128000 mod p(x) */
417 .octa 0x000000007acd000000000000b5820000
418
419 /* x^127040 mod p(x), x^126976 mod p(x) */
420 .octa 0x00000000e6e400000000000026ad0000
421
422 /* x^126016 mod p(x), x^125952 mod p(x) */
423 .octa 0x000000006d49000000000000985b0000
424
425 /* x^124992 mod p(x), x^124928 mod p(x) */
426 .octa 0x000000000f0800000000000011520000
427
428 /* x^123968 mod p(x), x^123904 mod p(x) */
429 .octa 0x000000002c7f000000000000846c0000
430
431 /* x^122944 mod p(x), x^122880 mod p(x) */
432 .octa 0x000000005ce7000000000000ae1d0000
433
434 /* x^121920 mod p(x), x^121856 mod p(x) */
435 .octa 0x00000000d4cb000000000000e21d0000
436
437 /* x^120896 mod p(x), x^120832 mod p(x) */
438 .octa 0x000000003a2300000000000019bb0000
439
440 /* x^119872 mod p(x), x^119808 mod p(x) */
441 .octa 0x000000000e1700000000000095290000
442
443 /* x^118848 mod p(x), x^118784 mod p(x) */
444 .octa 0x000000006e6400000000000050d20000
445
446 /* x^117824 mod p(x), x^117760 mod p(x) */
447 .octa 0x000000008d5c0000000000000cd10000
448
449 /* x^116800 mod p(x), x^116736 mod p(x) */
450 .octa 0x00000000ef310000000000007b570000
451
452 /* x^115776 mod p(x), x^115712 mod p(x) */
453 .octa 0x00000000645d00000000000053d60000
454
455 /* x^114752 mod p(x), x^114688 mod p(x) */
456 .octa 0x0000000018fc00000000000077510000
457
458 /* x^113728 mod p(x), x^113664 mod p(x) */
459 .octa 0x000000000cb3000000000000a7b70000
460
461 /* x^112704 mod p(x), x^112640 mod p(x) */
462 .octa 0x00000000991b000000000000d0780000
463
464 /* x^111680 mod p(x), x^111616 mod p(x) */
465 .octa 0x00000000845a000000000000be3c0000
466
467 /* x^110656 mod p(x), x^110592 mod p(x) */
468 .octa 0x00000000d3a9000000000000df020000
469
470 /* x^109632 mod p(x), x^109568 mod p(x) */
471 .octa 0x0000000017d7000000000000063e0000
472
473 /* x^108608 mod p(x), x^108544 mod p(x) */
474 .octa 0x000000007a860000000000008ab40000
475
476 /* x^107584 mod p(x), x^107520 mod p(x) */
477 .octa 0x00000000fd7c000000000000c7bd0000
478
479 /* x^106560 mod p(x), x^106496 mod p(x) */
480 .octa 0x00000000a56b000000000000efd60000
481
482 /* x^105536 mod p(x), x^105472 mod p(x) */
483 .octa 0x0000000010e400000000000071380000
484
485 /* x^104512 mod p(x), x^104448 mod p(x) */
486 .octa 0x00000000994500000000000004d30000
487
488 /* x^103488 mod p(x), x^103424 mod p(x) */
489 .octa 0x00000000b83c0000000000003b0e0000
490
491 /* x^102464 mod p(x), x^102400 mod p(x) */
492 .octa 0x00000000d6c10000000000008b020000
493
494 /* x^101440 mod p(x), x^101376 mod p(x) */
495 .octa 0x000000009efc000000000000da940000
496
497 /* x^100416 mod p(x), x^100352 mod p(x) */
498 .octa 0x000000005e87000000000000f9f70000
499
500 /* x^99392 mod p(x), x^99328 mod p(x) */
501 .octa 0x000000006c9b00000000000045e40000
502
503 /* x^98368 mod p(x), x^98304 mod p(x) */
504 .octa 0x00000000178a00000000000083940000
505
506 /* x^97344 mod p(x), x^97280 mod p(x) */
507 .octa 0x00000000f0c8000000000000f0a00000
508
509 /* x^96320 mod p(x), x^96256 mod p(x) */
510 .octa 0x00000000f699000000000000b74b0000
511
512 /* x^95296 mod p(x), x^95232 mod p(x) */
513 .octa 0x00000000316d000000000000c1cf0000
514
515 /* x^94272 mod p(x), x^94208 mod p(x) */
516 .octa 0x00000000987e00000000000072680000
517
518 /* x^93248 mod p(x), x^93184 mod p(x) */
519 .octa 0x00000000acff000000000000e0ab0000
520
521 /* x^92224 mod p(x), x^92160 mod p(x) */
522 .octa 0x00000000a1f6000000000000c5a80000
523
524 /* x^91200 mod p(x), x^91136 mod p(x) */
525 .octa 0x0000000061bd000000000000cf690000
526
527 /* x^90176 mod p(x), x^90112 mod p(x) */
528 .octa 0x00000000c9f2000000000000cbcc0000
529
530 /* x^89152 mod p(x), x^89088 mod p(x) */
531 .octa 0x000000005a33000000000000de050000
532
533 /* x^88128 mod p(x), x^88064 mod p(x) */
534 .octa 0x00000000e416000000000000ccd70000
535
536 /* x^87104 mod p(x), x^87040 mod p(x) */
537 .octa 0x0000000058930000000000002f670000
538
539 /* x^86080 mod p(x), x^86016 mod p(x) */
540 .octa 0x00000000a9d3000000000000152f0000
541
542 /* x^85056 mod p(x), x^84992 mod p(x) */
543 .octa 0x00000000c114000000000000ecc20000
544
545 /* x^84032 mod p(x), x^83968 mod p(x) */
546 .octa 0x00000000b9270000000000007c890000
547
548 /* x^83008 mod p(x), x^82944 mod p(x) */
549 .octa 0x000000002e6000000000000006ee0000
550
551 /* x^81984 mod p(x), x^81920 mod p(x) */
552 .octa 0x00000000dfc600000000000009100000
553
554 /* x^80960 mod p(x), x^80896 mod p(x) */
555 .octa 0x000000004911000000000000ad4e0000
556
557 /* x^79936 mod p(x), x^79872 mod p(x) */
558 .octa 0x00000000ae1b000000000000b04d0000
559
560 /* x^78912 mod p(x), x^78848 mod p(x) */
561 .octa 0x0000000005fa000000000000e9900000
562
563 /* x^77888 mod p(x), x^77824 mod p(x) */
564 .octa 0x0000000004a1000000000000cc6f0000
565
566 /* x^76864 mod p(x), x^76800 mod p(x) */
567 .octa 0x00000000af73000000000000ed110000
568
569 /* x^75840 mod p(x), x^75776 mod p(x) */
570 .octa 0x0000000082530000000000008f7e0000
571
572 /* x^74816 mod p(x), x^74752 mod p(x) */
573 .octa 0x00000000cfdc000000000000594f0000
574
575 /* x^73792 mod p(x), x^73728 mod p(x) */
576 .octa 0x00000000a6b6000000000000a8750000
577
578 /* x^72768 mod p(x), x^72704 mod p(x) */
579 .octa 0x00000000fd76000000000000aa0c0000
580
581 /* x^71744 mod p(x), x^71680 mod p(x) */
582 .octa 0x0000000006f500000000000071db0000
583
584 /* x^70720 mod p(x), x^70656 mod p(x) */
585 .octa 0x0000000037ca000000000000ab0c0000
586
587 /* x^69696 mod p(x), x^69632 mod p(x) */
588 .octa 0x00000000d7ab000000000000b7a00000
589
590 /* x^68672 mod p(x), x^68608 mod p(x) */
591 .octa 0x00000000440800000000000090d30000
592
593 /* x^67648 mod p(x), x^67584 mod p(x) */
594 .octa 0x00000000186100000000000054730000
595
596 /* x^66624 mod p(x), x^66560 mod p(x) */
597 .octa 0x000000007368000000000000a3a20000
598
599 /* x^65600 mod p(x), x^65536 mod p(x) */
600 .octa 0x0000000026d0000000000000f9040000
601
602 /* x^64576 mod p(x), x^64512 mod p(x) */
603 .octa 0x00000000fe770000000000009c0a0000
604
605 /* x^63552 mod p(x), x^63488 mod p(x) */
606 .octa 0x000000002cba000000000000d1e70000
607
608 /* x^62528 mod p(x), x^62464 mod p(x) */
609 .octa 0x00000000f8bd0000000000005ac10000
610
611 /* x^61504 mod p(x), x^61440 mod p(x) */
612 .octa 0x000000007372000000000000d68d0000
613
614 /* x^60480 mod p(x), x^60416 mod p(x) */
615 .octa 0x00000000f37f00000000000089f60000
616
617 /* x^59456 mod p(x), x^59392 mod p(x) */
618 .octa 0x00000000078400000000000008a90000
619
620 /* x^58432 mod p(x), x^58368 mod p(x) */
621 .octa 0x00000000d3e400000000000042360000
622
623 /* x^57408 mod p(x), x^57344 mod p(x) */
624 .octa 0x00000000eba800000000000092d50000
625
626 /* x^56384 mod p(x), x^56320 mod p(x) */
627 .octa 0x00000000afbe000000000000b4d50000
628
629 /* x^55360 mod p(x), x^55296 mod p(x) */
630 .octa 0x00000000d8ca000000000000c9060000
631
632 /* x^54336 mod p(x), x^54272 mod p(x) */
633 .octa 0x00000000c2d00000000000008f4f0000
634
635 /* x^53312 mod p(x), x^53248 mod p(x) */
636 .octa 0x00000000373200000000000028690000
637
638 /* x^52288 mod p(x), x^52224 mod p(x) */
639 .octa 0x0000000046ae000000000000c3b30000
640
641 /* x^51264 mod p(x), x^51200 mod p(x) */
642 .octa 0x00000000b243000000000000f8700000
643
644 /* x^50240 mod p(x), x^50176 mod p(x) */
645 .octa 0x00000000f7f500000000000029eb0000
646
647 /* x^49216 mod p(x), x^49152 mod p(x) */
648 .octa 0x000000000c7e000000000000fe730000
649
650 /* x^48192 mod p(x), x^48128 mod p(x) */
651 .octa 0x00000000c38200000000000096000000
652
653 /* x^47168 mod p(x), x^47104 mod p(x) */
654 .octa 0x000000008956000000000000683c0000
655
656 /* x^46144 mod p(x), x^46080 mod p(x) */
657 .octa 0x00000000422d0000000000005f1e0000
658
659 /* x^45120 mod p(x), x^45056 mod p(x) */
660 .octa 0x00000000ac0f0000000000006f810000
661
662 /* x^44096 mod p(x), x^44032 mod p(x) */
663 .octa 0x00000000ce30000000000000031f0000
664
665 /* x^43072 mod p(x), x^43008 mod p(x) */
666 .octa 0x000000003d43000000000000455a0000
667
668 /* x^42048 mod p(x), x^41984 mod p(x) */
669 .octa 0x000000007ebe000000000000a6050000
670
671 /* x^41024 mod p(x), x^40960 mod p(x) */
672 .octa 0x00000000976e00000000000077eb0000
673
674 /* x^40000 mod p(x), x^39936 mod p(x) */
675 .octa 0x000000000872000000000000389c0000
676
677 /* x^38976 mod p(x), x^38912 mod p(x) */
678 .octa 0x000000008979000000000000c7b20000
679
680 /* x^37952 mod p(x), x^37888 mod p(x) */
681 .octa 0x000000005c1e0000000000001d870000
682
683 /* x^36928 mod p(x), x^36864 mod p(x) */
684 .octa 0x00000000aebb00000000000045810000
685
686 /* x^35904 mod p(x), x^35840 mod p(x) */
687 .octa 0x000000004f7e0000000000006d4a0000
688
689 /* x^34880 mod p(x), x^34816 mod p(x) */
690 .octa 0x00000000ea98000000000000b9200000
691
692 /* x^33856 mod p(x), x^33792 mod p(x) */
693 .octa 0x00000000f39600000000000022f20000
694
695 /* x^32832 mod p(x), x^32768 mod p(x) */
696 .octa 0x000000000bc500000000000041ca0000
697
698 /* x^31808 mod p(x), x^31744 mod p(x) */
699 .octa 0x00000000786400000000000078500000
700
701 /* x^30784 mod p(x), x^30720 mod p(x) */
702 .octa 0x00000000be970000000000009e7e0000
703
704 /* x^29760 mod p(x), x^29696 mod p(x) */
705 .octa 0x00000000dd6d000000000000a53c0000
706
707 /* x^28736 mod p(x), x^28672 mod p(x) */
708 .octa 0x000000004c3f00000000000039340000
709
710 /* x^27712 mod p(x), x^27648 mod p(x) */
711 .octa 0x0000000093a4000000000000b58e0000
712
713 /* x^26688 mod p(x), x^26624 mod p(x) */
714 .octa 0x0000000050fb00000000000062d40000
715
716 /* x^25664 mod p(x), x^25600 mod p(x) */
717 .octa 0x00000000f505000000000000a26f0000
718
719 /* x^24640 mod p(x), x^24576 mod p(x) */
720 .octa 0x0000000064f900000000000065e60000
721
722 /* x^23616 mod p(x), x^23552 mod p(x) */
723 .octa 0x00000000e8c2000000000000aad90000
724
725 /* x^22592 mod p(x), x^22528 mod p(x) */
726 .octa 0x00000000720b000000000000a3b00000
727
728 /* x^21568 mod p(x), x^21504 mod p(x) */
729 .octa 0x00000000e992000000000000d2680000
730
731 /* x^20544 mod p(x), x^20480 mod p(x) */
732 .octa 0x000000009132000000000000cf4c0000
733
734 /* x^19520 mod p(x), x^19456 mod p(x) */
735 .octa 0x00000000608a00000000000076610000
736
737 /* x^18496 mod p(x), x^18432 mod p(x) */
738 .octa 0x000000009948000000000000fb9f0000
739
740 /* x^17472 mod p(x), x^17408 mod p(x) */
741 .octa 0x00000000173000000000000003770000
742
743 /* x^16448 mod p(x), x^16384 mod p(x) */
744 .octa 0x000000006fe300000000000004880000
745
746 /* x^15424 mod p(x), x^15360 mod p(x) */
747 .octa 0x00000000e15300000000000056a70000
748
749 /* x^14400 mod p(x), x^14336 mod p(x) */
750 .octa 0x0000000092d60000000000009dfd0000
751
752 /* x^13376 mod p(x), x^13312 mod p(x) */
753 .octa 0x0000000002fd00000000000074c80000
754
755 /* x^12352 mod p(x), x^12288 mod p(x) */
756 .octa 0x00000000c78b000000000000a3ec0000
757
758 /* x^11328 mod p(x), x^11264 mod p(x) */
759 .octa 0x000000009262000000000000b3530000
760
761 /* x^10304 mod p(x), x^10240 mod p(x) */
762 .octa 0x0000000084f200000000000047bf0000
763
764 /* x^9280 mod p(x), x^9216 mod p(x) */
765 .octa 0x0000000067ee000000000000e97c0000
766
767 /* x^8256 mod p(x), x^8192 mod p(x) */
768 .octa 0x00000000535b00000000000091e10000
769
770 /* x^7232 mod p(x), x^7168 mod p(x) */
771 .octa 0x000000007ebb00000000000055060000
772
773 /* x^6208 mod p(x), x^6144 mod p(x) */
774 .octa 0x00000000c6a1000000000000fd360000
775
776 /* x^5184 mod p(x), x^5120 mod p(x) */
777 .octa 0x000000001be500000000000055860000
778
779 /* x^4160 mod p(x), x^4096 mod p(x) */
780 .octa 0x00000000ae0e0000000000005bd00000
781
782 /* x^3136 mod p(x), x^3072 mod p(x) */
783 .octa 0x0000000022040000000000008db20000
784
785 /* x^2112 mod p(x), x^2048 mod p(x) */
786 .octa 0x00000000c9eb000000000000efe20000
787
788 /* x^1088 mod p(x), x^1024 mod p(x) */
789 .octa 0x0000000039b400000000000051d10000
790
791.short_constants:
792
793 /* Reduce final 1024-2048 bits to 64 bits, shifting 32 bits to include the trailing 32 bits of zeros */
794 /* x^2048 mod p(x), x^2016 mod p(x), x^1984 mod p(x), x^1952 mod p(x) */
795 .octa 0xefe20000dccf00009440000033590000
796
797 /* x^1920 mod p(x), x^1888 mod p(x), x^1856 mod p(x), x^1824 mod p(x) */
798 .octa 0xee6300002f3f000062180000e0ed0000
799
800 /* x^1792 mod p(x), x^1760 mod p(x), x^1728 mod p(x), x^1696 mod p(x) */
801 .octa 0xcf5f000017ef0000ccbe000023d30000
802
803 /* x^1664 mod p(x), x^1632 mod p(x), x^1600 mod p(x), x^1568 mod p(x) */
804 .octa 0x6d0c0000a30e00000920000042630000
805
806 /* x^1536 mod p(x), x^1504 mod p(x), x^1472 mod p(x), x^1440 mod p(x) */
807 .octa 0x21d30000932b0000a7a00000efcc0000
808
809 /* x^1408 mod p(x), x^1376 mod p(x), x^1344 mod p(x), x^1312 mod p(x) */
810 .octa 0x10be00000b310000666f00000d1c0000
811
812 /* x^1280 mod p(x), x^1248 mod p(x), x^1216 mod p(x), x^1184 mod p(x) */
813 .octa 0x1f240000ce9e0000caad0000589e0000
814
815 /* x^1152 mod p(x), x^1120 mod p(x), x^1088 mod p(x), x^1056 mod p(x) */
816 .octa 0x29610000d02b000039b400007cf50000
817
818 /* x^1024 mod p(x), x^992 mod p(x), x^960 mod p(x), x^928 mod p(x) */
819 .octa 0x51d100009d9d00003c0e0000bfd60000
820
821 /* x^896 mod p(x), x^864 mod p(x), x^832 mod p(x), x^800 mod p(x) */
822 .octa 0xda390000ceae000013830000713c0000
823
824 /* x^768 mod p(x), x^736 mod p(x), x^704 mod p(x), x^672 mod p(x) */
825 .octa 0xb67800001e16000085c0000080a60000
826
827 /* x^640 mod p(x), x^608 mod p(x), x^576 mod p(x), x^544 mod p(x) */
828 .octa 0x0db40000f7f90000371d0000e6580000
829
830 /* x^512 mod p(x), x^480 mod p(x), x^448 mod p(x), x^416 mod p(x) */
831 .octa 0x87e70000044c0000aadb0000a4970000
832
833 /* x^384 mod p(x), x^352 mod p(x), x^320 mod p(x), x^288 mod p(x) */
834 .octa 0x1f990000ad180000d8b30000e7b50000
835
836 /* x^256 mod p(x), x^224 mod p(x), x^192 mod p(x), x^160 mod p(x) */
837 .octa 0xbe6c00006ee300004c1a000006df0000
838
839 /* x^128 mod p(x), x^96 mod p(x), x^64 mod p(x), x^32 mod p(x) */
840 .octa 0xfb0b00002d560000136800008bb70000
841
842
843.barrett_constants:
844 /* Barrett constant m - (4^32)/n */
845 .octa 0x000000000000000000000001f65a57f8 /* x^64 div p(x) */
846 /* Barrett constant n */
847 .octa 0x0000000000000000000000018bb70000
848
849#define CRC_FUNCTION_NAME __crct10dif_vpmsum
850#include "crc32-vpmsum_core.S"