Daniel Axtens | b01df1c | 2017-03-15 23:37:36 +1100 | [diff] [blame] | 1 | /* |
| 2 | * Calculate a CRC T10DIF with vpmsum acceleration |
| 3 | * |
| 4 | * Constants generated by crc32-vpmsum, available at |
| 5 | * https://github.com/antonblanchard/crc32-vpmsum |
| 6 | * |
| 7 | * crc32-vpmsum is |
| 8 | * Copyright (C) 2015 Anton Blanchard <anton@au.ibm.com>, IBM |
| 9 | * and is available under the GPL v2 or later. |
| 10 | * |
| 11 | * This program is free software; you can redistribute it and/or |
| 12 | * modify it under the terms of the GNU General Public License |
| 13 | * as published by the Free Software Foundation; either version |
| 14 | * 2 of the License, or (at your option) any later version. |
| 15 | */ |
| 16 | .section .rodata |
| 17 | .balign 16 |
| 18 | |
| 19 | .byteswap_constant: |
| 20 | /* byte reverse permute constant */ |
| 21 | .octa 0x0F0E0D0C0B0A09080706050403020100 |
| 22 | |
| 23 | .constants: |
| 24 | |
| 25 | /* Reduce 262144 kbits to 1024 bits */ |
| 26 | /* x^261184 mod p(x), x^261120 mod p(x) */ |
| 27 | .octa 0x0000000056d300000000000052550000 |
| 28 | |
| 29 | /* x^260160 mod p(x), x^260096 mod p(x) */ |
| 30 | .octa 0x00000000ee67000000000000a1e40000 |
| 31 | |
| 32 | /* x^259136 mod p(x), x^259072 mod p(x) */ |
| 33 | .octa 0x0000000060830000000000004ad10000 |
| 34 | |
| 35 | /* x^258112 mod p(x), x^258048 mod p(x) */ |
| 36 | .octa 0x000000008cfe0000000000009ab40000 |
| 37 | |
| 38 | /* x^257088 mod p(x), x^257024 mod p(x) */ |
| 39 | .octa 0x000000003e93000000000000fdb50000 |
| 40 | |
| 41 | /* x^256064 mod p(x), x^256000 mod p(x) */ |
| 42 | .octa 0x000000003c2000000000000045480000 |
| 43 | |
| 44 | /* x^255040 mod p(x), x^254976 mod p(x) */ |
| 45 | .octa 0x00000000b1fc0000000000008d690000 |
| 46 | |
| 47 | /* x^254016 mod p(x), x^253952 mod p(x) */ |
| 48 | .octa 0x00000000f82b00000000000024ad0000 |
| 49 | |
| 50 | /* x^252992 mod p(x), x^252928 mod p(x) */ |
| 51 | .octa 0x0000000044420000000000009f1a0000 |
| 52 | |
| 53 | /* x^251968 mod p(x), x^251904 mod p(x) */ |
| 54 | .octa 0x00000000e88c00000000000066ec0000 |
| 55 | |
| 56 | /* x^250944 mod p(x), x^250880 mod p(x) */ |
| 57 | .octa 0x00000000385c000000000000c87d0000 |
| 58 | |
| 59 | /* x^249920 mod p(x), x^249856 mod p(x) */ |
| 60 | .octa 0x000000003227000000000000c8ff0000 |
| 61 | |
| 62 | /* x^248896 mod p(x), x^248832 mod p(x) */ |
| 63 | .octa 0x00000000a9a900000000000033440000 |
| 64 | |
| 65 | /* x^247872 mod p(x), x^247808 mod p(x) */ |
| 66 | .octa 0x00000000abaa00000000000066eb0000 |
| 67 | |
| 68 | /* x^246848 mod p(x), x^246784 mod p(x) */ |
| 69 | .octa 0x000000001ac3000000000000c4ef0000 |
| 70 | |
| 71 | /* x^245824 mod p(x), x^245760 mod p(x) */ |
| 72 | .octa 0x0000000063f000000000000056f30000 |
| 73 | |
| 74 | /* x^244800 mod p(x), x^244736 mod p(x) */ |
| 75 | .octa 0x0000000032cc00000000000002050000 |
| 76 | |
| 77 | /* x^243776 mod p(x), x^243712 mod p(x) */ |
| 78 | .octa 0x00000000f8b5000000000000568e0000 |
| 79 | |
| 80 | /* x^242752 mod p(x), x^242688 mod p(x) */ |
| 81 | .octa 0x000000008db100000000000064290000 |
| 82 | |
| 83 | /* x^241728 mod p(x), x^241664 mod p(x) */ |
| 84 | .octa 0x0000000059ca0000000000006b660000 |
| 85 | |
| 86 | /* x^240704 mod p(x), x^240640 mod p(x) */ |
| 87 | .octa 0x000000005f5c00000000000018f80000 |
| 88 | |
| 89 | /* x^239680 mod p(x), x^239616 mod p(x) */ |
| 90 | .octa 0x0000000061af000000000000b6090000 |
| 91 | |
| 92 | /* x^238656 mod p(x), x^238592 mod p(x) */ |
| 93 | .octa 0x00000000e29e000000000000099a0000 |
| 94 | |
| 95 | /* x^237632 mod p(x), x^237568 mod p(x) */ |
| 96 | .octa 0x000000000975000000000000a8360000 |
| 97 | |
| 98 | /* x^236608 mod p(x), x^236544 mod p(x) */ |
| 99 | .octa 0x0000000043900000000000004f570000 |
| 100 | |
| 101 | /* x^235584 mod p(x), x^235520 mod p(x) */ |
| 102 | .octa 0x00000000f9cd000000000000134c0000 |
| 103 | |
| 104 | /* x^234560 mod p(x), x^234496 mod p(x) */ |
| 105 | .octa 0x000000007c29000000000000ec380000 |
| 106 | |
| 107 | /* x^233536 mod p(x), x^233472 mod p(x) */ |
| 108 | .octa 0x000000004c6a000000000000b0d10000 |
| 109 | |
| 110 | /* x^232512 mod p(x), x^232448 mod p(x) */ |
| 111 | .octa 0x00000000e7290000000000007d3e0000 |
| 112 | |
| 113 | /* x^231488 mod p(x), x^231424 mod p(x) */ |
| 114 | .octa 0x00000000f1ab000000000000f0b20000 |
| 115 | |
| 116 | /* x^230464 mod p(x), x^230400 mod p(x) */ |
| 117 | .octa 0x0000000039db0000000000009c270000 |
| 118 | |
| 119 | /* x^229440 mod p(x), x^229376 mod p(x) */ |
| 120 | .octa 0x000000005e2800000000000092890000 |
| 121 | |
| 122 | /* x^228416 mod p(x), x^228352 mod p(x) */ |
| 123 | .octa 0x00000000d44e000000000000d5ee0000 |
| 124 | |
| 125 | /* x^227392 mod p(x), x^227328 mod p(x) */ |
| 126 | .octa 0x00000000cd0a00000000000041f50000 |
| 127 | |
| 128 | /* x^226368 mod p(x), x^226304 mod p(x) */ |
| 129 | .octa 0x00000000c5b400000000000010520000 |
| 130 | |
| 131 | /* x^225344 mod p(x), x^225280 mod p(x) */ |
| 132 | .octa 0x00000000fd2100000000000042170000 |
| 133 | |
| 134 | /* x^224320 mod p(x), x^224256 mod p(x) */ |
| 135 | .octa 0x000000002f2500000000000095c20000 |
| 136 | |
| 137 | /* x^223296 mod p(x), x^223232 mod p(x) */ |
| 138 | .octa 0x000000001b0100000000000001ce0000 |
| 139 | |
| 140 | /* x^222272 mod p(x), x^222208 mod p(x) */ |
| 141 | .octa 0x000000000d430000000000002aca0000 |
| 142 | |
| 143 | /* x^221248 mod p(x), x^221184 mod p(x) */ |
| 144 | .octa 0x0000000030a6000000000000385e0000 |
| 145 | |
| 146 | /* x^220224 mod p(x), x^220160 mod p(x) */ |
| 147 | .octa 0x00000000e37b0000000000006f7a0000 |
| 148 | |
| 149 | /* x^219200 mod p(x), x^219136 mod p(x) */ |
| 150 | .octa 0x00000000873600000000000024320000 |
| 151 | |
| 152 | /* x^218176 mod p(x), x^218112 mod p(x) */ |
| 153 | .octa 0x00000000e9fb000000000000bd9c0000 |
| 154 | |
| 155 | /* x^217152 mod p(x), x^217088 mod p(x) */ |
| 156 | .octa 0x000000003b9500000000000054bc0000 |
| 157 | |
| 158 | /* x^216128 mod p(x), x^216064 mod p(x) */ |
| 159 | .octa 0x00000000133e000000000000a4660000 |
| 160 | |
| 161 | /* x^215104 mod p(x), x^215040 mod p(x) */ |
| 162 | .octa 0x00000000784500000000000079930000 |
| 163 | |
| 164 | /* x^214080 mod p(x), x^214016 mod p(x) */ |
| 165 | .octa 0x00000000b9800000000000001bb80000 |
| 166 | |
| 167 | /* x^213056 mod p(x), x^212992 mod p(x) */ |
| 168 | .octa 0x00000000687600000000000024400000 |
| 169 | |
| 170 | /* x^212032 mod p(x), x^211968 mod p(x) */ |
| 171 | .octa 0x00000000aff300000000000029e10000 |
| 172 | |
| 173 | /* x^211008 mod p(x), x^210944 mod p(x) */ |
| 174 | .octa 0x0000000024b50000000000005ded0000 |
| 175 | |
| 176 | /* x^209984 mod p(x), x^209920 mod p(x) */ |
| 177 | .octa 0x0000000017e8000000000000b12e0000 |
| 178 | |
| 179 | /* x^208960 mod p(x), x^208896 mod p(x) */ |
| 180 | .octa 0x00000000128400000000000026d20000 |
| 181 | |
| 182 | /* x^207936 mod p(x), x^207872 mod p(x) */ |
| 183 | .octa 0x000000002115000000000000a32a0000 |
| 184 | |
| 185 | /* x^206912 mod p(x), x^206848 mod p(x) */ |
| 186 | .octa 0x000000009595000000000000a1210000 |
| 187 | |
| 188 | /* x^205888 mod p(x), x^205824 mod p(x) */ |
| 189 | .octa 0x00000000281e000000000000ee8b0000 |
| 190 | |
| 191 | /* x^204864 mod p(x), x^204800 mod p(x) */ |
| 192 | .octa 0x0000000006010000000000003d0d0000 |
| 193 | |
| 194 | /* x^203840 mod p(x), x^203776 mod p(x) */ |
| 195 | .octa 0x00000000e2b600000000000034e90000 |
| 196 | |
| 197 | /* x^202816 mod p(x), x^202752 mod p(x) */ |
| 198 | .octa 0x000000001bd40000000000004cdb0000 |
| 199 | |
| 200 | /* x^201792 mod p(x), x^201728 mod p(x) */ |
| 201 | .octa 0x00000000df2800000000000030e90000 |
| 202 | |
| 203 | /* x^200768 mod p(x), x^200704 mod p(x) */ |
| 204 | .octa 0x0000000049c200000000000042590000 |
| 205 | |
| 206 | /* x^199744 mod p(x), x^199680 mod p(x) */ |
| 207 | .octa 0x000000009b97000000000000df950000 |
| 208 | |
| 209 | /* x^198720 mod p(x), x^198656 mod p(x) */ |
| 210 | .octa 0x000000006184000000000000da7b0000 |
| 211 | |
| 212 | /* x^197696 mod p(x), x^197632 mod p(x) */ |
| 213 | .octa 0x00000000461700000000000012510000 |
| 214 | |
| 215 | /* x^196672 mod p(x), x^196608 mod p(x) */ |
| 216 | .octa 0x000000009b40000000000000f37e0000 |
| 217 | |
| 218 | /* x^195648 mod p(x), x^195584 mod p(x) */ |
| 219 | .octa 0x00000000eeb2000000000000ecf10000 |
| 220 | |
| 221 | /* x^194624 mod p(x), x^194560 mod p(x) */ |
| 222 | .octa 0x00000000b2e800000000000050f20000 |
| 223 | |
| 224 | /* x^193600 mod p(x), x^193536 mod p(x) */ |
| 225 | .octa 0x00000000f59a000000000000e0b30000 |
| 226 | |
| 227 | /* x^192576 mod p(x), x^192512 mod p(x) */ |
| 228 | .octa 0x00000000467f0000000000004d5a0000 |
| 229 | |
| 230 | /* x^191552 mod p(x), x^191488 mod p(x) */ |
| 231 | .octa 0x00000000da92000000000000bb010000 |
| 232 | |
| 233 | /* x^190528 mod p(x), x^190464 mod p(x) */ |
| 234 | .octa 0x000000001e1000000000000022a40000 |
| 235 | |
| 236 | /* x^189504 mod p(x), x^189440 mod p(x) */ |
| 237 | .octa 0x0000000058fe000000000000836f0000 |
| 238 | |
| 239 | /* x^188480 mod p(x), x^188416 mod p(x) */ |
| 240 | .octa 0x00000000b9ce000000000000d78d0000 |
| 241 | |
| 242 | /* x^187456 mod p(x), x^187392 mod p(x) */ |
| 243 | .octa 0x0000000022210000000000004f8d0000 |
| 244 | |
| 245 | /* x^186432 mod p(x), x^186368 mod p(x) */ |
| 246 | .octa 0x00000000744600000000000033760000 |
| 247 | |
| 248 | /* x^185408 mod p(x), x^185344 mod p(x) */ |
| 249 | .octa 0x000000001c2e000000000000a1e50000 |
| 250 | |
| 251 | /* x^184384 mod p(x), x^184320 mod p(x) */ |
| 252 | .octa 0x00000000dcc8000000000000a1a40000 |
| 253 | |
| 254 | /* x^183360 mod p(x), x^183296 mod p(x) */ |
| 255 | .octa 0x00000000910f00000000000019a20000 |
| 256 | |
| 257 | /* x^182336 mod p(x), x^182272 mod p(x) */ |
| 258 | .octa 0x0000000055d5000000000000f6ae0000 |
| 259 | |
| 260 | /* x^181312 mod p(x), x^181248 mod p(x) */ |
| 261 | .octa 0x00000000c8ba000000000000a7ac0000 |
| 262 | |
| 263 | /* x^180288 mod p(x), x^180224 mod p(x) */ |
| 264 | .octa 0x0000000031f8000000000000eea20000 |
| 265 | |
| 266 | /* x^179264 mod p(x), x^179200 mod p(x) */ |
| 267 | .octa 0x000000001966000000000000c4d90000 |
| 268 | |
| 269 | /* x^178240 mod p(x), x^178176 mod p(x) */ |
| 270 | .octa 0x00000000b9810000000000002b470000 |
| 271 | |
| 272 | /* x^177216 mod p(x), x^177152 mod p(x) */ |
| 273 | .octa 0x000000008303000000000000f7cf0000 |
| 274 | |
| 275 | /* x^176192 mod p(x), x^176128 mod p(x) */ |
| 276 | .octa 0x000000002ce500000000000035b30000 |
| 277 | |
| 278 | /* x^175168 mod p(x), x^175104 mod p(x) */ |
| 279 | .octa 0x000000002fae0000000000000c7c0000 |
| 280 | |
| 281 | /* x^174144 mod p(x), x^174080 mod p(x) */ |
| 282 | .octa 0x00000000f50c0000000000009edf0000 |
| 283 | |
| 284 | /* x^173120 mod p(x), x^173056 mod p(x) */ |
| 285 | .octa 0x00000000714f00000000000004cd0000 |
| 286 | |
| 287 | /* x^172096 mod p(x), x^172032 mod p(x) */ |
| 288 | .octa 0x00000000c161000000000000541b0000 |
| 289 | |
| 290 | /* x^171072 mod p(x), x^171008 mod p(x) */ |
| 291 | .octa 0x0000000021c8000000000000e2700000 |
| 292 | |
| 293 | /* x^170048 mod p(x), x^169984 mod p(x) */ |
| 294 | .octa 0x00000000b93d00000000000009a60000 |
| 295 | |
| 296 | /* x^169024 mod p(x), x^168960 mod p(x) */ |
| 297 | .octa 0x00000000fbcf000000000000761c0000 |
| 298 | |
| 299 | /* x^168000 mod p(x), x^167936 mod p(x) */ |
| 300 | .octa 0x0000000026350000000000009db30000 |
| 301 | |
| 302 | /* x^166976 mod p(x), x^166912 mod p(x) */ |
| 303 | .octa 0x00000000b64f0000000000003e9f0000 |
| 304 | |
| 305 | /* x^165952 mod p(x), x^165888 mod p(x) */ |
| 306 | .octa 0x00000000bd0e00000000000078590000 |
| 307 | |
| 308 | /* x^164928 mod p(x), x^164864 mod p(x) */ |
| 309 | .octa 0x00000000d9360000000000008bc80000 |
| 310 | |
| 311 | /* x^163904 mod p(x), x^163840 mod p(x) */ |
| 312 | .octa 0x000000002f140000000000008c9f0000 |
| 313 | |
| 314 | /* x^162880 mod p(x), x^162816 mod p(x) */ |
| 315 | .octa 0x000000006a270000000000006af70000 |
| 316 | |
| 317 | /* x^161856 mod p(x), x^161792 mod p(x) */ |
| 318 | .octa 0x000000006685000000000000e5210000 |
| 319 | |
| 320 | /* x^160832 mod p(x), x^160768 mod p(x) */ |
| 321 | .octa 0x0000000062da00000000000008290000 |
| 322 | |
| 323 | /* x^159808 mod p(x), x^159744 mod p(x) */ |
| 324 | .octa 0x00000000bb4b000000000000e4d00000 |
| 325 | |
| 326 | /* x^158784 mod p(x), x^158720 mod p(x) */ |
| 327 | .octa 0x00000000d2490000000000004ae10000 |
| 328 | |
| 329 | /* x^157760 mod p(x), x^157696 mod p(x) */ |
| 330 | .octa 0x00000000c85b00000000000000e70000 |
| 331 | |
| 332 | /* x^156736 mod p(x), x^156672 mod p(x) */ |
| 333 | .octa 0x00000000c37a00000000000015650000 |
| 334 | |
| 335 | /* x^155712 mod p(x), x^155648 mod p(x) */ |
| 336 | .octa 0x0000000018530000000000001c2f0000 |
| 337 | |
| 338 | /* x^154688 mod p(x), x^154624 mod p(x) */ |
| 339 | .octa 0x00000000b46600000000000037bd0000 |
| 340 | |
| 341 | /* x^153664 mod p(x), x^153600 mod p(x) */ |
| 342 | .octa 0x00000000439b00000000000012190000 |
| 343 | |
| 344 | /* x^152640 mod p(x), x^152576 mod p(x) */ |
| 345 | .octa 0x00000000b1260000000000005ece0000 |
| 346 | |
| 347 | /* x^151616 mod p(x), x^151552 mod p(x) */ |
| 348 | .octa 0x00000000d8110000000000002a5e0000 |
| 349 | |
| 350 | /* x^150592 mod p(x), x^150528 mod p(x) */ |
| 351 | .octa 0x00000000099f00000000000052330000 |
| 352 | |
| 353 | /* x^149568 mod p(x), x^149504 mod p(x) */ |
| 354 | .octa 0x00000000f9f9000000000000f9120000 |
| 355 | |
| 356 | /* x^148544 mod p(x), x^148480 mod p(x) */ |
| 357 | .octa 0x000000005cc00000000000000ddc0000 |
| 358 | |
| 359 | /* x^147520 mod p(x), x^147456 mod p(x) */ |
| 360 | .octa 0x00000000343b00000000000012200000 |
| 361 | |
| 362 | /* x^146496 mod p(x), x^146432 mod p(x) */ |
| 363 | .octa 0x000000009222000000000000d12b0000 |
| 364 | |
| 365 | /* x^145472 mod p(x), x^145408 mod p(x) */ |
| 366 | .octa 0x00000000d781000000000000eb2d0000 |
| 367 | |
| 368 | /* x^144448 mod p(x), x^144384 mod p(x) */ |
| 369 | .octa 0x000000000bf400000000000058970000 |
| 370 | |
| 371 | /* x^143424 mod p(x), x^143360 mod p(x) */ |
| 372 | .octa 0x00000000094200000000000013690000 |
| 373 | |
| 374 | /* x^142400 mod p(x), x^142336 mod p(x) */ |
| 375 | .octa 0x00000000d55100000000000051950000 |
| 376 | |
| 377 | /* x^141376 mod p(x), x^141312 mod p(x) */ |
| 378 | .octa 0x000000008f11000000000000954b0000 |
| 379 | |
| 380 | /* x^140352 mod p(x), x^140288 mod p(x) */ |
| 381 | .octa 0x00000000140f000000000000b29e0000 |
| 382 | |
| 383 | /* x^139328 mod p(x), x^139264 mod p(x) */ |
| 384 | .octa 0x00000000c6db000000000000db5d0000 |
| 385 | |
| 386 | /* x^138304 mod p(x), x^138240 mod p(x) */ |
| 387 | .octa 0x00000000715b000000000000dfaf0000 |
| 388 | |
| 389 | /* x^137280 mod p(x), x^137216 mod p(x) */ |
| 390 | .octa 0x000000000dea000000000000e3b60000 |
| 391 | |
| 392 | /* x^136256 mod p(x), x^136192 mod p(x) */ |
| 393 | .octa 0x000000006f94000000000000ddaf0000 |
| 394 | |
| 395 | /* x^135232 mod p(x), x^135168 mod p(x) */ |
| 396 | .octa 0x0000000024e1000000000000e4f70000 |
| 397 | |
| 398 | /* x^134208 mod p(x), x^134144 mod p(x) */ |
| 399 | .octa 0x000000008810000000000000aa110000 |
| 400 | |
| 401 | /* x^133184 mod p(x), x^133120 mod p(x) */ |
| 402 | .octa 0x0000000030c2000000000000a8e60000 |
| 403 | |
| 404 | /* x^132160 mod p(x), x^132096 mod p(x) */ |
| 405 | .octa 0x00000000e6d0000000000000ccf30000 |
| 406 | |
| 407 | /* x^131136 mod p(x), x^131072 mod p(x) */ |
| 408 | .octa 0x000000004da000000000000079bf0000 |
| 409 | |
| 410 | /* x^130112 mod p(x), x^130048 mod p(x) */ |
| 411 | .octa 0x000000007759000000000000b3a30000 |
| 412 | |
| 413 | /* x^129088 mod p(x), x^129024 mod p(x) */ |
| 414 | .octa 0x00000000597400000000000028790000 |
| 415 | |
| 416 | /* x^128064 mod p(x), x^128000 mod p(x) */ |
| 417 | .octa 0x000000007acd000000000000b5820000 |
| 418 | |
| 419 | /* x^127040 mod p(x), x^126976 mod p(x) */ |
| 420 | .octa 0x00000000e6e400000000000026ad0000 |
| 421 | |
| 422 | /* x^126016 mod p(x), x^125952 mod p(x) */ |
| 423 | .octa 0x000000006d49000000000000985b0000 |
| 424 | |
| 425 | /* x^124992 mod p(x), x^124928 mod p(x) */ |
| 426 | .octa 0x000000000f0800000000000011520000 |
| 427 | |
| 428 | /* x^123968 mod p(x), x^123904 mod p(x) */ |
| 429 | .octa 0x000000002c7f000000000000846c0000 |
| 430 | |
| 431 | /* x^122944 mod p(x), x^122880 mod p(x) */ |
| 432 | .octa 0x000000005ce7000000000000ae1d0000 |
| 433 | |
| 434 | /* x^121920 mod p(x), x^121856 mod p(x) */ |
| 435 | .octa 0x00000000d4cb000000000000e21d0000 |
| 436 | |
| 437 | /* x^120896 mod p(x), x^120832 mod p(x) */ |
| 438 | .octa 0x000000003a2300000000000019bb0000 |
| 439 | |
| 440 | /* x^119872 mod p(x), x^119808 mod p(x) */ |
| 441 | .octa 0x000000000e1700000000000095290000 |
| 442 | |
| 443 | /* x^118848 mod p(x), x^118784 mod p(x) */ |
| 444 | .octa 0x000000006e6400000000000050d20000 |
| 445 | |
| 446 | /* x^117824 mod p(x), x^117760 mod p(x) */ |
| 447 | .octa 0x000000008d5c0000000000000cd10000 |
| 448 | |
| 449 | /* x^116800 mod p(x), x^116736 mod p(x) */ |
| 450 | .octa 0x00000000ef310000000000007b570000 |
| 451 | |
| 452 | /* x^115776 mod p(x), x^115712 mod p(x) */ |
| 453 | .octa 0x00000000645d00000000000053d60000 |
| 454 | |
| 455 | /* x^114752 mod p(x), x^114688 mod p(x) */ |
| 456 | .octa 0x0000000018fc00000000000077510000 |
| 457 | |
| 458 | /* x^113728 mod p(x), x^113664 mod p(x) */ |
| 459 | .octa 0x000000000cb3000000000000a7b70000 |
| 460 | |
| 461 | /* x^112704 mod p(x), x^112640 mod p(x) */ |
| 462 | .octa 0x00000000991b000000000000d0780000 |
| 463 | |
| 464 | /* x^111680 mod p(x), x^111616 mod p(x) */ |
| 465 | .octa 0x00000000845a000000000000be3c0000 |
| 466 | |
| 467 | /* x^110656 mod p(x), x^110592 mod p(x) */ |
| 468 | .octa 0x00000000d3a9000000000000df020000 |
| 469 | |
| 470 | /* x^109632 mod p(x), x^109568 mod p(x) */ |
| 471 | .octa 0x0000000017d7000000000000063e0000 |
| 472 | |
| 473 | /* x^108608 mod p(x), x^108544 mod p(x) */ |
| 474 | .octa 0x000000007a860000000000008ab40000 |
| 475 | |
| 476 | /* x^107584 mod p(x), x^107520 mod p(x) */ |
| 477 | .octa 0x00000000fd7c000000000000c7bd0000 |
| 478 | |
| 479 | /* x^106560 mod p(x), x^106496 mod p(x) */ |
| 480 | .octa 0x00000000a56b000000000000efd60000 |
| 481 | |
| 482 | /* x^105536 mod p(x), x^105472 mod p(x) */ |
| 483 | .octa 0x0000000010e400000000000071380000 |
| 484 | |
| 485 | /* x^104512 mod p(x), x^104448 mod p(x) */ |
| 486 | .octa 0x00000000994500000000000004d30000 |
| 487 | |
| 488 | /* x^103488 mod p(x), x^103424 mod p(x) */ |
| 489 | .octa 0x00000000b83c0000000000003b0e0000 |
| 490 | |
| 491 | /* x^102464 mod p(x), x^102400 mod p(x) */ |
| 492 | .octa 0x00000000d6c10000000000008b020000 |
| 493 | |
| 494 | /* x^101440 mod p(x), x^101376 mod p(x) */ |
| 495 | .octa 0x000000009efc000000000000da940000 |
| 496 | |
| 497 | /* x^100416 mod p(x), x^100352 mod p(x) */ |
| 498 | .octa 0x000000005e87000000000000f9f70000 |
| 499 | |
| 500 | /* x^99392 mod p(x), x^99328 mod p(x) */ |
| 501 | .octa 0x000000006c9b00000000000045e40000 |
| 502 | |
| 503 | /* x^98368 mod p(x), x^98304 mod p(x) */ |
| 504 | .octa 0x00000000178a00000000000083940000 |
| 505 | |
| 506 | /* x^97344 mod p(x), x^97280 mod p(x) */ |
| 507 | .octa 0x00000000f0c8000000000000f0a00000 |
| 508 | |
| 509 | /* x^96320 mod p(x), x^96256 mod p(x) */ |
| 510 | .octa 0x00000000f699000000000000b74b0000 |
| 511 | |
| 512 | /* x^95296 mod p(x), x^95232 mod p(x) */ |
| 513 | .octa 0x00000000316d000000000000c1cf0000 |
| 514 | |
| 515 | /* x^94272 mod p(x), x^94208 mod p(x) */ |
| 516 | .octa 0x00000000987e00000000000072680000 |
| 517 | |
| 518 | /* x^93248 mod p(x), x^93184 mod p(x) */ |
| 519 | .octa 0x00000000acff000000000000e0ab0000 |
| 520 | |
| 521 | /* x^92224 mod p(x), x^92160 mod p(x) */ |
| 522 | .octa 0x00000000a1f6000000000000c5a80000 |
| 523 | |
| 524 | /* x^91200 mod p(x), x^91136 mod p(x) */ |
| 525 | .octa 0x0000000061bd000000000000cf690000 |
| 526 | |
| 527 | /* x^90176 mod p(x), x^90112 mod p(x) */ |
| 528 | .octa 0x00000000c9f2000000000000cbcc0000 |
| 529 | |
| 530 | /* x^89152 mod p(x), x^89088 mod p(x) */ |
| 531 | .octa 0x000000005a33000000000000de050000 |
| 532 | |
| 533 | /* x^88128 mod p(x), x^88064 mod p(x) */ |
| 534 | .octa 0x00000000e416000000000000ccd70000 |
| 535 | |
| 536 | /* x^87104 mod p(x), x^87040 mod p(x) */ |
| 537 | .octa 0x0000000058930000000000002f670000 |
| 538 | |
| 539 | /* x^86080 mod p(x), x^86016 mod p(x) */ |
| 540 | .octa 0x00000000a9d3000000000000152f0000 |
| 541 | |
| 542 | /* x^85056 mod p(x), x^84992 mod p(x) */ |
| 543 | .octa 0x00000000c114000000000000ecc20000 |
| 544 | |
| 545 | /* x^84032 mod p(x), x^83968 mod p(x) */ |
| 546 | .octa 0x00000000b9270000000000007c890000 |
| 547 | |
| 548 | /* x^83008 mod p(x), x^82944 mod p(x) */ |
| 549 | .octa 0x000000002e6000000000000006ee0000 |
| 550 | |
| 551 | /* x^81984 mod p(x), x^81920 mod p(x) */ |
| 552 | .octa 0x00000000dfc600000000000009100000 |
| 553 | |
| 554 | /* x^80960 mod p(x), x^80896 mod p(x) */ |
| 555 | .octa 0x000000004911000000000000ad4e0000 |
| 556 | |
| 557 | /* x^79936 mod p(x), x^79872 mod p(x) */ |
| 558 | .octa 0x00000000ae1b000000000000b04d0000 |
| 559 | |
| 560 | /* x^78912 mod p(x), x^78848 mod p(x) */ |
| 561 | .octa 0x0000000005fa000000000000e9900000 |
| 562 | |
| 563 | /* x^77888 mod p(x), x^77824 mod p(x) */ |
| 564 | .octa 0x0000000004a1000000000000cc6f0000 |
| 565 | |
| 566 | /* x^76864 mod p(x), x^76800 mod p(x) */ |
| 567 | .octa 0x00000000af73000000000000ed110000 |
| 568 | |
| 569 | /* x^75840 mod p(x), x^75776 mod p(x) */ |
| 570 | .octa 0x0000000082530000000000008f7e0000 |
| 571 | |
| 572 | /* x^74816 mod p(x), x^74752 mod p(x) */ |
| 573 | .octa 0x00000000cfdc000000000000594f0000 |
| 574 | |
| 575 | /* x^73792 mod p(x), x^73728 mod p(x) */ |
| 576 | .octa 0x00000000a6b6000000000000a8750000 |
| 577 | |
| 578 | /* x^72768 mod p(x), x^72704 mod p(x) */ |
| 579 | .octa 0x00000000fd76000000000000aa0c0000 |
| 580 | |
| 581 | /* x^71744 mod p(x), x^71680 mod p(x) */ |
| 582 | .octa 0x0000000006f500000000000071db0000 |
| 583 | |
| 584 | /* x^70720 mod p(x), x^70656 mod p(x) */ |
| 585 | .octa 0x0000000037ca000000000000ab0c0000 |
| 586 | |
| 587 | /* x^69696 mod p(x), x^69632 mod p(x) */ |
| 588 | .octa 0x00000000d7ab000000000000b7a00000 |
| 589 | |
| 590 | /* x^68672 mod p(x), x^68608 mod p(x) */ |
| 591 | .octa 0x00000000440800000000000090d30000 |
| 592 | |
| 593 | /* x^67648 mod p(x), x^67584 mod p(x) */ |
| 594 | .octa 0x00000000186100000000000054730000 |
| 595 | |
| 596 | /* x^66624 mod p(x), x^66560 mod p(x) */ |
| 597 | .octa 0x000000007368000000000000a3a20000 |
| 598 | |
| 599 | /* x^65600 mod p(x), x^65536 mod p(x) */ |
| 600 | .octa 0x0000000026d0000000000000f9040000 |
| 601 | |
| 602 | /* x^64576 mod p(x), x^64512 mod p(x) */ |
| 603 | .octa 0x00000000fe770000000000009c0a0000 |
| 604 | |
| 605 | /* x^63552 mod p(x), x^63488 mod p(x) */ |
| 606 | .octa 0x000000002cba000000000000d1e70000 |
| 607 | |
| 608 | /* x^62528 mod p(x), x^62464 mod p(x) */ |
| 609 | .octa 0x00000000f8bd0000000000005ac10000 |
| 610 | |
| 611 | /* x^61504 mod p(x), x^61440 mod p(x) */ |
| 612 | .octa 0x000000007372000000000000d68d0000 |
| 613 | |
| 614 | /* x^60480 mod p(x), x^60416 mod p(x) */ |
| 615 | .octa 0x00000000f37f00000000000089f60000 |
| 616 | |
| 617 | /* x^59456 mod p(x), x^59392 mod p(x) */ |
| 618 | .octa 0x00000000078400000000000008a90000 |
| 619 | |
| 620 | /* x^58432 mod p(x), x^58368 mod p(x) */ |
| 621 | .octa 0x00000000d3e400000000000042360000 |
| 622 | |
| 623 | /* x^57408 mod p(x), x^57344 mod p(x) */ |
| 624 | .octa 0x00000000eba800000000000092d50000 |
| 625 | |
| 626 | /* x^56384 mod p(x), x^56320 mod p(x) */ |
| 627 | .octa 0x00000000afbe000000000000b4d50000 |
| 628 | |
| 629 | /* x^55360 mod p(x), x^55296 mod p(x) */ |
| 630 | .octa 0x00000000d8ca000000000000c9060000 |
| 631 | |
| 632 | /* x^54336 mod p(x), x^54272 mod p(x) */ |
| 633 | .octa 0x00000000c2d00000000000008f4f0000 |
| 634 | |
| 635 | /* x^53312 mod p(x), x^53248 mod p(x) */ |
| 636 | .octa 0x00000000373200000000000028690000 |
| 637 | |
| 638 | /* x^52288 mod p(x), x^52224 mod p(x) */ |
| 639 | .octa 0x0000000046ae000000000000c3b30000 |
| 640 | |
| 641 | /* x^51264 mod p(x), x^51200 mod p(x) */ |
| 642 | .octa 0x00000000b243000000000000f8700000 |
| 643 | |
| 644 | /* x^50240 mod p(x), x^50176 mod p(x) */ |
| 645 | .octa 0x00000000f7f500000000000029eb0000 |
| 646 | |
| 647 | /* x^49216 mod p(x), x^49152 mod p(x) */ |
| 648 | .octa 0x000000000c7e000000000000fe730000 |
| 649 | |
| 650 | /* x^48192 mod p(x), x^48128 mod p(x) */ |
| 651 | .octa 0x00000000c38200000000000096000000 |
| 652 | |
| 653 | /* x^47168 mod p(x), x^47104 mod p(x) */ |
| 654 | .octa 0x000000008956000000000000683c0000 |
| 655 | |
| 656 | /* x^46144 mod p(x), x^46080 mod p(x) */ |
| 657 | .octa 0x00000000422d0000000000005f1e0000 |
| 658 | |
| 659 | /* x^45120 mod p(x), x^45056 mod p(x) */ |
| 660 | .octa 0x00000000ac0f0000000000006f810000 |
| 661 | |
| 662 | /* x^44096 mod p(x), x^44032 mod p(x) */ |
| 663 | .octa 0x00000000ce30000000000000031f0000 |
| 664 | |
| 665 | /* x^43072 mod p(x), x^43008 mod p(x) */ |
| 666 | .octa 0x000000003d43000000000000455a0000 |
| 667 | |
| 668 | /* x^42048 mod p(x), x^41984 mod p(x) */ |
| 669 | .octa 0x000000007ebe000000000000a6050000 |
| 670 | |
| 671 | /* x^41024 mod p(x), x^40960 mod p(x) */ |
| 672 | .octa 0x00000000976e00000000000077eb0000 |
| 673 | |
| 674 | /* x^40000 mod p(x), x^39936 mod p(x) */ |
| 675 | .octa 0x000000000872000000000000389c0000 |
| 676 | |
| 677 | /* x^38976 mod p(x), x^38912 mod p(x) */ |
| 678 | .octa 0x000000008979000000000000c7b20000 |
| 679 | |
| 680 | /* x^37952 mod p(x), x^37888 mod p(x) */ |
| 681 | .octa 0x000000005c1e0000000000001d870000 |
| 682 | |
| 683 | /* x^36928 mod p(x), x^36864 mod p(x) */ |
| 684 | .octa 0x00000000aebb00000000000045810000 |
| 685 | |
| 686 | /* x^35904 mod p(x), x^35840 mod p(x) */ |
| 687 | .octa 0x000000004f7e0000000000006d4a0000 |
| 688 | |
| 689 | /* x^34880 mod p(x), x^34816 mod p(x) */ |
| 690 | .octa 0x00000000ea98000000000000b9200000 |
| 691 | |
| 692 | /* x^33856 mod p(x), x^33792 mod p(x) */ |
| 693 | .octa 0x00000000f39600000000000022f20000 |
| 694 | |
| 695 | /* x^32832 mod p(x), x^32768 mod p(x) */ |
| 696 | .octa 0x000000000bc500000000000041ca0000 |
| 697 | |
| 698 | /* x^31808 mod p(x), x^31744 mod p(x) */ |
| 699 | .octa 0x00000000786400000000000078500000 |
| 700 | |
| 701 | /* x^30784 mod p(x), x^30720 mod p(x) */ |
| 702 | .octa 0x00000000be970000000000009e7e0000 |
| 703 | |
| 704 | /* x^29760 mod p(x), x^29696 mod p(x) */ |
| 705 | .octa 0x00000000dd6d000000000000a53c0000 |
| 706 | |
| 707 | /* x^28736 mod p(x), x^28672 mod p(x) */ |
| 708 | .octa 0x000000004c3f00000000000039340000 |
| 709 | |
| 710 | /* x^27712 mod p(x), x^27648 mod p(x) */ |
| 711 | .octa 0x0000000093a4000000000000b58e0000 |
| 712 | |
| 713 | /* x^26688 mod p(x), x^26624 mod p(x) */ |
| 714 | .octa 0x0000000050fb00000000000062d40000 |
| 715 | |
| 716 | /* x^25664 mod p(x), x^25600 mod p(x) */ |
| 717 | .octa 0x00000000f505000000000000a26f0000 |
| 718 | |
| 719 | /* x^24640 mod p(x), x^24576 mod p(x) */ |
| 720 | .octa 0x0000000064f900000000000065e60000 |
| 721 | |
| 722 | /* x^23616 mod p(x), x^23552 mod p(x) */ |
| 723 | .octa 0x00000000e8c2000000000000aad90000 |
| 724 | |
| 725 | /* x^22592 mod p(x), x^22528 mod p(x) */ |
| 726 | .octa 0x00000000720b000000000000a3b00000 |
| 727 | |
| 728 | /* x^21568 mod p(x), x^21504 mod p(x) */ |
| 729 | .octa 0x00000000e992000000000000d2680000 |
| 730 | |
| 731 | /* x^20544 mod p(x), x^20480 mod p(x) */ |
| 732 | .octa 0x000000009132000000000000cf4c0000 |
| 733 | |
| 734 | /* x^19520 mod p(x), x^19456 mod p(x) */ |
| 735 | .octa 0x00000000608a00000000000076610000 |
| 736 | |
| 737 | /* x^18496 mod p(x), x^18432 mod p(x) */ |
| 738 | .octa 0x000000009948000000000000fb9f0000 |
| 739 | |
| 740 | /* x^17472 mod p(x), x^17408 mod p(x) */ |
| 741 | .octa 0x00000000173000000000000003770000 |
| 742 | |
| 743 | /* x^16448 mod p(x), x^16384 mod p(x) */ |
| 744 | .octa 0x000000006fe300000000000004880000 |
| 745 | |
| 746 | /* x^15424 mod p(x), x^15360 mod p(x) */ |
| 747 | .octa 0x00000000e15300000000000056a70000 |
| 748 | |
| 749 | /* x^14400 mod p(x), x^14336 mod p(x) */ |
| 750 | .octa 0x0000000092d60000000000009dfd0000 |
| 751 | |
| 752 | /* x^13376 mod p(x), x^13312 mod p(x) */ |
| 753 | .octa 0x0000000002fd00000000000074c80000 |
| 754 | |
| 755 | /* x^12352 mod p(x), x^12288 mod p(x) */ |
| 756 | .octa 0x00000000c78b000000000000a3ec0000 |
| 757 | |
| 758 | /* x^11328 mod p(x), x^11264 mod p(x) */ |
| 759 | .octa 0x000000009262000000000000b3530000 |
| 760 | |
| 761 | /* x^10304 mod p(x), x^10240 mod p(x) */ |
| 762 | .octa 0x0000000084f200000000000047bf0000 |
| 763 | |
| 764 | /* x^9280 mod p(x), x^9216 mod p(x) */ |
| 765 | .octa 0x0000000067ee000000000000e97c0000 |
| 766 | |
| 767 | /* x^8256 mod p(x), x^8192 mod p(x) */ |
| 768 | .octa 0x00000000535b00000000000091e10000 |
| 769 | |
| 770 | /* x^7232 mod p(x), x^7168 mod p(x) */ |
| 771 | .octa 0x000000007ebb00000000000055060000 |
| 772 | |
| 773 | /* x^6208 mod p(x), x^6144 mod p(x) */ |
| 774 | .octa 0x00000000c6a1000000000000fd360000 |
| 775 | |
| 776 | /* x^5184 mod p(x), x^5120 mod p(x) */ |
| 777 | .octa 0x000000001be500000000000055860000 |
| 778 | |
| 779 | /* x^4160 mod p(x), x^4096 mod p(x) */ |
| 780 | .octa 0x00000000ae0e0000000000005bd00000 |
| 781 | |
| 782 | /* x^3136 mod p(x), x^3072 mod p(x) */ |
| 783 | .octa 0x0000000022040000000000008db20000 |
| 784 | |
| 785 | /* x^2112 mod p(x), x^2048 mod p(x) */ |
| 786 | .octa 0x00000000c9eb000000000000efe20000 |
| 787 | |
| 788 | /* x^1088 mod p(x), x^1024 mod p(x) */ |
| 789 | .octa 0x0000000039b400000000000051d10000 |
| 790 | |
| 791 | .short_constants: |
| 792 | |
| 793 | /* Reduce final 1024-2048 bits to 64 bits, shifting 32 bits to include the trailing 32 bits of zeros */ |
| 794 | /* x^2048 mod p(x), x^2016 mod p(x), x^1984 mod p(x), x^1952 mod p(x) */ |
| 795 | .octa 0xefe20000dccf00009440000033590000 |
| 796 | |
| 797 | /* x^1920 mod p(x), x^1888 mod p(x), x^1856 mod p(x), x^1824 mod p(x) */ |
| 798 | .octa 0xee6300002f3f000062180000e0ed0000 |
| 799 | |
| 800 | /* x^1792 mod p(x), x^1760 mod p(x), x^1728 mod p(x), x^1696 mod p(x) */ |
| 801 | .octa 0xcf5f000017ef0000ccbe000023d30000 |
| 802 | |
| 803 | /* x^1664 mod p(x), x^1632 mod p(x), x^1600 mod p(x), x^1568 mod p(x) */ |
| 804 | .octa 0x6d0c0000a30e00000920000042630000 |
| 805 | |
| 806 | /* x^1536 mod p(x), x^1504 mod p(x), x^1472 mod p(x), x^1440 mod p(x) */ |
| 807 | .octa 0x21d30000932b0000a7a00000efcc0000 |
| 808 | |
| 809 | /* x^1408 mod p(x), x^1376 mod p(x), x^1344 mod p(x), x^1312 mod p(x) */ |
| 810 | .octa 0x10be00000b310000666f00000d1c0000 |
| 811 | |
| 812 | /* x^1280 mod p(x), x^1248 mod p(x), x^1216 mod p(x), x^1184 mod p(x) */ |
| 813 | .octa 0x1f240000ce9e0000caad0000589e0000 |
| 814 | |
| 815 | /* x^1152 mod p(x), x^1120 mod p(x), x^1088 mod p(x), x^1056 mod p(x) */ |
| 816 | .octa 0x29610000d02b000039b400007cf50000 |
| 817 | |
| 818 | /* x^1024 mod p(x), x^992 mod p(x), x^960 mod p(x), x^928 mod p(x) */ |
| 819 | .octa 0x51d100009d9d00003c0e0000bfd60000 |
| 820 | |
| 821 | /* x^896 mod p(x), x^864 mod p(x), x^832 mod p(x), x^800 mod p(x) */ |
| 822 | .octa 0xda390000ceae000013830000713c0000 |
| 823 | |
| 824 | /* x^768 mod p(x), x^736 mod p(x), x^704 mod p(x), x^672 mod p(x) */ |
| 825 | .octa 0xb67800001e16000085c0000080a60000 |
| 826 | |
| 827 | /* x^640 mod p(x), x^608 mod p(x), x^576 mod p(x), x^544 mod p(x) */ |
| 828 | .octa 0x0db40000f7f90000371d0000e6580000 |
| 829 | |
| 830 | /* x^512 mod p(x), x^480 mod p(x), x^448 mod p(x), x^416 mod p(x) */ |
| 831 | .octa 0x87e70000044c0000aadb0000a4970000 |
| 832 | |
| 833 | /* x^384 mod p(x), x^352 mod p(x), x^320 mod p(x), x^288 mod p(x) */ |
| 834 | .octa 0x1f990000ad180000d8b30000e7b50000 |
| 835 | |
| 836 | /* x^256 mod p(x), x^224 mod p(x), x^192 mod p(x), x^160 mod p(x) */ |
| 837 | .octa 0xbe6c00006ee300004c1a000006df0000 |
| 838 | |
| 839 | /* x^128 mod p(x), x^96 mod p(x), x^64 mod p(x), x^32 mod p(x) */ |
| 840 | .octa 0xfb0b00002d560000136800008bb70000 |
| 841 | |
| 842 | |
| 843 | .barrett_constants: |
| 844 | /* Barrett constant m - (4^32)/n */ |
| 845 | .octa 0x000000000000000000000001f65a57f8 /* x^64 div p(x) */ |
| 846 | /* Barrett constant n */ |
| 847 | .octa 0x0000000000000000000000018bb70000 |
| 848 | |
| 849 | #define CRC_FUNCTION_NAME __crct10dif_vpmsum |
| 850 | #include "crc32-vpmsum_core.S" |